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Abstract 

De Santis, A., G. Di Crescenzo and G. Persiano, The knowledge complexity of quadratic residuosity 

languages, Theoretical Computer Science 132 (1994) 291-317. 

Noninteractive perfect zero-knowledge (ZK) proofs are very elusive objects. In fact, since the 

introduction of the noninteractive model of Blum et al. (1988) the only perfect zero-knowledge proof 

known was the one for quadratic nonresiduosity of Blum et al. (1991). The situation is no better in 

the interactive case where perfect zero-knowledge proofs are known only for a handful of particular 

languages. 

In this work, we show that a large class of languages related to quadratic residuosity admits 

noninteractive perfect zero-knowledge proofs. More precisely, we give a protocol for the language of 

thresholds of quadratic residuosity. 

Moreover, we develop a new technique for converting noninteractive zero-knowledge proofs 

into round-optimal zero-know/edge proofs for an even wider class of languages. The transforma- 

tion preserves perfect zero knowledge in the sense that, if the noninteractive proof we started with 

is a perfect zero-knowledge proof, then we obtain a round-optimal perfect zero-knowledge 

proof. The noninteractive perfect zero-knowledge proofs presented in this work can be trans- 

formed into 4-round (which is optimal) interactive perfect zero-knowledge proofs. Until now, 

the only known 4-round perfect ZK proof systems were the ones for quadratic nonresiduosity 

(Goldwasser et al., 1989) and for graph nonisomorphism (Goldreich et al., 1986) and no 4-round 

perfect zero-knowledge proof system was known for the simple case of the language of quadratic 

residues. 
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1. Introduction 

The concept of a zero-knowledge (ZK) proof has been introduced in [25] that gave 

zero-knowledge proofs for the number-theoretic languages of quadratic residuosity 

and quadratic nonresiduosity modulo a composite integer. Neither language is 

believed to be in BPP. A zero-knowledge proof is a special kind of proof that allows an 

all-powerful prover to convince a poly-bounded verifier that a certain statement is 

true without revealing any additional information. 

The theory of zero knowledge has been greatly extended by the work of [21] which 

proved that all NP languages indeed have zero-knowledge proofs. This breakthrough 

work caused much excitement both for its theoretical importance and for its impact 

on the design of cryptographic protocols [22]. 

The zero-knowledge proofs for all NP of [21] differs in a very substantial way from 

the proofs given in [25]: they are computational zero knowledge, i.e. secure against 

poly-bounded adversaries; whereas the proofs of [25] are perfect, i.e. secure against 

unlimited-power adversaries. Thus, the proofs of [21] are based on the unproven 

complexity assumption of the existence of one-way functions. Perfect zero knowledge 

is a desirable property for a proof as one can never be sure of the computational power 

of the person he is giving the proof to. On the other hand, it is very unlikely that 

perfect zero-knowledge proofs for all NP exist, as their complexity-theoretic conse- 

quences (the collapse of the polynomial hierarchy [ 10,l S] ) are considered to be false. 

However, perfect zero-knowledge proofs have been given for some languages in NP 

which are not believed to be neither NP-complete nor in BPP and are either 

number-theoretic or have the property of random self-reducibility [l 1,20,21,25,29]. 

Because of their importance, obtaining perfect-ZK proofs for certain classes of 

languages still remains an important research area. 

A second problem that afflicts the proofs of [21] (as well as some of the proofs of 

[25]) is that they require an unbounded number of rounds of communication. This 

severely limits the applicability of ZK proofs and has motivated the study of commun- 

ication complexity of ZK proofs along two main lines of research. In [S] the 

possibility of disposing of interaction between prover and verifier in ZK proofs 

assuming that they share beforehand a short random string (see [7] for improvements, 

formalizations and proofs) was investigated. In this setting the only perfect ZK proof 

given is that for quadratic nonresiduosity modulo integers with two prime factors of 

[7]. Along a different line of thought, [19] investigated the round complexity of 

zero-knowledge proofs in the original interactive model of [25] and proved that at 

least 4 rounds of communication are needed to obtain nontrivial ZK proofs with 

black-box simulation. This result is complemented by that of [3] that gave a 5-round 

ZK proof for graph isomorphism. The communication complexity of ZK has been 

studied also for the dual model of [12]. In [ 131 a constant-round zero-knowledge 

proof for all NP has been given. 

In this work we consider the problem of obtaining zero-knowledge proofs that are 

perfect and do not have an unbounded number of rounds of communication. 
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I.1 Organization of the paper and our results 

In Section 2 we review some number-theoretic results about quadratic residuosity 

and the definition of perfect zero knowledge in the noninteractive model of [7]. 

In Section 3 we present two simple proof systems. The first is to prove that an 

integer is a Blum integer while the second is for the logical or of quadratic non- 

residuosity. More precisely, for the language OR of triples (x, y,, y2) such that at least 

one of y,,y, is a quadratic nonresidue modulo x and x is a Blum integer. 

In Section 4, we present our main result: a noninteractive perfect zero-knowledge 

proof system for any threshold gate of quadratic residuosity of any number of inputs. 

More precisely, for the language T(k, m) of (m + 1)-tuples (x, y,, . , y,) such that less 

than k of the yi’s are quadratic nonresidues modulo x and x is a Blum integer. We give 

a way of constructing a set of shares from the random string that has the following 

property. If less than k of the yis are quadratic nonresidues modulo x, then this set can 

be opened by the prover as a sharing [28] both of the bit b =0 and of the bit b = 1. On 

the other hand, if at least k of the yls are quadratic nonresidues modulo x, then this set 

can be opened in a unique way. Then a bit b is taken from the random string and the 

prover has to construct a set of shares for it. Thus, if the input pair (x,9) does not 

belong to T(k,m), the prover has probability less than l/2 of success. By repeating 

m times the protocol with different pieces of the reference string, we force the 

probability of cheating to be negligible. The construction of the shares employs the 

protocol for the language OR of Section 3. 

In Section 5, we show a way of obtaining a 4-round interactive zero-knowledge 

proof system from noninteractive ones. This result is optimal in view of a lower bound 

of [ 191 on the number of rounds necessary for nontrivial zero knowledge. Besides the 

ones for quadratic nonresiduosity [25] and for graph nonisomorphism [21], our 

proof systems are the only 4-round perfect zero-knowledge proof systems known. For 

example, the noninteractive perfect ZK proof system of Section 4 can be transformed 

into a 4-round interactive perfect ZK proof. 

In all our proof systems, the prover’s program can be performed in polynomial time 

provided that the factorization of the modulus is given as an additional input. 

1.2. Knowledge complexity 

This work has been motivated in part by the work of Goldreich and Petrank [23]. 

In their work, they gave definition for the concept of a proof that leaks k bits of 

knowledge (with zero knowledge being the case k=O). As far as computational zero 

knowledge is concerned, it is known that everything that has an interactive proof has 

a zero-knowledge proof [5,26]. The question is not as clear for perfect zero know- 

ledge. That is, are there languages in KC(l) (i.e., the class of languages that can be 

proved releasing exactly 1 bit of knowledge) but not in KC(O)? Or in general, in KC(k) 
but not in KC(k- l)? We know already, from the result of Fortnow [18], that 

NP-complete languages are not likely to be in KC(O). 
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The most obvious candidate for such languages are languages that can be construc- 

ted from languages in KC(O). However, only few languages are known to have perfect 

zero-knowledge proofs and these can be divided roughly into two classes: quadratic 

residuosity languages (or more generally number-theoretic languages) and graph- 

isomorphism languages. 

The results of this paper prove that a large class of quadratic residuosity languages 

have perfect zero-knowledge proofs. In Cl.51 essentially the same result is proved for 

graph-isomorphism languages. Thus, the quest for languages in KC(l) but not in 

KC(O) is still open. 

2. Background and notations 

2.1. Basic dejnitions 

2.1.1. Notations 

We denote by N the set of natural numbers. If nGN, by 1” we denote the 

concatenation of n 1’s. We identify a binary string G with the integer x whose binary 

representation (with possible leading zeroes) is c. 

If 0 and r are binary strings, we denote their concatenation by either 0 or or CTZ. 

By the expression G we denote the k-tuple (w,, . . . , wk) of numbers or bits. We often 

say that ZE%, meaning that there exists i such that z = wi and GES meaning that WiES, 

for i=l,...,k. 

By the expression 1x1 we denote the length of x if x is a string, the length of the 

binary string representing x if x is an integer, the absolute value of x if x is a real 

number, or the cardinality of x if x is a set. If I is a k-tuple, by the expression 121 we 

denote the number k of components of /.?I. 

We use the symbol @ to denote the bitwise xor of two binary strings of the same 

length. A language is a subset of (0, l>*. 

2.1.2. Models of computation 

An algorithm is a Turing machine. An e#icient algorithm is a probabilistic Turing 

machine running in expected polynomial time. 

We emphasize the number of input received by an algorithm as follows. If algorithm 

A receives only one input we write A( .), if it receives two inputs we write A(. ;) and 

so on. 

2.1.3. Algorithms and probability spaces 

If A( ‘) is a probabilistic algorithm, then for any input x, the notation A(x) refers to 

the probability space that assigns to a string cr the probability that A, on input x, 

outputs c. 

If S is a probability space, then x+-S denotes the algorithm which assigns to x an 

element randomly selected according to S. If F is a finite set, then the notation x+F 
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denotes the algorithm which assigns to x an element selected according to the 

probability space whose sample space is F and with uniform probability distribution 

on the sample points. 

If p(.;,... ) is a predicate, the notation Pr(xt S; yt T; . . . : p(x, y, . . )) denotes the 

probability that p(x, Y, . ) will be true after the ordered execution of the algorithms 

x-S, y+ T, . . . 
The notation (xt S; yt T; . . . : (x, y, . ..)} denotes the probability space over 

{(x, y, . . . )} generated by the ordered execution of the algorithms x+S, Y+ T, 

2.2. Chernoff bounds 

The following well-known bounds on the tails of the binomial distribution (see, for 

instance, [2,16]) will be used in proving the completeness and soundness of our proof 

systems. 

Fact 2.1. Let S,,, be the probability space whose distribution is binomial with para- 
meters n, p, and let e be a constant in the range 0 <E < 1. Then 

Pr(X+-S,,,:X3(1 +E)np)dexp(-E2np/2), 

Pr(XcS,,,: X6(1-.z)np)dexp(-.52np/3). 

2.3. Number theory 

2.3.1. Quadratic residuosity 
For each integer x > 0, the set of integers less than x and relatively prime to x form 

a group under multiplication modulo x denoted by Z:. We say that YEZ,* is 

a quadratic residue modulo x iff there is a WEZ~ such that w2 E y mod x. If this is not 

the case, we call y a quadratic nonresidue modulo x. For compactness, we define the 

quadratic residuosity predicate as follows: 

C(y)= 
0 if y is a quadratic residue modulo x, 

1 otherwise. 

Fact 2.2 (see, for instance, Niven and Zuckerman [27]). IfyI, y2~Z:, then 

(1) %C(Y,)=%(Y,)=O * UYrY,)=O, 

(2) 9(Yl)ZWY2) * 9x(Y,Y2)=1. 

The quadratic residuosity predicate defines the following equivalence relation in 

Z,*:y1 -.x y, if and only if J?Jy, y,)=O. Thus, the quadratic residues modulo x form 

a -x equivalence class. More generally, it is immediately seen that the following fact is 

true. 
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Fact 2.3. For anyjixed YEZ:, the elements { yqmod x 1 q is a quadratic residue modulo 
x) constitute a -X equivalence class that has the same cardinality as the class of 
quadratic residues. 

For p prime, the problem of deciding quadratic residuosity coincides with the 

problem of computing the Legendre symbol. In fact, for p prime and y~z,*, the 

Legendre symbol (y 1 p) of y modulo p is defined as follows: 

(YIP)= 
+ 1 if y is a quadratic residue modulo x, 

- 1 otherwise, 

and can be computed in polynomial time by using Euler’s criterion. Namely, 

(yIp)=y’P-1)‘2modp. 

Euler’s criterion and the following fact give an efficient algorithm for deciding 

quadratic residuosity modulo integer whose factorization is known. 

Fact 2.4 (see, for instance, Niven and Zuckerman [27]). y is a quadratic residue 
modulo x if and only if y is a quadratic residue modulo each of the prime divisors of x. 

However, no efficient algorithm is known for deciding quadratic residuosity 

modulo composite numbers whose factorization is not given. Some help is provided 

by the Jacobi symbol which extends the Legendre symbol to composite integers as 

follows 

(Y I x)= fi (Y I PiJk> 
i=l 

where x=p:l .A. p,“- and the k,‘s are positive integers and the pi’s are distinct primes. 

Despite the fact that the Jacobi symbol is defined in terms of the factorization of the 

modulus, we have the following fact. 

Fact 2.5 (see Angluin [I] or Niven and Zuckerman [27]). The Jacobi symbol can be 
computed in deterministic polynomial time. 

Define Z:’ and Z;’ to be, respectively, the sets of elements of Z,* with Jacobi 

symbol +l and -1 and QR,={~cZ,*I~~(~)=O}, NQRx={y~Z~j(yIx)=+l, 

sX(y)= l}. 

It can be immediately seen that if y~Zi ‘, then it is not a quadratic residue modulo 

x, as it is not a quadratic residue modulo some prime pi dividing X. However, if 

YEZZ’, no efficient algorithm is known to compute g!,(y). The fastest way known for 

computing 2,(y) consists of first factoring X. This fact has been first used in Crypto- 

graphy by Goldwasser and Micali [24]. 
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2.3.2. Blum integers 

In this paper we will be mainly concerned with the special moduli called Blum 

integers. 

Definition 2.6. An integer x is a Blum integer, in symbols ~EBL, if and only if 
x=$1@, where p and q are different primes both 3 3 mod 4 and k, and k2 are odd 

integers. 

It follows from Fact 2.4 and Euler’s criterion that if x is a Blum integer, - 1 mod x is 

a quadratic nonresidue with Jacobi symbol + 1. Moreover we have the following fact. 

Fact 2.7. On input a Blum integer x, it is easy to generate a random quadratic 

nonresidue in Z: ’ : randomly select rsZ: and output -r2 mod x. 

The following lemmas prove that the Blum integers enjoy the elegant property that 

each quadratic residue has a square root which is itself a quadratic residue. Thus each 

quadratic residue modulo a Blum integer has also a fourth root. 

Lemma 2.8. Let p be a prime = 3 mod 4. The mapping x-+x2 mod p is 1 - 1 over QR,, 

and every quadratic residue has a unique square root which is also a quadratic residue 

modulo p. 

Proof. Let xP and -x,, be the two square roots of xmodp. By Euler’s criterion, 

(- 1 ( p) = - 1, and thus - 1 mod x is a quadratic nonresidue modulo p. So, from Fact 

2.2, x, and -xP have different quadratic residuosity. Thus, if x, is a quadratic 

nonresidue, then -xP must be a quadratic residue and vice versa. 0 

Lemma 2.9. Let x be a Blum integer. Every quadratic residue modulo x has at least one 

square root which is itself a quadratic residue modulo x. 

Proof. Let ~EBL and y a quadratic residue modulo x. Then, by Fact 2.4, y is 

a quadratic residue modulo the primes p, q dividing x. We call y,, - y, and y,, -y, the 

square roots of y, respectively, modulo p and q such that y, and y, are quadratic 

residues (we know of their existence by Lemma 2.8). Moreover, by the Chinese 

remainder theorem, there exists a z such that z = y,mod p and z = y, mod q. Also, 

ZE Z: is a quadratic residue and a square root of y mod x. 0 

Similar to the previous lemma one can prove the following lemma. 

Lemma 2.10. Let x=pk1qk2, where p = 1 mod 4. Then, at least one half of the quadratic 

residues huve no square root which is itself a quadratic residue modulo x. 
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2.3.3. Regular integers 

Following [7], we define an integer x to be regular if it enjoys the elegant structural 

property 1 Z: ’ I= 1 Z, r 1. We define Regular(s) to be the set of regular integers with 

s distinct prime divisors. By the definition of Jacobi symbol, the following fact is 

straightforward. 

Fact 2.11. An odd integer x belongs to Regular(s) if and only if‘ it has s distinct prime 

factors and is not a perfect square. 

Equivalently, by Fact 2.3, we have the following. 

Fact 2.12. An odd integer x belongs to Regular(s) if and only f it is regular and Z: is 

partitioned by -X into 2” equally numerous equivalence classes. (Equivalently, Zz ’ is 

partitioned by -X into 2”-’ equally numerous equivalence classes. 

Therefore, if x is an odd integer belonging to Regular (2), Z: ’ is partitioned by 

-X into 2 equally numerous equivalence classes, one made of quadratic residues 

modulo x and the other made of quadratic nonresidues modulo x. Thus, for this 

special class of integers we have the following fact. 

Fact. 2.13. Let x be an odd integer belonging to Regular(2). If yl,yz~Z:, then 

(1) ox=% * ~,(Y14’2)=0, 

(2) ~,(Yl)f&.(Y2) =+ d,(YrY,)= 1. 

From Lemmas 2.2 and 2.3, one can prove the following fact that completely 

characterizes Blum integers with respect to Regular (2) integers. 

Fact 2.14. An integer x is a Blum integer if and only] if 

(1) xeRegular (2) 

(2) - 1 modxENQR,, 

(3) for each weQR, there exists an r such that r4= w modx. 

2.4. Non-interactive perfect zero knowledge 

The shared-string model for noninteractive ZK has been put forward in [S] and 

further elaborated by [7] (see also [14]). In this model, prover and verifier share 

a random string and the communication is monodirectional. In [7] it is proved that 

under the quadratic residuosity assumption all NP languages have non-interactive 

computational zero-knowledge proofs in this model. Also, they gave a perfect nonin- 

teractive ZK proof for the language of quadratic nonresiduosity modulo Regular (2) 

integers. Subsequently, in [ 17) it was proved that certified trapdoor permutations are 

sufficient for proving noninteractively and with zero knowledge the membership to 

any language in NP ([4] showed how a trapdoor permutation can be certified in 

a noninteractive fashion). 
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Let us now review the definition of noninteractive perfect ZK of [7] (We refer the 

reader to the original paper for motivations and discussion of the definition.) 

We denote by L the language in question and by x an instance to it. Let c be 

a positive constant, P a probabilistic Turing machine and V a deterministic Turing 

machine that runs in time polynomial in the length of its first input. 

Definition 2.15. We say that (P, V) is a Noninteractive perfect zero-knowledge proof 

system (noninteractive perfect ZK proof system) for the language L if there exists 

a positive constant c such that: 

(1) Completeness. V’XE L, 1 x I= II and for all sufficiently large n, 

Pr(ot(0, l}“‘;Proof -P(a,x): V(o,x,proof)= l)> l-2-“. 

(2) Soundness. For all probabilistic algorithms Adversary outputting pairs 

(x, Proof), where x&L, 1x1= n, and all sufficiently large n, 

Pr(ac (0, 1)“‘; (x, Proof)+ Ad uersary( 0): V(0, x, Proof) = 1) < 2-“. 

(3) Perfect zero knowledge. There exists an efficient simulator algorithm S such that 

VXEL, IxI=n, the two probability spaces S(x) and View,(x) are equal, where by 

View,(x) we denote the probability space 

view,(x) = {o-{O, 1)“‘; Proof +P(o, x): (0, Proof)}. 

We note that in soundness, we let the adversary choose the false statement he wants 

to prove after seeing the random string. Nonetheless, he has only negligible probabil- 

ity of convincing V. 

We say that (P, V) is a noninteractive proof system for the language L if complete- 

ness and soundness are satisfied. 

We call the “common” random string 0, input to both P and V, the reference string. 

(Above, the common input is g and x.) 

3. Non-interactive perfect zero knowledge for BL and OR 

In this section we discuss a simple proof system for the language BL of Blum 

integers. Then we give a proof system for the language OR of logical or of quadratic 

residuosity that we will define later. 

A proof system (A, B) for BL is easily obtained using the characterization of Blum 

integers given by Fact 2.14. In fact, it is sufficient for the prover to first prove that x is 

a Regular (2) integer and that - 1 is a quadratic nonresidue using the proof system 

given in [7]. Then, all it is left to prove is that every quadratic residue has a fourth root 

modulo x. This is done by giving, for each element y~2:’ taken from the random 

string, a fourth root modulo x of y or -y, depending on the quadratic residuosity of y. 

Completeness, soundness, and perfect zero knowledge are easily seen to be satisfied. 
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We now give a noninteractive perfect ZK proof system (CD) for the language 

OR={(X,Y~,Y,)I.=BL, Y,,Y~EZ:~ and (Y~ENQR,)V(Y,ENQR,)}. 

This is an extension of the proof system for quadratic nonresiduosity given in [7]. 

The prover C wants to convince the polynomial-time verifier that at least one of the 

two integers y,, yz is a quadratic nonresidue modulo a Blum integer x without giving 

away any information that D was not able to compute alone before. D cannot 

compute by himself if (x, y,, y,)cOR, because the fastest way known for deciding 

quadratic residuosity modulo a composite integer x consists of factoring x, thus also 

for this problem no efficient algorithm is known. Moreover, the proof is noninterac- 

tive (C gives only one message to D) and perfect zero knowledge (D does not gain any 

additional information even if not restricted to run in polynomial time). 

In our construction we will use the following definition. 

Definition 3.1. For any positive integer x, define the relation zX on 2:’ x Z: i as 

follows: 

We write (a1,u2) +&(bl, b2) when (u1,a2) is not zX equivalent to (b,, b2). From 

Fact 2.3, one can prove that for each integer x~Regulur(s), zX is an equivalence 

relation on Z: ’ x Z:’ and that there are 22(S- ‘) equally numerous z., equivalence 

classes. 

3.1.1. An informal description 

Let us informally describe the protocol (C, D). A formal description of (C, D) can be 

found in Figs. 1 and 2. By (A, B) we denote the perfect noninteractive zero-knowledge 

proof system for the language BL described above. On input (x, y,, y2) with 1 x I= n, 

C and D share a string ‘/ of length 660n2. This string is split into 

~"~l,l"~l,20"'o~300n,10~300n.2~ where p has length 60n2 and each oi, j has length n. 

First C proves that XEBL by running the algorithm A on input x and using the 

random string p. C partitions the pairs (ai, 1, oi, 2) belonging to Zz ’ x Z: ’ according 

to the relation zX into 4 classes. It is easy for C to prove that two pairs (oi, 1, pi, 2) and 

taj, 17 ~j.2) belong to the same class: C just gives a square root modulo x of the 

products pi, 1 oj, 1 mod x and pi, 2~j, 2 mod x. Once all the pairs, including the input 

pair (y, , y2), have been assigned to an equivalence class, C uncovers the class of pairs 

made of two quadratic residues by giving the square root of both elements of one of its 

pairs. D checks that the pair (yl,y2) is in a different class from that whose pairs are 

both quadratic residues. 

Now, suppose (x, y,, y,)$OR. Then C can perform the protocol if and only if one of 

the three classes of pairs, for which at least one element is a quadratic nonresidue, does 

not appear in the random string. In fact the prover has to uncover the class of pairs 

made of two quadratic residues and thus (yl, y2) has to be assigned to one of the three 
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Input to C and D: 

. (x,~,,Yz)EOR, Ixl=n. 

l A 660n2-bit random string y. 

(Set ~~~"~l,lo~l,20"'o~300n,10~300n,2~ where z has length 60n2 and each 

ai,j has length n). 
Instructions for C. 

C.l. Set Proof=empty string. 

C.2. (Prove that x is a Blum integer.) 
Run A’s algorithm on input x using the random string z and obtaining as output 

a string Pf Append Pf to Proof. 

C.3. (Form the pairs (a,, PI), . . . ,(c(,, B4).) 
C.3.1. Set cri+y, and P1ty2. 

Choose at random 3 pairs (a2,P2), (a3,/13), (a4,p4) in Z:’ x Z:’ such that 

(a) (ai, pi) & (aj, fij) for 1 d i < j< 4, and 

(b) 9,(~2)=9!x(ljz)=Q 

append h,B1),... ,(Q,/L$) to Proof. 

C.3.2. Randomly choose (a, b), such that a2 =cx2 mod x and b2 =f12 mod x, and 

append (a,b) to Proof. 

C.4. (Divide the pairs from the reference string into the four zx equivalence classes.) 
For i= 1, . . . ,300n. 

if(ai,l,ai,z)EZ:l~Z:l then 

choose ji, 1 bji<4, such that (ai, i,~i,z)z~(~j,,fij,); 

randomly choose (si, ti)EZ,* x Z,* such that .s,? = ajiai, 1 mod x and 

tf s pj, pi, 2 mod X; 

else set ji+O, Sit0, tic0; 

append (i,ji, si, ti) to Proof. 

C.5. Send Proof. 

Fig. 1. The prover C for OR. 

remaining classes. However, this means that all the pairs in that class must be made of 

two quadratic residues and thus we would only have representatives from three 

classes. This happens with negligible probability. 

Theorem 3.2. (C, D) is a noninteractive proof system for the language OR. 

Proof. D runs in polynomial time. In fact, B runs in polynomial time, the Jacobi 

symbol can be computed in polynomial time and the other steps are trivial. 

Completeness: Assume (x, y,, y2) EOR. Then step D.2 is passed with high probabil- 

ity because of the completeness of (A, B). Steps D.5 is always passed. 
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Input to D: 

l The string Proof sent by C. 

Instructions for D. 

D.l. Let Proof be the sequence 

(pf,(21,B1),..‘,(a4,P4),(a,b)(l,j,,s,,t,),.’.,(300n,j,,,,,S300n,t300n)). 
D.2. (Verijy that x is a Hum integer.) 

Run B’s algorithm on input X,T and P,f: 
D.3. If y,~z;’ or y,~Zi’ then HALT and REJECT. 

D.4. If (ai, 1) Oi, ~)EZ: ’ X Z: ’ for less than 4n indices i then HALT and ACCEPT. 

D.5. (Check that the pair from the reference string have been divided into ,four 
zx equivalence classes.) 

D.5.1. Verify that a2 = sc2 mod x and b2 = f12 mod x. 

D.5.2. For i= 1, . . . ,30On, 

if (ai, 1, pi, Z)EZ: 1 x Z: ’ then 

verify that ~2 = tlj, gi, 1 mod x and t’ = Bj,Oi. 2 mod X. 

If all verifications are successful then ACCEPT else REJECT. 

Fig. 2. The verifier D or OR. 

Soundness: First note that D halts at step D.4 with negligible probability regardless 

of whether (x, yl, y2) belongs to OR or not. In fact, a random n-bit integer belongs to 

Z: ’ with probability at least l/8. Thus the probability that gi, 1 $Z: ’ or oi, 2 $Z: ’ for 

less than 4n indices i is, by Chernoff bound, at most e-“. Therefore, the probability 

that there exists an n-bit modulus x for which this happens is at most 2”e-“, which is 

negligible. 

Suppose (x, y,, y2) $OR. Then we have three cases: 

(a) x#BL; 

(b) XEBL, but (Y~,Y~)#Z:~ xZ:‘. 

(c) XEBL, but yl,yz~QR,. 
If case (a) occurs, D halts at step D.2 with overwhelming probability because of the 

soundness of (A, B). Then, if case (b) occurs, D halts at step D.3 with probability 1. 

Let us now examine case (c). For verification step D.5.1 to be passed, C must exhibit 

a square root of a2 and p2. Then, for verification steps D.5.2 to be passed, C must 

partition the pairs of elements of the random string belonging to Z: ’ into 4 equiva- 

lence classes with respect to the zX relation. We note that the first class is made of 

pairs (gi,l,ci,2) ~x(4'~,Jb) and the second of pairs (oi, 1 ci, 2) ~,(a~, /j2), i.e. both 

classes are made of pairs of quadratic residues. Thus, all pairs of elements (ai, 1, Of, *) in 

z,+‘xz;’ must belong to the union of at most 3 zX equivalence classes, one of which 

is made of pairs of quadratic residues. But the probability of this event is less than 

3(3/4)4”; this can be explained as follows: 3/4 is the probability that each pair belongs 

to the union of 3 fixed equivalence classes, there are at least 4n pairs, there are at most 

(i) = 3 ways to choose 2 classes out of 3 (note that the class of pairs made of quadratic 
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residues must be one of these three classes). Therefore, the probability that there 

exists an n-bit integer x such that this event occurs is at most 2”3(3/4)4”, which is 

negligible. 0 

To prove the perfect zero-knowledge property, we show an efficient simulator 

F such that, for each (x, y, ,y2) FOR, the probability space F(x, yl ,y2) is equal to 

ViewD(x,y,,y,) (Here M is the simulator of the perfect noninteractive ZK proof 

system (A, B)). A formal description of F can be found in Fig. 3. 

Lemma 3.3. The simulator F runs in probabilistic polynomial time and the probability 
spaces F(x, y,, y2) and View,(x, y,, y2) are equal for each (x, y,, y2) EOR. 

Proof. It is easy to see that the simulator runs in probabilistic polynomial time. 

Now we just have to prove that the probability space given by the output of F and 

the probability space representing the view of D in the protocol are the same. First, we 

see that z is equally distributed both in the protocol and in the simulator because 

(A, B) is a perfect noninteractive ZK proof system. 

Let us see now that the pairs (ai, /I1 ), . . , (cc4, p4) have been correctly constructed. It 

is easy to see that ~1~ and fi2 are two quadratic residues. Let us now show that the pairs 

(a,,Pi),...,(~~~,fi~) are pairwise zX not equivalent. We analyze the case in which the 

outcome b, of the first coin tossed by F is equal to 1 (the case bl =0 is similar). First 

(zi,Pi) & (a2,P2) because (x,yl,y2) EOR. Next observe that (zl,B1) k@~,lj3). 
If this were not the case, then ~,(~~)=~,(cc,)=~,(a,)=~~(y,y,), and 

~x(y2)=~~(Bl)=~x(B3)=~~(yl), which, by Fact 2.13, implies that y, and y, are 

two quadratic residues, contradicting the fact that (x, y, , y,)~0R. Similarly, 

(c~i ,fii) & (~(~,fi~). Moreover (a,,Pz) & (c(,, pJ). If this were not the case, then 

~~(ylyz)=~2,(a,)=~2(B3)=~x(y,)=0, that contradicts (x,y,,y2)~OR. Similarly 

(az,fiz) & (cx,, B4). Finally (a,, /Ij) & (a4,P4). If this were not the case, then 

~!,(ylv2)=~~(a3)=a,(cc,)=~~(y~), and %,(Y~)=~~(BJ)=$~(~~)=~,(Y~Yz), that 
by Fact 2.13, implies that y, and y, are two quadratic residues, and contradicts 

(x, y,, y,)~0R. Moreover note that, after choosing (ai, /II) and (c(~, pz), F selects the 

other two pairs (x3, p3) and (u4, /14) randomly between the remaining two =z equiva- 

lence classes. To this purpose he uses the outcome of the fair coin bI. 
All that is left to prove now is that the remaining part of y is uniformly distributed 

over all the binary strings of the appropriate length, or, equivalently that each pair 

tai, 17 ai,z) is uniformly distributed over the pairs of n-bit integers. If at least one of 

oi,1,Bi,2 is not in Z: ‘, then the pair is clearly uniformly distributed (see step 5.2). If 

both are in Z: ‘, then (ai, 1, oi, *) is a pair which has probability l/4 of belonging to one 

of the four zX equivalence classes and thus is uniformly distributed (see step 5.3). 

Moreover, in this case it is easy that si and ti are random square roots modulo x of 

aj, oi.1 and Bj,ci,2. 0 

The above proves the following theorem 
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Instructions for F. 

Input: (x, y, , y,)eOR, where 1 x I= n. 

1. Set Proof=empty string. 

2. Run M’s algorithm on input x obtaining as output (z, Pf); append Pfto Proof. 

3. If y,~Z;l or Y,EZ;’ then output (~,Proof) and HALT. 

4. (Form the pairs (aI, /iI), . . . ,(a4,P4). 

Randomly choose r,,r,,r3,r4,r5,r6~Zx*; 

set M~+Y~, Pl+-y2, tx2crf mod x and p,+ri mod x; 

set cc;+--y,y,rzmodx, /!Ij+-ylr:mosx; 

set c&+y,r:modx and P~+y,y,r~modx; 

toss a fair coin and let b,e(O, l} be its outcome; 

if bI = 1 then set ~~~+-tl;,~(~t~lk,P~t/I;, p4tpi; 

if bI =0 then set z~+z~, ~,+a;, bj+/Ik, /14+-p;; 

append (aI,P1), ,(a,,B& (r1,r2) to Proof. 
5. (Distribute the pairs from the reference string into four zx equivalence classes.) 

For i=l to 300n, 

5.1. randomly choose two n-bit integers Ui, Vi; 

5.2. if u,$Z:’ or v,$Z:’ then 

set Gi,I+Ui, Oi,2’Vi; 

append (i,O,O,O) to Proof; 

5.3. if Ui~Z:’ and Vi~Z:’ then 

randomly choose two integers si, tisZ$; 

toss two fair coins and let b2, bjE(O, 1) be their outcome; 

if (b2 = 1 and b3 = 1) then 

set ci, 1 = y; ’ s,? mod X, pi, 2 = y; 1 tf mod X; 

append (i, 1, Si, ti) to Proof; 

if (b2 = 1 and b3 = 0) then 

set CL, I= S? mod X, Ui, 2 = tf mod X; 

append (i, 2, rl si mod x, r2 ti mod X) to Proof; 

if ((b, =0 and b2=0 and bJ= 1) or (b, = 1 and bZ=O and b3=0)) then 

set fli, 1 =y;‘y;‘$modx, ai,z=y;‘tfmodx; 

append (i,4- bI, r3simodx,r,timodx) to Proof; 

if((bl=1andb,=Oandb3=1)orb,=Oandb2=Oandb,=O))then 

set oi,l=y;‘SEFmodx, ai,2=y;1yt1tfmodx; 

append (i, 3+ bI, rgsimodx, rgtimod X) to Proof. 

6. Set y=z~a~,~ OCT~,~O “.o~J~~,,,,~ ~~~~~~~~ and Output: (y, Proof). 

Fig. 3. The simulator F. 

Theorem 3.4. (C,D) is a noninteractive perfect zero-knowledge proof system for the 

language OR. 
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Remark 3.5. Using the properties of Blum integers, and in particular the fact that - 1 

is a quadratic nonresidue modulo x, it is possible to construct a perfect noninteractive 

ZK proof system for the language of triples (x, y, , yz) where x is a Blum integer and at 

least one of y,,y, is a quadratic residue modx. Just run (C,D) on input 

(x, -y, mod x, -y, mod x). 

4. Noninteractive perfect zero knowledge for threshold gates 

In this section we give a noninteractive perfect zero-knowledge proof system (P, V) 

for the language T(k, m) of pairs (x, 9) where less than k elements of F = (yl, . . . , y,,,) are 

quadratic nonresidue modulo x. That is, the language 

T(k,m)={(x,;)IxEBL, yiEZ:‘> i=l,...,m and I{yilyi~NQR,}l<k}, 

for 1 <k <m. For instance, T(l, m) is the language of pairs (x,;) that satisfy 

(YIEQR,) A ... A (y,cQR,) and T(m,m) is the language of pairs (x,9) that satisfy 

(YIEQR,) V ... V (Y,,,EQ&). 
The prover P wants to convince the polynomial-time verifier V that less than k of 

the m integers y,, , y,,, are quadratic nonresidue modulo the Blum integer x without 

giving away any information that V was not able to compute alone before. V cannot 

compute by himself whether (x, jj)ET(k, m), since the fastest way known for deciding 

quadratic residuosity modulo a composite integer x consists of first factoring x. Thus 

no efficient algorithm is known to decide if (x,y)~T(k,m). Moreover, the proof is 

noninteractive (P sends only one message to V), and perfect zero-knowledge (V does 

not gain any additional information even if not restricted to run in polynomial time). 

We use the proof systems (A, B) and (C, D) of previous sections as subroutines for 

(P, V). 

4.1. The proof system (P, V) for T(k, m) 

Before presenting our proof system for T(k,m), we review the notion of threshold 

scheme, introduced by Shamir [28] and Blackley [6], that will be instrumental for our 

construction. A (k, m)-threshold scheme is an efficient algorithm that on input a data 

S outputs m pieces S1, ,S,, such that: 

l knowledge of any k or more pieces Si makes S easily computable, 

l knowledge of any k - 1 or fewer pieces Si leaves S completely undetermined (all its 

possible values are equally likely). 

Shamir [28] shows how to construct such threshold schemes using interpolation of 

polynomials. We have the following fact. 

Fact 4.1. The following is a (k, m)-threshold scheme. Let (&, +, .) be a finite field with 

more than m elements and let S be the value to be shared. Choose at random 
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a,, ‘.. , ak_IEb, construct the polynomial q(x)=S+aI .x+ ... +ak-I .xkP1 and output 

Si=q(i) (all operations are performed in 8). 

We say that a sequence (S 1, . . . , S,) is a (k, m)-sequence qf admissible shares,for S (we 

will call it sequence of admissible shares when k and m are clear from the context) if 

there exists a polynomial q(x)=a,+a,x+...+a,_,~~-~ with coefficients in 6, such 

that aO=S and Si=q(i) for i=l,...,m. 

4.1.1. OhservUion 

Let I G { 1, . ,m} and suppose 1 II < k. Then given S and a sequence (Sil iel) of 

values, it is always possible to efficiently generate random values Si, i&I, such that 

(S i, . . . , S,) is a sequence of admissible shares for S (for random values Si, i$I we mean 

that the Sts for iEZ are uniformly distributed among the Scs such that (S,, . , S,) is 

a sequence of admissible shares for S). Moreover, given a sequence (Si / ill) of values, if 

the values Si for i$I are chosen with uniform distribution among the Si’s such that 

(S,, , S,) is a sequence of admissible shares for S, then S is uniformly distributed in 

&. On the other hand, if 1 I I 3 k, then a sequence (Si I ill) of values uniquely determines 

a value S and values Si for i$Z such that (S,, . . . , S,) is a sequence of admissible shares 

for S. 

Let us now introduce a bit of notation that we will use in the description of our 

proof system. Let XEBL, w and JJEZ~~ and bE{O, 1). We define the predicate 

~J(x, y, w, b) in the following way: 

.@(x,y, w,b)=((- l)bwmodxGQR,) V (ysQR,). 

We say that the prover (x, y)-opens w as b if he proves that g(x, y, w, b)= 1. 

If ~EQR, then 98(x, y, w, 0) = g(x, y, w, 1) = 1 regardless of the quadratic residuosity 

of w and thus the prover can (x, y)-open w both as a 0 and as a 1. 

Instead, if YE NQR, then the prover can open w in just one way determined by the 

quadratic residuosity of w. In fact, suppose that WGQR,. Then obviously 

g(x, y, w,O)= 1 (and thus the prover can (x, y)-open w as a 0) and g(x, y, w, l)=O, as, 

by the fact that - 1 is a quadratic nonresidue modulo x and by Fact 2.2 -w mod x is 

a quadratic nonresidue modulo x. Now, suppose that WENQR,. Then g(x, y, w, l)= 1, 

as by the fact that - 1 is a quadratic nonresidue modulo x and by Fact 2.13 - w mod x 

is a quadratic residue modulo x, (and thus the prover can (x,y)-open w as a 1) and 

obviously %(x, y, w, O)=O. In our protocol, the (x, y)-opening of w as b is done in 

a zero-knowledge fashion by using the proof system (CD) of the previous section. 

More precisely, as suggested in Remark 3.5, .%9(x, y, w, b) is proved to hold by running 

Con input (x,(-l)‘-bwmodx, -ymodx). 

4.1.2. An itzformal description 

Let us now informally describe our proof system. Let (x, j)ET(k, m) and let Ix I = n 

and j=(yi, . . . ,y,,, ). First P proves that XEBL by running the algorithm A on input 

x and using a first part of the reference string q. Then, from the reference string y the 
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prover picks mrlog(m + l)] integers PijEZJ ’ and a bit b and (x, yj)-opens each pij as 

a bit sij in such a way that the following condition is satisfied: denoted by Sj the integer 

whose binary representation is S,j ... Srlog(m+ I),,, the m-tuple (S,, . , S,) represents 

a (k,m)-sequence of admissible shares for b. Now, why is this a proof of the fact that 

less than k elements y are quadratic nonresidues? 

Let I be the set of i such that YiENQR,. Then the value of Si is fixed for all ill. Thus, 

if 111 <k then it is always possible to choose Si for i$I such that (S,, , S,) is 

a sequence of admissible shares for b. Suppose now that 1 II 3 k. Then the values Si for 

which ill completely determine S. Moreover, the Sis are uniformly distributed and 

thus the probability that S= b is at most l/l&l < l/m. Thus, the probability that the 

prover convinces the verifier can be made negligible by repeating the protocol on 

different parts of the reference string. 

A formal description of the proof system (P, V) can be found in Figs. 4 and 5. Here 

(C, D) is a non-interactive perfect ZK proof system for OR. We denote by h the max of 

1x1 and 131. We recall that the length of the random string needed by (C, D) for 

modulus of length n is 60n’. Our field d is the field with 2r’“g(m+‘)l elements. 

Theorem 4.2. (P,V) is a noninteractive proof system for the language T(k,m). 

Proof. First of all V runs in polynomial time. In fact so do the programs B and D as 

seen in the previous sections, and step V.3 can be performed in polynomial time [28]. 

4.1.3. Completeness 
If P and V are honest and the number of quadratic nonresidues is less than k, then, 

thanks to the already discussed properties of the predicate 9, at most k- 1 values 

Si are fixed by the random string and cannot be (x, yj)-opened in a different way by the 

prover. Moreover, the prover can completely handle the remaining m - k + 1 values in 

such a way that the m-tuple (S,, . . . , S,) constitutes a sequence of admissible shares for 

the bit b. 

4.1.4. Soudness 
First, note that V halts at step V.2 with negligible probability regardless of whether 

(x, 5) belongs to T(k, m) or not. In fact, a random n-bit integer belongs to Zz ’ with 

probability at least l/S. Thus the probability that Pij~Z:’ for less than mn 

[lo&m+ l)] d’ m ices is, by Chernoff bound, at most e pmnr’og(m + ‘)I Therefore the 

probability that there exists an n-bit modulus x for which this happens is at most 

2ne~mnr’os(m+‘)l, which is negligible. 

Suppose (x, g)$T(k, m); i.e. the number of quadratic nonresidues in $ is at least k. 
Then, thanks to the already discussed properties of the predicate &9, there exist at least 

k indices i, 1~ i < m, such that each pij, for j = 1, . . , [log@ + l)l, can be (x, +j)-opened 

in just one way by P. Thus, there are at least k values Si that cannot be opened in 

a different way by P and the probability that V accepts is the probability that the 

k values Si represent a sequence of admissible shares for the bit b, which is at most 
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Input to P and V: 

l A (h(l+ 10n2mrlog(m+ 1)1+60n2mrlog(m+ l)l))-bit random string v]. 

l (x,?)~T(k,m), where Ixl=n and y=(yi ,..., y,). 

Instructions for P. 

P.O. (Divide the reference string and prove that x is a Blum integer.) 

Set yl=rogio...o~~, where ItI=60n2 and ~~‘~=1+10n2mrlog(m+1)1+ 

60n2mrlog(m + l)J, for 1616 h. Run A’s algorithm on input x using the random 

string z and send its output Pf: 

Phase 1=1,...,h: 

P.l. (Prepare the reference string.) 

Let ~~=b’op’oy~,o~~~oy~,,o~~~o~~og~nl+,~,,~~~~~~~fog~a+I~,m, where Ib’l=l, 

lp’l= 10mn2rlog(m+ 1)1 and /yljI=60n2, for 1 <idrlog(m+ l)l, 1 <j<m. 

(For sake of compact notation we drop the superscript 1.) 

Divide p into n-bit integers and denote by pij, 1~ i < [log@ + 1)1 and 1 <j < m, 

the first mrlog(m + l)] such integers belonging to 2:‘. If there are less than 

mnrlog(m+ 1)1 elements belonging to Z: ’ then HALT. 

P.2. (Construct the sequence of admissible shares.) 

For j such that Yj~NQR,, 

for i=l, . . . Jlog(m+ l)l, 
if pij~QR, then set SijcO, 

else set Sij+ 1; 

let Sj be the integer whose binary representation is slj, . . . ,sriog(,,,+ik 

For j such that yjEQR*_, 

randomly choose Sj, in such a way that (S,, . . . , S,) constitutes a (k, m)-se- 

quence of admissible shares for the bit b; 

let slj9 . . . ) Sriog(m+ 1)lj be the binary representation of Sj. 

P.3. (Prove the correctness of the sequence of admissible shares.) 

For i= 1, . . ,rlog(m+ l)], 

forj=l,...,m, 

(x, yj)-open pij as sij running the program of C on input 

(x, ( - 1)' -'IJ pij mod X, - Yj mod x) using yij as random string and obtaining 

as output nij. 

Send sij and nij. 

Fig. 4. The prover P for T&m). 

l/l&Q l/m. Repeating the protocol h times makes the probability of accepting 

exponentially low. 0 

4.1.5. Perfect zero-knowledge 

For the perfect zero-knowledge property, we have to show an efficient simulator 

Sim such that, for (x, j)~T(k, m), the probability space Sim(x, 9) is identical to 
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Input to V: 

l A proof Pf that XEBL. 

l A sequence of shares (S:, . . . ,SA), ,($, . . . ,SL). 

l A sequence of proofs n:j, for 1 di<rlog(m+ l)l, 1 bjbm, 1 bl,<h. 

Instructions for V. 

V.O. (Divide the reference string and verify that x is a Blum integer.) 
Set r=roO1, . ..O&’ where IzI=60n2 and ~o~~=l+n2mrlog(m+1)~+ 

600n2mrlog(m+ I)l, fd, 1 <l<h. Run B’s algorithm on input x and z thus verifying 

W 
Verification of phase 1= 1, . . . , h: 

V.l. (Prepare the reference string.) 
Let a’=b’~p’~y:,~-..~y:,~...~g;,,,(,+~),,~...~~;~,,~,+~),~, where Ib’l-1, 

~p’(=lOmn*~log(m+1)1and IY:jI=600n2,for l<i<rlog(m+l)l, l<j<m. 

(For sake of compact notation we drop the superscript 1.) 

Divide p into n-bit integers and denote by pij, 1~ i <rlog(m + 1)1 and 1~ j < m, 
the first mrlog(m + 1)1 such integers belonging to 2:‘. If there are less than 

mnrlog(m + 1)1 such integers belonging to 2: ’ then HALT and ACCEPT. 

V.2. (Verifv the admissibility of the sequence of shares.) 
Verify that the m-tuple (S, , . . . , S,) is a (k, m)-sequence of admissible shares for the 

bit b. 

V.3. (Verifv that the sequence of admissible shares has been correctly constructed.) 
For i=l , . ..$og(m+ 1)1, 

forj=l,...,m, 

verify that the proof nij is correct by running the program of D on input 

(x, (- 1)’ -“J pij mod X, - yj mod X) using yij as random string. 

If all verifications are successful then ACCEPT else REJECT. 

Fig. 5. The verifier V for T(k,m). 

Viewv(x,9). In Fig. 6, we present an efficient algorithm S that simulates one phase of 

the protocol. (Here F is the simulator of the proof system (C, D) of Section 3). It is 

straightforward to construct Sim using S and M, the simulator of the proof system 

(A, B) of Section 3. 

In the following lemma we prove that S(x, 5) is the same probability space of Phase 
View,(x, g), the view of V in one phase of the protocol (P, V). 

Lemma 4.3. S runs in probabilistic polynomial time and for all (x, ;)ET(k, m), 

S(x, j) = Phase View,,(x, 3). 

Proof. Obviously, b has the same distribution in both probability spaces. Also 

(S,, ,S,) is a uniformly distributed sequence of admissible shares of b in both 

probability spaces. 
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Instructions for S 

Input: (x, j)~T(k, m). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Set Proof =empty string. 

Randomly choose a bit b. 

Randomly choose (S,, . , S,), a (k, m)-sequence of admissible shares for the bit b. 

Forj=l,...,m, 

let S,j, . . . , Srlog(m+ I)lj be the binary representation of Sj. 

For i=l,... , iomnpog(m+ 1~1, 
randomly choose an n-bit integer ri. 

If rieZzl for less than mnrlog(m+ l)] indices i then Output: 

(rlo...or ~Omnrhg(m+ I~J) and HALT; 
Set tc0. 

For i= 1, . . ,rlog(m+ l)], 

forj=l,...,m, 

let f be the smallest integer > t such that QEZ: ‘; 

toss a fair coin; 

if HEAD set rf+-yl~Si~ rf mod x; 

if TAIL set rT t - yf -‘IJ rf mod x; 

set t = f and pij+rr; 

run F’s algorithm on input (x, (- 1)’ -‘IJ Pij mod x, -yj mod x) obtaining as 

OutPut (Yij > nij); 

append ITij to Proof. 

Set PXrl 0 “’ a rlOmnrlog(m+ I)]. ,. 

Fig. 6. The simulator S 

Let us now take a look at the strings piis. We have two different cases, depending 

on the quadratic residuosity of yj. 

(1) YjENQR,: In the view of the verifier the values of sij are determined by the 

quadratic residuosity modulo x of pij. More precisely, sij= 1 if and only if pij is 

a quadratic nonresidue. In the output of S, if sij= 1, the pij is either equal to 

rf yi 1 mod x (which by Fact 2.2 is a quadratic nonresidue) or to - rf mod x (which by 

Fact 2.7 is a quadratic nonresidue). On the other hand, if Sij=O, pij is either equal to 

r; mod x (which is a quadratic residue) or to - yj rf mod x (which by Facts 2.2 and 2.7 

is a quadratic residue). 

(2) J/jEQR,. AS both @(~,y,pij,O)= 1 and B(x,y,pij, l)= 1, P can choose each Sij, 

i.e. the (x, yj)-opening of each pij, either as 0 or as 1 in order to correctly construct 

a uniformly distributed sequence of admissible shares. Thus, in the view of the verifier, 

the value of Sij does not depend on the quadratic residuosity of pij, and pij is 

a quadratic residue or a quadratic nonresidue with probability l/2. In the output of S, 
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the sij’s are chosen in order to form a uniformly distributed sequence of admissible 

shares. Moreover, if Sij= 1, then with probability l/2 the element pij is set equal to 

rf y,: 1 mod x (which by Fact 2.2 is a quadratic residue) and with probability l/2 the 

element pij is set equal to - r; mod x (which by Fact 2.7 is a quadratic nonresidue). On 

the other hand, if S;j=O, with probability l/2 the element pij is set equal to 

-rf yjmod x (which by Facts 2.2 and 2.7 is a quadratic nonresidue) and with 

probability l/2 the element pij is set equal to r; mod x (which is a quadratic residue). 

Moreover, by construction, p is uniformly distributed over all binary strings of the 

appropriate length. Finally, the strings yij and the “proofs” ~ij have the same 

distribution since (C, D) is a perfect ZK proof system. q 

The above lemma and Theorem 4.2 prove the following theorem. 

Theorem 4.4. (P, V) is a noninteractive perfect zero-knowledge proof system ,for the 
language T(k, m). 

Remark 4.5. The protocol (P, V) that we have just presented is designed for the case 

when the quadratic residuosities of the yi’s are considered modulo the same integer x. 

However, it can be easily seen that this restriction can be removed. That is, for all 

1 d k d m, the language 

MT(k, m) = { (2, ;) 1 x~EBL, yi~Z,+ ‘, for i = 1, , m, 

and I {Yi I YiENQRx,} I <k} 

also has a noninteractive perfect zero-knowledge proof system. In this proof system, 

the prover runs P’s algorithm with the following modifications. First of all at step P.0 

he runs algorithm A m times using different pieces of the reference string, to prove that 

each xi is a Blum integer. Then, whenever the modulus x is used, P uses the modulus 

xj, if operations on yj have to be performed. Note, that it is never the case that in 

a step, P performs operations relative to two different Yi’S. These modifications are 

also reflected in similar modifications in the algorithms for the verifier and the 

simulator. 

Remark 4.6. The protocol (P,V) can be also extended to a proof system for the 

language 

MT(k,m)=((I,3)lxiEBL, yi~Z:‘,for i=l,..., m, 

where 1 <k < m. The new prover uses the algorithm P with the modifications of the 

previous remark on input the pair (.?, y) where zi = -yi mod xi, for i = 1, . , m. 
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5. Round-optimal interactive perfect zero knowledge proof systems 

The aim of this section is to present a general procedure that, for languages with 

some specific properties, transforms a noninteractive ZK proof system into a 4-round 

ZK proof system. The transformation preserves perfect zero knowledgeness; i.e. if the 

noninteractive proof system we started with is perfect zero knowledge, then we obtain 

a perfect zero-knowledge interactive proof system (for complete definitions of zero- 

knowledge interactive proof systems, we refer the reader to [25]). 

In the next subsection, for sake of exposition, we describe and analyze the trans- 

formation for the language T(k,m) and, then, briefly discuss the extension to any 

language with the required properties. 

5.1. Round-optimal perfect zero knowledge .for T(k, m) 

In the previous section we have shown a noninteractive perfect ZK proof system 

(P, V) for T(k, m). We use this proof system in order to create an interactive 4-round 

perfect zero-knowledge proof system (PROVER, VERIFIER). Thus, unless the language 

T(k,m) is in BPP, (PROVER, VERIFIER) is round optimal, thanks to a result of [19]. 

Let us give an informal description of (PROVER, VERIFIER). The first three rounds are 

used by PROVER and VERIFIER to randomly select a string CJ in the following way. First, 

VERIFIER commits to his random bits; then PROVER sends his random bits, and finally 

VERIFIER open his commitments. The reference string g will be formed by the xoring of 

PROVER’S random bits, with the bits decommitted by VERIFIER. Then, in the fourth 

round PROVER runs P’s program on input (x, j) using c as a reference string. Finally 

VERIFIER verifies that the string c has been correctly computed and runs V’s program 

on input (x,9) and CJ. The following property of Blum integers will be useful for 

constructing a bit commitment. 

Lemma 5.1. Let XEBL, WEQR, and let +r, modx and + r2 modx be its 4 square 

roots. Then (rl Ix)= -(r2/x). 

Proof. Suppose that rl, r2 <x/2 and write x as x = pk1qk2, where k, and k2 are odd (by 

definition of Blum integers); from r: = r,’ mod x it follows that (rl - r2) (rl + r2) = hx for 

some h<x. In general we can write rl-r2=hlpi1qi1, and r1+r2=h2pi2qj2, where 

hlh2=h, il+iZ=kl, jl+j2=k2, and il,i2,jl,j2>0. We see that i,=j2=0 or 

j,=i,=O.Supposethatitisnotso,then2r,=h,pi1qj1+h,pi2qj2,andsop/r,orqjr,, 

that is a contradiction as rl ~2:. Assume j, = i2 = 0 (the other case being similar); then 

we can write rl-r2=hlpk1 and rl+r2=hzqk2. Moreover, from p/(rl-r2) and 

q 1 (rl +rz), we have rl =r2 modp and rl = -r2 mod q. From this it follows that 

(rl I PI = (r2 I PI and (rl I PI = - (r2 I 4) and, finally, (rl I.4 = - (r2 lx). 3 

Using Lemma 5.1, the commitment can be implemented as follows. To commit 

to a bit b, it is sufficient for VERIFIER to choose randomly an rEZ: such that r has 

Jacobi symbol - 1 (if b =0) or + 1 (if b = 1) and to give w =rz mod x to PROVER. 
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A decommitment is done by simply revealing Y. Given only w, PROVER cannot 

compute b better than guessing at random. In fact, by Lemma 5.1 there exist two 

square roots of w that have different Jacobi symbols and PROVER does not know which 

one will be revealed later by VERIFIER. On the other side, if VERIFIER is able to reveal 

the decommitment in two ways, then he is able to factor x (see Lemma 5.2 below). 

Let I(m,n) be the length of the reference string used in the proof system (P,V) on 

input (x, j), with (x I= n and 1 $J I= m. A formal description of (PROVER, VERIFIER) can be 

found in Fig. 7. 

The completeness and soundness of the above protocol follow directly from the 

completeness and soundness of (P, V). 

To prove the perfect zero-knowledge property of the proof system (PROVER, 

VERIFIER), we show an efficient simulator SIMUL such that, on (x, jj)~T(k, m) and 

interacting with a possibly malicious verifier VERIFIER’, such that the probability space 

SIMUL(X,F) is equal to the view of VERIFIER’ in the protocol. The simulator SIMUL is 

based on the double running technique [3]. First, the simulator Sim of the proof system 

(P, V) is run and then two strings c and PROOF are obtained. Then SIMUL performs 

the protocol until step VERIFIER’.~ where he learns the bit committed to by VERIFIER’. 

At this point, he rewinds VERIFIER’ in the state just after step VERIFIER’.~ and chooses 

the bits bi in such a way that he obtains the string CJ at step PROVER.~. If, during the 

second execution, VERIFIER’ opens one of his commitments in a different way (i.e. he 

gives a different square root of some Wi’s), then SIMUL can factor x (see Lemma 5.2 

below) and thus he can run P’s program (that can be executed in polynomial time 

The Proof System (PROVER, VERIFIER) 

Input to PROVER and VERIFIER: (x, j+T(k, m), where 1 x I = n, and $j = (y, , . . . , y,). 

VERIFIER.~: For i= 1, , l(m, n), 

randomly choose riEZ:, set Wi = ~2 mod X, and send Wi. 

PROVER.~: For i=l,..., l(m,n), 

randomly choose and send bi~{O, l}. 

VERIFIER.~: For i = 1, . . , /(m, n), 

compute ci = ((ri / X) + 1)/2 and send Ti, ci. 

PROVER.21 For i= 1,. . . , /(m, n), 

if ~2 = Wi mod x and (ri (x) = 2ci - 1 then continue, else HALT; 

set oi = bi @ ci; 

set g= (TV 0 ... 0 ~~~~~~~ and run P’s program on input (x,3), using g 

as reference string. Send its output PROOF. 

VERIFIER.~: Verify that g is Correctly computed and run V’s program on input 

x, 3, c, PROOF. 

If all verifications are successful then ACCEPT else REJECT. 

Fig. 7. The proof system (PROVER, VERIFIER). 
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since x’s factorization is available) and perfectly simulate the interaction between 

P and V. 

Let h = max (1 x I,1 j I) and let c be a constant such that the running time of VERIFIER 

is bounded above by the polynomial h’. A formal description of program SIMUL is in 

Fig. 8. 

Proof. First note that the Jacobi symbol can be computed in probabilistic polynomial 

time, by Fact 2.5. Then it is easy to see that steps SIMUL.~-SIMUL.~ 1 are trivially 

performed in probabilistic polynomial time. In step SIMUL.~~ x’s factorization has to 

be computed. However, when entering in this step, SIMUL has obtained from VERIFIER’ 

two numbers rr, Y~EZ,* such that (rr Ix)= -(r2 / x), and rt -ri mod x. Thus, it only 

remains to show that this information is sufficient for SIMUL to compute x’s factoriz- 

ation in polynomial time. First of all note that, as x is a Blum integer, for all ZEZ: we 

have that (z I x) F (--z I x). Thus, as rl and r2 have different Jacobi symbols, it must be 

the case that r1 $ - rz mod x. By the proof of Lemma 5.1 one gets rl - r2 = hl pkl, and 

r,+r2=h2qk2. Then gcd(r,-rz,x)=gcd(h,pk1,pk1qk2)=pk1gcd(h,,qk2)=pk’qd for 

some d>O, and gcd(r, +rz,x)=gcd(h2qk*,pk1qkz)=qk2gcd(h2,pk1)=p”qk2 for some 

a>O. Note that if d>O or a>O, then qlhl or plhz, and from the relation 

2r, =hlpkl +hzqk2 we have that q/r1 or plrl, which is acontradiction, as rlEZ:. Thus, 

gcd(r, +r2,x) and gcd(r, -r2, x) are prime powers, and so it is easy now from 

these two numbers to efficiently compute the primes p and q that factor x, as in 

Section 3. 0 

Lemma 5.3. For each (x, j)~T(k, m), the probability space SIMUL (x,?) is equal to the 

view REVERIFIER’ in the protocol (PROVER, VERIFIER) on input (x,y). 

Proof. First it is easy to see that both in the simulator and in the protocol: 

(i) wl, . . ,w~(~,~) are random quadratic residues modulo x; (ii) wi=rf mod x for 

i= 1, . . . , l(m, n). Then we see that the bits bI, , b, are uniformly distributed. In fact in 

step SIMUL.~ each bi is set equal to Gi 0 ci. From the perfect zero knowledgeness of the 

simulator Sim for the noninteractive ZK proof system (P, V) it follows that each (Ti is 

uniformly distributed over {O, 1) and so is also bi. The string PROOF can be 

generated by the simulator SIMUL in two ways: (a) by the simulator Sim for (P, V); in 

this case, from the perfect zero knowledgeness of Sim, it follows that PROOF has the 

same distribution both in SIMU~ and in (PROVER, VERIFIER); or (b) by running P’s 

program, once obtained x’s factorization; in this case, it is obvious that PROOF is 

generated by SIMUL exactly in the same way as in (PROVER, VERIFIER). Also the 

reference string ~7 can be generated by the simulator SIMUL in two ways: (a’) by the 

simulator Sim for (P, V); in this case, from the perfect zero knowledgeness of Sim, it 

follows that c is uniformly distributed over (0, 1 )‘(msn’, as in (PROVER, VERIFIER); (b’) at 

step SIMUL.~~ by xoring each uniformly distributed bit hi with the bit ci given by 

VERIFIER’ and then concatenating the bits pi thus obtained. Finally, each Cri is correctly 

computed as the xoring of a bit given by VERIFIER’ and a random bit given by SIMUL 
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Instructions for SIMuL. 

Input: (x, j)eT(k, m). 
SIMUL.~. Randomly choose a v-bit string R and bits bl, . . . , blc,,,,; 

write R on the random tape of VERIFIER’. 

SIMUL.~. Run Sim on input (x, j) obtaining as output (0, PROOF); 
let cr=ol 0 ... OC~(~,~). 

SIMUL.~. Set change-of-dectno. 

SIMUL.~. For i= 1, . . . , l(m, n), 

get Wi from VERIFIER’. 

SIMUL.~. For i= 1, . . . , l(m, n), 

write bi on the communication tape of VERIFIER’. 

SIMUL.~. For i= 1, , l(m, n), 

get ri from VERIFIER’. 

SIMUL.~. If r,? # Wi mod x for some ie{ 1, . . , l(m, n)} then 

output (R, 6,&i-) and HALT. 

SIMUL.~. For i= 1, . . . , I(m, n), 

set ci=((Ti/x)+ 1)/2 and bi=ai @ Ci(SO that oi=bi @CL). 

SIMUL.~. Rewind VERIFIER’ to the state just after step SIMUL.~; 

for i = 1, . . . , l(m, n), 

write bi on the communication tape of VERIFIER’. 

SIMUL.~~. For i= 1, . . . ,l(m,n), 

get ri from VERIFIER’; 

if rl’fwimodx for some i~{l,...,l(m,n)} then 

output (R, iG,6’, 7) and HALT; 

if ri # ri then 

set change-of-dectyes. 

SIMUL. 11. If change-of-dec = no then output (R, ?G, 6’, 7, CJ, PROOF) and HALT. 

SIMUL.12. If change-of-dec= yes then 

compute x’s factorization; 

for i=l,..., l(m,n), 

set c~=((Y~/x)+ 1)/12, and ai=b{ @ cl; 

let ~‘=a; 0 ... OC~;(~,~); 

run P’s program on input (x, y) and 0’ using x’s factorization and obtaining 

PROOF; 

output (R, G, 6’, 7, CJ’, PROOF) and HALT. 

Fig. 8. The simulator SIMUL 

while simulating PROVER. In fact, in case (a’) at step SIMUL.~ the bit bf is set equal to 

Gi @ ci and in case (b’) at step SIMUL.12 the bit Ci is set equal to b; @ ci. 0 

The above lemmas prove the following theorem. 
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Theorem 5.4. (PROVER, VERIFIER) is a 4-round perfect zero knowledge proof system for 

the language T(k, m). 

5.2. E,xtensions 

Looking at the properties of T(k,m) that we used in the above protocol, we can 

generalize it for other languages. In fact we can define a class of quadratic residuosity 

languages L that satisfy the following properties: 

there exists a predicate R(l,$) such that 

(1) L=((?-,$)lxiEBL, for i=l,..., m, and R(I,jj)=l). 

(2) There exists a noninteractive ZK proof system (P, V) for L in which the prover 

runs in probabilistic polynomial time if given the factorization of all the xcs. 

First of all, note that the protocol (PROVER, VERIFIER) would give a round-optimal 

perfect zero-knowledge proof system for the language L if the Blum integers xi were all 

equal. On the other hand, some modifications are necessary to handle the most general 

case in which the xi can be different. More precisely, the commitment made by the 

verifier is modified in the following way. To commit to a bit b, the verifier randomly 

choosesanriEZz,fori=l,... , m, such that each Jacobi symbol (ri 1 Xi) is equal to - 1 (if 

b=O) or to $1 (if b=l) and gives wi=rfmodxi, for i=l, . . ..m. to the prover. A 

decommitment is done by simply revealing each ri. Similarly to the commitment scheme 

of (PROVER, VERIFIER), given only the wis, the prover cannot compute b better than 

guessing at random. On the other side, if the verifier is able to reveal the decommitment 

in two ways, then he reveals two square roots with the different Jacobi symbols of each 

wi modulo xi. As before, with this information it is possible to factor each Xi and thus the 

simulator can run P’s algorithm on a truly random string. Given such a commitment 

scheme, the rest of the protocol is easily obtained as in the case of T(k, m). 

Like (PROVER, VERIFIER), also this protocol preserves perfect zero knowledgeness; 

i.e. if (P,V) is perfect zero knowledge, so is also the resulting 4-round protocol 

described. In particular we obtain a round-optimal interactive perfect ZK proof 

system for all the languages seen as far, for they all belong to this class. 

5.3. An open problem 

The technique based on threshold schemes for proving a threshold gate does not 

seem to generalize to the case of arbitrary threshold circuits. Thus the problem of 

obtaining a noninteractive perfect zero-knowledge proof system for the language of 

threshold circuits is open. 
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