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Abstract

Let m0
2ð3; qÞ be the largest value of k ðkoq2 þ 1Þ for which there exists a complete k-cap in

PGð3; qÞ; q even. In this paper, the known upper bound on m0
2ð3; qÞ is improved. We also

improve a number of intervals, for k; for which there does not exist a complete k-cap in

PGð3; qÞ; q even.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A k-cap K in PGðn; qÞ is a set of k points, no three of which are collinear. A point r

of PGðn; qÞ extends a k-cap K to a ðk þ 1Þ-cap if and only if K,frg is a ðk þ 1Þ-cap.
A k-cap is complete if and only if it is not contained in a ðk þ 1Þ-cap. A k-cap of
PGð2; qÞ is also called a k-arc of PGð2; qÞ:
Let m2ðn; qÞ be the maximum value of k for which there exists a (complete)

k-cap in PGðn; qÞ: The exact value of m2ðn; qÞ is known in the following cases
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(see [12, Theorem 4.1]):

m2ðn; 2Þ ¼ 2n;

m2ð2; qÞ ¼
q þ 1; q odd;

q þ 2; q even;

�

m2ð3; qÞ ¼ q2 þ 1 ðq42Þ;

m2ð4; 3Þ ¼ 20;

m2ð4; 4Þ ¼ 41;

m2ð5; 3Þ ¼ 56:

The second largest value of k for which there exists a complete k-cap in PGðn; qÞ is
denoted by m0

2ðn; qÞ: This value m0
2ðn; qÞ is only known in some small projective

planes [12, Table 2.4], for n ¼ 2; q ¼ 22h ðh41Þ and for ðn; qÞ ¼
ð3; 3Þ; ð3; 4Þ; ð3; 5Þ; ð3; 7Þ; ð4; 3Þ; ð4; 4Þ; ð5; 3Þ and ðn; qÞ ¼ ðn; 2Þ: Namely, m0

2ð2; 22hÞ ¼
22h 	 2h þ 1 ðh41Þ [4,10,15], m0

2ð3; 3Þ ¼ 8 [9], m0
2ð3; 4Þ ¼ 14 [13,14], m0

2ð3; 5Þ ¼ 20 [1],

m0
2ð3; 7Þ ¼ 32 [8], m0

2ð4; 3Þ ¼ 19 [17], m0
2ð4; 4Þ ¼ 40 [7], m0

2ð5; 3Þ ¼ 48 [2] and

m0
2ðn; 2Þ ¼ 2n	1 þ 2n	3; nX3 [6].

With respect to the other values of m2ðn; qÞ and m0
2ðn; qÞ; only upper bounds are

known. We refer to [12] for a list of these upper bounds.
The following theorem gives disjoint intervals for k for which there does not exist

a complete k-cap in PGð3; qÞ; q even.

Theorem 1.1 (Storme and Sz +onyi [16]). There is no complete k-cap K in PGð3; qÞ; q

even, qX64; with

kA q2 	 ða 	 1Þq þ a
ffiffiffi
q

p þ 2	 a þ a
2

� �
; q2 	 ða 	 2Þq 	 a2

ffiffiffi
q

p� �

and with a an integer satisfying

2pap
	2 ffiffiffi

q
p þ 3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16q

ffiffiffi
q

p þ 12q 	 44
ffiffiffi
q

p 	 7
p

4
ffiffiffi
q

p þ 2
:

We will improve the preceding theorem to the following one.

Theorem 1.2. There is no complete k-kap K in PGð3; qÞ; q even, qX16; with

kA½q2 	 ðc 	 1Þq þ ð2c3 þ c2 	 7c þ 6Þ=2; q2 	 ðc 	 2Þq 	 2c2 þ 5c 	 2�

and with c an integer satisfying 2pcp ffiffiffi
q4

p
:
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There exist complete ðq2 þ 1Þ-caps in PGð3; 2hÞ; hX1; and, by a result of Chao [5],

the size of the second largest cap is bounded by m0
2ð3; q ¼ 2hÞpq2 	 q þ 5; for

qX8 [5].

We improve this upper bound on m0
2ð3; q ¼ 2hÞ to m0

2ð3; q ¼ 2hÞpq2 	 q þ 2; for
qX16: This improvement is obtained by combining the method of Storme and
Sz +onyi [16] with the method of Chao [5].

2. Preliminaries

Theorem 2.1. Let K be a k-arc in PGð2; qÞ; q even, q42; for which q þ 1Xk4q 	ffiffiffi
q

p þ 1: Then K can be uniquely extended to a ðq þ 2Þ-arc of PGð2; qÞ:

Proof. See [11, p. 233, 18]. &

Definition 2.2. A tangent L to a k-cap K in PGðn; qÞ is a line which has exactly one
point in common with K :We call planes, respectively lines, intersecting K in i points,
i-planes, respectively i-lines.

Remark 2.3. Let K be a k-cap in PGðn; qÞ: Then each point p of K belongs to exactly

t ¼ qn	1 þ qn	2 þ?þ q þ 2	 k tangents.

Theorem 2.4. Let K be a complete k-cap in PGðn; qÞ; q even, and let t ¼ qn	1 þ
qn	2 þ?þ q þ 2	 k:

Then each point p of PGðn; qÞ\K belongs to s1ðpÞpt tangents to K :

Proof. See [13,14, Lemma 2.3, Lemma 27.4.2]. &

3. Non-existence intervals for complete k-caps in PGð3; 2hÞ

Suppose there exists a complete k-kap K in PGð3; qÞ; q even, qX16; with

kA½q2 	 ðc 	 1Þq þ ð2c3 þ c2 	 7c þ 6Þ=2; q2 	 ðc 	 2Þq 	 2c2 þ 5c 	 2�

and with c an integer satisfying 2pcp
ffiffiffi
q4

p
:

Lemma 3.1 (cf. Chao [5]). A plane intersects K in at most c2 	 1 points or in at least

q þ 3	 c2 points; we will call these planes, respectively, small planes and big planes.

Proof. Let p be an x-plane (cf. [5]). Let S be the set of pairs ðr;LÞ; where rAp\K and

L is a tangent through r: By Theorem 2.4, we have jSjptðq2 þ q þ 1	 xÞ ¼
tðt þ k 	 1	 xÞ: We have tðk 	 xÞ tangents to K intersecting p in exactly one point
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of p\K : In p we have xðq þ 2	 xÞ tangents to K : Hence jSj ¼ tðk 	 xÞ þ xðqþ
2	 xÞq: Solving this inequality yields the result. &

Remark 3.2. Since we impose the condition c4pq on c; large plane intersections are
always contained in ðq þ 2Þ-caps of these planes (Theorem 2.1).

As in [16], we will count the cardinality of U ; being the set of triples ðL; a; rL;aÞ;
where L is a tangent, a is a big plane through L and rL;a is the unique point on L

which extends K-a to a larger cap.

Lemma 3.3. jU jXðqþ2	 cÞðq2 	 ðc 	 2Þq 	 2c2 þ 5c 	 2Þððc 	 1Þq þ 2c2 	 5c þ 4Þ:

Proof. The k-cap K has kðq2 þ q þ 2	 kÞXt1 ¼ ðq2 	 ðc 	 2Þq 	 2c2 þ 5c 	 2Þðq2 þ
q þ 2	 ðq2 	 ðc 	 2Þq 	 2c2 þ 5c 	 2ÞÞ tangents.
Let r be the number of small planes through a tangent, then k 	 1prðc2 	 2Þ þ

ðq þ 1	 rÞq: So, there are at most c 	 1 small planes through a tangent. Hence there
are at least q þ 2	 c big planes through a tangent.
For a fixed tangent L and big plane a; the point rL;a is unique. So

jU jXðq þ 2	 cÞt1: &

Lemma 3.4. jU jpðc 	 1Þðq þ 1Þðq3 þ cq 	 ð2c3 þ c2 	 7c þ 4Þ=2Þ:

Proof. There are at most jPGð3; qÞ\K jpq3 þ cq 	 ð2c3 þ c2 	 7c þ 4Þ=2 choices for
a point r outside the cap.

If r extends a big plane intersection p-K ; then r lies on at least q þ 3	 c2 tangents
in p: Hence, if r extends x big plane intersections through r; then r lies on at least

xðq þ 3	 c2Þ 	 x
2

� �
tangents. Since this number is at most t; we have xpc 	 1: So

jU jpðc 	 1Þðq þ 1Þðq3 þ cq 	 ð2c3 þ c2 	 7c þ 4Þ=2Þ: &

Comparing the bounds of Lemmas 3.3 and 3.4 gives a contradiction; there does
not exist a complete k-cap whose size lies in the intervals of Theorem 1.2.

Remark 3.5. When looking for the improved intervals, we described the intervals

as ½q2 	 ðc 	 1Þq þ a; q2 	 ðc 	 2Þq 	 b�; and looked for the optimal values for a
and b: The value a was selected so that a point reK belongs to at most c 	 1
big planes p; in which it extends the intersection p-K to a larger cap (see proof
of Lemma 3.4). Here we already rely on the fact that we know that there are
small and big planes (Lemma 3.1). The proof of Lemma 3.3 was first of all

done assuming that the upper bound on jK j is equal to q2 	 ðc 	 2Þq 	 b; b40: We
then compared the upper bound of Lemma 3.4, using the already selected value of a;
with the lower bound of Lemma 3.3. For the selected value of b; the desired
contradiction is obtained.
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4. A closer look at m0
2ð3; qÞ

In this section, we will eliminate the existence of complete k-caps, where k is

q2 	 q þ 3; q2 	 q þ 4 or q2 	 q þ 5; in PGð3; 2hÞ; hX4: Assume there does exist such
a cap K :

Lemma 4.1. The only small planes are 0-planes or 1-planes.

Proof. The reasoning of Lemma 3.1 gives that for k ¼ q2 	 q þ 3 we have at most

four points in a small plane, and for kAfq2 	 q þ 4; q2 	 q þ 5g; we have at most
three points in a small plane.

First, we will eliminate 4-planes for a complete ðq2 	 q þ 3Þ-cap K: Assume there
exists a 4-plane a: Take a tangent L in a: If L is contained in a ðq þ 1Þ-plane p; then
the nucleus n of this plane p lies on at least one tangent TaL contained in a: Since
s1ðnÞpt ¼ 2q 	 1; T cannot be contained in a ðq þ 1Þ-plane. Hence, a always
contains a tangent T which is not contained in a ðq þ 1Þ-plane. We have the
following planes through T : one 4-plane a; q 	 1 q-planes pi and one ðq 	 1Þ-plane b:
Through the unique point ni on T which extends pi-K ; we have q tangents
contained in pi; at least one tangent different from T in every other q-plane, and at
least one tangent different from T in a: Hence, we have found already t tangents
through ni: Since s1ðniÞpt; the point ni lies on the intersection of T and a bisecant in
a: There are only three possibilities for such a point, hence we can find indices iaj

for which ni ¼ nj ; but then we have more than t tangents through ni; a contradiction.

Now, we will eliminate 2- and 3-planes for kAfq2 	 q þ 4; q2 	 q þ 5g: Assume we
have a 2-plane a: Take a tangent L in a and let frg ¼ L-K : Through r go at least
q 	 1 tangents in a; hence we have at most q 	 1 tangents left over to divide over the
other q planes through L: So we have at least one ðq þ 1Þ-plane p through L: Take
the nucleus n of p and let T be the other tangent through n in a: If T is contained in a
ðq þ 1Þ-plane, then necessarily n is the nucleus of this plane, and we have more than t

tangents through n; a contradiction. So, T lies in at most q-planes, and cannot lie in a
2-plane.
Let a be a 3-plane. Take a tangent T in a; then T is contained in a ðq þ 1Þ-plane p:

By the reasoning above, the nucleus of p is on T and on a bisecant in a: Because a
point on T cannot be the nucleus of more than one ðq þ 1Þ-plane, this implies that
through a tangent T in a; there is exactly one ðq þ 1Þ-plane. Hence, k ¼ q2 	 q þ 4
and the planes through T are one 3-plane a; one ðq þ 1Þ-plane p and q 	 1 q-planes
pi: Let n be the nucleus of p: In every plane pi we must have an even number of
tangents through the point n; so besides T ; for every q-plane, we have at least one
extra tangent through n: But this yields s1ðnÞ4t; a contradiction.

Finally, we will eliminate 2-planes and 3-planes for k ¼ q2 	 q þ 3: Assume we
have a 2-plane a; and take a tangent L in a: Through L we have at least one ðq þ 1Þ-
plane p: Take the tangent TaL; contained in a; passing through the nucleus n of p:
This tangent T cannot be contained in a ðq þ 1Þ-plane, since n would also be the
nucleus of this plane and we would have too many tangents through n: Counting
incidences with planes through T ; we obtain k 	 1p1þ qðq 	 1Þ; a contradiction.
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Now assume we have a 3-plane a; and take a tangent L in a: Assume there is no
ðq þ 1Þ-plane through L; then all planes piaa through L must be q-planes. Now
consider the point ni on L which extends K-pi: Through ni; there are q tangents in
pi; and there is at least one extra tangent for every other q-plane pjapi: Hence, we

have already found t tangents through ni; and ni must be the unique point on L;
which lies on the unique bisecant to ðK-aÞ\L: But we can do this reasoning for every
q-plane through L; and we have too many tangents through the point n1 ¼ ? ¼ nq:

Hence, there is a ðq þ 1Þ-plane p through L: We can assume that the nucleus n of
p-K must be the point on L; which lies on a bisecant B to K-a; or else we are
reduced to the preceding situation. Also, p is the only ðq þ 1Þ-plane through L: This
yields that there must be at least q 	 2 q-planes through n; all having a tangent
different from L through n: Hence s1ðnÞXq 	 2þ q þ 1 ¼ t: Now, consider the
planes bi through B different from the 3-plane. Since such a plane bi intersects p in a
tangent, bi is not a ðq þ 2Þ-plane, and then bi has to be a ðq þ 1Þ-plane.
Since n lies on a bisecant B; n lies on exactly one tangent in every plane bi: This

gives s1ðnÞ ¼ q þ 1; a contradiction with the preceding paragraph where we showed
that s1ðnÞ ¼ t: &

Lemma 4.2. Every tangent L is contained in a ðq þ 1Þ-plane.

Proof. Let frg ¼ L-K : If L is contained in a small plane, the result is trivial. Now
suppose that L is only contained in big planes. Hence, there exists a point s on L

which extends at least two plane intersections through L:

If k ¼ q2 	 q þ 5; then the reasoning of Lemma 3.1 shows that the big planes
contain at least q 	 1 points of K : Then s extends two ðq 	 1Þ-caps lying in planes p1
and p2 through L; and there are no tangents through s outside of p1 or p2; since
s1ðsÞpt ¼ 2q 	 3: Since the number of tangents through s to a planar q-cap is even,
there cannot be a q-plane through L: Hence, the planes through L are 3 ðq þ 1Þ-
planes and q 	 2 ðq 	 1Þ-planes.
If k ¼ q2 	 q þ 4; then also here the big planes contain at least q 	 1 points of K :

Then a first possibility is that s extends two ðq 	 1Þ-caps lying in planes p1 and p2
through L; and there is at most one tangent through s not lying in p1 or p2: Then we
have at most one q-plane through L and the planes through L must be 1 q-plane,
2ðq þ 1Þ-planes and q 	 2 ðq 	 1Þ-planes. The other possibility is that s extends a
ðq 	 1Þ-cap and a q-cap lying in planes through L: This case is similar to the previous
one.

If k ¼ q2 	 q þ 3; then big planes share at least q 	 2 points with K : Then we have
at most t 	 ðq 	 2þ q 	 2	 1Þ ¼ 4 q-planes through L; and equality might only
occur when s extends two ðq 	 2Þ-caps lying in planes through L: Assume that there
are no ðq þ 1Þ-planes through L; then L lies in at most four q-planes. Once the
number of q-planes through L is fixed, the number of ðq 	 1Þ- and ðq 	 2Þ-planes
also is fixed. Checking all cases, only the possibility remains that the planes through
L are 4 q-planes and q 	 3 ðq 	 1Þ-planes. But then s lies on 2q 	 3 tangents to the
two ðq 	 1Þ-planes and to four extra tangents to the four q-planes; but then
s1ðsÞ ¼ 2q þ 14t: &
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Lemma 4.3. All tangents through a nucleus n of a ðq þ 1Þ-plane p lie in this ðq þ 1Þ-
plane.

Proof. Assume there is a tangent M through n not contained in p: Then M lies in a
ðq þ 1Þ-plane b: Since n lies on at least two tangents M and p-b in b; n is the nucleus
of b-K : But then s1ðnÞ4t; a contradiction.

The final contradiction: If k ¼ q2 	 q þ 4; then take the nucleus n of a ðq þ 1Þ-plane.
By Lemma 4.3, we have s1ðnÞ ¼ q þ 1; while this number of tangents through n

should be even.

If kAfq2 	 q þ 3; q2 	 q þ 5g; then we will first show that the only even plane
intersections have size 0 or q þ 2: Suppose we have a plane p which intersects K in a
q-arc or ðq 	 2Þ-arc. Then take a tangent L in p; this tangent is contained in
a ðq þ 1Þ-plane g: The number of tangents through the nucleus n of g-K to p-K

is even; hence there is a tangent through n not contained in g; a contradiction
(Lemma 4.3).
Now, using the standard counting arguments on the numbers

P
i ni;

P
i ini;P

i iði 	 1Þni;
P

i iði 	 1Þði 	 2Þni; we can compute

X
i

niði 	 1Þði 	 ðq 	 1ÞÞði 	 ðq þ 1ÞÞ;

where ni denotes the number of i-planes.

For k ¼ q2 	 q þ 3; we obtain

	n0ðq2 	 1Þ þ 3nqþ2ðq þ 1Þ ¼ 	5q3 þ 17q2 	 22q þ 16:

For k ¼ q2 	 q þ 5; we obtain

	n0ðq2 	 1Þ þ 3nqþ2ðq þ 1Þ ¼ 	7q3 þ 39q2 	 68q þ 96:

In both cases we get a contradiction, computing these equations modulo q þ 1: &
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Appendix

The crucial element in the improvement of Theorem 1.1 to Theorem 1.2 was the
fact that the technique of Chao [5] (cf. proof of Lemma 3.1) showed that planes of
PGð3; qÞ intersect large complete caps of PGð3; qÞ in either a small number of points
or in a large number of points.

ARTICLE IN PRESS
S. Ferret, L. Storme / Finite Fields and Their Applications 10 (2004) 306–314312



A check on the known upper bounds for the sizes of caps in PGðn; qÞ; q even, nX4;
shows that a similar result is valid for large caps in PGðn; qÞ; q even. We present these
results in Theorem 5.2.
To find an upper bound on the sizes of caps in PGðn; qÞ; q even, we rely on the

upper bound on the size of caps in affine spaces AGðn; qÞ of Bierbrauer and Edel.
They proved the following result.

Theorem 5.1 (Bierbrauer and Edel [3]). Let Cn be the largest size of a cap in

AGðn; qÞ; q even, q42; nX4; then

Cnp
qn	1 þ qnCn	1
qn	1 þ Cn	1

:

As indicated in [3], starting from C3 ¼ q2; C4 ¼ q3 	 q2 þ q follows.
In general, for 4pnp2q=3; qX8; the upper bound

Cnpqn	1 	 ðn 	 3Þqn	2 þ ðn 	 3Þ2qn	3

follows. Adding the upper bound qn	2 for the size of a cap in PGðn 	 1; qÞ; it follows
that

m2ðn; qÞpqn	1 	 ðn 	 4Þqn	2 þ ðn 	 3Þ2qn	3

for even qX8 and 4pnp2q=3:
We now present an interval theorem on the sizes of the hyperplane sections of

hyperplanes of PGðn; qÞ; q even, with complete large k-caps.

Theorem 5.2. In PGðn; qÞ; q even, nX4; a complete k-cap K ; with

k4qn	1 	 ðc 	 1Þqn	2 þ qn	3 þ qn	4 þ?þ q þ 2þ c3qn	3=2

with c4p4q; intersects a hyperplane in less than c2qn	3 points or in larger than qn	2 þ
?þ q þ 2	 c2qn	3 points.

Proof. We repeat the arguments of the proof of Lemma 3.1; see also the case n ¼ 3
in [5].

Let jK j ¼ qn	1 	 ðc 	 1Þqn	2 þ qn	3 þ qn	4 þ?þ q þ 2þ e; then the number of

tangents through a point of K is t ¼ cqn	2 	 e:
Let p be a hyperplane intersecting K in x points.
We count the number of ordered pairs ðr;LÞ; where rAp\K ; and where L is a

tangent to K through r:

Then this number equals tðk 	 xÞ þ xðqn	2 þ?þ q þ 2	 xÞq; and tðqn	1 þ?þ
q þ 1	 xÞ is an upper bound for this number.
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This inequality is equivalent to

x2ðq 	 q2Þ þ xðqn þ q2 	 2qÞ 	 c2q2n	3 þ c2q2n	4

þ ðc þ 2ecÞqn	1 	 ðc þ 2ecÞqn	2 	 ðeþ e2Þq þ eþ e2p0:

For e4c3qn	3=2; this implies xoc2qn	3 or x4qn	2 þ?þ q þ 2	 c2qn	3: &

Remark 5.3. Presently, no caps in PGðn; qÞ; q even, nX4 small, of the size of the
upper bounds of Theorems 5.1 and 5.2 are known.
Nevertheless, the result of Theorem 5.2 might be useful in eliminating the existence

of caps of these sizes.
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