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Abstract

For some integer k£ > 0 and two graph parameters 7 and 7, a graph G is called nt(k)-perfect,
if n(H) — ©(H) < k for every induced subgraph H of G. For » > 1 let o and 7, denote the
r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory
32 (1999) 303-310), I. Zverovich gave an ingenious complete characterization of oy (k)-perfect
graphs in terms of forbidden induced subgraphs. In this paper we study o,)(k)-perfect graphs
for r,s > 1. We prove several properties of minimal o, )s(k)-imperfect graphs. Generalizing
Zverovich’s main result in (J. Graph Theory 32 (1999) 303-310), we completely character-
ize oa,—17-(k)-perfect graphs for » > 1. Furthermore, we characterize claw-free oy7,(k)-perfect
graphs.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs will be finite, undirected and without loops or multiple edges. We will
use the standard graph-theoretical terminology (cf. e.g. [7]). Let G =(V(G),E(G)) be
a graph with vertex set V(G) and edge set £(G). The set of isolated vertices of G is
denoted by Iso(G). A clique of G is the vertex set of a complete subgraph of G. The
subgraph of G induced by a set of vertices V' C V(G) is denoted by G[V']. If H is an
induced subgraph of G, then we write H Cijpq G. If v € V(G), then G—v=G[V(G)\{v}].
A graph is claw-free, if it does not contain the star with three endvertices as an induced
subgraph. Let P, denote the path of order » > 1. We say that the graph H arises from
G by attaching a path P, to a vertex veV(G), if V(H)\ V(G) = {v2,03,...,0,}
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and E(H)\ E(G) = {vvy,vp03,...,v,_1v,}. The distance of two vertices u,v € V(G) is
denoted by distg(u,v). For V' C V(G) let distg(u, V') = min{diste(u, v)|v € V'}.

Let r = 1. For u€ V(G) let Ni(u) = {ve V(G)|v # u,distg(u,v) < r}. The neigh-
bourhood and degree of u € V(G) are denoted by Ng(u)=N(u) and dg(u) = |Ng(u)|,
respectively. A set I C V(G) is an r-independent set of G, if distg(u,v) =r + 1 for
all u,vel. The r-independence number o,(G) of G is the maximum cardinality of an
r-independent set of G. An a,-set of G is an r-independent set of cardinality o,.(G).

A set D C V(G) is an r-dominating set of G, if for each vertex u € V(G)\ D there
is some vertex v € D such that distg(u,v) < r. The r-domination number y,(G) of G is
the minimum cardinality of an r-dominating set of G. A 7,-set of G is an r-dominating
set of cardinality y,(G). For ue D C V(G) let

PNy(u,D) = (N) U {ub)\ | NG().
veD\{u}

In [15], 1. Zverovich proposed the following definition of classes of ‘perfect’ graphs.
Let £ >0 and © and 7 be two graph parameters. A graph G is called nz(k)-perfect,
if e(H)—1(H) <k for all H Ci,q G. A graph G is a minimal nt(k)-imperfect graph,
if 7(G) —1(G) >k but n(H) — t(H) <k for each H Cj,g G with H # G. There
is an extensive literature about nt(0)-perfect graphs for appropriate choices of # and
7. Well-studied examples of ©t(0)-perfect graphs involve the notions of independence
and domination (cf. e.g. [1,2,5,6,8-14,16,17]).

The main goal in the study of nt(k)-perfect graphs is a characterization in terms of
a minimal list of forbidden induced subgraphs. In many cases such characterizations
are either trivial (as for o;7,(0)-perfect graphs) or hard to find (cf. e.g. [16]).

In [15], I. Zverovich was able to give a surprising and ingenious characterization of
o171 (k)-perfect graphs. We will generalize his result by studying o, y,-perfect graphs for
r,s = 1 If r+1 > 2s, then [NS(u)NI| <1 for each u € V(G) and every r-independent
set . Hence o,(G) < 7,(G) and all graphs are o, y(k)-perfect.

Many choices of the parameters 7, s and &k lead to minimal «,y;(k)-imperfect graphs
that do not have a simple structure. Therefore, in order to obtain results as elegant as
in [15] we have to find the ‘good’ choices for r, s and k. Two natural candidates for
the generalization of o7, (k)-perfect graphs are the classes of oy, y,(k)-perfect graphs
and o,7,(k)-perfect graphs.

In Section 2 we prove several properties of minimal o,.y,(k)-imperfect graphs. Gener-
alizing Zverovich’s main result in [15], we completely characterize o, —;7,(k)-perfect
graphs for » > 1 in Section 3. Furthermore, in Section 4, we characterize claw-free
o2 (k)-perfect graphs. The reader that is interested in further results on mt(k)-perfect
graphs for k£ > 1 is referred to [3,4].

2. Properties of minimal «,y,(k)-imperfect graphs

Lemma 2.1. Let G be a minimal o,y,(k)-imperfect graph for r,s =1, r+1 < 2s and
k>0. Let I be an o,-set and let D be a ys-set of G. Then |PNi(v,D)NI| =2 for
all ve D. Furthermore, if r = s, then DN I = ().
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Proof. If |PNS(v,D)NI| <1 for some v € D, then let H=G[V(G)\ PNi(v,D)] # G.
Since I\ PNy (v,D) C V(H), a,(H) > 0,(G) — 1. Since D\ {v} is an s-dominating set
of H, ys(H) <74(G)— 1. Hence o,.(H) — ys(H) = 2,.(G) — 7s(G) = k + 1, which is a
contradiction. We obtain |PN&(v,D)NI| = 2 for all veD.

Now let > 5. We assume that there is some u€ DN /. Let ve PNS(u,D) N1 with
v # u. We have r + 1 < distg(u,v) < s, which is a contradiction. [J

We will now consider certain paths which allow us to study the structure
of the minimal imperfect graphs. For further reference we give the following
definition.

Definition 2.2. Let G be a minimal o,);(k)-imperfect graph for r,s > 1, r +1 < 2s
and £ > 0. Let I be an o,-set and let D be a yg-set of G.

For each ue/ let dom(u) € D be such that distg(u,dom(u)) = distg(u, D) and let
P(u) be a shortest path from u to dom(u). (Note that the choice of dom(u) and P(u)
may not be unique.)

Lemma 2.3. Let r =25 > 1 withr+1<2sand k > 0. Let G, I, D, dom(u) and P(u)
for uel be as in Definition 2.2. Then

(i) V(G)=U,e; V(Pw)).
(i) If Ng(u) NV (P@)) # O for u,vel with u # v, then r =s, Ng(u) N V(P(v)) =
{dom(v)} and distg(v,dom(v)) =s.
(i) If dg(u) =2 for some u€cl, then r =s and Ng(u) C D.
(iv) o(G) = p(G) =k + 1.
(v) distg(u, \{u})=r+1 for uel.

Proof. (i): Let H=G[{J, ¢, V(P(u))]. Since I C V(H), o.(H) = o.(G). Since V(P(u))
C Ni(dom(u)) U {dom(u)} for uel, y(H) < y,(G). Hence o,.(H) — ys(H) =k + 1.
Since G is minimal o,y,(k)-imperfect, G = H.

(ii): Let No(u)NV(P(v)) # O for u,v €I with u # v. We have r+ 1 < distg(u,v) <
distg(dom(v),v)+ 1 < s+ 1 < r+ 1. Hence we have equality throughout this chain of
inequalities which implies all desired properties.

(iii): If dg(u) =2 for some u€l, then there is some veE/l with v # u such
that Ng(u) N V(P(v)) # 0. By (ii), r =s and Ng(u) N V(P(v)) = {dom(v)}. Hence
1 < distg(u,dom(u)) < distg(u,dom(v)) = 1. This implies that Ng(u) C D.

@iv): If 0(G) — y(G) = k + 2, then let u€ PN (v) N1 for some ve€D. By (iii),
dg(u)=1. Let H = G — u. Clearly, «,(H) > «(G) — 1 and y,(H) < y,(G). Hence
o.(H) — ys(H) = k + 1, which is a contradiction.

(v): If dg(u)=1 for some u €[ and distg(u, 1\ {u}) = r+2, then let v € Ng(u) and
H=G—u. Clearly, o,.(H) = |(I\{u})U{v}|=0,(G) and 7,(H) < 7,(G). We obtain the
same contradiction as above. Hence, by (iii), we can assume that dg(u) = 2, r=s and
Ng(u) C D. If ve PN (dom(u), D)NI with u # v, then r+1 < distg(u, v) < distg(dom
(u),v)+ 1 <s+1=r+ 1. This implies that distg(u,/ \ {u})=r+1. O



244 D. Rautenbach, L. Volkmann/ Discrete Mathematics 270 (2003) 241250

G Go G

Fig. 1.

Before we come to the next section, we derive some corollaries of the above
properties.

Corollary 2.4. Let G be a minimal o,ys(k)-imperfect graph for r = s > 1 with r +
1 <2s and k = 0. Then

(i) 0:(G) = 275(G).
(i) 75(G) <k + 1.
(iii) [V(G)| € (k+1)(2r+1), i.e. there are only finitely many non-isomorphic minimal
o, ys(k)-imperfect graphs.

Proof. (i): This immediately follows from Lemma 2.1.

(ii): By Lemma 2.3(iv), k + 1 = 0,(G) — 75(G) = 2y,(G) — 75(G) = 75(G).

(ili): By Lemma 2.3(i) and (iv), we have [V (G)| <s-0.(G) + 75(G)=s-(k+ 1+
1@+ (G <s-k+1+k+D)+k+1=(k+1)2s+1). O

By Corollary 2.4, there are only finitely many non-isomorphic minimal o, ys(k)-
imperfect graphs and all have order at most (k + 1)(2s + 1). Hence for any fixed r, s
and & as in Corollary 2.4, it is a ‘finite’ problem to find all minimal o,y,(k)-imperfect
graphs. Once these finitely many graphs have been found, the characterization of the
o,ys(k)-perfect graphs immediately follows. It is e.g. straightforward to check that
the three graphs in Fig. 1 are all ayy,(1)-imperfect graphs. Therefore a graph is
opy2(1)-perfect graphs if and only if it does not contain G;, G, or G3 as an induced
subgraph.

3. o1 7.(k)-perfect graphs

Let » > 1. Let H be a graph and let /5y be a maximal independent set of H. Let
D=V (H)\(Iy \1so(H)). The graph f,(H,I) arises from H by attaching exactly two
paths P, to each vertex in D and exactly one path P, to each vertex in V(H)\D.
See Fig. 2 for an example.

Since every (2r — 1)-independent set [ of f,.(H,Iy) contains at most one vertex
from each of the attached paths, op,—1( f(H,1Iy)) < 2|D| + [Iz\Iso(H)|. On the other
hand, for =1 the set [Iy\Iso(H)U[V( f1(H,Iz))\V(H)] and for r > 2 the set of all
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Fig. 2.

endvertices of f,(H,Iy) is a (2r — 1)-independent set of cardinality 2|D|+ |y \Iso(H )|.
Hence op,—1( f(H, 1)) = 2|D| + |1 \Iso(H)|.

Since two paths P,,;; have been attached to each vertex in D, every 7y,-set of
f+(H,Iy) contains the set D. On the other hand D is a y,-set of f,.(H,Iy). Hence
v( f+(H,Iy)) = |D|. Together, we obtain

1 (fr(H,Iy)) = 7, ( fr(H, 1)) = [D] + [Iy\Iso(H )| = [V (H).
For k = 0 let
F (k)= {f(H,I)|I is a maximal independent set of H and |V(H)| =k + 1}.

The following result generalizes Zverovich’s main result from [15]. Our proof works
along the lines of [15] dealing with several additional complications.

Theorem 3.1. Let r =1 and k = 0. A graph is oy,_17,(k)-perfect if and only if it
contains no graph in F (k) as an induced subgraph.

Proof. We will first prove that every minimal oy, y,(k)-imperfect graph belongs to
Z (k). Then we prove that every graph in % (k) is also a minimal oy, 7,(k)-imperfect
graph. These two facts establish the desired result.

Let G be a minimal oy, _17,(k)-imperfect graph. Let / be an o,,_;-set and let D be
a y,-set of G. Note that G has the properties stated in Lemmas 2.1 and 2.3. Hence
DNI=0and |PN/(v,D)NI| =2 for every veD. For ucl let dom(u) and P(u) be
as in Definition 2.2.

Let uel. Let u' € PNi(dom(u),D) NI with ' # u. We have (2r — 1)+ 1 =
2r < distg(u, u') < distg(u, dom(u)) + distg(dom(u),u’) < r + r = 2r. Hence, distg(u,
dom(u)) =r for all uel and distg(u,u’) = 2r for u,u’ €I with u # v’ and dom(u) =
dom(u").

For uc let dom’(u) be the unique neighbour of dom(u) in V(P(u)). Since I is
(2r — 1)-independent, we obtain Ng(v) C V(P(u)) for all u€l and ve V(P(u))\
{dom’(u),dom(u)}. Furthermore, Ng(dom'(u))\V(P(u)) C D for all u€1.

Let the set X contain two vertices of PN/ (v,D) N[ for each veD. Let H=G[D U
{dom’(u)|u € I\X'}] and Iy =Iso(H )U{dom’(u)|u € I\X}. The set I;; is an independent
set of H and the set D is a dominating set of H.

If I; is not a maximal independent set of H, then there is a vertex v € D\Iso(H ) such
that 7;U{v} is an independent set of H. Since v has no neighbour in {dom’(u)|u € I\X},
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we have |PN/(v,D)NI| =2 and thus PN/(v,D) NI C X. Since v ¢ Iso(H), there
is a vertex we D such that v € Ny(w). Let {uy,uz} = PNL(v,D) N[ and let G’ =
GV (GN(V (P(u2)\{v}) U {us }1]. Let u| be the unique neighbour of u; in G. It
is easy to see that the set (/\{uj,ux})U {uj} C V(G') is a (2r — 1)-independent
set of G'. Hence oy, 1(G") = oz,—1(G) — 1. Since distg:(w,u}) < r, the set D\{v} is
an r-dominating set of G’ and hence y,(G") < 7,.(G) — 1. We obtain the contradic-
tion op,_1(G’) — 7,(G’) = k + 1. Hence Iy is a maximal independent set of H and
G = f,(H,Iy). Furthermore, |V(H)| = op,—1(G) — y,(G)=k + 1, i.e. GE€ZF (k).

Now, let G = f,.(H,Iy)€ F (k). Let D = V(H)\(Iz\Iso(H)). For r =1 let
I = [Iy\Iso(H)] U [V ( f1(H,Ig))\V(H)] and for r =2 let I be the set of all end-
vertices of G. D is a y,-set and [ is a oy, -set of G. Let dom(u) and P(u) for uel
be as in Definition 2.2. Let G’ Cipg G be a minimal oy,_;y,(k)-imperfect graph. We
have to prove that G’ = G. Let

Dy = {ve D|PN;(v,D)NINV(G") # 0},
D, = {veDIPNi(v,D)NINV(G)=0} N V(G),
D3 = {v€D|PN{(v,D)NINV(G)=0}\V(G),

L= J®Nyw.DYNI NV (G)),

veD

I = J (PNG(,DYNT\V(G),

veD)

L= |J@Ngw.D)ND),
vED,

L= | J(PNG(w.DYNT),
veED;3

NV (G")

\ V(G".

Let d, = |D,| for v=1,2,3. Let i, = |[,| for v=1,2,...,5 and ij = |[{|. By the
construction of f,(H,Iy), we have 2d, < i, +i}, 2d, < i, and 2d3 < i3. By definition,
D=DiUD,UD; and (LUL)NV(G')=0.

Let uel and P(u) : u=ujuy ... u;—u; =dom(u). By Lemma 2.1, G’ has no compo-
nent that is isomorphic to a path P, for v <2r+1. Thus for 1 <i<1-2, u; € V(G')
implies u;41 € V(G"). Furthermore, if N.(u)NDNV(G')=0, then V(P(u))NV(G")=0.

Iy = [1 U PNG(v.D)

vED

and

Is =

I \ U PNG(v, D)

veD
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This implies that (J, o, V(P(u)) N V(G') = (). Furthermore, for each u € (I3 UIs) such
that V' (P(u)) N V(G") # 0 we have Nl(u) N (Dy UD,) # 0.

Let I’ be an op,_-set of G'. It is easy to see that we can assume without loss of
generality that (/; Uly) C I’. This implies 7’ N Uuellull’UL; V(P(u))=1 Uly.

For each vertex v € D,, we have |(I'\I; Uls) N[ (v)| < 1. Since distg(u, Dy) < r for
all u € I'\I, Uy, this implies that [I'\({; Uly)| < |D;| and o, (G")=|I"| < i1 +is+d>.

Let D’ be an r-dominating set of G’. We can assume without loss of generality that
D; C D' and thus y,(G") = d,. This implies that

k+1 < m1(G) =G
<ip+iy+dy—d
= (i) +i|+ir+i3+is+is)—(d| +dy+d3)
+2dy — iy +2dy — i3 — i} —d3 — is
< U= |D|—i| —ds —is
<|I|—1D|
<k+1

We deduce that if =d; =is =0, i» =2d,, i3 =2d3 =0, a,—1(G’) =i +is + d, and
Dy is a y,-set of G'.

We assume that d, > 1. Since o, 1(G’) > i; + iy, there is some uel’ N UW€12
V(P(w)). Let vel, be such that u€ V(P(v)). Since {u} UL, Uly C I’ and D, is a
yr-set of G', we have Ng(dom(v)) N, /1y, V(P(W)) € Dy UD, and Ng(dom(v)) N
(D1 UDy) # 0. Hence dom(v) ¢ Iso(H) and thus dom(v) € V(H)\1y.

If Iy\Iso(H) & U,cpur, V(P(w)), then there is some x € /y\Iso(H/) such that
Ng(x) N D ={y} for some y€ D,. Now the construction of f,.(H,I;) implies that
i >2d, + 1, which is a contradiction. Hence Iy\Iso(H) C U,/ V(P(w)) and
{dom(v)} U Iy is an independent set of H, which is a contradiction to the choice of
Iy. Hence d, =0 and thus G’ = G. This completes the proof. [J

Corollary 3.2 (I. Zverovich [15]). Let k = 0. A graph is o1y,(k)-perfect if and only
if it does not contain a graph in F (k) as an induced subgraph.

4. Claw-free ayy,(k)-perfect graphs

For / > 2 let G(/) consist of a clique of cardinality /, an independent set of cardi-
nality / and a perfect matching between these two sets. For /1,1, =2 let G(I1,/;) be
the graph with vertex set {v} U V(G(/,)) U V(G(ly)) that arises by joining the vertex
v to the non-endvertices in V' (G(l1))U V(G(ly)). See Fig. 3 for an example.

For k£ = 0 a graph G belongs to the class 4(k) if and only if G is the disjoint
union of graphs G(/1),G(l),...,G(1;),G(liv1,1i12), G(Liv3, liva)s ..., GULivj—1), liva))
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Fig. 3. G(3.3).

such that

i J
k1= (L =1+ Uip@vy + Ly — 1),

v=1 v=1

Theorem 4.1. A claw-free graph G is oyy,(k)-perfect for k = 0 if and only if it con-
tains no graph in 9(k) as an induced subgraph.

Proof. It is easy to check that ay(G(/))—72(G(1))=I—1 and o, (G(/1,12))—72(G(I1, 1))
=/, + [, — 1. This implies that no «,y,(k)-perfect graph contains a graph in %(k) as
an induced subgraph.

For the converse let G be a minimal o,y,(k)-imperfect graph. Let 7, D, dom(u) and
P(u) for uel be as in Definition 2.2. The graph G satisfies the properties given in
Lemmas 2.1 and 2.3.

Since I is an op-set of G, at most one neighbour of a vertex in D belongs to
I. Furthermore, V(P(u)) N V(P(v)) # 0 for u,v €l implies that dom(u) = dom(v),
V(P(u))NV(P(v)) ={dom(u)} and max{dists(u, dom(u)),distg(v,dom(u))} = 2. For
veD let I(v) = {u€l|dom(u) = v} and

S()=Ng(v)NI(v))U U V(Pu)\(DUI)| C Ng(v).
u€l(v)

Note that |S(v)| = 2.

If S(v) is a clique for some v € D, then let H=G—v. Since ICV(H), aa(H)=w(G).
If we S(v), then (D\{v})U {w} is a 2-dominating set of G and thus y,(H) < y2(G).
We obtain oy(H) — y2(H) = k + 1, which is a contradiction.

If Ng(v) N I(v) # 0, then |Ng(v) N I(v)] =1 and the unique vertex in Ng(v) NI(v)
has no neighbour in S(v). Since G is claw-free, this implies that S(v) is the union of
two cliques one of which consists of the unique vertex in Ng(v) N1(v).

If Ng(v)NI(v)=0 and there are vertices x, y,z € S(v) such that xy,xz € E(G), yz &
E(G) and u is the unique neighbour of x in 7, then G[{x,u, y,z}] is a claw, which is
a contradiction. Hence, also in this case, S(v) is the union of two cliques.

For i = 1,2 let v; €D be such that S(v;) = C; U C] where C; and C] are cliques.
If C; C Ng(v1) and we Ch, then let H =G — v,. Since I C V(H), aa(H) = 02(G).
Since (D\{v2})U{w} is a 2-dominating set of H, y,(H) < y,(G). We obtain a(H) —
y2(H) = k + 1, which is a contradiction. Hence, by symmetry, C; & Ng(v1), Cj &
Ng(v1), Ci & Ng(v2) and C| & Ng(v2).
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If wy € G, is adjacent to vy, then |Cy| = 2. Hence w, ¢ I(vy) and there is a ver-
tex up € I(vy) such that Ng(uy) = {Wz}. Let W3€C2\{W2}. If ws ¢ Ng(vy), then
G[{vi,wa,w3,uz}] is a claw. Hence C, C Ng(v;), which is a contradiction. By sym-
metry, v; has no neighbour in C; U Cj and v, has no neighbour in C; U Cj.

If there are vertices w; € C; for i = 1,2 such that w; and w, are adjacent, then
wi,wy € I and for i = 1,2 there are vertices u; € I(v;) such that Ng(u;) = {w;}. Since
wy &€ Ng(v1), G[{v1,wi,wp,u1}] is a claw, which is a contradiction.

If v; and v, are adjacent, then for x; € Cy and x| € Cj the graph G[{vy,v2,x,x]}] is
a claw, which is a contradiction.

This implies that no edge joins a vertex in {v;} U S(v) UI(v) to a vertex in
{v2} U S(v2) U I(vy). Hence for each veD the set {v} US(v) U I(v) is the vertex
set of a connected component of G. If S(v) =C U C’ for some veD, C ={w} and
w ¢ I, then there is some u € (v) such that Ng(u) = {w}. The graph H =G — u
satisfies op(H) — y2(H) = k + 1, which is a contradiction. This finally implies that
every component of G is isomorphic either to a graph G(/) for / > 2 or a graph
G(l1,1p) for [1,1, = 1 which implies that G € 9(k) and the proof is complete. [J

It is easy to see that a graph is o,7,(0)-perfect if and only if it does not contain
P, as an induced subgraph. For general k& though, we believe that there is no concise
description of the minimal «,y,(k)-imperfect graphs.
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