
Theoretical Computer Science 132 (1994) 291-317

Elsevier

291

The knowledge complexity of
quadratic residuosity languages*

Alfred0 De Santis and Giovanni Di Crescenzo
Dipartimenro di Informatica ed Applicazioni, Unioersitd di Salerno, I-84081 Baron&i (SA), Italy

Guiseppe Persiano
Aiken Computation Laboratory, Harvard University, Cambridge. MA 02138, USA,

and Dipartimento di Matematica, Universitci di Catania, I-95125 Catania. Italy

Communicated by A. Salomaa

Received November 1992

Revised June 1993

Abstract

De Santis, A., G. Di Crescenzo and G. Persiano, The knowledge complexity of quadratic residuosity

languages, Theoretical Computer Science 132 (1994) 291-317.

Noninteractive perfect zero-knowledge (ZK) proofs are very elusive objects. In fact, since the

introduction of the noninteractive model of Blum et al. (1988) the only perfect zero-knowledge proof

known was the one for quadratic nonresiduosity of Blum et al. (1991). The situation is no better in

the interactive case where perfect zero-knowledge proofs are known only for a handful of particular

languages.

In this work, we show that a large class of languages related to quadratic residuosity admits

noninteractive perfect zero-knowledge proofs. More precisely, we give a protocol for the language of

thresholds of quadratic residuosity.

Moreover, we develop a new technique for converting noninteractive zero-knowledge proofs

into round-optimal zero-know/edge proofs for an even wider class of languages. The transforma-

tion preserves perfect zero knowledge in the sense that, if the noninteractive proof we started with

is a perfect zero-knowledge proof, then we obtain a round-optimal perfect zero-knowledge

proof. The noninteractive perfect zero-knowledge proofs presented in this work can be trans-

formed into 4-round (which is optimal) interactive perfect zero-knowledge proofs. Until now,

the only known 4-round perfect ZK proof systems were the ones for quadratic nonresiduosity

(Goldwasser et al., 1989) and for graph nonisomorphism (Goldreich et al., 1986) and no 4-round

perfect zero-knowledge proof system was known for the simple case of the language of quadratic

residues.

Correspondence to: A. De Santis, Dipartimento di Informatica ed Applicazioni, Universiti di Salerno,

I-84081 Baronissi (SA), Italy. Email: ads@udsab.dia.unisa.it.

*This work was partially supported by MURST and CNR.

0304-3975/94/$07.00 c’ 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0169-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82035201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

292 A. De Santis, G. Di Crescenzo, G. Persiano

1. Introduction

The concept of a zero-knowledge (ZK) proof has been introduced in [25] that gave

zero-knowledge proofs for the number-theoretic languages of quadratic residuosity

and quadratic nonresiduosity modulo a composite integer. Neither language is

believed to be in BPP. A zero-knowledge proof is a special kind of proof that allows an

all-powerful prover to convince a poly-bounded verifier that a certain statement is

true without revealing any additional information.

The theory of zero knowledge has been greatly extended by the work of [21] which

proved that all NP languages indeed have zero-knowledge proofs. This breakthrough

work caused much excitement both for its theoretical importance and for its impact

on the design of cryptographic protocols [22].

The zero-knowledge proofs for all NP of [21] differs in a very substantial way from

the proofs given in [25]: they are computational zero knowledge, i.e. secure against

poly-bounded adversaries; whereas the proofs of [25] are perfect, i.e. secure against

unlimited-power adversaries. Thus, the proofs of [21] are based on the unproven

complexity assumption of the existence of one-way functions. Perfect zero knowledge

is a desirable property for a proof as one can never be sure of the computational power

of the person he is giving the proof to. On the other hand, it is very unlikely that

perfect zero-knowledge proofs for all NP exist, as their complexity-theoretic conse-

quences (the collapse of the polynomial hierarchy [10,l S]) are considered to be false.

However, perfect zero-knowledge proofs have been given for some languages in NP

which are not believed to be neither NP-complete nor in BPP and are either

number-theoretic or have the property of random self-reducibility [l 1,20,21,25,29].

Because of their importance, obtaining perfect-ZK proofs for certain classes of

languages still remains an important research area.

A second problem that afflicts the proofs of [21] (as well as some of the proofs of

[25]) is that they require an unbounded number of rounds of communication. This

severely limits the applicability of ZK proofs and has motivated the study of commun-

ication complexity of ZK proofs along two main lines of research. In [S] the

possibility of disposing of interaction between prover and verifier in ZK proofs

assuming that they share beforehand a short random string (see [7] for improvements,

formalizations and proofs) was investigated. In this setting the only perfect ZK proof

given is that for quadratic nonresiduosity modulo integers with two prime factors of

[7]. Along a different line of thought, [19] investigated the round complexity of

zero-knowledge proofs in the original interactive model of [25] and proved that at

least 4 rounds of communication are needed to obtain nontrivial ZK proofs with

black-box simulation. This result is complemented by that of [3] that gave a 5-round

ZK proof for graph isomorphism. The communication complexity of ZK has been

studied also for the dual model of [12]. In [131 a constant-round zero-knowledge

proof for all NP has been given.

In this work we consider the problem of obtaining zero-knowledge proofs that are

perfect and do not have an unbounded number of rounds of communication.

The knowledge complexity of quadratic residuosity languages 293

I.1 Organization of the paper and our results

In Section 2 we review some number-theoretic results about quadratic residuosity

and the definition of perfect zero knowledge in the noninteractive model of [7].

In Section 3 we present two simple proof systems. The first is to prove that an

integer is a Blum integer while the second is for the logical or of quadratic non-

residuosity. More precisely, for the language OR of triples (x, y,, y2) such that at least

one of y,,y, is a quadratic nonresidue modulo x and x is a Blum integer.

In Section 4, we present our main result: a noninteractive perfect zero-knowledge

proof system for any threshold gate of quadratic residuosity of any number of inputs.

More precisely, for the language T(k, m) of (m + 1)-tuples (x, y,, . , y,) such that less

than k of the yi’s are quadratic nonresidues modulo x and x is a Blum integer. We give

a way of constructing a set of shares from the random string that has the following

property. If less than k of the yis are quadratic nonresidues modulo x, then this set can

be opened by the prover as a sharing [28] both of the bit b =0 and of the bit b = 1. On

the other hand, if at least k of the yls are quadratic nonresidues modulo x, then this set

can be opened in a unique way. Then a bit b is taken from the random string and the

prover has to construct a set of shares for it. Thus, if the input pair (x,9) does not

belong to T(k,m), the prover has probability less than l/2 of success. By repeating

m times the protocol with different pieces of the reference string, we force the

probability of cheating to be negligible. The construction of the shares employs the

protocol for the language OR of Section 3.

In Section 5, we show a way of obtaining a 4-round interactive zero-knowledge

proof system from noninteractive ones. This result is optimal in view of a lower bound

of [191 on the number of rounds necessary for nontrivial zero knowledge. Besides the

ones for quadratic nonresiduosity [25] and for graph nonisomorphism [21], our

proof systems are the only 4-round perfect zero-knowledge proof systems known. For

example, the noninteractive perfect ZK proof system of Section 4 can be transformed

into a 4-round interactive perfect ZK proof.

In all our proof systems, the prover’s program can be performed in polynomial time

provided that the factorization of the modulus is given as an additional input.

1.2. Knowledge complexity

This work has been motivated in part by the work of Goldreich and Petrank [23].

In their work, they gave definition for the concept of a proof that leaks k bits of

knowledge (with zero knowledge being the case k=O). As far as computational zero

knowledge is concerned, it is known that everything that has an interactive proof has

a zero-knowledge proof [5,26]. The question is not as clear for perfect zero know-

ledge. That is, are there languages in KC(l) (i.e., the class of languages that can be

proved releasing exactly 1 bit of knowledge) but not in KC(O)? Or in general, in KC(k)
but not in KC(k- l)? We know already, from the result of Fortnow [18], that

NP-complete languages are not likely to be in KC(O).

294 A. De Santis, G. Di Crescenzo, G. Persiano

The most obvious candidate for such languages are languages that can be construc-

ted from languages in KC(O). However, only few languages are known to have perfect

zero-knowledge proofs and these can be divided roughly into two classes: quadratic

residuosity languages (or more generally number-theoretic languages) and graph-

isomorphism languages.

The results of this paper prove that a large class of quadratic residuosity languages

have perfect zero-knowledge proofs. In Cl.51 essentially the same result is proved for

graph-isomorphism languages. Thus, the quest for languages in KC(l) but not in

KC(O) is still open.

2. Background and notations

2.1. Basic dejnitions

2.1.1. Notations

We denote by N the set of natural numbers. If nGN, by 1” we denote the

concatenation of n 1’s. We identify a binary string G with the integer x whose binary

representation (with possible leading zeroes) is c.

If 0 and r are binary strings, we denote their concatenation by either 0 or or CTZ.

By the expression G we denote the k-tuple (w,, . . . , wk) of numbers or bits. We often

say that ZE%, meaning that there exists i such that z = wi and GES meaning that WiES,

for i=l,...,k.

By the expression 1x1 we denote the length of x if x is a string, the length of the

binary string representing x if x is an integer, the absolute value of x if x is a real

number, or the cardinality of x if x is a set. If I is a k-tuple, by the expression 121 we

denote the number k of components of /.?I.

We use the symbol @ to denote the bitwise xor of two binary strings of the same

length. A language is a subset of (0, l>*.

2.1.2. Models of computation

An algorithm is a Turing machine. An e#icient algorithm is a probabilistic Turing

machine running in expected polynomial time.

We emphasize the number of input received by an algorithm as follows. If algorithm

A receives only one input we write A(.), if it receives two inputs we write A(. ;) and

so on.

2.1.3. Algorithms and probability spaces

If A(‘) is a probabilistic algorithm, then for any input x, the notation A(x) refers to

the probability space that assigns to a string cr the probability that A, on input x,

outputs c.

If S is a probability space, then x+-S denotes the algorithm which assigns to x an

element randomly selected according to S. If F is a finite set, then the notation x+F

The knowledge complexity of quadratic residuosity languages 295

denotes the algorithm which assigns to x an element selected according to the

probability space whose sample space is F and with uniform probability distribution

on the sample points.

If p(.;,...) is a predicate, the notation Pr(xt S; yt T; . . . : p(x, y, . .)) denotes the

probability that p(x, Y, .) will be true after the ordered execution of the algorithms

x-S, y+ T, . . .
The notation (xt S; yt T; . . . : (x, y, . ..)} denotes the probability space over

{(x, y, . . .)} generated by the ordered execution of the algorithms x+S, Y+ T,

2.2. Chernoff bounds

The following well-known bounds on the tails of the binomial distribution (see, for

instance, [2,16]) will be used in proving the completeness and soundness of our proof

systems.

Fact 2.1. Let S,,, be the probability space whose distribution is binomial with para-
meters n, p, and let e be a constant in the range 0 <E < 1. Then

Pr(X+-S,,,:X3(1 +E)np)dexp(-E2np/2),

Pr(XcS,,,: X6(1-.z)np)dexp(-.52np/3).

2.3. Number theory

2.3.1. Quadratic residuosity
For each integer x > 0, the set of integers less than x and relatively prime to x form

a group under multiplication modulo x denoted by Z:. We say that YEZ,* is

a quadratic residue modulo x iff there is a WEZ~ such that w2 E y mod x. If this is not

the case, we call y a quadratic nonresidue modulo x. For compactness, we define the

quadratic residuosity predicate as follows:

C(y)=
0 if y is a quadratic residue modulo x,

1 otherwise.

Fact 2.2 (see, for instance, Niven and Zuckerman [27]). IfyI, y2~Z:, then

(1) %C(Y,)=%(Y,)=O * UYrY,)=O,

(2) 9(Yl)ZWY2) * 9x(Y,Y2)=1.

The quadratic residuosity predicate defines the following equivalence relation in

Z,*:y1 -.x y, if and only if J?Jy, y,)=O. Thus, the quadratic residues modulo x form

a -x equivalence class. More generally, it is immediately seen that the following fact is

true.

296 A. De Santis, G. Di Crescenzo, G. Persiano

Fact 2.3. For anyjixed YEZ:, the elements { yqmod x 1 q is a quadratic residue modulo
x) constitute a -X equivalence class that has the same cardinality as the class of
quadratic residues.

For p prime, the problem of deciding quadratic residuosity coincides with the

problem of computing the Legendre symbol. In fact, for p prime and y~z,*, the

Legendre symbol (y 1 p) of y modulo p is defined as follows:

(YIP)=
+ 1 if y is a quadratic residue modulo x,

- 1 otherwise,

and can be computed in polynomial time by using Euler’s criterion. Namely,

(yIp)=y’P-1)‘2modp.

Euler’s criterion and the following fact give an efficient algorithm for deciding

quadratic residuosity modulo integer whose factorization is known.

Fact 2.4 (see, for instance, Niven and Zuckerman [27]). y is a quadratic residue
modulo x if and only if y is a quadratic residue modulo each of the prime divisors of x.

However, no efficient algorithm is known for deciding quadratic residuosity

modulo composite numbers whose factorization is not given. Some help is provided

by the Jacobi symbol which extends the Legendre symbol to composite integers as

follows

(Y I x)= fi (Y I PiJk>
i=l

where x=p:l .A. p,“- and the k,‘s are positive integers and the pi’s are distinct primes.

Despite the fact that the Jacobi symbol is defined in terms of the factorization of the

modulus, we have the following fact.

Fact 2.5 (see Angluin [I] or Niven and Zuckerman [27]). The Jacobi symbol can be
computed in deterministic polynomial time.

Define Z:’ and Z;’ to be, respectively, the sets of elements of Z,* with Jacobi

symbol +l and -1 and QR,={~cZ,*I~~(~)=O}, NQRx={y~Z~j(yIx)=+l,

sX(y)= l}.

It can be immediately seen that if y~Zi ‘, then it is not a quadratic residue modulo

x, as it is not a quadratic residue modulo some prime pi dividing X. However, if

YEZZ’, no efficient algorithm is known to compute g!,(y). The fastest way known for

computing 2,(y) consists of first factoring X. This fact has been first used in Crypto-

graphy by Goldwasser and Micali [24].

The knowledge complexity of quadratic residuosity languages 291

2.3.2. Blum integers

In this paper we will be mainly concerned with the special moduli called Blum

integers.

Definition 2.6. An integer x is a Blum integer, in symbols ~EBL, if and only if
x=$1@, where p and q are different primes both 3 3 mod 4 and k, and k2 are odd

integers.

It follows from Fact 2.4 and Euler’s criterion that if x is a Blum integer, - 1 mod x is

a quadratic nonresidue with Jacobi symbol + 1. Moreover we have the following fact.

Fact 2.7. On input a Blum integer x, it is easy to generate a random quadratic

nonresidue in Z: ’ : randomly select rsZ: and output -r2 mod x.

The following lemmas prove that the Blum integers enjoy the elegant property that

each quadratic residue has a square root which is itself a quadratic residue. Thus each

quadratic residue modulo a Blum integer has also a fourth root.

Lemma 2.8. Let p be a prime = 3 mod 4. The mapping x-+x2 mod p is 1 - 1 over QR,,

and every quadratic residue has a unique square root which is also a quadratic residue

modulo p.

Proof. Let xP and -x,, be the two square roots of xmodp. By Euler’s criterion,

(- 1 (p) = - 1, and thus - 1 mod x is a quadratic nonresidue modulo p. So, from Fact

2.2, x, and -xP have different quadratic residuosity. Thus, if x, is a quadratic

nonresidue, then -xP must be a quadratic residue and vice versa. 0

Lemma 2.9. Let x be a Blum integer. Every quadratic residue modulo x has at least one

square root which is itself a quadratic residue modulo x.

Proof. Let ~EBL and y a quadratic residue modulo x. Then, by Fact 2.4, y is

a quadratic residue modulo the primes p, q dividing x. We call y,, - y, and y,, -y, the

square roots of y, respectively, modulo p and q such that y, and y, are quadratic

residues (we know of their existence by Lemma 2.8). Moreover, by the Chinese

remainder theorem, there exists a z such that z = y,mod p and z = y, mod q. Also,

ZE Z: is a quadratic residue and a square root of y mod x. 0

Similar to the previous lemma one can prove the following lemma.

Lemma 2.10. Let x=pk1qk2, where p = 1 mod 4. Then, at least one half of the quadratic

residues huve no square root which is itself a quadratic residue modulo x.

298 A. De Santis, G. Di Crescenzo, G. Persiano

2.3.3. Regular integers

Following [7], we define an integer x to be regular if it enjoys the elegant structural

property 1 Z: ’ I= 1 Z, r 1. We define Regular(s) to be the set of regular integers with

s distinct prime divisors. By the definition of Jacobi symbol, the following fact is

straightforward.

Fact 2.11. An odd integer x belongs to Regular(s) if and only if‘ it has s distinct prime

factors and is not a perfect square.

Equivalently, by Fact 2.3, we have the following.

Fact 2.12. An odd integer x belongs to Regular(s) if and only f it is regular and Z: is

partitioned by -X into 2” equally numerous equivalence classes. (Equivalently, Zz ’ is

partitioned by -X into 2”-’ equally numerous equivalence classes.

Therefore, if x is an odd integer belonging to Regular (2), Z: ’ is partitioned by

-X into 2 equally numerous equivalence classes, one made of quadratic residues

modulo x and the other made of quadratic nonresidues modulo x. Thus, for this

special class of integers we have the following fact.

Fact. 2.13. Let x be an odd integer belonging to Regular(2). If yl,yz~Z:, then

(1) ox=% * ~,(Y14’2)=0,

(2) ~,(Yl)f&.(Y2) =+ d,(YrY,)= 1.

From Lemmas 2.2 and 2.3, one can prove the following fact that completely

characterizes Blum integers with respect to Regular (2) integers.

Fact 2.14. An integer x is a Blum integer if and only] if

(1) xeRegular (2)

(2) - 1 modxENQR,,

(3) for each weQR, there exists an r such that r4= w modx.

2.4. Non-interactive perfect zero knowledge

The shared-string model for noninteractive ZK has been put forward in [S] and

further elaborated by [7] (see also [14]). In this model, prover and verifier share

a random string and the communication is monodirectional. In [7] it is proved that

under the quadratic residuosity assumption all NP languages have non-interactive

computational zero-knowledge proofs in this model. Also, they gave a perfect nonin-

teractive ZK proof for the language of quadratic nonresiduosity modulo Regular (2)

integers. Subsequently, in [17) it was proved that certified trapdoor permutations are

sufficient for proving noninteractively and with zero knowledge the membership to

any language in NP ([4] showed how a trapdoor permutation can be certified in

a noninteractive fashion).

The knowledge complexity of quadratic residuosity languages 299

Let us now review the definition of noninteractive perfect ZK of [7] (We refer the

reader to the original paper for motivations and discussion of the definition.)

We denote by L the language in question and by x an instance to it. Let c be

a positive constant, P a probabilistic Turing machine and V a deterministic Turing

machine that runs in time polynomial in the length of its first input.

Definition 2.15. We say that (P, V) is a Noninteractive perfect zero-knowledge proof

system (noninteractive perfect ZK proof system) for the language L if there exists

a positive constant c such that:

(1) Completeness. V’XE L, 1 x I= II and for all sufficiently large n,

Pr(ot(0, l}“‘;Proof -P(a,x): V(o,x,proof)= l)> l-2-“.

(2) Soundness. For all probabilistic algorithms Adversary outputting pairs

(x, Proof), where x&L, 1x1= n, and all sufficiently large n,

Pr(ac (0, 1)“‘; (x, Proof)+ Ad uersary(0): V(0, x, Proof) = 1) < 2-“.

(3) Perfect zero knowledge. There exists an efficient simulator algorithm S such that

VXEL, IxI=n, the two probability spaces S(x) and View,(x) are equal, where by

View,(x) we denote the probability space

view,(x) = {o-{O, 1)“‘; Proof +P(o, x): (0, Proof)}.

We note that in soundness, we let the adversary choose the false statement he wants

to prove after seeing the random string. Nonetheless, he has only negligible probabil-

ity of convincing V.

We say that (P, V) is a noninteractive proof system for the language L if complete-

ness and soundness are satisfied.

We call the “common” random string 0, input to both P and V, the reference string.

(Above, the common input is g and x.)

3. Non-interactive perfect zero knowledge for BL and OR

In this section we discuss a simple proof system for the language BL of Blum

integers. Then we give a proof system for the language OR of logical or of quadratic

residuosity that we will define later.

A proof system (A, B) for BL is easily obtained using the characterization of Blum

integers given by Fact 2.14. In fact, it is sufficient for the prover to first prove that x is

a Regular (2) integer and that - 1 is a quadratic nonresidue using the proof system

given in [7]. Then, all it is left to prove is that every quadratic residue has a fourth root

modulo x. This is done by giving, for each element y~2:’ taken from the random

string, a fourth root modulo x of y or -y, depending on the quadratic residuosity of y.

Completeness, soundness, and perfect zero knowledge are easily seen to be satisfied.

300 A. De Santis, G. Di Crescenzo, G. Persiano

We now give a noninteractive perfect ZK proof system (CD) for the language

OR={(X,Y~,Y,)I.=BL, Y,,Y~EZ:~ and (Y~ENQR,)V(Y,ENQR,)}.

This is an extension of the proof system for quadratic nonresiduosity given in [7].

The prover C wants to convince the polynomial-time verifier that at least one of the

two integers y,, yz is a quadratic nonresidue modulo a Blum integer x without giving

away any information that D was not able to compute alone before. D cannot

compute by himself if (x, y,, y,)cOR, because the fastest way known for deciding

quadratic residuosity modulo a composite integer x consists of factoring x, thus also

for this problem no efficient algorithm is known. Moreover, the proof is noninterac-

tive (C gives only one message to D) and perfect zero knowledge (D does not gain any

additional information even if not restricted to run in polynomial time).

In our construction we will use the following definition.

Definition 3.1. For any positive integer x, define the relation zX on 2:’ x Z: i as

follows:

We write (a1,u2) +&(bl, b2) when (u1,a2) is not zX equivalent to (b,, b2). From

Fact 2.3, one can prove that for each integer x~Regulur(s), zX is an equivalence

relation on Z: ’ x Z:’ and that there are 22(S- ‘) equally numerous z., equivalence

classes.

3.1.1. An informal description

Let us informally describe the protocol (C, D). A formal description of (C, D) can be

found in Figs. 1 and 2. By (A, B) we denote the perfect noninteractive zero-knowledge

proof system for the language BL described above. On input (x, y,, y2) with 1 x I= n,

C and D share a string ‘/ of length 660n2. This string is split into

~"~l,l"~l,20"'o~300n,10~300n.2~ where p has length 60n2 and each oi, j has length n.

First C proves that XEBL by running the algorithm A on input x and using the

random string p. C partitions the pairs (ai, 1, oi, 2) belonging to Zz ’ x Z: ’ according

to the relation zX into 4 classes. It is easy for C to prove that two pairs (oi, 1, pi, 2) and

taj, 17 ~j.2) belong to the same class: C just gives a square root modulo x of the

products pi, 1 oj, 1 mod x and pi, 2~j, 2 mod x. Once all the pairs, including the input

pair (y, , y2), have been assigned to an equivalence class, C uncovers the class of pairs

made of two quadratic residues by giving the square root of both elements of one of its

pairs. D checks that the pair (yl,y2) is in a different class from that whose pairs are

both quadratic residues.

Now, suppose (x, y,, y,)$OR. Then C can perform the protocol if and only if one of

the three classes of pairs, for which at least one element is a quadratic nonresidue, does

not appear in the random string. In fact the prover has to uncover the class of pairs

made of two quadratic residues and thus (yl, y2) has to be assigned to one of the three

The knowledge complexity of quadratic residuosity languages 301

Input to C and D:

. (x,~,,Yz)EOR, Ixl=n.

l A 660n2-bit random string y.

(Set ~~~"~l,lo~l,20"'o~300n,10~300n,2~ where z has length 60n2 and each

ai,j has length n).
Instructions for C.

C.l. Set Proof=empty string.

C.2. (Prove that x is a Blum integer.)
Run A’s algorithm on input x using the random string z and obtaining as output

a string Pf Append Pf to Proof.

C.3. (Form the pairs (a,, PI), . . . ,(c(,, B4).)
C.3.1. Set cri+y, and P1ty2.

Choose at random 3 pairs (a2,P2), (a3,/13), (a4,p4) in Z:’ x Z:’ such that

(a) (ai, pi) & (aj, fij) for 1 d i < j< 4, and

(b) 9,(~2)=9!x(ljz)=Q

append h,B1),... ,(Q,/L$) to Proof.

C.3.2. Randomly choose (a, b), such that a2 =cx2 mod x and b2 =f12 mod x, and

append (a,b) to Proof.

C.4. (Divide the pairs from the reference string into the four zx equivalence classes.)
For i= 1, . . . ,300n.

if(ai,l,ai,z)EZ:l~Z:l then

choose ji, 1 bji<4, such that (ai, i,~i,z)z~(~j,,fij,);

randomly choose (si, ti)EZ,* x Z,* such that .s,? = ajiai, 1 mod x and

tf s pj, pi, 2 mod X;

else set ji+O, Sit0, tic0;

append (i,ji, si, ti) to Proof.

C.5. Send Proof.

Fig. 1. The prover C for OR.

remaining classes. However, this means that all the pairs in that class must be made of

two quadratic residues and thus we would only have representatives from three

classes. This happens with negligible probability.

Theorem 3.2. (C, D) is a noninteractive proof system for the language OR.

Proof. D runs in polynomial time. In fact, B runs in polynomial time, the Jacobi

symbol can be computed in polynomial time and the other steps are trivial.

Completeness: Assume (x, y,, y2) EOR. Then step D.2 is passed with high probabil-

ity because of the completeness of (A, B). Steps D.5 is always passed.

302 A. De Santis, G. Di Crescenzo, G. Persiano

Input to D:

l The string Proof sent by C.

Instructions for D.

D.l. Let Proof be the sequence

(pf,(21,B1),..‘,(a4,P4),(a,b)(l,j,,s,,t,),.’.,(300n,j,,,,,S300n,t300n)).
D.2. (Verijy that x is a Hum integer.)

Run B’s algorithm on input X,T and P,f:
D.3. If y,~z;’ or y,~Zi’ then HALT and REJECT.

D.4. If (ai, 1) Oi, ~)EZ: ’ X Z: ’ for less than 4n indices i then HALT and ACCEPT.

D.5. (Check that the pair from the reference string have been divided into ,four
zx equivalence classes.)

D.5.1. Verify that a2 = sc2 mod x and b2 = f12 mod x.

D.5.2. For i= 1, . . . ,30On,

if (ai, 1, pi, Z)EZ: 1 x Z: ’ then

verify that ~2 = tlj, gi, 1 mod x and t’ = Bj,Oi. 2 mod X.

If all verifications are successful then ACCEPT else REJECT.

Fig. 2. The verifier D or OR.

Soundness: First note that D halts at step D.4 with negligible probability regardless

of whether (x, yl, y2) belongs to OR or not. In fact, a random n-bit integer belongs to

Z: ’ with probability at least l/8. Thus the probability that gi, 1 $Z: ’ or oi, 2 $Z: ’ for

less than 4n indices i is, by Chernoff bound, at most e-“. Therefore, the probability

that there exists an n-bit modulus x for which this happens is at most 2”e-“, which is

negligible.

Suppose (x, y,, y2) $OR. Then we have three cases:

(a) x#BL;

(b) XEBL, but (Y~,Y~)#Z:~ xZ:‘.

(c) XEBL, but yl,yz~QR,.
If case (a) occurs, D halts at step D.2 with overwhelming probability because of the

soundness of (A, B). Then, if case (b) occurs, D halts at step D.3 with probability 1.

Let us now examine case (c). For verification step D.5.1 to be passed, C must exhibit

a square root of a2 and p2. Then, for verification steps D.5.2 to be passed, C must

partition the pairs of elements of the random string belonging to Z: ’ into 4 equiva-

lence classes with respect to the zX relation. We note that the first class is made of

pairs (gi,l,ci,2) ~x(4'~,Jb) and the second of pairs (oi, 1 ci, 2) ~,(a~, /j2), i.e. both

classes are made of pairs of quadratic residues. Thus, all pairs of elements (ai, 1, Of, *) in

z,+‘xz;’ must belong to the union of at most 3 zX equivalence classes, one of which

is made of pairs of quadratic residues. But the probability of this event is less than

3(3/4)4”; this can be explained as follows: 3/4 is the probability that each pair belongs

to the union of 3 fixed equivalence classes, there are at least 4n pairs, there are at most

(i) = 3 ways to choose 2 classes out of 3 (note that the class of pairs made of quadratic

The knowledge complexity of quadratic residuosity languages 303

residues must be one of these three classes). Therefore, the probability that there

exists an n-bit integer x such that this event occurs is at most 2”3(3/4)4”, which is

negligible. 0

To prove the perfect zero-knowledge property, we show an efficient simulator

F such that, for each (x, y, ,y2) FOR, the probability space F(x, yl ,y2) is equal to

ViewD(x,y,,y,) (Here M is the simulator of the perfect noninteractive ZK proof

system (A, B)). A formal description of F can be found in Fig. 3.

Lemma 3.3. The simulator F runs in probabilistic polynomial time and the probability
spaces F(x, y,, y2) and View,(x, y,, y2) are equal for each (x, y,, y2) EOR.

Proof. It is easy to see that the simulator runs in probabilistic polynomial time.

Now we just have to prove that the probability space given by the output of F and

the probability space representing the view of D in the protocol are the same. First, we

see that z is equally distributed both in the protocol and in the simulator because

(A, B) is a perfect noninteractive ZK proof system.

Let us see now that the pairs (ai, /I1), . . , (cc4, p4) have been correctly constructed. It

is easy to see that ~1~ and fi2 are two quadratic residues. Let us now show that the pairs

(a,,Pi),...,(~~~,fi~) are pairwise zX not equivalent. We analyze the case in which the

outcome b, of the first coin tossed by F is equal to 1 (the case bl =0 is similar). First

(zi,Pi) & (a2,P2) because (x,yl,y2) EOR. Next observe that (zl,B1) k@~,lj3).
If this were not the case, then ~,(~~)=~,(cc,)=~,(a,)=~~(y,y,), and

~x(y2)=~~(Bl)=~x(B3)=~~(yl), which, by Fact 2.13, implies that y, and y, are

two quadratic residues, contradicting the fact that (x, y, , y,)~0R. Similarly,

(c~i ,fii) & (~(~,fi~). Moreover (a,,Pz) & (c(,, pJ). If this were not the case, then

~~(ylyz)=~2,(a,)=~2(B3)=~x(y,)=0, that contradicts (x,y,,y2)~OR. Similarly

(az,fiz) & (cx,, B4). Finally (a,, /Ij) & (a4,P4). If this were not the case, then

~!,(ylv2)=~~(a3)=a,(cc,)=~~(y~), and %,(Y~)=~~(BJ)=$~(~~)=~,(Y~Yz), that
by Fact 2.13, implies that y, and y, are two quadratic residues, and contradicts

(x, y,, y,)~0R. Moreover note that, after choosing (ai, /II) and (c(~, pz), F selects the

other two pairs (x3, p3) and (u4, /14) randomly between the remaining two =z equiva-

lence classes. To this purpose he uses the outcome of the fair coin bI.
All that is left to prove now is that the remaining part of y is uniformly distributed

over all the binary strings of the appropriate length, or, equivalently that each pair

tai, 17 ai,z) is uniformly distributed over the pairs of n-bit integers. If at least one of

oi,1,Bi,2 is not in Z: ‘, then the pair is clearly uniformly distributed (see step 5.2). If

both are in Z: ‘, then (ai, 1, oi, *) is a pair which has probability l/4 of belonging to one

of the four zX equivalence classes and thus is uniformly distributed (see step 5.3).

Moreover, in this case it is easy that si and ti are random square roots modulo x of

aj, oi.1 and Bj,ci,2. 0

The above proves the following theorem

304 A. De Santis, G. Di Crescenzo, G. Persiano

Instructions for F.

Input: (x, y, , y,)eOR, where 1 x I= n.

1. Set Proof=empty string.

2. Run M’s algorithm on input x obtaining as output (z, Pf); append Pfto Proof.

3. If y,~Z;l or Y,EZ;’ then output (~,Proof) and HALT.

4. (Form the pairs (aI, /iI), . . . ,(a4,P4).

Randomly choose r,,r,,r3,r4,r5,r6~Zx*;

set M~+Y~, Pl+-y2, tx2crf mod x and p,+ri mod x;

set cc;+--y,y,rzmodx, /!Ij+-ylr:mosx;

set c&+y,r:modx and P~+y,y,r~modx;

toss a fair coin and let b,e(O, l} be its outcome;

if bI = 1 then set ~~~+-tl;,~(~t~lk,P~t/I;, p4tpi;

if bI =0 then set z~+z~, ~,+a;, bj+/Ik, /14+-p;;

append (aI,P1), ,(a,,B& (r1,r2) to Proof.
5. (Distribute the pairs from the reference string into four zx equivalence classes.)

For i=l to 300n,

5.1. randomly choose two n-bit integers Ui, Vi;

5.2. if u,$Z:’ or v,$Z:’ then

set Gi,I+Ui, Oi,2’Vi;

append (i,O,O,O) to Proof;

5.3. if Ui~Z:’ and Vi~Z:’ then

randomly choose two integers si, tisZ$;

toss two fair coins and let b2, bjE(O, 1) be their outcome;

if (b2 = 1 and b3 = 1) then

set ci, 1 = y; ’ s,? mod X, pi, 2 = y; 1 tf mod X;

append (i, 1, Si, ti) to Proof;

if (b2 = 1 and b3 = 0) then

set CL, I= S? mod X, Ui, 2 = tf mod X;

append (i, 2, rl si mod x, r2 ti mod X) to Proof;

if ((b, =0 and b2=0 and bJ= 1) or (b, = 1 and bZ=O and b3=0)) then

set fli, 1 =y;‘y;‘$modx, ai,z=y;‘tfmodx;

append (i,4- bI, r3simodx,r,timodx) to Proof;

if((bl=1andb,=Oandb3=1)orb,=Oandb2=Oandb,=O))then

set oi,l=y;‘SEFmodx, ai,2=y;1yt1tfmodx;

append (i, 3+ bI, rgsimodx, rgtimod X) to Proof.

6. Set y=z~a~,~ OCT~,~O “.o~J~~,,,,~ ~~~~~~~~ and Output: (y, Proof).

Fig. 3. The simulator F.

Theorem 3.4. (C,D) is a noninteractive perfect zero-knowledge proof system for the

language OR.

The knowledge complexity of quadratic residuosity languages 305

Remark 3.5. Using the properties of Blum integers, and in particular the fact that - 1

is a quadratic nonresidue modulo x, it is possible to construct a perfect noninteractive

ZK proof system for the language of triples (x, y, , yz) where x is a Blum integer and at

least one of y,,y, is a quadratic residue modx. Just run (C,D) on input

(x, -y, mod x, -y, mod x).

4. Noninteractive perfect zero knowledge for threshold gates

In this section we give a noninteractive perfect zero-knowledge proof system (P, V)

for the language T(k, m) of pairs (x, 9) where less than k elements of F = (yl, . . . , y,,,) are

quadratic nonresidue modulo x. That is, the language

T(k,m)={(x,;)IxEBL, yiEZ:‘> i=l,...,m and I{yilyi~NQR,}l<k},

for 1 <k <m. For instance, T(l, m) is the language of pairs (x,;) that satisfy

(YIEQR,) A ... A (y,cQR,) and T(m,m) is the language of pairs (x,9) that satisfy

(YIEQR,) V ... V (Y,,,EQ&).
The prover P wants to convince the polynomial-time verifier V that less than k of

the m integers y,, , y,,, are quadratic nonresidue modulo the Blum integer x without

giving away any information that V was not able to compute alone before. V cannot

compute by himself whether (x, jj)ET(k, m), since the fastest way known for deciding

quadratic residuosity modulo a composite integer x consists of first factoring x. Thus

no efficient algorithm is known to decide if (x,y)~T(k,m). Moreover, the proof is

noninteractive (P sends only one message to V), and perfect zero-knowledge (V does

not gain any additional information even if not restricted to run in polynomial time).

We use the proof systems (A, B) and (C, D) of previous sections as subroutines for

(P, V).

4.1. The proof system (P, V) for T(k, m)

Before presenting our proof system for T(k,m), we review the notion of threshold

scheme, introduced by Shamir [28] and Blackley [6], that will be instrumental for our

construction. A (k, m)-threshold scheme is an efficient algorithm that on input a data

S outputs m pieces S1, ,S,, such that:

l knowledge of any k or more pieces Si makes S easily computable,

l knowledge of any k - 1 or fewer pieces Si leaves S completely undetermined (all its

possible values are equally likely).

Shamir [28] shows how to construct such threshold schemes using interpolation of

polynomials. We have the following fact.

Fact 4.1. The following is a (k, m)-threshold scheme. Let (&, +, .) be a finite field with

more than m elements and let S be the value to be shared. Choose at random

306 A. De Santis, G. Di Crescenzo, G. Persiano

a,, ‘.. , ak_IEb, construct the polynomial q(x)=S+aI .x+ ... +ak-I .xkP1 and output

Si=q(i) (all operations are performed in 8).

We say that a sequence (S 1, . . . , S,) is a (k, m)-sequence qf admissible shares,for S (we

will call it sequence of admissible shares when k and m are clear from the context) if

there exists a polynomial q(x)=a,+a,x+...+a,_,~~-~ with coefficients in 6, such

that aO=S and Si=q(i) for i=l,...,m.

4.1.1. OhservUion

Let I G { 1, . ,m} and suppose 1 II < k. Then given S and a sequence (Sil iel) of

values, it is always possible to efficiently generate random values Si, i&I, such that

(S i, . . . , S,) is a sequence of admissible shares for S (for random values Si, i$I we mean

that the Sts for iEZ are uniformly distributed among the Scs such that (S,, . , S,) is

a sequence of admissible shares for S). Moreover, given a sequence (Si / ill) of values, if

the values Si for i$I are chosen with uniform distribution among the Si’s such that

(S,, , S,) is a sequence of admissible shares for S, then S is uniformly distributed in

&. On the other hand, if 1 I I 3 k, then a sequence (Si I ill) of values uniquely determines

a value S and values Si for i$Z such that (S,, . . . , S,) is a sequence of admissible shares

for S.

Let us now introduce a bit of notation that we will use in the description of our

proof system. Let XEBL, w and JJEZ~~ and bE{O, 1). We define the predicate

~J(x, y, w, b) in the following way:

.@(x,y, w,b)=((- l)bwmodxGQR,) V (ysQR,).

We say that the prover (x, y)-opens w as b if he proves that g(x, y, w, b)= 1.

If ~EQR, then 98(x, y, w, 0) = g(x, y, w, 1) = 1 regardless of the quadratic residuosity

of w and thus the prover can (x, y)-open w both as a 0 and as a 1.

Instead, if YE NQR, then the prover can open w in just one way determined by the

quadratic residuosity of w. In fact, suppose that WGQR,. Then obviously

g(x, y, w,O)= 1 (and thus the prover can (x, y)-open w as a 0) and g(x, y, w, l)=O, as,

by the fact that - 1 is a quadratic nonresidue modulo x and by Fact 2.2 -w mod x is

a quadratic nonresidue modulo x. Now, suppose that WENQR,. Then g(x, y, w, l)= 1,

as by the fact that - 1 is a quadratic nonresidue modulo x and by Fact 2.13 - w mod x

is a quadratic residue modulo x, (and thus the prover can (x,y)-open w as a 1) and

obviously %(x, y, w, O)=O. In our protocol, the (x, y)-opening of w as b is done in

a zero-knowledge fashion by using the proof system (CD) of the previous section.

More precisely, as suggested in Remark 3.5, .%9(x, y, w, b) is proved to hold by running

Con input (x,(-l)‘-bwmodx, -ymodx).

4.1.2. An itzformal description

Let us now informally describe our proof system. Let (x, j)ET(k, m) and let Ix I = n

and j=(yi, . . . ,y,,,). First P proves that XEBL by running the algorithm A on input

x and using a first part of the reference string q. Then, from the reference string y the

The knowledge complexity of quadratic residuosity languages 307

prover picks mrlog(m + l)] integers PijEZJ ’ and a bit b and (x, yj)-opens each pij as

a bit sij in such a way that the following condition is satisfied: denoted by Sj the integer

whose binary representation is S,j ... Srlog(m+ I),,, the m-tuple (S,, . , S,) represents

a (k,m)-sequence of admissible shares for b. Now, why is this a proof of the fact that

less than k elements y are quadratic nonresidues?

Let I be the set of i such that YiENQR,. Then the value of Si is fixed for all ill. Thus,

if 111 <k then it is always possible to choose Si for i$I such that (S,, , S,) is

a sequence of admissible shares for b. Suppose now that 1 II 3 k. Then the values Si for

which ill completely determine S. Moreover, the Sis are uniformly distributed and

thus the probability that S= b is at most l/l&l < l/m. Thus, the probability that the

prover convinces the verifier can be made negligible by repeating the protocol on

different parts of the reference string.

A formal description of the proof system (P, V) can be found in Figs. 4 and 5. Here

(C, D) is a non-interactive perfect ZK proof system for OR. We denote by h the max of

1x1 and 131. We recall that the length of the random string needed by (C, D) for

modulus of length n is 60n’. Our field d is the field with 2r’“g(m+‘)l elements.

Theorem 4.2. (P,V) is a noninteractive proof system for the language T(k,m).

Proof. First of all V runs in polynomial time. In fact so do the programs B and D as

seen in the previous sections, and step V.3 can be performed in polynomial time [28].

4.1.3. Completeness
If P and V are honest and the number of quadratic nonresidues is less than k, then,

thanks to the already discussed properties of the predicate 9, at most k- 1 values

Si are fixed by the random string and cannot be (x, yj)-opened in a different way by the

prover. Moreover, the prover can completely handle the remaining m - k + 1 values in

such a way that the m-tuple (S,, . . . , S,) constitutes a sequence of admissible shares for

the bit b.

4.1.4. Soudness
First, note that V halts at step V.2 with negligible probability regardless of whether

(x, 5) belongs to T(k, m) or not. In fact, a random n-bit integer belongs to Zz ’ with

probability at least l/S. Thus the probability that Pij~Z:’ for less than mn

[lo&m+ l)] d’ m ices is, by Chernoff bound, at most e pmnr’og(m + ‘)I Therefore the

probability that there exists an n-bit modulus x for which this happens is at most

2ne~mnr’os(m+‘)l, which is negligible.

Suppose (x, g)$T(k, m); i.e. the number of quadratic nonresidues in $ is at least k.
Then, thanks to the already discussed properties of the predicate &9, there exist at least

k indices i, 1~ i < m, such that each pij, for j = 1, . . , [log@ + l)l, can be (x, +j)-opened

in just one way by P. Thus, there are at least k values Si that cannot be opened in

a different way by P and the probability that V accepts is the probability that the

k values Si represent a sequence of admissible shares for the bit b, which is at most

308 A. De Santis, G. Di Crescenzo, G. Persiano

Input to P and V:

l A (h(l+ 10n2mrlog(m+ 1)1+60n2mrlog(m+ l)l))-bit random string v].

l (x,?)~T(k,m), where Ixl=n and y=(yi ,..., y,).

Instructions for P.

P.O. (Divide the reference string and prove that x is a Blum integer.)

Set yl=rogio...o~~, where ItI=60n2 and ~~‘~=1+10n2mrlog(m+1)1+

60n2mrlog(m + l)J, for 1616 h. Run A’s algorithm on input x using the random

string z and send its output Pf:

Phase 1=1,...,h:

P.l. (Prepare the reference string.)

Let ~~=b’op’oy~,o~~~oy~,,o~~~o~~og~nl+,~,,~~~~~~~fog~a+I~,m, where Ib’l=l,

lp’l= 10mn2rlog(m+ 1)1 and /yljI=60n2, for 1 <idrlog(m+ l)l, 1 <j<m.

(For sake of compact notation we drop the superscript 1.)

Divide p into n-bit integers and denote by pij, 1~ i < [log@ + 1)1 and 1 <j < m,

the first mrlog(m + l)] such integers belonging to 2:‘. If there are less than

mnrlog(m+ 1)1 elements belonging to Z: ’ then HALT.

P.2. (Construct the sequence of admissible shares.)

For j such that Yj~NQR,,

for i=l, . . . Jlog(m+ l)l,
if pij~QR, then set SijcO,

else set Sij+ 1;

let Sj be the integer whose binary representation is slj, . . . ,sriog(,,,+ik

For j such that yjEQR*_,

randomly choose Sj, in such a way that (S,, . . . , S,) constitutes a (k, m)-se-

quence of admissible shares for the bit b;

let slj9 . . .) Sriog(m+ 1)lj be the binary representation of Sj.

P.3. (Prove the correctness of the sequence of admissible shares.)

For i= 1, . . ,rlog(m+ l)],

forj=l,...,m,

(x, yj)-open pij as sij running the program of C on input

(x, (- 1)' -'IJ pij mod X, - Yj mod x) using yij as random string and obtaining

as output nij.

Send sij and nij.

Fig. 4. The prover P for T&m).

l/l&Q l/m. Repeating the protocol h times makes the probability of accepting

exponentially low. 0

4.1.5. Perfect zero-knowledge

For the perfect zero-knowledge property, we have to show an efficient simulator

Sim such that, for (x, j)~T(k, m), the probability space Sim(x, 9) is identical to

The knowledge complexity of quadratic residuosity languages 309

Input to V:

l A proof Pf that XEBL.

l A sequence of shares (S:, . . . ,SA), ,($, . . . ,SL).

l A sequence of proofs n:j, for 1 di<rlog(m+ l)l, 1 bjbm, 1 bl,<h.

Instructions for V.

V.O. (Divide the reference string and verify that x is a Blum integer.)
Set r=roO1, . ..O&’ where IzI=60n2 and ~o~~=l+n2mrlog(m+1)~+

600n2mrlog(m+ I)l, fd, 1 <l<h. Run B’s algorithm on input x and z thus verifying

W
Verification of phase 1= 1, . . . , h:

V.l. (Prepare the reference string.)
Let a’=b’~p’~y:,~-..~y:,~...~g;,,,(,+~),,~...~~;~,,~,+~),~, where Ib’l-1,

~p’(=lOmn*~log(m+1)1and IY:jI=600n2,for l<i<rlog(m+l)l, l<j<m.

(For sake of compact notation we drop the superscript 1.)

Divide p into n-bit integers and denote by pij, 1~ i <rlog(m + 1)1 and 1~ j < m,
the first mrlog(m + 1)1 such integers belonging to 2:‘. If there are less than

mnrlog(m + 1)1 such integers belonging to 2: ’ then HALT and ACCEPT.

V.2. (Verifv the admissibility of the sequence of shares.)
Verify that the m-tuple (S, , . . . , S,) is a (k, m)-sequence of admissible shares for the

bit b.

V.3. (Verifv that the sequence of admissible shares has been correctly constructed.)
For i=l , . ..$og(m+ 1)1,

forj=l,...,m,

verify that the proof nij is correct by running the program of D on input

(x, (- 1)’ -“J pij mod X, - yj mod X) using yij as random string.

If all verifications are successful then ACCEPT else REJECT.

Fig. 5. The verifier V for T(k,m).

Viewv(x,9). In Fig. 6, we present an efficient algorithm S that simulates one phase of

the protocol. (Here F is the simulator of the proof system (C, D) of Section 3). It is

straightforward to construct Sim using S and M, the simulator of the proof system

(A, B) of Section 3.

In the following lemma we prove that S(x, 5) is the same probability space of Phase
View,(x, g), the view of V in one phase of the protocol (P, V).

Lemma 4.3. S runs in probabilistic polynomial time and for all (x, ;)ET(k, m),

S(x, j) = Phase View,,(x, 3).

Proof. Obviously, b has the same distribution in both probability spaces. Also

(S,, ,S,) is a uniformly distributed sequence of admissible shares of b in both

probability spaces.

310 A. De Santis, G. Di Crescrnzo, G. Persiano

Instructions for S

Input: (x, j)~T(k, m).

1.

2.

3.

4.

5.

6.

7.

Set Proof =empty string.

Randomly choose a bit b.

Randomly choose (S,, . , S,), a (k, m)-sequence of admissible shares for the bit b.

Forj=l,...,m,

let S,j, . . . , Srlog(m+ I)lj be the binary representation of Sj.

For i=l,... , iomnpog(m+ 1~1,
randomly choose an n-bit integer ri.

If rieZzl for less than mnrlog(m+ l)] indices i then Output:

(rlo...or ~Omnrhg(m+ I~J) and HALT;
Set tc0.

For i= 1, . . ,rlog(m+ l)],

forj=l,...,m,

let f be the smallest integer > t such that QEZ: ‘;

toss a fair coin;

if HEAD set rf+-yl~Si~ rf mod x;

if TAIL set rT t - yf -‘IJ rf mod x;

set t = f and pij+rr;

run F’s algorithm on input (x, (- 1)’ -‘IJ Pij mod x, -yj mod x) obtaining as

OutPut (Yij > nij);

append ITij to Proof.

Set PXrl 0 “’ a rlOmnrlog(m+ I)]. ,.

Fig. 6. The simulator S

Let us now take a look at the strings piis. We have two different cases, depending

on the quadratic residuosity of yj.

(1) YjENQR,: In the view of the verifier the values of sij are determined by the

quadratic residuosity modulo x of pij. More precisely, sij= 1 if and only if pij is

a quadratic nonresidue. In the output of S, if sij= 1, the pij is either equal to

rf yi 1 mod x (which by Fact 2.2 is a quadratic nonresidue) or to - rf mod x (which by

Fact 2.7 is a quadratic nonresidue). On the other hand, if Sij=O, pij is either equal to

r; mod x (which is a quadratic residue) or to - yj rf mod x (which by Facts 2.2 and 2.7

is a quadratic residue).

(2) J/jEQR,. AS both @(~,y,pij,O)= 1 and B(x,y,pij, l)= 1, P can choose each Sij,

i.e. the (x, yj)-opening of each pij, either as 0 or as 1 in order to correctly construct

a uniformly distributed sequence of admissible shares. Thus, in the view of the verifier,

the value of Sij does not depend on the quadratic residuosity of pij, and pij is

a quadratic residue or a quadratic nonresidue with probability l/2. In the output of S,

The knowledge complexity of quadratic residuosity languages 311

the sij’s are chosen in order to form a uniformly distributed sequence of admissible

shares. Moreover, if Sij= 1, then with probability l/2 the element pij is set equal to

rf y,: 1 mod x (which by Fact 2.2 is a quadratic residue) and with probability l/2 the

element pij is set equal to - r; mod x (which by Fact 2.7 is a quadratic nonresidue). On

the other hand, if S;j=O, with probability l/2 the element pij is set equal to

-rf yjmod x (which by Facts 2.2 and 2.7 is a quadratic nonresidue) and with

probability l/2 the element pij is set equal to r; mod x (which is a quadratic residue).

Moreover, by construction, p is uniformly distributed over all binary strings of the

appropriate length. Finally, the strings yij and the “proofs” ~ij have the same

distribution since (C, D) is a perfect ZK proof system. q

The above lemma and Theorem 4.2 prove the following theorem.

Theorem 4.4. (P, V) is a noninteractive perfect zero-knowledge proof system ,for the
language T(k, m).

Remark 4.5. The protocol (P, V) that we have just presented is designed for the case

when the quadratic residuosities of the yi’s are considered modulo the same integer x.

However, it can be easily seen that this restriction can be removed. That is, for all

1 d k d m, the language

MT(k, m) = { (2, ;) 1 x~EBL, yi~Z,+ ‘, for i = 1, , m,

and I {Yi I YiENQRx,} I <k}

also has a noninteractive perfect zero-knowledge proof system. In this proof system,

the prover runs P’s algorithm with the following modifications. First of all at step P.0

he runs algorithm A m times using different pieces of the reference string, to prove that

each xi is a Blum integer. Then, whenever the modulus x is used, P uses the modulus

xj, if operations on yj have to be performed. Note, that it is never the case that in

a step, P performs operations relative to two different Yi’S. These modifications are

also reflected in similar modifications in the algorithms for the verifier and the

simulator.

Remark 4.6. The protocol (P,V) can be also extended to a proof system for the

language

MT(k,m)=((I,3)lxiEBL, yi~Z:‘,for i=l,..., m,

where 1 <k < m. The new prover uses the algorithm P with the modifications of the

previous remark on input the pair (.?, y) where zi = -yi mod xi, for i = 1, . , m.

312 A. De Santis, G. Di Crescenzo, G. Persiano

5. Round-optimal interactive perfect zero knowledge proof systems

The aim of this section is to present a general procedure that, for languages with

some specific properties, transforms a noninteractive ZK proof system into a 4-round

ZK proof system. The transformation preserves perfect zero knowledgeness; i.e. if the

noninteractive proof system we started with is perfect zero knowledge, then we obtain

a perfect zero-knowledge interactive proof system (for complete definitions of zero-

knowledge interactive proof systems, we refer the reader to [25]).

In the next subsection, for sake of exposition, we describe and analyze the trans-

formation for the language T(k,m) and, then, briefly discuss the extension to any

language with the required properties.

5.1. Round-optimal perfect zero knowledge .for T(k, m)

In the previous section we have shown a noninteractive perfect ZK proof system

(P, V) for T(k, m). We use this proof system in order to create an interactive 4-round

perfect zero-knowledge proof system (PROVER, VERIFIER). Thus, unless the language

T(k,m) is in BPP, (PROVER, VERIFIER) is round optimal, thanks to a result of [19].

Let us give an informal description of (PROVER, VERIFIER). The first three rounds are

used by PROVER and VERIFIER to randomly select a string CJ in the following way. First,

VERIFIER commits to his random bits; then PROVER sends his random bits, and finally

VERIFIER open his commitments. The reference string g will be formed by the xoring of

PROVER’S random bits, with the bits decommitted by VERIFIER. Then, in the fourth

round PROVER runs P’s program on input (x, j) using c as a reference string. Finally

VERIFIER verifies that the string c has been correctly computed and runs V’s program

on input (x,9) and CJ. The following property of Blum integers will be useful for

constructing a bit commitment.

Lemma 5.1. Let XEBL, WEQR, and let +r, modx and + r2 modx be its 4 square

roots. Then (rl Ix)= -(r2/x).

Proof. Suppose that rl, r2 <x/2 and write x as x = pk1qk2, where k, and k2 are odd (by

definition of Blum integers); from r: = r,’ mod x it follows that (rl - r2) (rl + r2) = hx for

some h<x. In general we can write rl-r2=hlpi1qi1, and r1+r2=h2pi2qj2, where

hlh2=h, il+iZ=kl, jl+j2=k2, and il,i2,jl,j2>0. We see that i,=j2=0 or

j,=i,=O.Supposethatitisnotso,then2r,=h,pi1qj1+h,pi2qj2,andsop/r,orqjr,,

that is a contradiction as rl ~2:. Assume j, = i2 = 0 (the other case being similar); then

we can write rl-r2=hlpk1 and rl+r2=hzqk2. Moreover, from p/(rl-r2) and

q 1 (rl +rz), we have rl =r2 modp and rl = -r2 mod q. From this it follows that

(rl I PI = (r2 I PI and (rl I PI = - (r2 I 4) and, finally, (rl I.4 = - (r2 lx). 3

Using Lemma 5.1, the commitment can be implemented as follows. To commit

to a bit b, it is sufficient for VERIFIER to choose randomly an rEZ: such that r has

Jacobi symbol - 1 (if b =0) or + 1 (if b = 1) and to give w =rz mod x to PROVER.

The knowledge complexity of quadratic residuosity languages 313

A decommitment is done by simply revealing Y. Given only w, PROVER cannot

compute b better than guessing at random. In fact, by Lemma 5.1 there exist two

square roots of w that have different Jacobi symbols and PROVER does not know which

one will be revealed later by VERIFIER. On the other side, if VERIFIER is able to reveal

the decommitment in two ways, then he is able to factor x (see Lemma 5.2 below).

Let I(m,n) be the length of the reference string used in the proof system (P,V) on

input (x, j), with (x I= n and 1 $J I= m. A formal description of (PROVER, VERIFIER) can be

found in Fig. 7.

The completeness and soundness of the above protocol follow directly from the

completeness and soundness of (P, V).

To prove the perfect zero-knowledge property of the proof system (PROVER,

VERIFIER), we show an efficient simulator SIMUL such that, on (x, jj)~T(k, m) and

interacting with a possibly malicious verifier VERIFIER’, such that the probability space

SIMUL(X,F) is equal to the view of VERIFIER’ in the protocol. The simulator SIMUL is

based on the double running technique [3]. First, the simulator Sim of the proof system

(P, V) is run and then two strings c and PROOF are obtained. Then SIMUL performs

the protocol until step VERIFIER’.~ where he learns the bit committed to by VERIFIER’.

At this point, he rewinds VERIFIER’ in the state just after step VERIFIER’.~ and chooses

the bits bi in such a way that he obtains the string CJ at step PROVER.~. If, during the

second execution, VERIFIER’ opens one of his commitments in a different way (i.e. he

gives a different square root of some Wi’s), then SIMUL can factor x (see Lemma 5.2

below) and thus he can run P’s program (that can be executed in polynomial time

The Proof System (PROVER, VERIFIER)

Input to PROVER and VERIFIER: (x, j+T(k, m), where 1 x I = n, and $j = (y, , . . . , y,).

VERIFIER.~: For i= 1, , l(m, n),

randomly choose riEZ:, set Wi = ~2 mod X, and send Wi.

PROVER.~: For i=l,..., l(m,n),

randomly choose and send bi~{O, l}.

VERIFIER.~: For i = 1, . . , /(m, n),

compute ci = ((ri / X) + 1)/2 and send Ti, ci.

PROVER.21 For i= 1,. . . , /(m, n),

if ~2 = Wi mod x and (ri (x) = 2ci - 1 then continue, else HALT;

set oi = bi @ ci;

set g= (TV 0 ... 0 ~~~~~~~ and run P’s program on input (x,3), using g

as reference string. Send its output PROOF.

VERIFIER.~: Verify that g is Correctly computed and run V’s program on input

x, 3, c, PROOF.

If all verifications are successful then ACCEPT else REJECT.

Fig. 7. The proof system (PROVER, VERIFIER).

314 A. De Santis, G. Di Crescenzo, G. Prrsiano

since x’s factorization is available) and perfectly simulate the interaction between

P and V.

Let h = max (1 x I,1 j I) and let c be a constant such that the running time of VERIFIER

is bounded above by the polynomial h’. A formal description of program SIMUL is in

Fig. 8.

Proof. First note that the Jacobi symbol can be computed in probabilistic polynomial

time, by Fact 2.5. Then it is easy to see that steps SIMUL.~-SIMUL.~ 1 are trivially

performed in probabilistic polynomial time. In step SIMUL.~~ x’s factorization has to

be computed. However, when entering in this step, SIMUL has obtained from VERIFIER’

two numbers rr, Y~EZ,* such that (rr Ix)= -(r2 / x), and rt -ri mod x. Thus, it only

remains to show that this information is sufficient for SIMUL to compute x’s factoriz-

ation in polynomial time. First of all note that, as x is a Blum integer, for all ZEZ: we

have that (z I x) F (--z I x). Thus, as rl and r2 have different Jacobi symbols, it must be

the case that r1 $ - rz mod x. By the proof of Lemma 5.1 one gets rl - r2 = hl pkl, and

r,+r2=h2qk2. Then gcd(r,-rz,x)=gcd(h,pk1,pk1qk2)=pk1gcd(h,,qk2)=pk’qd for

some d>O, and gcd(r, +rz,x)=gcd(h2qk*,pk1qkz)=qk2gcd(h2,pk1)=p”qk2 for some

a>O. Note that if d>O or a>O, then qlhl or plhz, and from the relation

2r, =hlpkl +hzqk2 we have that q/r1 or plrl, which is acontradiction, as rlEZ:. Thus,

gcd(r, +r2,x) and gcd(r, -r2, x) are prime powers, and so it is easy now from

these two numbers to efficiently compute the primes p and q that factor x, as in

Section 3. 0

Lemma 5.3. For each (x, j)~T(k, m), the probability space SIMUL (x,?) is equal to the

view REVERIFIER’ in the protocol (PROVER, VERIFIER) on input (x,y).

Proof. First it is easy to see that both in the simulator and in the protocol:

(i) wl, . . ,w~(~,~) are random quadratic residues modulo x; (ii) wi=rf mod x for

i= 1, . . . , l(m, n). Then we see that the bits bI, , b, are uniformly distributed. In fact in

step SIMUL.~ each bi is set equal to Gi 0 ci. From the perfect zero knowledgeness of the

simulator Sim for the noninteractive ZK proof system (P, V) it follows that each (Ti is

uniformly distributed over {O, 1) and so is also bi. The string PROOF can be

generated by the simulator SIMUL in two ways: (a) by the simulator Sim for (P, V); in

this case, from the perfect zero knowledgeness of Sim, it follows that PROOF has the

same distribution both in SIMU~ and in (PROVER, VERIFIER); or (b) by running P’s

program, once obtained x’s factorization; in this case, it is obvious that PROOF is

generated by SIMUL exactly in the same way as in (PROVER, VERIFIER). Also the

reference string ~7 can be generated by the simulator SIMUL in two ways: (a’) by the

simulator Sim for (P, V); in this case, from the perfect zero knowledgeness of Sim, it

follows that c is uniformly distributed over (0, 1)‘(msn’, as in (PROVER, VERIFIER); (b’) at

step SIMUL.~~ by xoring each uniformly distributed bit hi with the bit ci given by

VERIFIER’ and then concatenating the bits pi thus obtained. Finally, each Cri is correctly

computed as the xoring of a bit given by VERIFIER’ and a random bit given by SIMUL

The knowledge complexity of quadratic residuosity languages 315

Instructions for SIMuL.

Input: (x, j)eT(k, m).
SIMUL.~. Randomly choose a v-bit string R and bits bl, . . . , blc,,,,;

write R on the random tape of VERIFIER’.

SIMUL.~. Run Sim on input (x, j) obtaining as output (0, PROOF);
let cr=ol 0 ... OC~(~,~).

SIMUL.~. Set change-of-dectno.

SIMUL.~. For i= 1, . . . , l(m, n),

get Wi from VERIFIER’.

SIMUL.~. For i= 1, . . . , l(m, n),

write bi on the communication tape of VERIFIER’.

SIMUL.~. For i= 1, , l(m, n),

get ri from VERIFIER’.

SIMUL.~. If r,? # Wi mod x for some ie{ 1, . . , l(m, n)} then

output (R, 6,&i-) and HALT.

SIMUL.~. For i= 1, . . . , I(m, n),

set ci=((Ti/x)+ 1)/2 and bi=ai @ Ci(SO that oi=bi @CL).

SIMUL.~. Rewind VERIFIER’ to the state just after step SIMUL.~;

for i = 1, . . . , l(m, n),

write bi on the communication tape of VERIFIER’.

SIMUL.~~. For i= 1, . . . ,l(m,n),

get ri from VERIFIER’;

if rl’fwimodx for some i~{l,...,l(m,n)} then

output (R, iG,6’, 7) and HALT;

if ri # ri then

set change-of-dectyes.

SIMUL. 11. If change-of-dec = no then output (R, ?G, 6’, 7, CJ, PROOF) and HALT.

SIMUL.12. If change-of-dec= yes then

compute x’s factorization;

for i=l,..., l(m,n),

set c~=((Y~/x)+ 1)/12, and ai=b{ @ cl;

let ~‘=a; 0 ... OC~;(~,~);

run P’s program on input (x, y) and 0’ using x’s factorization and obtaining

PROOF;

output (R, G, 6’, 7, CJ’, PROOF) and HALT.

Fig. 8. The simulator SIMUL

while simulating PROVER. In fact, in case (a’) at step SIMUL.~ the bit bf is set equal to

Gi @ ci and in case (b’) at step SIMUL.12 the bit Ci is set equal to b; @ ci. 0

The above lemmas prove the following theorem.

316 A. De Subs, G. Di Crescenzo, G. Persiano

Theorem 5.4. (PROVER, VERIFIER) is a 4-round perfect zero knowledge proof system for

the language T(k, m).

5.2. E,xtensions

Looking at the properties of T(k,m) that we used in the above protocol, we can

generalize it for other languages. In fact we can define a class of quadratic residuosity

languages L that satisfy the following properties:

there exists a predicate R(l,$) such that

(1) L=((?-,$)lxiEBL, for i=l,..., m, and R(I,jj)=l).

(2) There exists a noninteractive ZK proof system (P, V) for L in which the prover

runs in probabilistic polynomial time if given the factorization of all the xcs.

First of all, note that the protocol (PROVER, VERIFIER) would give a round-optimal

perfect zero-knowledge proof system for the language L if the Blum integers xi were all

equal. On the other hand, some modifications are necessary to handle the most general

case in which the xi can be different. More precisely, the commitment made by the

verifier is modified in the following way. To commit to a bit b, the verifier randomly

choosesanriEZz,fori=l,... , m, such that each Jacobi symbol (ri 1 Xi) is equal to - 1 (if

b=O) or to $1 (if b=l) and gives wi=rfmodxi, for i=l,m. to the prover. A

decommitment is done by simply revealing each ri. Similarly to the commitment scheme

of (PROVER, VERIFIER), given only the wis, the prover cannot compute b better than

guessing at random. On the other side, if the verifier is able to reveal the decommitment

in two ways, then he reveals two square roots with the different Jacobi symbols of each

wi modulo xi. As before, with this information it is possible to factor each Xi and thus the

simulator can run P’s algorithm on a truly random string. Given such a commitment

scheme, the rest of the protocol is easily obtained as in the case of T(k, m).

Like (PROVER, VERIFIER), also this protocol preserves perfect zero knowledgeness;

i.e. if (P,V) is perfect zero knowledge, so is also the resulting 4-round protocol

described. In particular we obtain a round-optimal interactive perfect ZK proof

system for all the languages seen as far, for they all belong to this class.

5.3. An open problem

The technique based on threshold schemes for proving a threshold gate does not

seem to generalize to the case of arbitrary threshold circuits. Thus the problem of

obtaining a noninteractive perfect zero-knowledge proof system for the language of

threshold circuits is open.

Acknowledgment

We thank an anonymous referee for careful reading and useful remarks on the paper.

References

[l] D. Angluin, Lecture notes on the complexity of some problems in number theory, Tech. Report 243,
Yale Univ. 1982.

The knowledge complexity of quadratic residuosity languages 317

[2] D. Angluin and L. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings,

J. Comput. System Sci. 18 (2) (1979) 155-193.
[3] M. Bellare, S. Micali and R. Ostrovsky, Perfect zero knowledge in constant rounds, in: Proc. 22th Ann.

Symp. on rhe Theory of Comput. (1990) 482-493.

[4] M. Bellare and M. Yung, Certifying cryptographic tools: The case of trapdoor permutations, in: Proc.

of CR YPTO’92, to appear.

[S] M. Ben-Or, 0. Goldreich, S. Goldwasser. J. Hastad, S. Micali and P. Rogaway, Everything provable is

provable in zero knowledge, in S. Goldwasser, ed., Advances in Cryptology-CRYPT0 88, Lecture

Notes in Computer Science, Vol. 403 (Springer, Berlin) 37-56.

[6] G.R. Blackley, Safeguarding cryptographic keys, in: Proc. AFIPS 1979 Nationa/ Computer Co+f,

(1979) 313-317.

[7] M. Blum, A. De Santis, S. Micali and G. Persiano, Non-interactive zero-knowledge, SIAM J. Comput.

20 (1991) 1084-1118.
[S] M. Blum, P. Feldman and S. Micali, Non-interactive zero-knowledge and applications, in: Proc. 20th

Ann. .4CM Symp. on Theory of Comput. (1988) 103-112.

[9] R. Boppana, Amplification of probabilistic boolean formulas, Adu. Comput. Res. 5 (1989) 27-45.
[lo] R. Boppana, J. Hastad and S. Zachos, Does co-NP has short interactive proofs?, Inform. Process Lett.

25 (1987) 127-132.

[1 l] J. Boyar, K. Fried1 and C. Lund, Practical zero-knowledge proofs: giving hints and using deficiencies,

J. Cryptology, 4 (1991) 185-206.

[12] G. Brassard, D. Chaum and C. Crepeau, Minimum disclosure proofs of knowledge, J. Comput. System

Sci. 37 (2) (1988) 156-189. (Preliminary version in FOCS ‘86.)

[13] G. Brassard, C. CrCpeau and M. Yung, Perfect zero-knowledge computationally convincing proofs for

NP in constant rounds, Theoret. Comput. Sci. 84 (1991) 23-52.
[14] A. De Santis, S. Micali and G. Persiano, Non-interactive zero-knowledge proof-systems, in: Advances

in Cryptology ~ CR YPTO 87, Lecture Notes in Computer Science, Vol. 293 (Springer, Berlin) 52-72.

[15] A. De Santis, G. Persiano and M. Yung, Perfect zero-knowledge proofs for graph isomorphism

languages, manuscript.
1161 P. Erdiis and J. Spencer, Probabilistic Methods in Combinatorics (Academic Press, New York, 1974).

1171 U. Feige, D. Lapidot and A. Shamir, Multiple noninteractive zero-knowledge proofs based on a single

random string, in: Proc. 22nd Ann. Symp. on the Theory of Comput (1990) 308-317.

[18] L. Fortnow, The complexity of perfect zero knowledge, in: Proc. 19th Ann. ACM Symp. on Theory of

Comput. (1987) 204-209.

[19] 0. Goldreich and H. Krawczyk, On the composition of zero-knowledge proof systems, in: Proc. 17th

Internat. Coil. on Automata, Languages and Programming (1986) 174-187.

1207 0. Goldreich and E. Kushilevitz, A perfect zero knowledge proof for a decision problem equivalent to

discrete logarithm, in: S. Goldwasser, ed., Aduances in Cryptology - CR YPTO 88, Lecture Notes in

Computer Science, Vol. 403 (Springer, Berlin) 57-70.

[21] 0. Goldreich, S. Micali and A. Wigderson, Proofs that yield nothing but their validity, or all

languages in NP have zero-knowledge proofs, J. ACM 38 (1991) 691-729.

1223 0. Goldreich, S. Micali and A. Wigderson, How to play any mental game, in: Proc. 19th An. ACM

Symp. on Theory of Comput. 218-229.

[23] 0. Goldreich and E. Petrank, Quantifying knowledge complexity, in: Proc. 32th IEEE Symp. on
Foundations of Comput. Sci. (1991).

[24] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System. Sci. 28 (1984) 270-299.

[25] S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof-systems,
SIAM J. Comput. 18 (1989).

1261 R. Impagliazzo and M. Yung, Direct minimum knowledge computations in: Advances in Crypto-

logy -- CRYPT0 87, Lecture Notes in Computer Science, Vol. 273 (Springer, Berlin) 40-51.

1271 I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers (Wiley, New York, 1960).

[28] A. Shamir, How to share a secret, Comm. ACM 22 (1979) 612-613.

[29] M. Tompa and H. Wall, Random self-reducibility and zero-knowledge interactive proofs of pos-
session of information, in: Proc. 28th Symp. in Foundations of Comput. Sci. (1987) 472-482.

