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THE APPLICATION OF THE METHOD OF LEAST SQUARES 
TO THE INTERPOLATION OF SEQUENCES 

By J.D. Gergonne 

Translated by Ralph St. John, Bowling Green State University 
and S.M. Stigler, University of Wisconsin 

Translators' Note: An effort has been made not to introduce 
any modern statistical terminology and to reflect GergoMe's 
thinking accurately. To ease the way for modern readers, 
however, some of the mathematical terminology has been up- 
dated (examples : "polynomial function" for "fonction 
compl2 te, rationelle et entiere" and "derivatives" for 
"coefficiens diffgrentiels." All italics, including those 
in the quotation from Laplace, are Gergonne's, as are the 
footnotes unless otherwise indicated. Some readers may be 
unfamiliar with the osculating circle, a geometric measure 
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of curvature at a point and geometric analogue of a second 
derivative. 

When a function of a single variable is known, we can always 
determine rigorously and directly the values of the function and 
of its various derivatives at a given value of the independent 
variable. Similarly, given a curve we can always, for any 
abscissa, obtain the ordinate, the tangent, the osculating circle, 
etc. 

Just as instead of giving a curve we can give only a certain 
number of its points, we can similarly instead of giving a func- 
tion of a variable give only the values this function takes for 
a certain number of values of the independent variable, and 
subsequently ask what are the values of the function and its 
various derivatives for any other value of this variable. Simi- 
larly we could ask for a given abscissa what are the ordinate, 
the tangent, the osculating circle, etc. of a curve about which 
we know only a certain number of points. This constitutes the 
problem of the interpolation of sequences. 

This problem obviously reduces to recovering from the given 
values, the function from which they were obtained, or from the 
given points, the plot of the curve on which we assume they are 
located. However, the problem is indeterminate for, given non- 
consecutive points, even an infinite number of them, we can always 
pass through them an infinity of different curves.* 

These curves could very well differ notably from one another 
in certain parts of their range; the same difference will be 
observed in the ordinates, tangents, osculating circles, etc. for 
a given abscissa. However, we note that if the given points are 
close enough to each other, the curves which include them will 
not differ greatly over this interval, at least if none of the 
curves has within this interval an asymptote parallel to the axis 
of the ordinates. We also note that these given points can 
always be numerous enough, and, at the same time, ‘sufficiently 
close to each other, that the differences between these curves 
become almost indistinguishable. The ordinates which result from 
a single abscissa within this range will therefore be essentially 
equal; however, the difference between the tangents can be more 
sensitive, that between the osculating circles even more so, and 
so forth. 

We conclude from thi‘s that, if functions of diverse form have 

* We can consult on this subject a dissertation on page 252 
of volume 5 of this journal. [Trans. note : The article 
referred to, “Considerations philosophiques sur l’interpola- 
tion,” is by Gergonne but contains no material relevant to 
statistics.] 
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the same value for certain known neighboring values of the 
independent variable without becoming infinite for any value 
included between these, then these functions will take on values 
scarcely different for other values of the independent variable 
included within the above interval. However, this will not be 
the case for the derivatives of the various functions, which can 
differ more and more as the corresponding order increases. 

We can therefore, without noticeable error, arbitrarily adopt 
one of these functions as the desired function; similarly when 
many curves which pass through the same points have only slight 
differences, we can assume that any one of these is really the 
curve on which these points lie. 

Since the curve or the function can be selected in an infinity 
of different ways, it is convenient to select the simplest way, 
that is, the parabolic curve or the polynomial function that 
graphically represents it. This choice is well founded since it 
is known that all finite functions of a finite variable can always 
be expressed in a series of increasing powers of this variable. 

The procedure we have just arrived at is also that which is 
commonly followed; we assume that the ordinate of the desired 
curve is a polynomial function of the abscissa, into which we 
allow as many terms as there are sets of given values; the 
coefficients of these terms are unknown, and we determine them by 
assuming that the curve passes through the given points. Once 
these coefficients are determined, it is a simple matter to calcu- 
late the ordinate and the derivatives for any abscissa. However, 
we can rely on the values obtained from this formula only when it 
is applied to an abscissa within the interval containing the 
given points, and also not too close to the largest or the smal- 
lest. 

This method, which was employed by Mr. Laplace in his memoir 
Recherche des orbites des corn&es,* contains a source of error in 
the supposition that the curve is a parabolic curve. Nevertheless, 
if we could rigorously believe in the given values of the func- 
tion, and if these values were very numerous and very close to 
each other, then what we have said above shows that the error 
resulting from this supposition would never be very large. 

However, this is not always the case. The discrete values of 
the function, which we have used to construct our formula, are 
often deduced from experience or from observations subject to 
limited precision. Thus, as Mr. Legendre has observed,** it 
often happens that the errors which affect these observations can 
have more and more influence on the final solution and on the 
results we deduce from this solution, as more and more values are 
obtained. 

* See the M&noires de l'Acad&nie des Sciences, Paris, for 1780. 
** See his Nouvelles m&hodes pour la d&termination des orbites 

des com&Zes, Paris, 1806, p. iv. 
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Assume that we have plotted an arbitrary curve, and that we 
have obtained from it many ordinates very close to each other. 
Suppose we have subjected these ordinates to very small changes, 
sometimes positive and sometimes negative, and subsequently we 
attempt to pass a continuous curve through these altered ordinates. 
We will easily see that, even if these alterations have had only 
a very small influence on the size of intermediate ordinates, 
that is not the case with regard to the tangent, which may have 
undergone a notable change for the same abscissa, and this change 
may be even more noticeable with regard to the osculating circle. 

These graphical observations can easily be confirmed by calcu- 
lat ions. Suppose we have an odd number of given ordinates cor- 
responding to equidistant abscissas, and assume that this common 
distance is one. Let zero be the abscissa and b the ordinate at 
the middle; 1, 2, 3 . . . the abscissas and bl, b2, b3... the ordi- 
nates which follow; -1, -2, -3, the abscissas and b,, bz, b,,... 
the ordinates which precede. We wish to obtain the various 
derivates at zero. We obtain for the case of three ordinates 

dy _ bl-bL gy = (bl+b,)-2b; 

dx 2 dx2 

for the case of five ordinates 

30b-16(b1+b2)+(b2+b2) 
; 

12 

for the case of seven ordinates 

CY= 
45(b’-b,)-9(b2-b2)+(b3-b3) 

, 
dx 60 

d2y=- 490b-270(b1+b1)+27(b2+b2)-2(b3+b3) 

dx2 180 
; 

and so forth. 

Suppose that the other ordinates are exact and that the 

ordinate b’ is in error by the quantity B. Let E g, E 3 

denote the resulting errors in the derivatives at zero. It is 

easy to see that, in the case of three ordinates 
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in the case of five ordinates 

E $$ = $3, E $$ = $3; 

in the case of seven ordinates 

E dy -=s,E$$. 
dx 4 

Therefore thf e;ro$s $n the first order derivative increase as do 
the numbers 7, J, 7, 5,. . . and thus tend monotonically to the 
actual error in the ordinate bl. Similarly, the error in the 
second order derivative is double that of the first order deriva- 
tive. 

Mr. Legendre was therefore justified in saying that in increas- 
ing the number of values, we exposed ourselves to an increase in 
the errors in the same proportion. This result assumes that there 
is only one incorrect ordinate, which excludes all possibility of 
compensating errors. Moreover, this assumes that the incorrect 
ordinate is precisely that whose value, exact or not, exerts the 
most influence on our two derivatives. 

Whatever the case, this source of error did not escape the 
attention of Mr. Laplace. Here are his comments [Mkanique 

c&es te , Tome I, p. 201]*: “These expressions are more precise 
as there are more observations, and as the interval separating 
them is smaller. We could therefore use all the neighboring 
observations for the chosen period, if they were exact, but the 
errors to which they are subject would lead us to a false result. 
Therefore, to reduce the influence of these errors, we must 
increase the interval of the extreme observations as we employ 
more observations." 

It would probably be more correct to say that we must employ 
observations more and more distant from each other as we employ 

mOre observations. We shall see, in effect, that with this 
procedure we can reduce these errors. Let a be the interval, 
assumed constant, which separates consecutive values of x, an 
interval which we previously assumed to be one. Our previous 
results then become, for three observations 

for five observations 

* Trans note: This passage may be found on p. 411 of volume I 
of Bowditch’s translation. 
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for seven observations 

Therefore, as long as a takes on values that increase more 
rapidly than does the sequence 1 2 3 

p y¶ p”’ our errors will con- 
tinually decrease as we have more and more observations. Suppose, 
for example, that we increase the value of a according to the 
positive intergers. Let this value be one for the case of three 
observations. We thus have for three observations 

for five observations 

for seven observations 

Thus we see that the errors in the first order derivatives 
decrease as do the inverse of the positive integers, and that the 
errors which affect the second order derivatives decrease accor- 
ding to the progression, even more rapid, of the inverse of the 
triangular numbers. The method of Mr. Laplace is therefore, from 
this point of view, entirely beyond reproach. 

HOwever, suppose we have between two fixed known limits 
sufficient observations to reduce to a very small value the 
difference between successive values of x. Following what we 
have just said, we must discard as many observations as we will 

use in our search for !!Y and * dx dx2’ Thus, this is a serious incon- 

venience, especially if we have no reason to suspect that the 
values we discard are worse than those we use. In this manner 
we deprive ourselves of the compensation of errors upon which we 
may rely if we use all the values. 

While reflecting on this subject, it seemed to me that it 
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was possible, using the method of least squares,* to reconcile 
things and to obtain by this method all the precision one can 
possibly hope for in this situation. Here is the method I 
believe we should use. 

Let a, al, a2... be the values of x, however many, and let 
b, b,, b,,... be the observed corresponding values of y. Let 

y  = A + Bx + Cx2 + Dx3 + . . . 

allowing as many terms in this function as we would have employed 
using the previously described procedure of discarding observa- 
tions. We wish to determine the value of the coefficients A, B, 
C, D,... . If the number of coefficients were equal to the number 
of observations, we could assign the coefficients values giving 
zero errors. But this is impossible in this case and we shall 
be content to minimize the sum of their squares. 

These errors are respectively 

A + Ba tCa2 + Da3 t . . . -b ; 

A t BaItCaT + Da: t . . . -b,; 

A t Ba2+Ca; t Da; t . . . -b,. 

We wish to obtain 

(A + Ba + Ca2 + Da3 + . . . -b )2 

+ (A + Bal + Ca: + Da? + . . . -b,)2 = minimum 

+ (A + Ba2 + Ca?j + Da: + . . . -b2)2 

+. .‘. . . . . . 

l We know that the method of least squares is based on the prin- 
ciple that the mean value (which is most probable to be nearly 
exact) of many values near a quantity, is that which, assuming 
it were correct, would minimize the sum of squares of the errors 
which affect the other observations. The first printed work 
in which this method was mentioned is the memoir of Mr. Legendre 
already cited in a preceding note (1806). In a work published 
in 1809, Mr. Gauss declared that he has been using a similar 
method since 1795. Mr. Laplace subsequently showed that this 
method conforms rigorously to the theory of probability. 
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That is, in differentiating with respect to A, B, C, D, . . . 

(A + Ba + Ca2 + . . . - b )(dA + adB + a2dC + . . . ) 

+(A + Bal + Ca: + . . . - bl) (dA + a,dB + a:dC + . . . ) = 0 

+(A + Ba 2 + Ca2 + . . . 2 - b2) (dA + a2dB + a;dC + . . . ) 

Because of the independence between A, B, C, . . . the multipliers 
of dA, dB, dC,... must separately be zero. We abbreviate in 
general 

Iam =am +a: +a! +...; 

Carnb = amb + apl + aFb2 + . . . ; 

and we obtain these equations 

Ca”A + CaB + Ca2C + Ca3D = . . . = Ca”b, 

cam + Ca2B + Ca3C + Ca4D + . . . = Cab , (11 

Ca2A + Ca3B + Ca4C + Ca5D + . . . = Ca2b, 

There are exactly as many equations as there ,are unknown 
coefficients A, B, C, D,... . Although the methods previously 
discussed give values for y and its derivatives of a precision 
slightly inferior to that of the observations from which they were 
calculated, we can often hope with this new procedure to improve 
on the precision of the observations themselves. 

The simplest case, and the most frequent, is that in which the 
values of x increase by a constant difference. Thus we can 
substitute the natural numbers for this progression. Let there 
be 2n + 1 known corresponding values of x and y. Let zero be the 
middle value of x, such that the numerical sequence is 

-n, -(n-l), . . . -3, -2, -1, +O, +l, +2, +3, . . . + (n-l), n. 

Let Cnm denote the sum of the mth powers of these integers. We 
obtain 

Xa” = 2n + 1, Ca = 0, Ca2 = 2Cn2, Ca3 = 0, .Xa4 = 2Cn4 . . . . , 

Thus equations (1) become 
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(2n+l)A + 2Cn2C + . . . = Cb , 2Cn*B + 2Cn4D + . . . = Cab , 

2Cn*A + 2Cn4C + . . . = Ca*b, 2Cn4B + 2Cn6D + . . . = Ca3b, 

2Cn4A + 2Cn6C + . . . = Ca4b, 2Cn6B + 2CnsD + .., = Ca5b, 

In addition to the fact that the sums of powers of the integers 
are given by known formulas, we also gain the advantage of being 
able to calculate separately the coefficients of even terms and 
those of odd terms, which will considerably simplify the amount 
of work. 

Even in the case where neither the values of x nor the values 
of y occur in an arithmetical progression, we can profit from 
these simplifications by proceeding as follows. Suppose that x 
and y are both functions of a third variable z, whose values are 
completely arbitrary, but are equally spaced, as with x abz;e. 
We would seek by our procedure the values of dx !!Y d2x dz' dz' dz" &' " ' ' 
We would then obtain, using known formulas, 

AY 
dx 

= dy/dz 
dx 

dz 

d*y s= 

dx d2y - 9 d*x 
dz dz* dz dz* 

This method seems to me preferable to that which consists of 
interpolation between observations in order to render them equi- 
distant. It is understood, of course, that it may be dangerous, 
in a problem of a rather delicate nature, to change the values 
of the observations before using them. 

It seems to us that the introduction of the method which we 
have described into the method of Mr. Laplace, for the determina- 
tion of the orbit of comets, will greatly increase its precision, 
at least in the case where we have a large number of observations. 
However, this method, as is true of many other methods, will 
basically be nothing more than well-directed groping. 

There remains another problem to be resolved, which can be 
stated as follows: we know that a number of points, however 
-nyr are located near a parabolic curve of unknown fixed degree, 
and we wish to know the most likely value of the degree of this 
curve. The solution to this problem would eliminate the uncer- 
tainty of the analyst who, wishing to apply the method of Mr. 
Laplace, is able to employ a large number of observations. 


