
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Artificial Intelligence 168 (2005) 70–118

www.elsevier.com/locate/artint

Reasoning on UML class diagrams

Daniela Berardi a,∗, Diego Calvanese b, Giuseppe De Giacomo a

a Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,
Via Salaria 113, I-00198 Roma, Italy

b Faculty of Computer Science, Free University of Bolzano/Bozen,
Piazza Domenicani 3, I-39100 Bolzano, Italy

Received 22 January 2004; accepted 4 May 2005

Available online 15 July 2005

Abstract

UML is the de-facto standard formalism for software design and analysis. To support the design of
large-scale industrial applications, sophisticated CASE tools are available on the market, that provide
a user-friendly environment for editing, storing, and accessing multiple UML diagrams. It would be
highly desirable to equip such CASE tools with automated reasoning capabilities, such as those stud-
ied in Artificial Intelligence and, in particular, in Knowledge Representation and Reasoning. Such
capabilities would allow to automatically detect relevant formal properties of UML diagrams, such as
inconsistencies or redundancies. With regard to this issue, we consider UML class diagrams, which
are one of the most important components of UML, and we address the problem of reasoning on
such diagrams. We resort to several results developed in the field of Knowledge Representation and
Reasoning, regarding Description Logics (DLs), a family of logics that admit decidable reasoning
procedures. Our first contribution is to show that reasoning on UML class diagrams is EXPTIME-
hard, even under restrictive assumptions; we prove this result by showing a polynomial reduction
from reasoning in DLs. The second contribution consists in establishing EXPTIME-membership of
reasoning on UML class diagrams, provided that the use of arbitrary OCL (first-order) constraints
is disallowed. We get this result by using DLRifd , a very expressive EXPTIME-decidable DL that
has been developed to capture typical features of conceptual and object-oriented data models. The
last contribution has a more practical flavor, and consists in a polynomial encoding of UML class
diagrams in the DL ALCQI, which essentially is the most expressive DL supported by current
state-of-the-art DL-based reasoning systems. Though less expressive than DLRifd , the DL ALCQI

* Corresponding author.
E-mail address:berardi@dis.uniroma1.it (D. Berardi).
0004-3702/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2005.05.003

https://core.ac.uk/display/82035216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 71
preserves enough semantics to keep reasoning about UML class diagrams sound and complete. Ex-
ploiting such an encoding, one can use current DL-based reasoning systems as core reasoning engines
for a next generation of CASE tools, that are equipped with reasoning capabilities on UML class di-
agrams.
 2005 Elsevier B.V. All rights reserved.

Keywords:Knowledge representation; Description logics; UML class diagrams; Computational complexity;
Verification; CASE tools

1. Introduction

UML (Unified Modeling Language) is the de-facto standard formalism for the analysis
and design of software. One of the most important components of UML are class diagrams,
which model the information on the domain of interest in terms of objects organized in
classes and relationships between them.1 The use of UML in industrial-scale software ap-
plications brings about class diagrams that are large and complex to design, analyze, and
maintain. To simplify these tasks, sophisticated CASE tools are commonly adopted, e.g.,
Rational Rose,2 Together,3 Poseidon,4 ArgoUML5 (see also the OMG home page6). Such
tools support the designer with a user-friendly graphical environment for editing, storing,
and accessing multiple UML class diagrams. However, the expressiveness of the UML
constructs may lead to implicit consequences that can go undetected by the designer in
complex diagrams, and cause various forms of inconsistencies or redundancies in the dia-
gram itself. This may result in a degradation of the quality of the design and/or increased
development times and costs. If the diagrams were used simply for documentation pur-
poses, then the problem could not be that severe; if, on the other hand, they are used as part
of a model-driven approach to development (see, e.g., OMG’s Model-Driven Architec-
ture7), then the quality of the models can influence the quality of the implemented system
(especially, when a code generator is involved, or when one uses models to generate test
cases). Hence, it would be highly desirable to equip CASE tools with capabilities to auto-
matically detect relevant formal properties of UML class diagrams, such as the mentioned
inconsistencies and redundancies.

Several works propose to describe UML class diagrams using various kinds of formal
systems [2–6]. Using such formal systems, one could potentially reason on UML class
diagrams, and formally prove properties of interest through inference, and hence help the
designer in understanding the hidden implications of his choices when building a class
diagram. However, in spite of these works, foundational questions remain open: how hard

1 In this paper we deal with UML class diagrams for the conceptual perspective, as opposed to the implemen-
tation perspective, see, e.g., [1].

2 http://www.rational.com/products/rose/.
3 http://www.togethersoft.com/.
4 http://www.gentleware.com/.
5 http://argouml.tigris.org/.
6 http://www.omg.org/.
7 http://www.omg.org/mda/.

http://www.rational.com/products/rose/
http://www.rational.com/products/rose/
http://www.togethersoft.com/
http://www.togethersoft.com/
http://www.gentleware.com/
http://www.gentleware.com/
http://argouml.tigris.org/
http://argouml.tigris.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/mda/
http://www.omg.org/mda/

72 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
is it to reason on UML class diagrams from the computational complexity point of view?
Is there a formalism equipped with sound and complete reasoning services that captures
UML class diagrams and matches their intrinsic complexity?

In this paper we address such questions by resorting to results developed through the
years in the Knowledge Representation and Reasoning community on Description Logics
(DLs) [7]. These are logics specifically designed for the conceptual representation of an ap-
plication domain in terms of classes and relationships between classes that admit decidable
reasoning.

Our first contribution in this paper is to show that reasoning on UML class diagrams
is EXPTIME-hard even under fairly restrictive assumptions, namely: only binary associ-
ations, only minimal multiplicity constraints, generalizations (between classes and asso-
ciations) with disjointness and completeness constraints. We get this result by exhibiting
a polynomial reduction from reasoning in the basic DL ALC8 [7], which is EXPTIME-
complete. In particular we show that every ALC knowledge base can be expressed as a
UML class diagram preserving soundness and completeness of reasoning. This possibility
is quite surprising, since UML class diagrams apparently have very limited means to ex-
press negative and disjunctive information, namely disjointness and covering constraints
in generalization hierarchies. Instead ALC is equipped with unrestricted negation and dis-
junction; that is, it is able to treat negative information in the same way as positive one,
and to reason by cases to fully take into account disjunctive information.

Our second contribution is to establish EXPTIME-membership of reasoning on UML
class diagrams, allowing for covering and disjointness constraints on generalization hier-
archies but disallowing the use of arbitrary constraints expressed in the Object Constraint
Language (OCL) [8]. OCL constraints are essentially full first order logic formulas, hence
they would make reasoning undecidable. We get this result by using one of the most expres-
sive EXPTIME-decidable DLs studied so far, namely DLRifd [9,10]. This DL is equipped
with means to represent n-ary relations, identification constraints (i.e., keys), and func-
tional dependency constraints on components of n-ary relations. This logic was developed
with the aim of capturing conceptual and object-oriented data models, and it is the final
result of a series of studies on DLs with such capabilities [11–17]. The maturity of these
studies is testified in the present paper by the fact that we are able to fully capture every
UML class diagram as a DLRifd knowledge base: the DLRifd knowledge base is such
that its models are exactly the possible instantiations of the UML class diagram (i.e., ob-
ject configurations that “conform” to the class diagram).

Our third contribution is more practically oriented. Indeed the ability of being able
to capture UML class diagrams using a DL suggests that we can use DL-based systems
to reason on UML class diagrams. However current state-of-the-art DL-based reasoning
systems [18,19] are not able to deal with n-ary relations, identification constraints, or func-
tional dependency constraints. These constructs are needed to fully capture in DLRifd the
semantics of UML class diagrams. However, due to a specific property of DLRifd mod-
els, namely the tree model property, we can get rid of such constructs while preserving

8 In this paper when we mention reasoning in a DL, we always intend reasoning over a knowledge base ex-
pressed in that DL.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 73
sound and complete reasoning [9]. Exploiting this property, we propose a (polynomial)
encoding of UML class diagrams in a simpler DL, called ALCQI [7], which is still
EXPTIME-complete, but lacks the features above that are problematic from an imple-
mentation point of view. Such a logic is essentially the most expressive DL that the current
DL-based systems can support. The encoding in ALCQI , while not preserving entirely
the semantics of UML class diagrams, preserves enough of it to keep reasoning sound
and complete. Using this encoding we were able to validate, on industrial scale examples,
namely the UML class diagrams of the Common Information Model,9 the feasibility of
the idea of using DL-based systems as core inference engines for reasoning on UML class
diagrams.

Our work shows that DLs are a very promising technology for implementing core rea-
soning engines for next generation CASE tools that are equipped with advanced reasoning
capabilities. This is a very interesting example of results and technology developed within
Artificial Intelligence that can have a wide spread approach in main stream industrial soft-
ware.

The rest of the paper is organized as follows. In Section 2, we briefly discuss UML class
diagrams giving a natural formalization in first-order logic. In Section 3 we discuss various
forms of reasoning on UML class diagrams and show examples of how they can be usefully
exploited in order to detect interesting properties of the diagram. In Section 4 we give the
basic notions on DLs that we use later on. In Section 5 we present our EXPTIME-hardness
result for reasoning on UML class diagrams, by showing a polynomial reduction from
reasoning in the EXPTIME-complete DL ALC. In Section 6 we show how UML class
diagrams not including general OCL constraints, but including covering and disjointness
constraints on generalization hierarchies, can be fully captured in the EXPTIME-complete
DL DLRifd , thus giving an EXPTIME upper bound for reasoning on UML class dia-
grams. In Section 7 we show how UML class diagrams can be expressed in the simpler DL
ALCQI , preserving enough semantics to keep reasoning on them sound and complete. In
Section 8 we discuss our experience in using state-of-the art DL-based reasoning systems
for reasoning on the UML class diagrams of the Common Information Model. In Section 9
we briefly discuss related work. Finally, in Section 10, we draw some conclusions.

2. UML class diagrams

UML class diagrams allow for modeling, in a declarative way, the static structure of
an application domain, in terms of concepts and relations between them. We concentrate
on UML class diagrams for the conceptual perspective [1,8]. In particular, we do not deal
with those features that are relevant for the implementation perspective, such as public,
protected, and privatequalifiers for operations and attributes. We describe the semantics of
each construct of UML class diagrams in terms of first order logic (FOL). In the following,
we call a model of the set of FOL formulas corresponding to the constructs in an UML
class diagram an instantiationof the diagram.

9 http://www.dmtf.org/standards/standard_cim.php/.

http://www.dmtf.org/standards/standard_cim.php/
http://www.dmtf.org/standards/standard_cim.php/

74 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Fig. 1. Class of Example 2.1.

2.1. Classes

A classin a UML class diagram denotes a set of objects with common features. A class
is graphically rendered as a rectangle divided into three parts (see, e.g., Fig. 1). The first
part contains the nameof the class, which has to be unique in the whole diagram. The
second part contains the attributesof the class, each denoted by a name, possibly followed
by the multiplicity, and with an associated type,10 for the attribute values. The third part
contains the operationsof the class, i.e., the operations associated to the objects of the class.
Note that both the second and the third part are optional. Formally, a class C corresponds
to a FOL unary predicate C.

Example 2.1. Fig. 1 models the class phone, characterized by the attributes number and
brand, both of type String, and by the operations lastDialed(), which returns the last number
called, and callLength(String), which returns the duration time of the call given as input.

An attributea of type T for a class C associates to each instance of C a set of instances
of T . Attributes are unique within a class, but two classes may have two attributes with
the same name, possibly of different types. An optional multiplicity [i..j] for a specifies
that a associates to each instance of C at least i and most j instances of T . When there is
no upper bound on the multiplicity, the symbol ∗ is used for j . When the multiplicity is
missing, [1..1] is assumed, i.e., the attribute is mandatoryand single-valued. For example,
the attribute number[1..*]: String in Fig. 1 means that each instance of the class has at least
one phone number, and possibly more, and that each phone number is an instance of String.
Formally, an attribute a of type T for class C corresponds to a binary predicate a for which
the following FOL assertion holds:

∀x, y.
(
C(x) ∧ a(x, y)

) ⊃ T (y)

i.e., for each instance x of class C, an object y related to x by a is an instance of T . The
multiplicity [i..j] associated to the attribute a can be expressed by

∀x. C(x) ⊃ (
i � �

{
y | a(x, y)

}
� j

)

where (i � �{y | a(x, y)} � j) is an abbreviation for the FOL formula with free variable x

expressing that there are at least i and at most j different y’s such that a(x, y) holds.

10 For simplicity, we do not distinguish between classes, i.e., collection of objects, and types, i.e., collections of
values, such as integers, reals,

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 75
An operationof a class is a function from the objects of the class to which the opera-
tion is associated, and possibly additional parameters, to objects or values. An operation
definition for a class C has the form

f (P1, . . . ,Pm) : R
where f is the name of the operation, P1, . . . ,Pm are the types of the m parameters, and R

is the type of the result.11 Observe that class diagrams do not focus on the actual definition
of the function, and what is represented is the signature(i.e., the name of the function and
the number and the types of parameters, where the object of invocation is an implicit para-
meter) and the return type of the function. Preconditions and postconditions, invariants and
more generally the behavior of the function can then be expressed using OCL constraints
as annotations (see Section 2.4).

Formally, such an operation corresponds to an (1 + m + 1)-ary predicate fP1,...,Pm , in
which the first argument represents the object of invocation, the next m arguments represent
the additional parameters, and the last argument represents the result. Observe that the
name of the predicate depends on the whole signature, i.e., it includes the types of the
parameters.

The predicate fP1,...,Pm (in the following referred to simply as f , to improve readability)
has to satisfy the following FOL assertions:

∀x,p1, . . . , pm, r. f (x,p1, . . . , pm, r) ⊃
m∧

i=1

Pi(pi)

∀x,p1, . . . , pm, r, r ′. f (x,p1, . . . , pm, r) ∧ f (x,p1, . . . , pm, r ′) ⊃ r = r ′

∀x,p1, . . . , pm, r. C(x) ∧ f (x,p1, . . . , pm, r) ⊃ R(r)

The first assertion imposes the correct typing for the parameters, which, observe, depends
only on the name of the operation, and not on the class to which the operation belongs (in
fact, an operation may belong to several classes). The next assertion imposes that invoking
the operation on a given object with given parameters determines in a unique way the
return value (i.e., the relation corresponding to the operation is in fact a function from the
invocation object and the parameters to the result). The last assertion imposes the correct
type of the result, depending on the class (and the parameters) to which the operation is
applied.

UML allows for the overloadingof operations, i.e., it allows for two or more functions,
possibly in the same class, that have the same name but different signatures. Overriding
occurs when two operations have the same signature, but behave in different ways. In
UML class diagrams for the conceptual perspective, where the bodies of operations are not
specified in the diagram, overriding may only show up as a restriction on the type of the
result. Observe that the above formalization allows one to have operations with the same
name or even with the same name and the same signature in two different classes, and
correctly captures overloading and overriding.

11 Observe that a function returning multiple results can be represented by a function returning a single tuple of
results, i.e., a complex value.

76 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
2.2. Associations and aggregations

An associationin UML is a relation between the instances of two or more classes.
Names of associations (as names of classes) are unique in a UML class diagram. A binary
association A between two classes C1 and C2 is graphically rendered as in Fig. 2. The
multiplicity n�..nu on the binary association specifies that each instance of the class C1

can participate at least n� times and at most nu times to relation A; m�..mu has an analo-
gous meaning for the class C2. When the multiplicity is omitted, it is intended to be 0..∗.
Observe that an association can also relate several classes C1,C2, . . . ,Cn, as depicted in
Fig. 3. In UML, different from other conceptual modeling formalisms, such as Entity-
Relationship diagrams [20], multiplicities are look-across cardinality constraints [21].
While for binary relations such constraints appear natural, for non-binary associations they
do not correspond to a property that can be referred to one of the classes participating
in the association. On the one hand, this makes their presence in non-binary associations
awkward from a designer point of view, and on the other hand they express a constraint
that is typically too weak in practice. Hence, they are seldom used in actual schemas, and
we will not consider them in our formalization.

Often, an association has a related association classthat describes properties of the
association, such as attributes, operations, etc. A binary association A between two classes
C1 and C2 with an association class is graphically rendered as in Fig. 4, where the class A

is the association class related to the association, and r1 and r2 are the role namesof C1

and C2 respectively, which specify the role that each class plays within the association A.
An association class can also be added to an n-ary association, as in Fig. 5.

Fig. 2. Binary association in UML.

Fig. 3. n-ary association in UML.

Fig. 4. Binary association with association class in UML.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 77
Fig. 5. n-ary association with association class in UML.

Fig. 6. Association of Example 2.2.

Example 2.2. The association in Fig. 6 models phone calls originating from phones: a
PhoneCall originates from exactly one Phone, whereas from a Phone 0 or more phone
calls can originate. Note that the association Origin is characterized by an attribute place of
type String.

When the association class is not present, an association A between the instances of
classes C1, . . . ,Cn, can be formalized as an n-ary predicate A that satisfies the following
FOL assertion:

∀x1, . . . , xn. A(x1, . . . , xn) ⊃ C1(x1) ∧ · · · ∧ Cn(xn)

An association A between n classes C1, . . . ,Cn that has a related association class is
represented by a unary predicate A and n binary predicates r1, . . . , rn, one for each role
name,12 for which the following FOL assertions hold:

∀x, y. A(x) ∧ ri(x, y) ⊃ Ci(y), for i = 1, . . . , n

∀x. A(x) ⊃ ∃y. ri(x, y), for i = 1, . . . , n

∀x, y, y′. A(x) ∧ ri(x, y) ∧ ri(x, y′) ⊃ y = y′, for i = 1, . . . , n

∀y1, . . . , yn, x, x′. A(x) ∧ A(x′) ∧
n∧

i=1

(
ri(x, yi) ∧ ri(x

′, yi)
) ⊃ x = x′

12 These binary relations may have the name of the roles of the association, if available in the UML diagram, or
an arbitrary name if role names are not available. In any case, we allow for using the same role name in different
associations.

78 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Fig. 7. Aggregation in UML.

The first assertion types the association; the second and the third ones specify, respectively,
that there exists at least one and at most one element playing role ri for each component
of A; the fourth one imposes that there are no two instances of A that represent the same
tuple, which is required for the association class to faithfully represent the relation.

Observe that the formalization for associations differs from the one for attributes, since
associations are unique in the diagram, while attributes, being local to classes, are not.

For binary associations without association class (see Fig. 2), multiplicities are formal-
ized by the FOL assertions

∀x. C1(x) ⊃ (
n� � �

{
y | A(x,y)

}
� nu

)

∀y. C2(y) ⊃ (
m� � �

{
x | A(x,y)

}
� mu

)

where we have abbreviated FOL formulas expressing cardinality restrictions as before. For
binary associations with association class (see Fig. 4) the formalization of multiplicities is
analogous:

∀y1. C1(y1) ⊃ (
n� � �

{
x | A(x) ∧ r1(x, y1)

}
� nu

)

∀y2. C2(y2) ⊃ (
m� � �

{
x | A(x) ∧ r2(x, y2)

}
� mu

)

A particular kind of binary associations are aggregations, which play an important role
in UML class diagrams. An aggregation is a binary relation between the instances of two
classes, denoting a part-whole relationship, i.e., a relationship that specifies that each in-
stance of a class (the containing class) contains a set of instances of another class (the
contained class). Aggregations have no associated class. An aggregation is graphically
rendered as shown in Fig. 7, where the diamond indicates the containing class. The ag-
gregation of Fig. 7 is represented by a binary predicate G for which the following FOL
assertion holds:

∀x, y. G(x, y) ⊃ C1(x) ∧ C2(y)

where we use the convention that the first argument of the predicate is the containing class.
Multiplicities are treated as for binary associations.

Example 2.3. The aggregation in Fig. 8 models phone bills containing phone calls: a
PhoneCall is contained in one and only one PhoneBill, while a PhoneBill contains at least
one PhoneCall.

2.3. Generalization and hierarchies

In UML one can use a generalizationbetween a parent class and a child class to specify
that each instance of the child class is also an instance of the parent class. Hence, the in-
stances of the child class inherit the properties of the parent class, but typically they satisfy

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 79
Fig. 8. Aggregation of Example 2.3.

Fig. 9. A class hierarchy in UML.

Fig. 10. Class hierarchy of Example 2.4.

additional properties that in general do not hold for the parent class. Several generaliza-
tions can be grouped together to form a class hierarchy, as shown in Fig. 9. Disjointness
and covering constraintscan also be enforced on a class hierarchy (graphically, by adding
suitable labels).

Example 2.4. Fig. 10 shows a class hierarchy among the parent class Phone and the child
classes CellPhone and FixedPhone. In particular, it models the facts that both cell and
fixed phones are phones, that no other kind of phones exist and that no phone is at the
same time both fixed and cell. Note that, as shown in Fig. 12, MobileCalls originate only
from CellPhones.

Observe that UML allows for inheritance among association classes, which are treated
exactly as all other classes, and for multiple inheritance between classes (including associ-
ation classes, see Fig. 12).

An UML class C generalizing a class C1 can be formally captured by means of the FOL
assertion

∀x. C1(x) ⊃ C(x)

Note that each attribute or operation of C, and each association involving C is correctly
inherited by C1.

80 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
A class hierarchy as the one in Fig. 9 is formally captured by means of the FOL asser-
tions

∀x. Ci(x) ⊃ C(x), for i = 1, . . . , n

Disjointnessamong C1, . . . ,Cn is expressed by the FOL assertions

∀x. Ci(x) ⊃
n∧

j=i+1

¬Cj(x), for i = 1, . . . , n − 1

Observe that disjointness of classes is a form of negative information.
The covering constraintexpressing that each instance of C is an instance of at least one

of C1, . . . ,Cn is expressed by

∀x. C(x) ⊃
n∨

i=1

Ci(x)

Sometimes, in UML class diagrams, it is assumed that all classes not in the same hi-
erarchy are a priori disjoint. Here we do not force this assumption; instead we allow two
classes to have common instances. When needed, disjointness can be enforced by means
of explicit disjointness constraints. Similarly, we do not assume that objects in a hierar-
chy must belong to a single most specific class. Hence, two classes in a hierarchy may
have common instances, even when they do not have a common subclass. Again, when
needed, suitable covering and disjointness assertions that express the most specific class
assumption can be added to a class diagram.

For example, referring to Fig. 11, besides the assertions representing the hierarchy, the
most-specific-class assumption is captured by means of the FOL assertions

∀x. C1(x) ∧ C2(x) ⊃ C12(x)

∀x. C3(x) ⊃ ¬C1(x)

∀x. C3(x) ⊃ ¬C2(x)

Fig. 11. A class hierarchy with most-specific-class assumption.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 81
Fig. 12. UML class diagram of Example 2.5.

2.4. General constraints

Disjointness and covering constraints are in practice the most commonly used con-
straints in UML class diagrams. However, UML allows for other forms of constraints,
specifying class identifiers, functional dependencies for associations, and, more generally
through the use of OCL [8], any form of constraint expressible in FOL. Note that, due
to their expressive power, OCL constraints could in fact be used to express the semantics
of the standard UML class diagram constructs. This is an indication that a liberal use of
OCL constraints can actually compromise the understandability of the diagram. Hence,
the use of constraints is typically limited. Also, unrestricted use of OCL constraints makes
reasoning on a class diagram undecidable, since it amounts to full FOL reasoning. In the
following, we will not consider general constraints.

We conclude the section with an example of a full UML class diagram.

Example 2.5. Fig. 12 shows a complete UML class diagram that models phone calls origi-
nating from different kinds of phones, and phone bills they belong to.13 The diagram shows
that a MobileCall is a particular kind of PhoneCall and that the Origin of each PhoneCall
is one and only one Phone. Additionally, a Phone can be only of two different kinds: a
FixedPhone or a CellPhone. Mobile calls originate (through the association MobileOrigin)
from cell phones. The association MobileOrigin is contained in the binary association Ori-
gin: hence MobileOrigin inherits the attribute place of association class Origin. Finally, a
PhoneCall is referenced in one and only one PhoneBill, whereas a PhoneBill contains at
least one PhoneCall. In FOL, the diagram is represented as shown in Fig. 13.

Notice that, in the above diagram, one would like to express that each MobileCall is
related via the association Origin only to instances of CellPhone. Similarly for the other
direction of the association. This can be expressed in FOL as follows:

∀y1, y2, x. MobileCall(y1) ∧ Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ CellPhone(y2)

∀y1, y2, x. CellPhone(y2) ∧ Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ MobileCall(y1)

The association MobileOrigin approximates this, making it explicit in the diagram that Mo-
bileCalls and CellPhones are related to each other.

13 This diagram is based on an example provided with I.COM, a prototype design tool for conceptual modeling
with reasoning support [17].

82 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
∀x, y. Origin(x) ∧ place(x, y) ⊃ String(x)

∀x, y. call(x, y) ∧ Origin(x) ⊃ PhoneCall(y)

∀x, y. from(x, y) ∧ Origin(x) ⊃ Phone(y)

∀x. Origin(x) ⊃ ∃y. call(x, y)

∀x. Origin(x) ⊃ ∃y. from(x, y)

∀x, y, y′. Origin(x) ∧ call(x, y) ∧ call(x, y′) ⊃ y = y′
∀x, y, y′. Origin(x) ∧ from(x, y) ∧ from(x, y′) ⊃ y = y′
∀x, x′, y1, y2. Origin(x) ∧ Origin(x′) ∧ call(x, y1) ∧ call(x′, y1) ∧

from(x, y2) ∧ from(x′, y2) ⊃ x = x′
∀y. PhoneCall(y) ⊃ (1 � �{x | Origin(x) ∧ call(x, y)} � 1)

∀x, y. call(x, y) ∧ MobileOrigin(x) ⊃ MobileCall(y)

∀x, y. from(x, y) ∧ MobileOrigin(x) ⊃ CellPhone(y)

∀x. MobileOrigin(x) ⊃ ∃y. call(x, y)

∀x. MobileOrigin(x) ⊃ ∃y. from(x, y)

∀x, y, y′. MobileOrigin(x) ∧ call(x, y) ∧ call(x, y′) ⊃ y = y′
∀x, y, y′. MobileOrigin(x) ∧ from(x, y) ∧ from(x, y′) ⊃ y = y′
∀x, x′, y1, y2. MobileOrigin(x) ∧ MobileOrigin(x′) ∧ call(x, y1) ∧ call(x′, y1) ∧

from(x, y2) ∧ from(x′, y2) ⊃ x = x′

∀x, y. reference(x, y) ⊃ PhoneBill(x) ∧ PhoneCall(y)

∀x. PhoneCall(x) ⊃ (1 � �{y | reference(x, y)} � 1)

∀y. PhoneBill(y) ⊃ (1 � �{x | reference(x, y)})
∀x. MobileCall(x) ⊃ PhoneCall(x)

∀x. MobileOrigin(x) ⊃ Origin(x)

∀x. CellPhone(x) ⊃ Phone(x)

∀x. FixedPhone(x) ⊃ Phone(x)

∀x. CellPhone(x) ⊃ ¬FixedPhone(x)

∀x. Phone(x) ⊃ CellPhone(x) ∨ FixedPhone(x)

Fig. 13. FOL representation of the UML class diagram shown in Fig. 12.

3. Reasoning on UML class diagrams

The design of UML class diagrams modeling complex real world domains is facilitated
by automated CASE tools. Currently, CASE tools support the designer with a user friendly
graphical environment and provide powerful means to access different kinds of reposito-
ries that store information associated to the elements of the developed project. The fact that
UML class diagrams can be re-expressed in FOL allows one in principle to go far beyond
such a kind of support. Indeed, the designer can use the FOL formalization to formally
check relevant properties of class diagrams so as to assess the quality of the diagram ac-
cording to objective quality criteria. Typical properties of interest are the following (see,
e.g., [22,23]).

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 83
Consistency of the whole class diagramA class diagram is consistent, if it admits an in-
stantiation, i.e., if its classes can be populated without violating any of the re-
quirements imposed by the diagram. Formally, this means that the corresponding
set of FOL assertions admits a model in which at least one class has a nonempty
extension. When the diagram is not consistent, the definitions altogether are con-
tradictory, since they do not allow any class to be populated. Observe that the
interaction of various types of constraints may make it very difficult to detect
inconsistencies.

Class consistencyA class is consistent, if the class diagram admits an instantiation in
which the class has a nonempty set of instances. Intuitively, the class can be pop-
ulated without violating the requirements imposed by the class diagram. Formally,
the set of FOL assertions corresponding to the diagram admits a model in which
the class has a nonempty extension. The inconsistency of a class may be due to
a design error or due to over-constraining. In any case, the understandability of
the diagram is weakened, since the class stands for the empty class, and thus, at
the very least, it is inappropriately named. To increase the quality of the diagram,
the designer may remove the inconsistency by relaxing some constraints (possi-
bly by correcting errors), or by deleting the class, thus removing redundancy and
increasing understandability.

Class subsumptionA class C1 subsumesa class C2, if the class diagram implies that C1 is
a generalization of C2. Formally, in every model of the set of FOL assertions, the
extension of C1 is a superset of the extension of C2. Such a subsumption allows
one to deduce that properties for C1 hold also for C2. This suggests the possible
omission of an explicit generalization. Alternatively, if all instances of the more
specific class are not supposed to be instances of the more general class, then
something is wrong with the diagram, since it is forcing an undesired conclusion.
Class subsumption is also the basis for a classificationof all the classes in a dia-
gram. Such a classification, as in any object-oriented approach, can be exploited
in several ways within the modeling process [24].

Class equivalenceTwo classes are equivalentif they denote the same set of instances
whenever the requirements imposed by the class diagram are satisfied: in this
case one of them is redundant. Determining equivalence of two classes allows for
their merging, thus reducing the complexity of the diagram. Moreover, knowing
about class equivalences avoids misunderstanding among different users.

Refinement of propertiesThe properties of various classes and associations may interact to
yield stricter multiplicities or typing than those explicitly specified in the diagram.
Detecting such cases allows the designer for refining the class diagram by making
such properties explicit, thus enhancing the readability of the diagram.

Implicit consequencesMore generally, a property is an (implicit) consequenceof a class
diagram if it holds whenever all requirements imposed by the diagram are sat-
isfied. Formally, this means that the property is logically implied by the FOL
assertions corresponding to the class diagram, i.e., the property holds in every
model of the assertions. Determining implicit consequences is useful on the one
hand to reduce the complexity of the diagram by removing those parts that im-

84 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Fig. 14. UML class diagram of Example 3.1 (modified version of the one in Fig. 12).

plicitly follow from other ones, and on the other hand it can be used to make
properties explicit, thus enhancing its readability.

Note that the above properties can be seen as special cases of implicit conse-
quences.

We illustrate the above properties on our running example.

Example 3.1. Consider the UML class diagram shown in Fig. 12. By reasoning on such a
diagram, one can deduce that the class MobileCall participates to association MobileOrigin
with multiplicity 0..1. Indeed, Origin is a generalization of MobileOrigin, hence every tuple
of MobileOrigin is a tuple of Origin as well; moreover, since every PhoneCall participates
exactly once to association Origin, necessarily every MobileCall participates at most once to
association MobileOrigin, since MobileCall is a subclass of PhoneCall. This is an example
of refinement of a multiplicity.

If, possibly by mistake, we add a generalization to the diagram in Fig. 12 that asserts
that each CellPhone is a FixedPhone (see Fig. 14), we get several undesirable properties.
First, the class CellPhone is inconsistent, i.e., it has no instances. Indeed, the disjointness
constraint asserts that there are no cell phones that are also fixed phones, and since the
empty set is the only set that can be at the same time disjoint from and contained in the
class FixedPhone, the class CellPhone must have it as extension. Second, since the class
Phone is made up by the union of classes CellPhone and FixedPhone, and since CellPhone
is inconsistent, the classes Phone and FixedPhone are equivalent, hence one of them is
redundant. Finally, since there are no cell phones, there are no pairs in the association
MobileOrigin, and so it is inconsistent too. The class MobileCall is not inconsistent since it
can be populated by instances that do not participate to association MobileOrigin. Note that,
if we added the constraint

∀y1, y2, x. MobileCall(y1) ∧ Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ CellPhone(y2)

discussed in Example 2.5, considering the minimal multiplicity 1 of MobileCall in Origin,
MobileCall would be inconsistent too.

The example above shows that reasoning is required in order to understand whether
the class diagram enjoys required properties. Considering the high complexity of indus-
trial software, it can be very difficult to verify the properties of a UML class diagram and
to guarantee that they are preserved during the design of the diagram. Thus, it would be

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 85
highly desirable to have CASE tools equipped with automated reasoning capabilities to
support the designer. One possibility would be to resort to a full FOL theorem prover [25,
26]. While certainly worth exploring, due to the intrinsic undecidability of FOL, such an
approach does not give us completely automated techniques for reasoning on UML class
diagrams (unless suitable termination strategies for a FOL theorem prover are devised).
Here instead we follow a different approach, and we investigate the intrinsic complexity
of reasoning on UML class diagrams, taking into account restricted forms of constraints.
We characterize the complexity by resorting to DLs [7]. On the one hand, we show that
reasoning on UML class diagrams (that include as constraints only disjointness and cov-
ering) is EXPTIME-hard. On the other hand, we show that EXPTIME-decidable DLs can
fully capture UML class diagrams with restricted forms of FOL constraints. This demon-
strates that DL reasoning algorithms are ideal candidates for being used as core reasoning
engines in advanced CASE tools with reasoning support. In particular, as we will discuss
later (see Section 8), the deductions in the example above can be automatically obtained
by DL-based reasoning systems, possibly wrapped by CASE tools such as [17].

4. Description logics

Description Logics (DLs) are logics tailored towards representing knowledge in terms
of classes and relationships between classes. Formally they are a well behaved fragment
of first order logic (FOL) equipped with decidable reasoning tasks. In DLs, the domain of
interest is modeled by means of conceptsand relationships, which denote classes of objects
and relations, respectively. Generally speaking, a DL is formed by three basic components:

• a description language, which specifies how to construct complex concept and relation
expressions (also called simply concepts and relations), by starting from a set of atomic
symbols and by applying suitable constructors,

• a knowledge specification mechanism, which specifies how to construct a DL knowl-
edge base, in which properties of concepts and relations are asserted, and

• a set of automated reasoning tasksprovided by the DL.

The set of allowed constructors characterizes the expressive power of the description lan-
guage. Various languages have been considered by the DL community, and numerous
works investigate the relationship between expressive power and computational complex-
ity of reasoning (see [27] for a survey). The research on these logics has resulted in a
number of automated reasoning systems [28–30], which have been successfully tested in
various application domains (see, e.g., [31–33]).

In this section we briefly review three Description Logics that we will consider in the
rest of the paper, namely DLRifd [9], ALCQI [34] and ALC [7].

4.1. The description logicDLRifd

DLRifd is a DL whose distinguishing features, compared to other DLs, are its ability of
representing n-ary relations, functional dependencies on n-ary relations, and identification

86 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
constraints on concepts [9,10]. The basic elements of DLRifd are concepts(unary rela-
tions), and n-ary relations. Let A and P denote respectively atomic concepts and atomic
relations (of given arity between 2 and nmax). DLRifd concepts, denoted by C, and DLRifd

relations, denoted by R, are built according to the following syntax rules:

C ::= �1 | A | ¬C | C1 	 C2 | (
� k [i]R)

R ::= �n | P | (i/n:C) | ¬̇R | R1 	 R2

where i denotes a component of a relation, i.e., an integer between 1 and nmax, n denotes
the arity of a relation, i.e., an integer between 2 and nmax, and k denotes a non-negative
integer. We consider only concepts and relations that are well-typed, which means that
(i) only relations of the same arity n are combined to form expressions of type R1 	 R2
(which inherit the arity n), and (ii) i � n whenever i denotes a component of a relation of
arity n. We also make use of the following abbreviations: (i) C1
 C2 for ¬(¬C1 	 ¬C2);
(ii) C1 ⇒C2 for ¬C1
 C2; (iii) (� k [i]R) for ¬(� k−1 [i]R); (iv) ∃[i]R for (� 1 [i]R);
(v) ∀[i]R for ¬∃[i]¬R; (vi) R1
R2 for ¬̇(¬̇R1 	¬̇R2). Moreover, we abbreviate (i/n : C)

with (i : C) when n is clear from the context.
Let us comment on the constructs of DLRifd . Among the constructs used in forming

concept expressionswe find the boolean constructs, namely negation(¬), conjunction(),
and disjunction(
, an abbreviation), and a general form of number restrictions. Number
restrictions are constraints on the number of fillers, i.e., the objects that are in a certain
relationship with a given object: for example, the expression (� k [i]R) denotes the concept
formed by the objects that participate at least k times to the relation R as the ith component.
Note that number restrictions are a general form of quantification restrictions: for instance,
the expression ∃[i]R, which abbreviates (� 1 [i]R), denotes the objects that participate
at least once to the relation R as ith component. As for relation expressions, DLRifd

includes conjunction(), disjunction(
, an abbreviation), and a limited form of negation
(¬̇), which essentially corresponds to set difference. Finally, the construct (i/n : C) allows
one to select those n-tuples whose ith component is an instance of concept C.

As usual in DLs, a DLRifd Knowledge Base(KB) is constituted by a finite set of inclu-
sion assertions. In DLRifd , these assertions have one of the forms:

R1 � R2 C1 � C2

with R1 and R2 of the same arity.
Besides inclusion assertions, DLRifd KBs allow for assertions expressing identification

constraints and functional dependencies. An identification assertionon a concept C has the
form:

(
id C [i1]R1, . . . , [ih]Rh

)

where each Rj is a relation, and each ij denotes one component of Rj . Intuitively, such
an assertion states that no two different instances of C agree on the participation to
R1, . . . ,Rh. More precisely, if a is an instance of C that is the ij th component of a tu-
ple tj of Rj , for j ∈ {1, . . . , h}, and b is an instance of C that is the ij th component of
a tuple sj of Rj , for j ∈ {1, . . . , h}, and for each j , tj agrees with sj in all components
different from ij , then a and b are the same object.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 87
�I
n ⊆ (∆I)n

PI ⊆ �I
n

(i/n : C)I = {t ∈ �I
n | t[i] ∈ CI }

(¬̇R)I = �I
n \ RI

(R1 	 R2)I = RI
1 ∩ RI

2

�I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 	 C2)I = CI
1 ∩ CI

2

(� k [i]R)I = {a ∈ ∆I | �{t ∈ RI
1 | t[i] = a} � k}

Fig. 15. Semantic rules for DLRifd (P , R, R1, and R2 have arity n).

For example, the identification assertions (id Origin [1]call, [1]from) expresses that each
Origin of a call is uniquely determined by the (phone)-call and by the phone from which the
call was made.

A functional dependency assertionon a relation R has the form:

(fd R i1, . . . , ih → j)

where h � 2, and i1, . . . , ih, j denote components of R. The assertion imposes that two
tuples of R that agree on the components i1, . . . , ih, agree also on the component j .

For example, the functional dependency assertion (fd callLengthString 1,2 → 3) ex-
presses that the first two components of the ternary relation callLengthString functionally
determine the third component.

Note that unary functional dependencies (i.e., functional dependencies with h = 1)
are ruled out in DLRifd , since these lead to undecidability of reasoning [9]. Note also
that the right-hand side of a functional dependency contains a single element. However,
this is not a limitation, because any functional dependency with more than one ele-
ment in the right-hand side can always be split into several dependencies of the above
form.

As usual in DLs, the semantics of DLRifd is specified through the notion of interpreta-
tion. An interpretationI = (∆I , ·I) of a DLRifd KB K is constituted by an interpretation
domain∆I and an interpretation function·I that assigns to each concept C a subset CI

of ∆I and to each relation R of arity n a subset RI of (∆I)n, such that the conditions
in Fig. 15 are satisfied. In the figure, t[i] denotes the ith component of tuple t , and �S

denotes the cardinality of the set S. Observe that �1 denotes the interpretation domain,
while �n, for n > 1, does not denote the n-Cartesian product of the domain, but only
a subset of it that covers all relations of arity n. It follows, from this property, that the
“¬̇” constructor on relations is used to express difference of relations, rather than comple-
ment.

To specify the semantics of a KB we first define when an interpretation satisfies an
assertion as follows:

• An interpretation I satisfiesan inclusion assertion R1 � R2 (resp., C1 � C2) if RI
1 ⊆

RI (resp., CI ⊆ CI).
2 1 2

88 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
• An interpretation I satisfiesthe assertion (id C [i1]R1, . . . , [ih]Rh) if for all a, b ∈ CI

and for all t1, s1 ∈ RI
1 , . . . , th, sh ∈ RI

h we have that:

a = t1[i1] = · · · = th[ih],
b = s1[i1] = · · · = sh[ih],
tj [i] = sj [i], for j ∈ {1, . . . , h}, and for i �= ij

 implies a = b

• An interpretation I satisfiesthe assertion (fd R i1, . . . , ih → j) if for all t, s ∈ RI , we
have that:

t[i1] = s[i1], . . . , t[ih] = s[ih] implies t[j] = s[j]

An interpretation that satisfies all assertions in a KB K is called a modelof K.
We say that a KB K is satisfiableif there exists a model of K. A concept C is satisfiable

w.r.t. KB K if there is a model I of K such that CI is nonempty. An assertion α is logically
implied by K if all models of K satisfy α. It can be shown that all these reasoning tasks,
namely KB satisfiability, concept satisfiability w.r.t. a KB, and logical implication, are
mutually reducible (in polynomial time).

One of the distinguishing features of DLs is that they have decidable reasoning tasks,
i.e., they admit (terminating) reasoning procedures that are sound and complete with re-
spect to the semantics. In particular, reasoning (i.e., KB satisfiability, concept satisfiability
w.r.t. a KB, and logical implication) in DLRifd is EXPTIME-complete [9,10].

DLRifd (as most DLs, including ALCQI—see later) has the tree-model property [9,
10]. This means that, if a DLRifd KB admits a model, it also admits a model which has
the structure of a tree, where nodes are either objects or (reified) tuples, and edges connect
tuples to their components. Observe that in tree-like structures non-unary identification
assertions and (non-unary) functional dependency assertions are trivially satisfied, since
there cannot be two tuples agreeing on more than one component [9]. As a consequence
we have that a DLRifd KB is satisfiable if and only the same knowledge base without
non-unary identification and functional dependency assertions is satisfiable. Hence, logical
implication of inclusion assertions can be verified without considering identification and
functional dependency assertions at all. This leads us to consider simpler logics in which
such assertions are not present.

4.2. The description logicsALCQI andALC

ALCQI [35,36] is a rich DL in which knowledge is represented in terms of concepts
(classes) and roles (binary relations). It can be seen as a fragment of DLRifd where re-
lations are restricted to be binary and KBs are restricted to be a finite set of inclusion
assertions on concepts only (no inclusion assertions on relations, and no identification as-
sertions, and obviously no functional dependency assertions since they require a relation
of arity at least three).

Let A and P denote respectively atomic concepts and atomic roles (binary relations).
ALCQI concepts, denoted by C, and ALCQI roles, denoted by R, are built according to
the following syntax rules:

C ::= A | ¬C | C1 	 C2 | (� k R.C)

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 89
R ::= P | P −

Additionally, we make use of the abbreviations below: (i) ⊥ for A 	 ¬A (where A is
any atomic concept); (ii) � for ¬⊥; (iii) C1
 C2 for ¬(¬C1 	 ¬C2); (iv) C1 ⇒C2 for
¬C1
 C2; (v) (� k R.C) for ¬(� k − 1R.C); (vi) ∃R.C for (� 1R.C); (vii) ∀R.C for
¬∃R.¬C.

An ALCQI KB is constituted by a finite set of inclusion assertionsof the form
C1 � C2, with C1 and C2 arbitrary concept expressions.

Notably ALCQI includes inverse rolesP −, which allow for talking about the inverse of
a relation, and qualified number restrictions, which are the most general form of cardinality
constraints on roles. The semantics of ALCQI constructs and KBs is analogous to that of
DLRifd . In particular the semantic rules for inverse roles and qualified number restrictions
are as follows:

(P −)I = {
(a, a′) ∈ ∆I × ∆I | (a′, a) ∈ P I}

(� k R.C)I = {
a ∈ ∆I | �{a′ ∈ ∆I | (a, a′) ∈ RI ∧ a′ ∈ CI}

� k
}

We can define KB satisfiability, concept satisfiability w.r.t. a KB, and logical implication,
as for DLRifd . Moreover, as for DLRifd , reasoning (i.e., KB satisfiability, concept satisfi-
ability w.r.t. a KB, and logical implication) in a ALCQI KB is EXPTIME-complete [35,
36].

Finally we turn to ALC [37]. This is a simpler DL, obtained from ALCQI by dropping
inverse roles and restricting qualified number restrictions to existential restrictions only.
The syntax of ALC concept is thus as follows:

C ::= A | ¬C | C1 	 C2 | ∃P.C

We also introduce the standard abbreviations:

C1
 C2 for ¬(¬C1 	 ¬C2)

∀P.C for ¬∃P.¬C

The semantics of the existential restrictions is

(∃P.C)I = {
a ∈ ∆I | ∃b.(a, b) ∈ P I ∧ b ∈ CI}

The semantics of the other constructs is as in ALCQI . As for ALCQI , an ALC KB is a
finite set of inclusion assertions on ALC concepts. In spite of its simplicity, reasoning in
ALC KBs is EXPTIME-complete, as for ALCQI [38,39].

5. Hardness of reasoning on UML class diagrams

The reasoning tasks necessary for checking the various properties discussed in Section 3
are mutually reducible to each other. As an example, we show the mutual reducibility
between class consistency and class subsumption.

Given a class diagram with classes C1 and C2, if we want to check whether C1 subsumes
C2, then we can add to the class diagram the part depicted in Fig. 16, where O , C, and C1

90 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Fig. 16. Reduction from class subsumption to class consistency.

Fig. 17. Reduction from class consistency to class subsumption.

are new classes, and check whether C is inconsistent. Indeed, if C1 subsumes C2, there
can be no object that is both in C1, hence not in C1, and in C2, and so C is inconsistent.
Conversely, if C1 does not subsume C2, this means that there is a model I of the (original)
diagram with an object o not in C1 but in C2. We can take the extension of C1 in I to
include o. Hence C has a nonempty extension in I and is consistent.

Given a class diagram with a class C, if we want to check whether C is inconsistent,
then we can add to the class diagram the part depicted in Fig. 17, where O , C1, C1, and C∅
are new classes, and check whether C∅ subsumes C. Indeed, since C1 and C1 are disjoint,
C∅ denotes the empty class, and so C is inconsistent if and only if it is subsumed by C∅.

Hence in the following, without loss of generality, we focus on class consistency only.
Specifically, we show that class consistency in UML class diagrams is EXPTIME-hard,
even when we use only binary associations, the only kind of multiplicities are of the form
0..∗ and 1..∗, and the only type of constraints are disjointness and covering constraints.
We prove the claim by a reduction from concept satisfiability in ALC KBs, which is
EXPTIME-hard [38,39]. We proceed in two steps:

(1) First, we show that we can restrict the attention to a syntactically restricted form of
ALC called ALC− below.

(2) Then, we describe a reduction from atomic concept satisfiability in ALC− KBs to class
consistency in UML class diagrams.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 91

ic
In the following, we call primitive an inclusion assertion of the form A � C, where A

is an atomic concept and C is an arbitrary concept.
The DL ALC− is obtained from ALC by dropping intersection and allowing only for

complex concepts built with at most one construct of ALC, i.e.,

C ::= A | ¬A | A1
 A2 | ∃P.A | ∀P.A

where A denotes an atomic concept and P denotes an atomic role. An ALC− KB is a
finite set of primitive ALC− inclusion assertions, i.e., inclusion assertions of the form
A � C where C is an ALC− concept.

By exploiting a result in [40] we can reduce concept satisfiability in ALC KBs to atomic
concept satisfiability in ALC− KBs.

Lemma 5.1. Concept satisfiability w.r.t. anALC KB can be linearly reduced to atom
concept satisfiability w.r.t. a primitiveALC KB.

Proof. Let K be an ALC KB and C an ALC concept. By a result in [40], C is satisfiable
w.r.t. K if and only if AT 	C is satisfiable w.r.t. the KB K1 consisting of the single assertion

AT � 	
C1�C2∈K

(¬C1
 C2) 	 	
1�i�n

∀Pi.AT

where AT is a new atomic concept and P1, . . . ,Pn are all atomic roles appearing in K
and C.

Then, in order to reduce the problem to atomic concept satisfiability, we introduce a
new atomic concept AC , and check its satisfiability w.r.t. K2 = K1 ∪ {AC � AT 	 C}.
Indeed, if K1 admits a model I such that (AT 	 C)I �= ∅, then by extending I so that
AI

C = (AT 	 C)I , we get a model of K2 in which AI
C �= ∅. Conversely, every model of K2

with AI
C �= ∅ is also a model of K1 with (AT 	 C)I �= ∅. �

Below we assume, without loss of generality, that primitive ALC KBs are in negation
normal form. Indeed, every primitive ALC KB can be rewritten in negation normal form
in linear time.

Given a primitive ALC KB K (in negation normal form), we construct a primitive
ALC− KB K′ by recursively replacing each ALC assertion in K that is not already a
(primitive) ALC− assertion as follows:

(1) A � C1 	 C2 is replaced by A � C1 and A � C2;
(2) A � C1
 C2 is replaced by A � A1
 A2, A1 � C1 and A2 � C2, where A1 and A2

are new atomic concepts;
(3) A � ∀P.C is replaced by A � ∀P.A1 and A1 � C, where A1 is a new atomic concept;
(4) A � ∃P.C is replaced by A � ∃P.A1 and A1 � C, where A1 is a new atomic concept.

Notice that the number of such replacements is finite (in fact linear), since for each occur-
rence of an ALC construct in K at most one replacement is done.

Lemma 5.2. Given a primitiveALC KB K, the size of the(primitive) ALC− KB K′ ob-
tained as above is linear in the size ofK.

92 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Proof. By construction. �
Lemma 5.3. An atomic conceptA0 is satisfiable w.r.t. a primitiveALC KB K if and only
if A0 is satisfiable w.r.t. the(primitive) ALC− KB K′ obtained as above.

Proof. We show that A0 is satisfiable w.r.t. K if and only if it is satisfiable w.r.t. the KB
obtained after n replacements, for each n > 0. We proceed by induction on n. Let Ki be
the KB obtained from K after i replacements.

Base case: K0 = K (obvious).
Inductive case: By inductive hypothesis, we have that A0 is satisfiable w.r.t. K if and

only if A0 is satisfiable w.r.t. Kn. We prove that, given a model I of Kn with AI
0 �= ∅ we

can construct a model J of Kn+1 with AJ
0 �= ∅, and conversely, that every model J of

Kn+1 with AJ
0 �= ∅ is also a model of Kn.

(1) If the next step to be applied is the replacement of A � C1 	 C2 with A � C1 and
A � C2, then:

Kn+1 = Kn ∪ {A � C1,A � C2} \ {A � C1 	 C2}
In this case, the statement is obvious, since {A � C1 	 C2} logically implies {A �
C1,A � C2} and vice-versa. Therefore Kn+1 and Kn have the same models.

(2) If the next step consists in the replacement of A � C1
 C2 by A � A1
 A2, A1 � C1
and A2 � C2, where A1 and A2 are new atomic concepts, we get:

Kn+1 = Kn ∪ {A � A1
 A2,A1 � C1,A2 � C2} \ {A � C1
 C2}
“⇐” Let I be a model of Kn with AI

0 �= ∅, let J coincide with I on all atomic con-

cepts and roles in Kn, and additionally let AJ
1 = CI

1 and AJ
2 = CI

2 . Since I satisfies
A � C1
 C2, we have by construction that J satisfies A � A1
 A2, A1 � C1 and
A2 � C2, and hence is a model of Kn+1 with AJ

0 �= ∅.

“⇒” Let J be a model of Kn+1 with AJ
0 �= ∅. Since it satisfies A � A1
 A2, for

each instance a ∈ AJ , we have a ∈ AJ
1 or a ∈ AJ

2 . In the first case, by A1 � C1, we

get a ∈ CJ
1 ; in the second case, by A2 � C2, we get a ∈ CJ

2 . Therefore, J satisfies
A � C1
 C2, and hence is a model of Kn as well.

(3) If the next step to be applied is to replace A � ∀P.C by A � ∀P.A1 and A1 � C,
where A1 is a new atomic concept, we have:

Kn+1 = Kn ∪ {A � ∀P.A1,A1 � C} \ {A � ∀P.C}
“⇐” Let I be a model of Kn with AI

0 �= ∅, let J coincide with I on all atomic

concepts and roles in Kn, and additionally let AJ
1 = CI . Since I satisfies A � ∀P.C,

we have by construction that J satisfies A � ∀P.A1 and A1 � C, and hence is a model
of Kn+1 with AJ

0 �= ∅.

“⇒” Let J be a model of Kn+1 with AJ
0 �= ∅. Since it satisfies A � ∀P.A1, for each

instance a ∈ AJ , if a is connected via role P to an instance a′, then a′ ∈ AJ
1 . By

A1 � C, we have that a′ ∈ CJ . Therefore J satisfies A � ∀P.C, and hence is a model
of Kn as well.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 93
(4) If the next step to be applied is to replace A � ∃P.C by A � ∃P.A1 and A1 � C,
where A1 is a new atomic concept, we have:

Kn+1 = Kn ∪ {A � ∃P.A1,A1 � C} \ {A � ∃P.C}
“⇐” Let I be a model of Kn with AI

0 �= ∅, let J coincide with I on all atomic

concepts and roles in Kn, and additionally let AJ
1 = CJ . Since I satisfies A � ∃P.C,

we have by construction that J satisfies A � ∃P.A1 and A1 � C, and hence is a model
of Kn+1 with AJ

0 �= ∅.

“⇒” Let J be a model of Kn+1 with AJ
0 �= ∅. Since it satisfies A � ∃P.A1, there

exists an instance a ∈ AJ that is connected via role P to an instance a′ ∈ AJ
1 . By

A1 � C, we have that a′ ∈ CJ . Therefore J satisfies A � ∃P.C, and hence is a model
of Kn as well. �

Next, we reduce concept satisfiability w.r.t. a primitive ALC− KB K′ to class consis-
tency in a UML class diagram D. For each atomic concept A in K′, we introduce a class A

in D. Additionally, we add a class O that generalizes (possibly indirectly) all classes in D.
O is also used to specify disjointness among classes (see later). For each atomic role P ,
we introduce an association P (with related association class), involving the class O twice.
Intuitively, using O in such a way, we do not constrain in any way the classes to which the
instances of the components of P may belong. More classes and associations, as well as
generalizations between O and the new classes, are added below as needed.

The assertions in the ALC− KB K′ are encoded in the class diagram as follows:

(1) For each assertion of the form A � B , we introduce a generalization between the
classes A and B (where A is the subclass).

(2) For each assertion of the form A � ¬B , we construct the hierarchy in Fig. 18, exploit-
ing the superclass O to express disjointness between A and B .

(3) For each assertion of the form A � B1
 B2, we introduce an auxiliary class B , and
construct the hierarchy in Fig. 19. Intuitively, being B a covering of B1 and B2, and A

a subclass of B , it follows that A is a subclass of the union of B1 and B2.
(4) For each assertion of the form A � ∀P.B , we introduce a new class A and two new

binary associations PA and PA (with their associated classes) and we construct the
portion of diagram in Fig. 20, where A and A are disjoint and there is a generalization
with covering constraint between P and its children PA and PA. Note that A and B

are the components of PA, whereas A and O are the components of PA. Intuitively,

Fig. 18. UML encoding of the assertion A � ¬B .

94 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Fig. 19. UML encoding of the assertion A � B1
 B2.

Fig. 20. UML encoding of the assertion A � ∀P.B .

Fig. 21. UML encoding of the assertion A � ∃P.B .

the diagram enforces that each instance of A participating to P is in fact participating
to PA, and hence associated via P to an instance of B .

(5) For each assertion of the form A � ∃P.B , we introduce a new binary association PAB ,
with its associated class, and we construct the portion of diagram shown in Fig. 21.
Note the proper multiplicity constraint 1..∗ on the participation of A to PAB .14 Intu-

14 In fact, in the case where we also have the assertion A � ∀P.B for some B , instead of proceeding as in
Fig. 21, we can simply add the cardinality constraint 1..∗ to the association PAB in Fig. 20.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 95
itively, this implies that for each instance of A, there exists an instance of B related to
it through PAB , and hence through P .

Lemma 5.4. Given a primitiveALC− KB K′, the size of the UML class diagramD con-
structed as above is linear in the size ofK′.

Proof. By construction. �
Lemma 5.5. An atomic conceptA is satisfiable w.r.t. anALC− KB K′ if and only if the
classA is consistent in the UML class diagramD constructed as above.

Proof. “⇐” Let J = (∆J , ·J) be an instantiation for D (i.e., a model of the correspond-
ing FOL assertions). We show that J is also a model of all assertions in K′.

(1) For each assertion of the form A � B in K′, there is a generalization in D between the
child class A and the parent class B . Hence, J assigns an extension to A and B in
such a way that AJ ⊆ BJ .

(2) For each assertion of the form A � ¬B in K′, we have in D the hierarchy shown in
Fig. 18, characterized by a disjointness constraint between A and B . J assigns to
the classes A, B and O the sets AJ ,BJ ,OJ so that AJ ⊆ OJ , BJ ⊆ OJ and
AJ ∩ BJ = ∅. From the latter we have that AJ ⊆ ∆J \ BJ .

(3) Each assertion of the form A � B1
B2 in K′ corresponds in D to the hierarchy shown
in Fig. 19, characterized by a covering constraint among B and its children B1 and B2.
J assigns an extension to the classes A, B , B1 and B2 in such a way that AJ ⊆ BJ ,
and BJ = BJ

2 ∪ BJ
2 . Hence we get AJ ⊆ BJ

1 ∪ BJ
2 .

(4) Each assertion of the form A � ∀P.B in K′ corresponds, in D, to the sub-diagram in
Fig. 20. J assigns to the classes in such a diagram an extension in such a way that the
following constraints are satisfied:

PJ ⊆ OJ × OJ

AJ ⊆ OJ PJ
A

⊆ AJ × OJ

AJ ⊆ OJ PJ
A ⊆ AJ × BJ

AJ ∩ AJ = ∅ PJ
A ⊆ PJ

BJ ⊆ OJ PJ
A

⊆ PJ

PJ ⊆ PJ
A ∪ PJ

A

From the constraints above, we get that PJ
A ∩ PJ

A
= ∅. Therefore, if x ∈ AJ then for

all x′ ∈ OJ if (x, x′) ∈ PJ then (x, x′) ∈ PJ
A and therefore x′ ∈ BJ , i.e., AJ ⊆ {x ∈

OJ | ∀x′ ∈ OJ . (x, x′) ∈ PJ ⊃ x′ ∈ BJ }.

96 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
(5) Each assertion of the form A � ∃P.B in K′ corresponds, in D, to the sub-diagram
shown in Fig. 21. J assigns to the classes in such a diagram an extension in such a
way that the following constraints are satisfied:

AJ ⊆ OJ

BJ ⊆ OJ
PJ ⊆ OJ × OJ

PJ
AB ⊆ PJ

PJ
AB ⊆ AJ × BJ

and for each x ∈ AJ we have that �{x′ ∈ ∆I | (x, x′) ∈ PJ
AB} � 1 (mandatory partici-

pation constraint). From these we get that for each x ∈ AJ there exists x′ ∈ OJ such
that (x, x′) ∈ PJ and x′ ∈ BJ , i.e., AJ ⊆ {x ∈ OJ | ∃x′ ∈ OJ (x, x′) ∈ PJ ∧ x′ ∈
BJ }.

“⇒” Let I = (∆I , ·I) be a model of K′ with AI �= ∅. We show that it can be seen as
an instantiation of D, once we assign a suitable extension to the auxiliary classes and roles
introduced in the construction of D. First, we define OI = ∆I .

(1) For each assertion of the form A � B in K′, we have a generalization between classes
A and B in D. I assigns to concepts A and B in K′ the subsets AI and BI of ∆I ,
such that AI ⊆ BI , and hence correctly captures the generalization between classes A

and B in D.
(2) For each assertion of the form A � ¬B in K′, we have a fragment of D as in Fig. 18.

I assigns to concepts A and B the subsets AI and BI of ∆I , such that AI ⊆ ∆I \BI .
Then we have that AI ⊆ OI ,BI ⊆ OI and AI ∩ BI = ∅, thus correctly capturing
the fragment of D.

(3) For each assertion of the form A � B1
 B2 in K′, we have a fragment of D as in
Fig. 19. I assigns to concepts B1 and B2 the subsets BI

1 and BI
2 of ∆I , respectively,

and to A a subset of their union, i.e., AI ⊆ BI
1 ∪ BI

2 . Let us define BI = BI
1 ∪ BI

2 .
Then AI ⊆ BI , thus correctly capturing the fragment of D.

(4) For each assertion of the form A � ∀P.B in K′, we have a fragment of D as in Fig. 20.
Let us define:
• AI = ∆I \ AI

• P I
A = {(x, x′) ∈ P I | x ∈ AI}

• P I
A

= {(x, x′) ∈ P I | x ∈ AI}
Then, by AI ⊆ {x ∈ ∆I | ∀x′ ∈ ∆I . (x, x′) ∈ P I ⊃ x′ ∈ BI}, we get:

AI ⊆ OI

AI ⊆ OI

AI ∩ AI = ∅
BI ⊆ OI

P I ⊆ OI × OI

P I
A ⊆ AI × BI

P I ⊆ P I
A ∪ P I

A

P I
A ⊆ P I

P I
A

⊆ P I

thus correctly capturing the fragment of D.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 97
(5) For each assertion of the form A � ∃P.B in K′, we have a fragment of D as in
Fig. 21. Let us define P I

AB = {(x, x′) ∈ P I | x ∈ AI}. Then, by AI ⊆ {x ∈ ∆I | ∃x′ ∈
∆I . (x, x′) ∈ P I ∧x′ ∈ BI}, we get that for each x ∈ AI we have �{x′ ∈ ∆I | (x, x′) ∈
P I

AB} � 1, and we have that such an instantiation is correct for the fragment of D. �
By Lemmata 5.1, 5.2, 5.3, 5.4, 5.5, and EXPTIME-hardness of reasoning in ALC

knowledge bases, we get our hardness result.

Theorem 5.6. Class consistency in UML class diagrams is EXPTIME-hard.

6. Upper bounds for reasoning on UML class diagrams

In this section we show that reasoning on UML class diagrams is decidable, and in
fact EXPTIME-complete. To do so we show that we can polynomially encode UML class
diagrams in DLRifd knowledge bases and that such an encoding precisely captures the
FOL semantics of UML class diagrams. Hence, reasoning on such diagrams is reduced to
reasoning on DLRifd knowledge bases, which is in EXPTIME.

6.1. Encoding of UML class diagrams inDLRifd

We now illustrate the encoding of UML class diagrams in DLRifd , discussing each
construct separately.

6.1.1. Classes
An UML class is represented by a DLRifd concept. Indeed, both UML classes and

DLRifd concepts denote sets of objects.
To capture an attribute a of type T for a class C we use a DLRifd binary relation a, and

we specify the type of the attribute with the assertion:

C � ∀[1](a ⇒(2 : T)
)

Such an assertion specifies that, for each instance c of the concept C, all objects related
to c by a, are instances of T . Note that an attribute name is not necessarily unique in the
whole diagram, and hence two different classes could have the same attribute, possibly
of different types. This situation is correctly captured by the formalization in DLRifd . To
specify a multiplicity [i..j] associated to the attribute we add the assertion:

C � (
� i [1]a) 	 (

� j [1]a)

Such an assertion specifies that each instance of C participates at least i times and at most j

times to relation a via component 1. If i = 0, i.e., the attribute is optional, we omit the first
conjunct, and if j = ∗ we omit the second one. Observe that, for attributes with multiplicity
[0..∗], we omit the whole assertion, and that, when the multiplicity is missing (i.e., [1..1]

98 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
is assumed) the above assertion becomes:

C � ∃[1]a 	 (
� 1 [1]a)

Let

f (P1, . . . ,Pm) : R
be an operation of a class C that has m parameters belonging to the classes P1, . . . ,Pm

respectively and a result belonging to R. We formalize such an operation as a DLRifd
relation, named fP1,...,Pm , of arity 1 + m + 1 among instances of the DLRifd concepts
C,P1, . . . ,Pm,R. On such a relation we enforce the following assertions.

• An assertion imposing the correct types to the parameters:

fP1,...,Pm � (2 : P1) 	 · · · 	 (m + 1 : Pm)

• An assertion imposing that the invocation of the operation on a given object with given
parameters determines in a unique way the result (i.e., the relation corresponding to
the operation is in fact a function from the invocation object and the parameters to the
result):

(fd fP1,...,Pm 1, . . . ,m + 1 → m + 2)

In case the operation has no parameters (i.e., m = 0), instead of the above functional
dependency we make use of the assertion:

�1 � (
� 1 [1]f)

The form of the above DLRifd assertions depends only on the number of parameters,
and not on the specific class for which the operation is defined, nor on the types of
parameters and of the result.

• An assertion imposing the correct type of the result, when the operation is invoked on
instances of the class C:

C � ∀[1](fP1,...,Pm ⇒(m + 2 : R)
)

As discussed in Section 2, the chosen way of naming relations corresponding to opera-
tions does not pose any difficulty in the formalization of overloadingof operations within
the same class, since an operation is represented in DLRifd by a relation having as name
the signature of the operation, which consists not only of the operation name but also of
the parameter types. Observe that the formalization of operations in DLRifd allows one
to have operations with the same name or even with the same signature in two different
classes. As discussed in Section 2, overridingof operations may show up as a restriction
on the return type.

Example 6.1. The DLRifd assertions that capture the attributes of class phone in Fig. 1
are:

Phone � ∀[1](number⇒(2 : String)
)

Phone � (
� 1 [1]number

)

Phone � ∀[1](brand⇒(2 : String)
)

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 99
Operation lastDialed() is captured by the DLRifd assertions:

Phone � ∀[1](lastDialed)⇒(2 : String)

�1 � (
� 1 [1]lastDialed

)

Operation callLength(String) is captured by the DLRifd assertions:

callLengthString � (2 : String)

(fd callLengthString 1,2 → 3)

Phone � ∀[1](callLengthString ⇒(3 : Int)
)

6.1.2. Associations
We have to distinguish between associations not having an association class and those

having one. In the former case, we can encode an n-ary association A between classes
C1, . . . ,Cn (see Fig. 3) simply as a DLRifd n-ary relation A, together with the following
typing assertion:

A � (1 : C1) 	 (2 : C2) 	 · · · 	 (n : Cn)

An n-ary association A with an association class (see Fig. 5) is formalized in DLRifd

by reifying A into a DLRifd concept A with n binary relations r1, . . . , rn, one for each
component of the association A. We enforce the following assertion:

A � ∃[1]r1 	 (
� 1 [1]r1

) 	 ∀[1](r1 ⇒ (2 : C1)
) 	

∃[1]r2 	 (
� 1 [1]r2

) 	 ∀[1](r2 ⇒ (2 : C2)
) 	

...

∃[1]rn 	 (
� 1 [1]rn

) 	 ∀[1](rn ⇒ (2 : Cn)
)

where ∃[1]ri (with i ∈ {1, . . . , n}) specifies that the concept A must have all components
r1, . . . , rn of the association A, (� 1 [1]ri) (with i ∈ {1, . . . , n}) specifies that each such
component is single-valued, and ∀[1](ri ⇒ (2 : Ci)) (with i ∈ {1, . . . , n}) specifies the class
each component has to belong to. Finally, in order to faithfully represent the association by
a class, we assert

(
id A [1]r1, . . . , [1]rn

)

which specifies that each instance of A represents a distinct tuple in C1 × · · · × Cn.
We can easily represent in DLRifd a multiplicity on a binary association. If the associ-

ation has no related association class, we capture multiplicities by the following DLRifd

assertions (referring to Fig. 2):

C1 � (
� n� [1]A) 	 (

� nu [1]A)

C2 � (
� m� [2]A) 	 (

� mu [2]A)

Example 6.2. The DLRifd assertions that capture the aggregation15 in Fig. 8, are:

15 Recall that an aggregation is a special case of binary association without association class.

100 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
reference � (
1 : PhoneBill

) 	 (
2 : PhoneCall

)

PhoneBill � (
� 1 [1]reference

)

PhoneCall � (
� 1 [2]reference

) 	 (
� 1 [2]reference

)

If, instead, the association has a related class, we can impose a number restriction on
the relations modeling the components of the association. Since the names of such rela-
tions (which correspond to roles) are unique with respect to the association only, and not
with respect to the entire diagram, we have to state such constraints in DLRifd as follows
(referring to Fig. 4):

C1 � (
� n� [2](r1 	 (1 : A)

)) 	 (
� nu [2](r1 	 (1 : A)

))

C2 � (
� m� [2](r2 	 (1 : A)

)) 	 (
� mu [2](r2 	 (1 : A)

))

Example 6.3. The DLRifd assertions modeling the association in Fig. 6 are:

Origin � ∀[1](call⇒(2 : PhoneCall)
) 	 ∃[1]call 	 (

� 1 [1]call
) 	

∀[1](from⇒(2 : Phone)
) 	 ∃[1]from 	 (

� 1 [1]from
)

(
id Origin [1]call, [1]from

)

PhoneCall � (
� 1 [2](call 	 (1 : Origin)

)) 	 (
� 1 [2](call 	 (1 : Origin)

))

Origin � ∀[1](place⇒(2 : String)
)

Origin � ∃[1]place 	 (
� 1 [1]place

)

6.1.3. Generalizations and hierarchies
Generalization is naturally supported in DLRifd . If a UML class C2 generalizes a class

C1, we can express this by the DLRifd assertion:

C1 � C2

Inheritance between DLRifd concepts corresponds exactly to inheritance between UML
classes. This is an obvious consequence of the semantics of �, which is based on sub-
setting. Observe that the encoding in DLRifd also captures correctly inheritance among
association classes and multiple inheritance between classes.

A class hierarchy as the one in Fig. 9 can be represented by the assertions

Ci � C for each i ∈ {1, . . . , n}
A disjointness constraint among classes C1, . . . ,Cn can be formalized as

Ci � n	
j=i+1

¬Cj for each i ∈ {1, . . . , n}

while a covering constraint can be expressed as

C � n

j=1

Cj

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 101
Origin � ∀[1](place⇒(2 : String))

Origin � ∃[1]place 	 (� 1 [1]place)

Origin � ∀[1](call⇒(2 : PhoneCall)) 	 ∃[1]call 	 (� 1 [1]call) 	
∀[1](from⇒(2 : Phone)) 	 ∃[1]from 	 (� 1 [1]from)

(id Origin [1]call, [1]from)

MobileOrigin � ∀[1](call⇒(2 : MobileCall)) 	 ∃[1]call 	 (� 1 [1]call) 	
∀[1](from⇒(2 : CellPhone)) 	 ∃[1]from 	 (� 1 [1]from)

(id MobileOrigin [1]call, [1]from)

PhoneCall � (� 1 [2](call 	 (1 : Origin))) 	 (� 1 [2](call 	 (1 : Origin)))

reference � (1 : PhoneBill) 	 (2 : PhoneCall)
PhoneBill � (� 1 [1]reference)

PhoneCall � (� 1 [2]reference) 	 (� 1 [2]reference)

MobileCall � PhoneCall
MobileOrigin � Origin

CellPhone � Phone
FixedPhone � Phone

CellPhone � ¬FixedPhone
Phone � CellPhone
 FixedPhone

Fig. 22. DLRifd knowledge base corresponding to the UML class diagram shown in Fig. 12.

Example 6.4. The hierarchy in Fig. 10 can be formalized by means of the following
DLRifd assertions:

CellPhone � Phone

FixedPhone � Phone

CellPhone � ¬FixedPhone

Phone � CellPhone
 FixedPhone

If needed, one can easily add DLRifd assertions to state that all classes that are not in
the same hierarchy are a priori disjoint, and that objects in the same hierarchy must belong
to a most specific class.

Example 6.5. Finally, we show in Fig. 22 how the UML class diagram in Fig. 12 can be
encoded in DLRifd .

6.2. Correctness of the encoding

We now show that the encoding presented above is indeed correct. In particular, we
show that there is a direct correspondence between instantiations of the UML class dia-
gram and models of the corresponding DLRifd knowledge base. This is captured by the
following theorem.

Theorem 6.6. Let D be a UML class diagram andKD the DLRifd knowledge base
constructed as described above. Then every instantiation ofD is a model ofKD, and
vice-versa.

102 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Proof. First of all, we observe that both (the FOL formalization of) the UML class diagram
D and the DLRifd knowledge base KD are over the same alphabet. So interpretations are
compatible. Considering each UML class diagram construct separately, it is easy to see that
an interpretation satisfies its FOL formalization if and only if it satisfies the corresponding
DLRifd assertions. We show this in some detail below, also to make apparent the very
close correspondence between the two formalizations.

• Class attributes.An attribute a of type T of the class C with multiplicity [i..j] is
captured in D by the FOL assertions:

∀x, y.
(
C(x) ∧ a(x, y)

) ⊃ T (y)

∀x, y. C(x) ⊃ i � �
{
y | a(x, y)

}
� j

The corresponding DLRifd assertions in KD are

C � ∀[1](a ⇒(2 : T)
)

C � (
� i [1]a) 	 (

� j [1]a)

Now, given an instantiation I for D, each x ∈ CI is such that x is connected through
the binary relation aI only to elements of T I , and x participates at least i and at most
j times to aI . Hence I satisfies the DLRifd assertions above. Conversely, given a
model I of KD , it is easy to see that each x ∈ CI is connected through the binary
relation aI only to elements of T I , and x participates at least i and at most j times to
aI . Therefore, I satisfies the FOL formulas above.

• Class operations. An operation f (P1, . . . ,Pm) : R of class C is expressed by the FOL
assertions:16

∀x,p1, . . . , pm, r. f (x,p1, . . . , pm, r) ⊃
n∧

i=1

Pi(pi)

∀x,p1, . . . , pm, r, r ′. f (x,p1, . . . , pm, r) ∧ f (x,p1, . . . , pm, r ′) ⊃ r = r ′

∀x,p1, . . . , pm, r. C(x) ∧ f (x,p1, . . . , pm, r) ⊃ R(r)

The corresponding DLRifd assertions in KD are

fP1,...,Pm � (2 : P1) 	 · · · 	 (m + 1 : Pm)

(fd fP1,...,Pm 1, . . . ,m + 1 → m + 2)

C � ∀[1](fP1,...,Pm ⇒(m + 2 : R)
)

Given an instantiation I for D, it is such that for each x ∈ CI , if x participates to
y ∈ f I as first component, the components 2, . . . ,m+2 of y belong to P I

1 , . . . ,P I
m,R

respectively, and the component m + 2 is uniquely determined by the first m + 1.
Hence I satisfies the DLRifd assertions above. Conversely, by the inclusion assertion,
a model I of KD is such that for any x ∈ CI , if x participates to y ∈ f I

P1,...,Pm
, the

16 To simplify the notation, we again denote fP ,...,Pm simply by f .
1

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 103
components 2, . . . ,m + 2 of y belong to P I
1 , . . . ,P I

m,R respectively. Moreover, by
the functional dependency, the component m + 2 is uniquely determined by the first
m + 1. Therefore, I satisfies the FOL formulas above.

• Associations without association class. Typing of an n-ary association A without as-
sociation class is captured in D by the FOL assertion:

∀x1, . . . , xn. A(x1, . . . , xn) ⊃ C1(x1) ∧ · · · ∧ Cn(xn).

The corresponding DLRifd assertion in KD is

A � (1 : C1) 	 (2 : C2) 	 · · · 	 (n : Cn)

Given an instantiation I for D, we have that for any x ∈ AI , the components of x

belong to CI
1 , . . . ,CI

n respectively. Hence I satisfies the DLRifd assertion above.
Conversely, given an interpretation I for KD , the DLRifd assertion above requires that
for any x ∈ AI , the components of x belong to CI

1 , . . . ,CI
n respectively. Therefore I

satisfies the FOL formula above.
Multiplicities of a binary associations without association class are expressed by the
FOL assertions:

∀x. C1(x) ⊃ (
n� � �

{
y | A(x,y)

}
� nu

)

∀y. C2(y) ⊃ (
m� � �

{
x | A(x,y)

}
� mu

)

The corresponding DLRifd assertions in KD are

C1 � (
� n� [1]A) 	 (

� nu [1]A)

C2 � (
� m� [2]A) 	 (

� mu [2]A)

Again, considering the semantics of the assertions in FOL and in DLRifd , it is imme-
diate to verify that they are satisfied by exactly the same models.

• Associations with association class. An n-ary association A with association class is
formalized in D by the following FOL assertions:

∀x, y. A(x) ∧ ri(x, y) ⊃ Ci(y) for i = 1, . . . , n

∀x. A(x) ⊃ ∃y. ri(x, y) for i = 1, . . . , n

∀x, y, y′. A(x) ∧ ri(x, y) ∧ ri(x, y′) ⊃ y = y′ for i = 1, . . . , n

∀y1, . . . , yn, x, x′. A(x) ∧ A(x′) ∧
n∧

i=1

(
ri(x, yi) ∧ ri(x

′, yi)
) ⊃ x = x′

The corresponding DLRifd assertions in KD are

A � ∃[1]r1 	 (
� 1 [1]r1

) 	 ∀[1](r1 ⇒ (2 : C1)
) 	

∃[1]r2 	 (
� 1 [1]r2

) 	 ∀[1](r2 ⇒ (2 : C2)
) 	

...

∃[1]rn 	 (
� 1 [1]rn

) 	 ∀[1](rn ⇒ (2 : Cn)
)

(
id A [1]r1, . . . , [1]rn

)

104 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118

-

Given an instantiation I for D, by the FOL assertion above, we have that for each
x ∈ AI , x participates exactly once as first component to each of the binary relations
rIi , and x is connected through rI1 , . . . , rIn to elements of CI

1 , . . . ,CI
n respectively;

moreover, no two instances of AI can agree on the participation to rI1 , . . . , rIn . Hence
I satisfies all the DLRifd assertions above. Similarly, it is easy to see that a model I
of KD , which has to satisfy the DLRifd assertions above, satisfies the corresponding
FOL assertions as well.
Multiplicities of a binary association A with association class are expressed by the
FOL assertions:

∀y1. C1(y1) ⊃ (
n� � �

{
x | A(x) ∧ r1(x, y1)

}
� nu

)

∀y2. C2(y2) ⊃ (
m� � �

{
x | A(x) ∧ r2(x, y2)

}
� mu

)

The corresponding DLRifd assertions in KD are

C1 � (
� n� [2](r1 	 (1 : A)

)) 	 (
� nu [2](r1 	 (1 : A)

))

C2 � (
� m� [2](r2 	 (1 : A)

)) 	 (
� mu [2](r2 	 (1 : A)

))

Again, considering the semantics of the assertions in FOL and in DLRifd , it is imme-
diate to verify that they are satisfied by exactly the same models.

• Generalizations. The generalization between a more general class C a more specific
class C1 is formalized by the FOL assertion:

∀x. C1(x) ⊃ C(x)

The corresponding DLRifd assertion in KD is:

C1 � C

Considering the semantics of such assertions, it is immediate to verify that they are
satisfied by exactly the same models. It is also immediate to verify that the FOL
and DLRifd assertions expressing covering constraints and disjointness constraints
on class hierarchies are satisfied by exactly the same models. �

A consequence of the above result is that reasoning on UML class diagrams can be
performed by reasoning on DLRifd knowledge bases. In particular, the following result
holds.

Theorem 6.7. LetD be a UML class diagram andKD theDLRifd knowledge base con
structed as described above. Then a classC is consistent inD if and only if the conceptC
is satisfiable w.r.t.KD.

Proof. The claim is a straightforward consequence of Theorem 6.6. �
Since we can reduce reasoning on UML class diagrams to reasoning on DLRifd knowl-

edge bases, from the results about reasoning in DLRifd [9] we get an EXPTIME upper
bound for reasoning on UML class diagrams.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 105
Theorem 6.8. Class consistency in UML class diagrams is EXPTIME-complete.

Proof. Theorem 5.6 gives us the EXPTIME-hardness. The completeness follows from
Theorem 6.7, by considering that the size of KD is polynomial in D and that concept
satisfiability w.r.t. DLRifd knowledge bases is EXPTIME-complete [9]. �

7. Reasoning on UML class diagrams using ALCQI

The results in the previous section show that we can exploit reasoning tools developed
for DLs to reason on UML class diagrams. However, current state-of-the-art DL based
reasoning systems do not support yet all constructs of DLRifd . In particular, they do not
support functional dependencies and identification constraints. In this section we show that,
as far as reasoning on UML class diagrams is concerned (cf. Section 3), we can resort to a
less expressive DL, namely ALCQI , for which tableaux based reasoning algorithms have
been developed [30,41]. State-of-the-art DL based reasoning systems [18,19] implement
such tableaux algorithms, which allows them to be exploited as core engines for advanced
UML CASE tools. For an example of the kind of services that such a tool could provide,
see [17]. Notably, ALCQI does not include functional dependencies and identification
constraints, which play a special role, since they allow us to correctly capture the FOL
semantics of n-ary associations and of operations.

Interestingly, due to the tree-model property of DLRifd (cf. Section 4), when we do
not want to specifically reason about functional dependencies or identification constraints,
which is the case for most of the UML reasoning tasks (cf. Section 3), we can drop such
constraints from DLRifd knowledge bases, while still preserving soundness and complete-
ness of reasoning on concepts and relations [9]. Another potential difficulty is that, in
ALCQI , relations are only binary, while DLRifd admits relations of arbitrary arity. We
overcome this difficulty by translating a DLRifd relation of arity n > 2 through reification:
this is done by introducing a concept, denoting the tuples of the relation, and n ALCQI
(binary) functional roles, one for each component of the relation. The tree-model property
guarantees that such a translation is faithful, in the sense that there will be no two instances
of the concept representing the same tuple of the relation [34].

7.1. Encoding of UML class diagrams inALCQI

Building on these observations we now present an encoding of UML class diagrams
directly in ALCQI that, although it does not preserve models, is sound and complete with
respect to the main reasoning tasks on UML class diagrams.

7.1.1. Classes
An UML class C is represented by an atomic concept C. Each attribute a of type T for

class C is represented by an atomic role a, together with an inclusion assertion encoding
the typing of the attribute a for the class C:

C � ∀a.T

106 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
We formalize the multiplicity [i..j] of attribute a as

C � (� i a.�) 	 (� j a.�)

expressing that for each instance of the concept C there are at least i and at most j role
fillers for role a. As we did for DLRifd , for attributes with multiplicity [0..∗] we omit the
whole assertion, and when the multiplicity is missing (i.e., [1..1] is assumed) the above
assertion becomes:

C � ∃a.� 	 (� 1a.�)

An operation f () : R without parameters for class C is modeled directly as a (binary)
role Rf (), for which the following assertion holds:

C � ∀Rf ().R 	 (� 1Rf ().�)

Instead, an operation with one or more parameters f (P1, . . . ,Pm) : R of class C, which
formally corresponds to an (m + 2)-ary relation that is functional on the last component,
cannot be directly expressed in ALCQI . Therefore, we make use of reification, and intro-
duce an atomic concept Cf (P1,...,Pm), m + 2 ALCQI roles r1, . . . , rm+2 and the following
assertions, which type the input parameters and the return value:

Cf (P1,...,Pm) � ∃r1.� 	 (� 1 r1.�) 	
...

∃rm+1.� 	 (� 1 rm+1.�)

Cf (P1,...,Pm) � ∀r2.P1 	 · · · 	 ∀rm+1.Pm

C � ∀r−
1 .(Cf (P1,...,Pm) ⇒∀rm+2.R)

The first assertion states that each instance of Cf (P1,...,Pm), representing a tuple, correctly
is connected to exactly one object for each of the roles r1, . . . , rm+1. Instead, note that in
general there may be two instances of Cf (P1,...,Pm) representing the same tuple. However,
this cannot be the case in a tree-like model (cf. tree-model property). The other two as-
sertions impose the correct typing of the parameters, depending only on the name of the
operation, and of the return value, depending also on the class.

7.1.2. Associations
Each binary association (or aggregation) A between a class C1 and a class C2 is repre-

sented by the atomic role A, together with the inclusion assertion

� � ∀A.C2 	 ∀A−.C1

encoding the typing of A. The multiplicities of A (see Fig. 2) are formalized by the asser-
tions

C1 � (� n� A.�) 	 (� nu A.�)

C2 � (� m� A−.�) 	 (� mu A−.�)

Binary associations with association class, and n-ary (with n > 2) associations, with or
without association class, are modeled through reification. More precisely, each association

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 107
A relating classes C1, . . . ,Cn is represented by an atomic concept A together with the
inclusion assertion

A � ∃r1.C1 	 · · · 	 ∃rn.Cn 	 (� 1 r1) 	 · · · 	 (� 1 rn)

If the association A has explicit role names in the UML class diagram, then r1, . . . , rn
above are such names. Otherwise, they are arbitrary names used to denote the components
of A. As we did for operations, we are not requiring that each instance of the concept A

denotes a distinct tuple, but again this is the case in tree-like models.
Multiplicities on binary associations with association class (see Fig. 4) are represented

by

C1 � (� n� r−
1 .A) 	 (� nu r−

1 .A)

C2 � (� m� r−
2 .A) 	 (� mu r−

2 .A)

7.1.3. Generalizations
Generalizations between classes, and disjointness and covering constraints on hierar-

chies are expressed in ALCQI as they are in DLRifd . In particular, a generalization
between a class C and its child class C1 can be represented using the ALCQI inclu-
sion assertion C1 � C. A class hierarchy as the one in Fig. 9 can be represented by the
assertions C1 � C, . . . ,Cn � C. A disjointness constraint among classes C1, . . . ,Cn can
be modeled as Ci � 	n

j=i+1¬Cj , with 1 � i � n − 1, while a covering constraint can be
expressed as C �
n

i=1Ci .

Example 7.1. We show in Fig. 23 the ALCQI knowledge base corresponding to the UML
class diagram in Fig. 12.

Origin � ∀place.String
Origin � ∃place.� 	 (� 1 place)

Origin � ∃call.PhoneCall 	 (� 1 call) 	
∃from.Phone 	 (� 1 from)

MobileOrigin � ∃MobileCall.MobileCall 	 (� 1 MobileCall) 	
∃from.CellPhone 	 (� 1 from)

PhoneCall � (� 1 call−.Origin) 	 (� 1 call−.Origin)

� � ∀reference−.PhoneBill 	 ∀reference.PhoneCall
PhoneBill � (� 1 reference−)

PhoneCall � (� 1 reference) 	 (� 1 reference)

MobileCall � PhoneCall
MobileOrigin � Origin

CellPhone � Phone
FixedPhone � Phone

CellPhone � ¬FixedPhone
Phone � CellPhone
 FixedPhone

Fig. 23. ALCQI knowledge base corresponding to the UML class diagram shown in Fig. 12.

108 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118

-

7.2. Correctness of the encoding

We now show that the encoding of a UML class diagram into an ALCQI knowledge
base is correct, in the sense that it preserves class consistency, and hence essentially all
reasoning services over UML class diagrams. Formally, the following result holds.

Theorem 7.2. LetD be a UML class diagram andKD theALCQI knowledge base con
structed as specified above. Then a classC is consistent inD if and only if the conceptC
is satisfiable w.r.t.KD.

Proof. “⇒” Let I = (∆I , ·I) be an instantiation of D (i.e., a model of the corresponding
FOL assertions) such that CI �= ∅. Then we can build a model J = (∆J , ·J) of KD such
that CJ �= ∅ as follows.

• ∆J = ∆I ∪ ⋃
A∈A{t(d1,...,dn) | (d1, . . . , dn) ∈ AI} ∪ ⋃

F∈F {t(d1,...,dn) | (d1, . . . , dn) ∈
FI}, where A denotes the set of all non-binary associations without association class
in D, and F denotes all functional relations that model class operations.

• CJ = CI for all concepts C corresponding to classes C in D.
• RJ = RI for all ALCQI roles R corresponding to attributes, operations without pa-

rameters, aggregations, binary associations without association class, and association
class roles in D.

• For each operation f (P1, . . . ,Pm) : R with one or more parameters, we define
CJf (P1,...,Pm) = {t(d0,d1,...,dm+1) | (d0, d1, . . . , dm+1) ∈ f I

(P1,...,Pm)}, and for each ALCQI
role ri modeling the ith component of the relation f(P1,...,Pm), we define rJi =
{(t(d0,d1,...,dm+1), di) | (d0, d1, . . . , dm+1) ∈ f I

(P1,...,Pm)}.• Finally, for each n-ary association A with arity n > 2 and without association class, we
define AJ = {t(d1,...,dn) | d1, . . . , dn ∈ AI} and for each ALCQI role ri modeling the
ith component of the association A, we define rJi = {(t(d1,...,dn), di) | (d1, . . . , dn) ∈
AI}.

Trivially CJ = CI �= ∅. It is also immediate to check that J satisfies all the assertions
in KD . Again one can proceed by focusing on the assertions that each kind of UML class
diagram construct gives rise to.

As an example, we detail the proof for operations, since proving the statement in this
case is less straightforward than in all the others cases. An operation f (P1, . . . ,Pm) : R of
a class C in the diagram D is represented by the FOL formulas:

∀x,p1, . . . , pm, r. f (x,p1, . . . , pm, r) ⊃
m∧

i=1

Pi(pi)

∀x,p1, . . . , pm, r, r ′. f (x,p1, . . . , pm, r) ∧ f (x,p1, . . . , pm, r ′) ⊃ r = r ′

∀x,p1, . . . , pm, r. C(x) ∧ f (x,p1, . . . , pm, r) ⊃ R(r)

that correspond to the ALCQI assertions:

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 109
Cf (P1,...,Pm) � ∃r1.� 	 (� 1 r1.�) 	
...

∃rm+2.� 	 (� 1 rm+2.�)

Cf (P1,...,Pm) � ∀r2.P1 	 · · · 	 ∀rm+1.Pm

C � ∀r−
1 .(Cf (P1,...,Pm) ⇒∀rm+2.R)

Given an instantiation I of D, for all y ∈ f I , the components 2, . . . ,m + 1 of y belong
to P I

1 , . . . ,P I
m , and for all x ∈ CI if x participates as first component to y ∈ f I , the

component m + 2 of y belongs to RI . Additionally, the first m + 1 components uniquely
determine the component m + 2.

The interpretation J , built from I as shown above, instantiates the concept Cf (P1,...,Pm),
which models f (P1, . . . ,Pm) : R, with the (m + 2)-tuples of f I

(P1,...,Pm), and instantiates

each role ri with pairs where the first component is a tuple (d0, d1, . . . , dm+1) of f I
(P1,...,Pm)

and the second one is the component di of (d0, d1, . . . , dm+1) to which ri refers. In partic-
ular, each tuple of ri connects each element of Cf (P1,...,Pm) to the element of the correct
type (and only to it) and no two elements of Cf (P1,...,Pm) represent the same tuple. Hence,
J it satisfies the above ALCQI assertions.

“⇐” By the tree-model property we know that if C is satisfiable w.r.t. the ALCQI
knowledge base KD then there exists a tree-like model J = (∆J , ·J) of KD , such that
CJ �= ∅. From such a tree-like model we can build an instantiation I = (∆I , ·I) of D such
that CI �= ∅ as follows.

• ∆I = ⋃
C∈C CJ , where C denotes the set of all classes in D.

• CI = CJ for all classes C in D.
• RI = RJ for all attributes, operations without parameters, aggregations, binary asso-

ciations without association class, and association class roles in D.
• For each operation f (P1, . . . ,Pm) : R with one or more parameters, we define

f I
(P1,...,Pm) = {(d0, d1, . . . , dm+1) | ∃t ∈ CJf (P1,...,Pm).

∧m+1
i=0 (t, di) ∈ rJi }.

• Finally for each n-ary association A with arity n > 2 and without association class, we
define AI = {(d1, . . . , dn) | ∃t ∈ AJ .

∧m+1
i=0 (t, di) ∈ rJi }.

Observe that, since J is a tree-like model, it is guaranteed that there is only one object t in
Cf (P1,...,Pm) that represents a given tuple, similarly for the concepts A representing n-ary
associations with or without association class. Hence tuples of n-ary associations, tuples
of relations corresponding to class operations, as well as key constraints for association
classes and uniqueness of the operation results is guaranteed. Keeping such an observation
in mind is easy to check that I is indeed an instantiation of K with CI �= ∅.

Analogously to the previous case, we detail the proof for operations. Given a model J
for KD , each y ∈ CJ

f (P1,...,Pm)
is connected to elements of CJ ,PJ

1 , . . . , PJ
m ,RJ via roles

rJ1 , . . . , rJm+2, respectively; y participates to each rJi exactly once, as first component. The

instantiation I , built from J as shown above, populates f I
(P1,...,Pm) with (m + 2)-tuples

(d0, d1, . . . , dm+1) that correspond to the elements of CJ , and such that each di is
f (P1,...,Pm)

110 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
the second component of rJi . In particular, each parameter and return value of f(P1,...,Pm)

is correctly typed and, from J and the tree model property, f(P1,...,Pm) is a function from
the invocation object and the parameters to the result value. Hence, I correctly instantiates
f(P1,...,Pm). �

Note that the notion of correctness that can be adopted for the encoding in ALCQI
is the one that results from Theorem 7.2. Such a notion is much weaker than the one for
the encoding in DLRifd given by Theorem 6.6. Indeed, differently from the encoding in
DLRifd , the encoding in ALCQI does not preserve models since ALCQI is not equipped
with means to express n-ary relations and identification and functional dependency con-
strains, which are needed to fully express UML class diagrams. However, as Theorem 7.2
shows, the encoding in ALCQI preserves enough semantics to carry out sound and com-
plete reasoning on UML class diagrams.

Finally, note that the size of the ALCQI knowledge base KD , obtained by encoding a
UML class diagram D in ALCQI , is linear in the size of D. Hence the EXPTIME upper
bound for reasoning on UML class diagrams is preserved by the encoding in ALCQI .

7.3. Description logics reasoners

Current state-of-the-art DL reasoning systems [18,19,42] support arbitrary complex
ALCQI knowledge bases and implement sound and complete reasoning algorithms. These
algorithms are based on tableaux techniques [43] and, although not optimal from the com-
putational complexity point of view, are highly optimized and exhibit good average case
performance [44].

Two of the best-known systems are FACT,17 developed at the University of Manchester
[18,29,41] and RACER,18 developed at the Hamburg University of Science and Technol-
ogy [19,45]. Both these systems perform a preliminary classification(see [46]) of the con-
cepts of the ALCQI knowledge base. Classification iteratively computes, by subsequent
subsumption tests, a taxonomy of classes, making explicit all subsumption relationships
among the concepts of the knowledge base. Once this classification step is performed,
reasoning services can take advantage of it to speed up inferences.

Encoding a UML class diagram in an ALCQI knowledge base allows the designer of
the diagram for exploiting the reasoning services offered by DL reasoners. In such a way,
relevant properties of the diagram can be formally verified, as discussed in Section 3. In-
deed, classification builds a hierarchy of the (concepts corresponding to the) UML classes
belonging to the diagram. This hierarchy reflects the various constraints that the diagram
enforces on the classes, as well as their properties and the relations among them. In the
next section, we apply these ideas to an application domain of industrial interest.

17 http://www.cs.man.ac.uk/~horrocks/FaCT/.
18 http://www.sts.tu-harburg.de/~r.f.moeller/~racer/.

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.sts.tu-harburg.de/~r.f.moeller/~racer/
http://www.sts.tu-harburg.de/~r.f.moeller/~racer/

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 111
8. A case study

In the previous section we showed that UML class diagrams can be encoded as ALCQI
knowledge bases preserving enough semantics to keep reasoning sound and complete. On
the other hand ALCQI is a DL that can be dealt with by current state-of-the-art DL-based
systems. Hence these systems could serve as a core reasoning engine in advanced CASE
tools equipped with automated reasoning capabilities on UML class diagrams. In order to
verify such an idea, we did some experimentation both on UML class diagrams developed
for educational purposes, and on UML class diagrams of industrial interest [47,48]. In this
section we give a brief overview of the latter experience with an industrial scale example,
namely, the UML class diagrams forming the Common Information Model.

Common Information Model (CIM)19 is a model defined by the Distributed Manage-
ment Task Force (DMTF), with the purpose of providing a rigorous approach for modeling
systems and networks using the object-oriented paradigm. CIM has a Meta Schema, ex-
pressed as a set of UML class diagrams that form the basis of a sort of vocabulary for
analyzing and describing managed systems. According to the particular needs of a given
application, such schemas can be extended through subclassing to include aspects specific
to the application. CIM offers three main conceptual schemas, each expressed as a UML
class diagram: the Core Model, the Common Modeland the Extension Schemas. The Core
Model and the Common Model together form the CIM Schema.

• The Core Model is an information model capturing basic notions that are applicable to
all areas of management (e.g., logical device or system component).

• The Common Model is an information model that expresses concepts related to spe-
cific management areas, but still independent of a particular technology or imple-
mentation. The common areas defined in the Common Model are: Systems, Devices,
Applications, Networks, and Physical.

• Extension Schemas are made up of classes that represent managed objects that are
technology specific additions to the Common Model.

Such schemas are constituted by UML class diagrams of substantial size (hundreds of
classes and of associations) and include multiplicity constraints on binary association and
aggregations, class and association hierarchies, covering and disjointness constraints. Such
diagrams are written in MOF (Meta Object Facility) format, so as to be easily used in
applications such as meta-information repositories, software development management
systems, information management systems, and data warehousing.

We make use of a translator that reads a MOF file and generates an ALCQI knowl-
edge base that corresponds to the UML class diagram described in the MOF file [48].
The ALCQI knowledge base resulting from the translation is classified using a DL-based
system, namely FACTor RACER. Observe that this step, although exponential in theory,
takes just a few seconds on standards machines for each of the CIM models above on both
FACTand RACER. Once these preliminary steps are done, we are ready to ask for inter-

19 http://www.dmtf.org/standards/cim/.

http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/

112 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
esting properties of the UML class diagrams, making use of reasoning provided by the
DL-based systems on the ALCQI counterpart of the diagrams. Typically, these properties
can be verified in fractions of seconds.

The UML class diagrams forming CIM are very well designed making most interesting
properties explicitly available or verifiable by scanning the diagram, and avoiding redun-
dancy as much as possible. However, by automated reasoning, we were able to show, in
few cases indeed, that it is possible to refine the diagrams in order to make explicit some
properties otherwise hidden in the interaction of the various classes and associations. Here
we illustrate one of such cases.

Example 8.1. We focus on the CIM Core Model and, in particular, on the sub-schema
shown in Fig. 24, which is taken from the CIM specification.20

This sub-schema models the relation between managed system elements and their statis-
tical information. Since there may be different kinds of statistical information, depending
on the managed system element it refers to, the class StatisticalInformation and the associa-
tion class related to association Statistics have several sub-classes. The latter information is
not shown in the fragment of the CIM Core Model in Fig. 24. Observe also that there is an
implicit covering constraint and a disjointness constraint on each ISA hierarchy. Therefore,
each child of Statistics contains tuples that are made up of elements from onesub-class of
ManagedSystemElement and thesuitable sub-class of StatisticalInformation. Additionally,
each element of the sub-classes of StatisticalInformation participates exactly once to the
suitable association sub-classes of Statistics.

Now we can wonder whether an instance of StatisticalInformation has to participate ex-
actly once to the association Statistics; observe that this is not explicitly written in the
diagram. Let Kcm be the ALCQI knowledge base corresponding to the UML class dia-
gram of the CIM Core Model. What we want to know can be checked by asking for the
(un)satisfiability of the concept (� 2 r−

1 .Statistics)
 ¬∃r−
1 .Statistics with respect to Kcm,

where we are assuming that class StatisticalInformation participates to association Statistics
via role r1.

The answer the reasoners provide to this inference query is “No”. Let us explain why.
The covering and disjointness constraints impose that each tuple of Statistics belongs to
exactly one of its sub-classes and that each element of StatisticalInformation belongs to ex-
actly one of its children. Hence, if an instance of StatisticalInformation participates twice
to association Statistics, since it belongs to exactly one of the sub-classes of StatisticalIn-
formation, then the maximal multiplicity related to it is violated. On the other hand, if an
instance does not participate at all in the association Statistics, then, by the same reason,
the minimal multiplicity is violated.

As a result we can refine the multiplicity of the participation of instances of the class
StatisticalInformation to the association Statistics and state that such a multiplicity is 1..1,
instead of just 0..∗.21

20 http://www.dmtf.org/standards/cim/cim_schema_v26.php.
21 Note that, as indicated in the CIM Core Model, all classes in the same hierarchy participate to associations in
the same hierarchy with the same role.

http://www.dmtf.org/standards/cim/cim_schema_v26.php
http://www.dmtf.org/standards/cim/cim_schema_v26.php

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 113
Fi
g.

24
.A

fr
ag

m
en

to
f

th
e

C
IM

C
or

e
M

od
el

U
M

L
cl

as
s

di
ag

ra
m

.

114 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
Observe that leave out such a refinement may have been a design choice in specifying
the CIM diagrams. The point here is not to detect a bug on the CIM Core Model, but
to show that automated tools can point out implicit consequences of what is explicitly
represented.

9. Related work

Several works in the literature tackle the task of establishing a common formal un-
derstanding of UML diagrams, including UML class diagrams. However, to the best of
our knowledge, none of them has the explicit goal of building a solid basis for allowing
automated reasoning techniques that are sound, complete, and terminating. Additionally, a
complexity characterization, such as the one that we propose here for UML class diagrams,
is missing for all UML diagrams. In what follows, we review some of the most relevant
papers on the formalization of UML class diagrams.

In [49–51] formalizations are reported that tackle the precursors of UML, namely
Rumbaugh’s Object Modeling Technique (OMT) diagrams [52] and Jacobson’s Object-
Oriented Software Engineering [53]. In [49] the authors propose a FOL based formaliza-
tion for OMT’s diagrams and in particular for the object models (OMT’s and OOSE’s
equivalent of UML class diagrams). In [50] the authors formalize an object model in terms
of an algebraic specification and its instance diagram22 in terms of an algebra: the seman-
tics of the object model is the set of algebras which are consistent which the algebraic
specification of that model. In [51], OOSE object diagrams are extended by annotations
expressed in object oriented formal specification languages. Similar studies on formalizing
general object-oriented constructs are reported in [54,55]. All these studies can be readily
applied to UML as well. However, automated reasoning is not considered therein.

More recently, in [4] a formal semantics, in terms of the specification language Z (also
based on FOL), is given to UML class diagrams, in order to characterize well-formed
diagrams. Then, the author proposes a way to extract hidden information on the class di-
agrams, by performing a sequence of diagram transformations. Intuitively, a claim to be
proved is encoded in terms of a “target UML class diagram”: this claim holds if and only if
it is possible to apply a set of semantic-preserving transformations that lead from the origi-
nal UML class diagram to the target one. While this can be considered a form of reasoning,
it requires human intervention and it is not guaranteed to be complete. Another approach
to formalize UML class diagrams, also based on Z, is proposed in [56]. These approaches
essentially exploit a reduction to FOL, similar to the one presented here; however, no guar-
antee on the decidability of reasoning is given.

Instead, the precise UML (pUML) group23 has the much broader goal of giving a se-
mantics to the whole of UML [2,3,57–59]. Their work is based on the idea of establishing
a formal semantics for a core set of constructs in the various UML diagrams, and relate
them to each other and to the remaining constructs (possibly across different diagrams)

22 Instance diagrams are obtained by populating their corresponding object models with elements from the
application domain.
23 http://puml.org/.

http://puml.org/
http://puml.org/

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 115
via a meta-modeling language. A meta-model based approach is also taken in [60], where
the authors formalize UML meta-models and the mapping between them. Intuitively, the
authors propose a mapping from a source meta-model, which in particular can be a UML
meta-model (expressed as UML class diagrams, and representing any UML diagram), to
a target meta-model, which is associated to the formal language used in the formalization
of the UML diagram. The mapping between these two meta-models has to be a homomor-
phism in order to keep basic properties of the meta-models unchanged. Properties of the
source meta-model can be proved once proved on the target meta-model. Again, automated
reasoning is not addressed.

Finally, as mentioned, there has been a line of research on developing reasoning tools for
conceptual and object oriented data models (e.g., [11–17,22,24]). Observe that the hardness
results reported here can be applied to several conceptual data models studied in those
papers.

10. Conclusions

In this paper we have shown that reasoning on UML class diagrams can be quite a
complex task. Indeed we have proved that it is EXPTIME-complete, without considering
arbitrary OCL constraints (which would lead to undecidability). This result suggests that it
is highly desirable to provide automated reasoning support for detecting relevant properties
of the diagram. With respect to this, we have shown that the DL ALCQI , implemented in
current state-of-the-art DL-based systems, is already equipped with the capabilities neces-
sary to reason on UML class diagrams. The experimentation we did, while certainly limited
and not providing a definitive answer, indicate that current state-of-the-art DL-based sys-
tems are ready to serve as a core reasoning engine in advanced CASE tools.

Various issues remain to be addressed. First of all, the reasoning tasks we have ana-
lyzed in this paper do not include reasoning on keys and identification constraints. While
these are not among the basic reasoning services that should be supported, they may be
of interest for dealing with class diagrams in which keys are introduced for classes, to-
gether with complex class hierarchies. Such forms of reasoning can be directly supported
in DLRifd [9]. Instead, DL-based systems need to be substantially enhanced to fully im-
plement DLRifd (in particular sophisticated abilities to deal with individuals need to be
added). Another aspect that deserves further treatment are multiplicities on associations of
arbitrary arity, which UML defines to be look-across [21,61]. Reasoning on look-across
multiplicity constraints is largely unexplored. While multiplicities on n-ary associations
appear rarely in UML class diagrams, more work needs to be done to understand their
interaction with other constructs in order to take them into account during reasoning. It is
also of interest to characterize interesting fragments of OCL constraints that do not lead to
undecidability. Although we did not treat it in this paper, DLRifd (and even ALCQI) can
express interesting forms of OCL constraints, such as rich typing restrictions on associa-
tions and refinement of properties along class hierarchies.

Finally, it is worth noting that the results presented here hold also for other conceptual
modeling formalisms typically used in software engineering and databases. In particular,

116 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
the EXPTIME-completeness result applies to the Entity-Relationship model enhanced with
ISA on entities and relationships [20].

Acknowledgements

The authors would like to thank Andrea Calì, who participated to the initial work that
finally led to this paper.

References

[1] M. Fowler, K. Scott, UML Distilled—Applying the Standard Object Modeling Laguage, Addison-Wesley,
Reading, MA, 1997.

[2] A. Evans, R. France, K. Lano, B. Rumpe, The UML as a formal modeling notation, in: H. Kilov, B. Rumpe,
I. Simmonds (Eds.), Proc. of the OOPSLA’97 Workshop on Object-Oriented Behavioral Semantics, Tech-
nische Universität München, TUM-I9737, 1997, pp. 75–81.

[3] A. Evans, R. France, K. Lano, B. Rumpe, Meta-modelling semantics of UML, in: H. Kilov (Ed.), Behav-
ioural Specifications for Businesses and Systems, Kluwer Academic, Dordrecht, 1999, Chapter 2.

[4] A.S. Evans, Reasoning with UML class diagrams, in: Second IEEE Workshop on Industrial Strength Formal
Specification Techniques (WIFT’98), IEEE Computer Society Press, 1998.

[5] T. Clark, A.S. Evans, Foundations of the unified modeling language, in: D. Duke, A. Evans (Eds.), Proc. of
the 2nd Northern Formal Methods Workshop, Springer, Berlin, 1997.

[6] D. Harel, B. Rumpe, Modeling languages: Syntax, semantics and all that stuff, Technical Report MCS00-16,
The Weizmann Institute of Science, Rehovot, Israel, 2000.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge University Press, Cambridge, 2003.

[8] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison-Wesley,
Reading, MA, 1998.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, Identification constraints and functional dependencies in de-
scription logics, in: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), Seattle, WA,
2001, pp. 155–160.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, On the decidability of query containment under constraints, in:
Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98),
1998, pp. 149–158.

[11] S. Bergamaschi, C. Sartori, On taxonomic reasoning in conceptual design, ACM Trans. Database Syst. 17 (3)
(1992) 385–422.

[12] T. Catarci, M. Lenzerini, Representing and using interschema knowledge in cooperative information sys-
tems, J. Intelligent Cooperative Inform. Syst. 2 (4) (1993) 375–398.

[13] A. Borgida, Description logics in data management, IEEE Trans. Knowledge Data Engrg. 7 (5) (1995) 671–
682.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, Structured objects: Modeling and reasoning, in: Proc. of the
4th Int. Conf. on Deductive and Object-Oriented Databases (DOOD’95), in: Lecture Notes in Computer
Science, vol. 1013, Springer, Berlin, 1995, pp. 229–246.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Description logic framework for informa-
tion integration, in: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), Trento, Italy, 1998, pp. 2–13.

[16] D. Calvanese, M. Lenzerini, D. Nardi, Unifying class-based representation formalisms, J. Artificial Intelli-
gence Res. 11 (1999) 199–240.

[17] E. Franconi, G. Ng, The i.com tool for intelligent conceptual modeling, in: Proc. of the 7th Int. Workshop
on Knowledge Representation meets Databases (KRDB 2000), CEUR Electronic Workshop Proceedings,
2000, pp. 45–53, http://ceur-ws.org/Vol-29/.

D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 117
[18] I. Horrocks, The FaCT system, in: H. de Swart (Ed.), Proc. of the 2nd Int. Conf. on Analytic Tableaux and
Related Methods (TABLEAUX’98), in: Lecture Notes in Artificial Intelligence, vol. 1397, Springer, Berlin,
1998, pp. 307–312.

[19] V. Haarslev, R. Möller, RACER system description, in: Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2001), in: Lecture Notes in Artificial Intelligence, vol. 2083, Springer, Berlin, 2001, pp. 701–705.

[20] C. Batini, S. Ceri, S.B. Navathe, Conceptual Database Design, an Entity-Relationship Approach, Benjamin
and Cummings, Menlo Park, CA, 1992.

[21] B. Thalheim, Fundamentals of cardinality constraints, in: G. Pernoul, A.M. Tjoa (Eds.), Proc. of the 11th
Int. Conf. on the Entity-Relationship Approach (ER’92), Springer, Berlin, 1992, pp. 7–23.

[22] D. Calvanese, M. Lenzerini, D. Nardi, Description logics for conceptual data modeling, in: J. Chomicki,
G. Saake (Eds.), Logics for Databases and Information Systems, Kluwer Academic, Dordrecht, 1998,
pp. 229–264.

[23] A. Borgida, M. Lenzerini, R. Rosati, Description logics for data bases, in: [7], Chapter 16, pp. 462–484.
[24] S. Bergamaschi, B. Nebel, Acquisition and validation of complex object database schemata supporting mul-

tiple inheritance, Appl. Intelligence 4 (2) (1994) 185–203.
[25] L. Bachmair, H. Ganzinger, Resolution theorem proving, in: [62], Chapter 2, pp. 19–99.
[26] R. Hähnle, Tableaux and related methods, in: [62], Chapter 3, pp. 100–178.
[27] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Reasoning in description logics, in: G. Brewka (Ed.),

Principles of Knowledge Representation, Studies in Logic, Language and Information, CSLI Publications,
1996, pp. 193–238.

[28] I. Horrocks, Using an expressive description logic: FaCT or fiction?, in: Proc. of the 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’98), Trento, Italy, 1998, pp. 636–647.

[29] I. Horrocks, P.F. Patel-Schneider, Optimizing description logic subsumption, J. Logic Comput. 9 (3) (1999)
267–293.

[30] V. Haarslev, R. Möller, Expressive ABox reasoning with number restrictions, role hierarchies, and transi-
tively closed roles, in: Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000), Breckenridge, CO, 2000, pp. 273–284.

[31] D.L. McGuinness, J.R. Wright, An industrial strength description logic-based configuration platform, IEEE
Intelligent Syst. (1998) 69–77.

[32] U. Sattler, Terminological knowledge representation systems in a process engineering application, Ph.D.
thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany, 1998.

[33] T. Kirk, A.Y. Levy, Y. Sagiv, D. Srivastava, The information manifold, in: Proc. of the AAAI 1995 Spring
Symp. on Information Gathering from Heterogeneous, Distributed Environments, 1995, pp. 85–91.

[34] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, Reasoning in expressive description logics, in: [62],
Chapter 23, pp. 1581–1634.

[35] G. De Giacomo, M. Lenzerini, Boosting the correspondence between description logics and propositional
dynamic logics, in: Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI’94), Seattle, WA, 1994, pp.
205–212.

[36] D. Calvanese, G. De Giacomo, Expressive description logics, in: [7], Chapter 5, pp. 178–218.
[37] M. Schmidt-Schauß, G. Smolka, Attributive concept descriptions with complements, Artificial Intelli-

gence 48 (1) (1991) 1–26.
[38] M.J. Fischer, R.E. Ladner, Propositional dynamic logic of regular programs, J. Comput. System Sci. 18

(1979) 194–211.
[39] K. Schild, A correspondence theory for terminological logics: Preliminary report, in: Proc. of the 12th Int.

Joint Conf. on Artificial Intelligence (IJCAI’91), Sydney, Australia, 1991, pp. 466–471.
[40] M. Buchheit, F.M. Donini, A. Schaerf, Decidable reasoning in terminological knowledge representation

systems, J. Artificial Intelligence Res. 1 (1993) 109–138.
[41] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for expressive description logics, in: H. Ganzinger,

D. McAllester, A. Voronkov (Eds.), Proc. of the 6th Int. Conf. on Logic for Programming and Auto-
mated Reasoning (LPAR’99), in: Lecture Notes in Artificial Intelligence, vol. 1705, Springer, Berlin, 1999,
pp. 161–180.

[42] R. Möller, V. Haarslev, Description logic systems, in: [7], Chapter 8, pp. 282–305.
[43] F. Baader, U. Sattler, An overview of tableau algorithms for description logics, Studia Logica 69 (1) (2001)

5–40.

118 D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118
[44] I. Horrocks, Implementation and optimisation techniques, in: [7], Chapter 9, pp. 306–346.
[45] V. Haarslev, R. Möller, High performance reasoning with very large knowledge bases: A practical case study,

in: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI’2001), Seattle, WA, 2001, pp. 161–168.
[46] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, E. Franconi, An empirical analysis of optimization

techniques for terminological representation systems, in: Proc. of the 3rd Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’92), Cambridge, MA, Morgan Kaufmann, Los Altos, CA,
1992, pp. 270–281.

[47] D. Berardi, D. Calvanese, G. De Giacomo, Reasoning on UML class diagrams using description logic based
systems, in: Proc. of the KI’2001 Workshop on Applications of Description Logics, CEUR Electronic Work-
shop Proceedings, 2001, http://ceur-ws.org/Vol-44/.

[48] D. Berardi, Using description logics to reason on UML class diagrams, in: Proc. of the KI’2002 Workshop on
Applications of Description Logics, CEUR Electronic Workshop Proceedings, 2002, http://ceur-ws.org/Vol-
63/.

[49] F. Hayes, D. Coleman, Coherent models for object-oriented analysis, in: A. Paepcke (Ed.), Proc. of the Conf.
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’91), vol. 26, SIGPLAN
Notices, 2001, pp. 171–183.

[50] R.H. Bourdeau, B.H.C. Cheng, A formal semantics for object model diagrams, IEEE Trans. Software En-
grg. 21 (10) (October 1995) 799–821.

[51] M. Wirsing, A. Knapp, A formal approach to object-oriented software engineering, Electronic Notes on
Theoretical Computer Science 4.

[52] J.E. Rumbaugh, M.R. Blaha, W.J. Premerlani, F. Eddy, W.E. Lorensen, Object-Oriented Modeling and De-
sign, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[53] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-Oriented Software Engineering, fourth ed.,
Addison-Wesley, Wokingham, England, 1993.

[54] L. Semmens, R.B. France, T.W.G. Docker, Integrated structured analysis and formal specification tech-
niques, Computer J. 35 (6) (1992) 600–610.

[55] R.B. Hull, R. King, Semantic database modelling: Survey, applications and research issues, ACM Comput.
Surv. 19 (3) (1987) 201–260.

[56] M. Shroff, R.B. France, Towards a formalization of UML class structures in Z, in: Proc. of the Int. Conf. on
Computer Software and Applications (COMPSAC’97), IEEE Computer Society, 1997, pp. 646–651.

[57] T. Clark, A. Evans, S. Kent, S. Brodsky, S. Cook, A feasibility study in rearchitecting UML as a fam-
ily of languages using a precise OO meta-modeling approach, available at http://www.cs.york.ac.uk/puml/
mmf/mmf.pdf, 2000.

[58] T. Clark, A. Evans, S. Kent, Engineering modelling languages: A precise meta-modelling approach, in:
R.-D. Kutsche, H. Weber (Eds.), Proc. of Conf. on Fundamental Approaches to Software Engineering (FASE
2002), in: Lecture Notes in Computer Science, vol. 2306, Springer, Berlin, 2002, pp. 159–173.

[59] T. Clark, A. Evans, S. Kent, The metamodelling language calculus: Foundation semantics for UML, in:
H. Hußmann (Ed.), Proc. of Conf. on Fundamental Approaches to Software Engineering (FASE 2001), in:
Lecture Notes in Computer Science, vol. 2029, Springer, Berlin, 2001, pp. 17–31.

[60] W.E. McUmber, B.H.C. Cheng, A general framework for formalizing UML with formal languages, in: Proc.
of the Int. Conf. on Software Engineering (ICSE 2001), IEEE Computer Society, 2001, pp. 433–442.

[61] S. Ferg, Cardinality concepts in entity-relationship modeling, in: Proc. of the 10th Int. Conf. on the Entity-
Relationship Approach (ER’91), 1991, pp. 1–30.

[62] A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, Elsevier Science (North-Holland),
Amsterdam, 2001.

