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Abstract

For some integer k¿ 0 and two graph parameters � and �, a graph G is called ��(k)-perfect,
if �(H) − �(H)6 k for every induced subgraph H of G. For r¿ 1 let �r and �r denote the
r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory
32 (1999) 303–310), I. Zverovich gave an ingenious complete characterization of �1�1(k)-perfect
graphs in terms of forbidden induced subgraphs. In this paper we study �r�s(k)-perfect graphs
for r; s¿ 1. We prove several properties of minimal �r�s(k)-imperfect graphs. Generalizing
Zverovich’s main result in (J. Graph Theory 32 (1999) 303–310), we completely character-
ize �2r−1�r(k)-perfect graphs for r¿ 1. Furthermore, we characterize claw-free �2�2(k)-perfect
graphs.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs will be 9nite, undirected and without loops or multiple edges. We will
use the standard graph-theoretical terminology (cf. e.g. [7]). Let G= (V (G); E(G)) be
a graph with vertex set V (G) and edge set E(G). The set of isolated vertices of G is
denoted by Iso(G). A clique of G is the vertex set of a complete subgraph of G. The
subgraph of G induced by a set of vertices V ′ ⊆ V (G) is denoted by G[V ′]. If H is an
induced subgraph of G, then we write H ⊆ind G. If v∈V (G), then G−v=G[V (G)\{v}].
A graph is claw-free, if it does not contain the star with three endvertices as an induced
subgraph. Let Pr denote the path of order r¿ 1. We say that the graph H arises from
G by attaching a path Pr to a vertex v∈V (G), if V (H) \ V (G) = {v2; v3; : : : ; vr}
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and E(H) \ E(G) = {vv2; v2v3; : : : ; vr−1vr}. The distance of two vertices u; v∈V (G) is
denoted by distG(u; v). For V ′ ⊆ V (G) let distG(u; V ′) = min{distG(u; v)|v∈V ′}.

Let r¿ 1. For u∈V (G) let Nr
G(u) = {v∈V (G)|v �= u; distG(u; v)6 r}. The neigh-

bourhood and degree of u∈V (G) are denoted by NG(u)=N 1
G(u) and dG(u)= |NG(u)|,

respectively. A set I ⊆ V (G) is an r-independent set of G, if distG(u; v)¿ r + 1 for
all u; v∈ I . The r-independence number �r(G) of G is the maximum cardinality of an
r-independent set of G. An �r-set of G is an r-independent set of cardinality �r(G).

A set D ⊆ V (G) is an r-dominating set of G, if for each vertex u∈V (G) \D there
is some vertex v∈D such that distG(u; v)6 r. The r-domination number �r(G) of G is
the minimum cardinality of an r-dominating set of G. A �r-set of G is an r-dominating
set of cardinality �r(G). For u∈D ⊆ V (G) let

PNr
G(u; D) = (Nr

G(u) ∪ {u}) \
⋃

v∈D\{u}
Nr
G(v):

In [15], I. Zverovich proposed the following de9nition of classes of ‘perfect’ graphs.
Let k¿ 0 and � and � be two graph parameters. A graph G is called ��(k)-perfect,
if �(H)− �(H)6 k for all H ⊆ind G. A graph G is a minimal ��(k)-imperfect graph,
if �(G) − �(G)¿k but �(H) − �(H)6 k for each H ⊆ind G with H �= G. There
is an extensive literature about ��(0)-perfect graphs for appropriate choices of � and
�. Well-studied examples of ��(0)-perfect graphs involve the notions of independence
and domination (cf. e.g. [1,2,5,6,8–14,16,17]).
The main goal in the study of ��(k)-perfect graphs is a characterization in terms of

a minimal list of forbidden induced subgraphs. In many cases such characterizations
are either trivial (as for �1�1(0)-perfect graphs) or hard to 9nd (cf. e.g. [16]).
In [15], I. Zverovich was able to give a surprising and ingenious characterization of

�1�1(k)-perfect graphs. We will generalize his result by studying �r�s-perfect graphs for
r; s¿ 1. If r+1¿ 2s, then |Ns

G(u)∩ I |6 1 for each u∈V (G) and every r-independent
set I . Hence �r(G)6 �s(G) and all graphs are �r�s(k)-perfect.

Many choices of the parameters r, s and k lead to minimal �r�s(k)-imperfect graphs
that do not have a simple structure. Therefore, in order to obtain results as elegant as
in [15] we have to 9nd the ‘good’ choices for r, s and k. Two natural candidates for
the generalization of �1�1(k)-perfect graphs are the classes of �2r−1�r(k)-perfect graphs
and �r�r(k)-perfect graphs.
In Section 2 we prove several properties of minimal �r�s(k)-imperfect graphs. Gener-

alizing Zverovich’s main result in [15], we completely characterize �2r−1�r(k)-perfect
graphs for r¿ 1 in Section 3. Furthermore, in Section 4, we characterize claw-free
�2�2(k)-perfect graphs. The reader that is interested in further results on ��(k)-perfect
graphs for k¿ 1 is referred to [3,4].

2. Properties of minimal �r�s(k)-imperfect graphs

Lemma 2.1. Let G be a minimal �r�s(k)-imperfect graph for r; s¿ 1, r+16 2s and
k¿ 0. Let I be an �r-set and let D be a �s-set of G. Then |PNs

G(v; D) ∩ I |¿ 2 for
all v∈D. Furthermore, if r¿ s, then D ∩ I = ∅.
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Proof. If |PNs
G(v; D)∩ I |6 1 for some v∈D, then let H =G[V (G) \PNs

G(v; D)] �= G.
Since I \PNs

G(v; D) ⊆ V (H), �r(H)¿ �r(G)− 1. Since D \ {v} is an s-dominating set
of H , �s(H)6 �s(G)− 1. Hence �r(H)− �s(H)¿ �r(G)− �s(G)¿ k + 1, which is a
contradiction. We obtain |PNs

G(v; D) ∩ I |¿ 2 for all v∈D.
Now let r¿ s. We assume that there is some u∈D ∩ I . Let v∈PNs

G(u; D) ∩ I with
v �= u. We have r + 16 distG(u; v)6 s, which is a contradiction.

We will now consider certain paths which allow us to study the structure
of the minimal imperfect graphs. For further reference we give the following
de9nition.

De�nition 2.2. Let G be a minimal �r�s(k)-imperfect graph for r; s¿ 1, r + 16 2s
and k¿ 0. Let I be an �r-set and let D be a �s-set of G.
For each u∈ I let dom(u)∈D be such that distG(u; dom(u)) = distG(u; D) and let

P(u) be a shortest path from u to dom(u). (Note that the choice of dom(u) and P(u)
may not be unique.)

Lemma 2.3. Let r¿ s¿ 1 with r+16 2s and k¿ 0. Let G, I , D, dom(u) and P(u)
for u∈ I be as in De7nition 2.2. Then

(i) V (G) =
⋃

u∈I V (P(u)).
(ii) If NG(u) ∩ V (P(v)) �= ∅ for u; v∈ I with u �= v, then r = s, NG(u) ∩ V (P(v)) =

{dom(v)} and distG(v; dom(v)) = s.
(iii) If dG(u)¿ 2 for some u∈ I , then r = s and NG(u) ⊆ D.
(iv) �r(G)− �s(G) = k + 1.
(v) distG(u; I\{u}) = r + 1 for u∈ I .

Proof. (i): Let H=G[
⋃

u∈I V (P(u))]. Since I ⊆ V (H), �r(H)¿ �r(G). Since V (P(u))
⊆ Ns

G(dom(u)) ∪ {dom(u)} for u∈ I , �s(H)6 �s(G). Hence �r(H) − �s(H)¿ k + 1.
Since G is minimal �r�s(k)-imperfect, G = H .
(ii): Let NG(u)∩V (P(v)) �= ∅ for u; v∈ I with u �= v. We have r+16 distG(u; v)6

distG(dom(v); v)+ 16 s+16 r+1. Hence we have equality throughout this chain of
inequalities which implies all desired properties.
(iii): If dG(u)¿ 2 for some u∈ I , then there is some v∈ I with v �= u such

that NG(u) ∩ V (P(v)) �= ∅. By (ii), r = s and NG(u) ∩ V (P(v)) = {dom(v)}. Hence
16 distG(u; dom(u))6 distG(u; dom(v)) = 1. This implies that NG(u) ⊆ D.

(iv): If �r(G) − �s(G)¿ k + 2, then let u∈PNs
G(v) ∩ I for some v∈D. By (iii),

dG(u) = 1. Let H = G − u. Clearly, �r(H)¿ �r(G) − 1 and �s(H)6 �s(G). Hence
�r(H)− �s(H)¿ k + 1, which is a contradiction.
(v): If dG(u)=1 for some u∈ I and distG(u; I \{u})¿ r+2, then let v∈NG(u) and

H=G−u. Clearly, �r(H)¿ |(I \{u})∪{v}|=�r(G) and �s(H)6 �s(G). We obtain the
same contradiction as above. Hence, by (iii), we can assume that dG(u)¿ 2, r= s and
NG(u) ⊆ D. If v∈PNs

G(dom(u); D)∩I with u �= v, then r+16 distG(u; v)6 distG(dom
(u); v) + 16 s+ 1 = r + 1. This implies that distG(u; I \ {u}) = r + 1.
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Fig. 1.

Before we come to the next section, we derive some corollaries of the above
properties.

Corollary 2.4. Let G be a minimal �r�s(k)-imperfect graph for r¿ s¿ 1 with r +
16 2s and k¿ 0. Then

(i) �r(G)¿ 2�s(G).
(ii) �s(G)6 k + 1.
(iii) |V (G)|6 (k+1)(2r+1), i.e. there are only 7nitely many non-isomorphic minimal

�r�s(k)-imperfect graphs.

Proof. (i): This immediately follows from Lemma 2.1.
(ii): By Lemma 2.3(iv), k + 1 = �r(G)− �s(G)¿ 2�s(G)− �s(G) = �s(G).
(iii): By Lemma 2.3(i) and (iv), we have |V (G)|6 s · �r(G) + �s(G) = s · (k + 1 +

�s(G)) + �s(G)6 s · (k + 1 + k + 1) + k + 1 = (k + 1)(2s+ 1).

By Corollary 2.4, there are only 9nitely many non-isomorphic minimal �r�s(k)-
imperfect graphs and all have order at most (k + 1)(2s+ 1). Hence for any 9xed r, s
and k as in Corollary 2.4, it is a ‘7nite’ problem to 9nd all minimal �r�s(k)-imperfect
graphs. Once these 9nitely many graphs have been found, the characterization of the
�r�s(k)-perfect graphs immediately follows. It is e.g. straightforward to check that
the three graphs in Fig. 1 are all �2�2(1)-imperfect graphs. Therefore a graph is
�2�2(1)-perfect graphs if and only if it does not contain G1, G2 or G3 as an induced
subgraph.

3. �2r−1 �r(k)-perfect graphs

Let r¿ 1. Let H be a graph and let IH be a maximal independent set of H . Let
D=V (H)\(IH \ Iso(H)). The graph fr(H; IH ) arises from H by attaching exactly two
paths Pr+1 to each vertex in D and exactly one path Pr to each vertex in V (H)\D.
See Fig. 2 for an example.
Since every (2r − 1)-independent set I of fr(H; IH ) contains at most one vertex

from each of the attached paths, �2r−1(fr(H; IH ))6 2|D|+ |IH\Iso(H)|. On the other
hand, for r=1 the set [IH\Iso(H)]∪ [V (f1(H; IH ))\V (H)] and for r¿ 2 the set of all
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Fig. 2.

endvertices of fr(H; IH ) is a (2r−1)-independent set of cardinality 2|D|+ |IH\Iso(H)|.
Hence �2r−1(fr(H; IH )) = 2|D|+ |IH\Iso(H)|.
Since two paths Pr+1 have been attached to each vertex in D, every �r-set of

fr(H; IH ) contains the set D. On the other hand D is a �r-set of fr(H; IH ). Hence
�r(fr(H; IH )) = |D|. Together, we obtain

�2r−1(fr(H; IH ))− �r(fr(H; IH )) = |D|+ |IH\Iso(H)|= |V (H)|:
For k¿ 0 let

Fr(k) = {fr(H; I)|I is a maximal independent set of H and |V (H)|= k + 1}:
The following result generalizes Zverovich’s main result from [15]. Our proof works
along the lines of [15] dealing with several additional complications.

Theorem 3.1. Let r¿ 1 and k¿ 0. A graph is �2r−1�r(k)-perfect if and only if it
contains no graph in Fr(k) as an induced subgraph.

Proof. We will 9rst prove that every minimal �2r−1�r(k)-imperfect graph belongs to
Fr(k). Then we prove that every graph in Fr(k) is also a minimal �2r−1�r(k)-imperfect
graph. These two facts establish the desired result.
Let G be a minimal �2r−1�r(k)-imperfect graph. Let I be an �2r−1-set and let D be

a �r-set of G. Note that G has the properties stated in Lemmas 2.1 and 2.3. Hence
D ∩ I = ∅ and |PNr

G(v; D) ∩ I |¿ 2 for every v∈D. For u∈ I let dom(u) and P(u) be
as in De9nition 2.2.
Let u∈ I . Let u′ ∈PNr

G(dom(u); D) ∩ I with u′ �= u. We have (2r − 1) + 1 =
2r6 distG(u; u′)6 distG(u; dom(u)) + distG(dom(u); u′)6 r + r = 2r. Hence, distG(u;
dom(u)) = r for all u∈ I and distG(u; u′) = 2r for u; u′ ∈ I with u �= u′ and dom(u) =
dom(u′).
For u∈ I let dom′(u) be the unique neighbour of dom(u) in V (P(u)). Since I is

(2r − 1)-independent, we obtain NG(v) ⊆ V (P(u)) for all u∈ I and v∈V (P(u))\
{dom′(u); dom(u)}. Furthermore, NG(dom

′(u))\V (P(u)) ⊆ D for all u∈ I .
Let the set X contain two vertices of PNr

G(v; D)∩ I for each v∈D. Let H =G[D ∪
{dom′(u)|u∈ I\X }] and IH=Iso(H)∪{dom′(u)|u∈ I\X }. The set IH is an independent
set of H and the set D is a dominating set of H .
If IH is not a maximal independent set of H , then there is a vertex v∈D\Iso(H) such

that IH∪{v} is an independent set of H . Since v has no neighbour in {dom′(u)|u∈ I\X },
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we have |PNr
G(v; D) ∩ I | = 2 and thus PNr

G(v; D) ∩ I ⊆ X . Since v �∈ Iso(H), there
is a vertex w∈D such that v∈NH (w). Let {u1; u2} = PNr

G(v; D) ∩ I and let G′ =
G[V (G)\[(V (P(u2)\{v}) ∪ {u1}]]. Let u′1 be the unique neighbour of u1 in G. It
is easy to see that the set (I\{u1; u2}) ∪ {u′1} ⊆ V (G′) is a (2r − 1)-independent
set of G′. Hence �2r−1(G′)¿ �2r−1(G) − 1. Since distG′(w; u′1)6 r, the set D\{v} is
an r-dominating set of G′ and hence �r(G′)6 �r(G) − 1. We obtain the contradic-
tion �2r−1(G′) − �r(G′)¿ k + 1. Hence IH is a maximal independent set of H and
G = fr(H; IH ). Furthermore, |V (H)|= �2r−1(G)− �r(G) = k + 1, i.e. G ∈Fr(k).
Now, let G = fr(H; IH )∈Fr(k). Let D = V (H)\(IH\Iso(H)). For r = 1 let

I = [IH\Iso(H)] ∪ [V (f1(H; IH ))\V (H)] and for r¿ 2 let I be the set of all end-
vertices of G. D is a �r-set and I is a �2r−1-set of G. Let dom(u) and P(u) for u∈ I
be as in De9nition 2.2. Let G′ ⊆ind G be a minimal �2r−1�r(k)-imperfect graph. We
have to prove that G′ = G. Let

D1 = {v∈D|PNr
G(v; D) ∩ I ∩ V (G′) �= ∅};

D2 = {v∈D|PNr
G(v; D) ∩ I ∩ V (G′) = ∅} ∩ V (G′);

D3 = {v∈D|PNr
G(v; D) ∩ I ∩ V (G′) = ∅}\V (G′);

I1 =
⋃
v∈D1

(PNr
G(v; D) ∩ I ∩ V (G′));

I ′1 =
⋃
v∈D1

(PNr
G(v; D) ∩ I)\V (G′);

I2 =
⋃
v∈D2

(PNr
G(v; D) ∩ I);

I3 =
⋃
v∈D3

(PNr
G(v; D) ∩ I);

I4 =

[
I

∖⋃
v∈D

PNr
G(v; D)

]
∩ V (G′)

and

I5 =

[
I

∖⋃
v∈D

PNr
G(v; D)

]∖
V (G′):

Let d� = |D�| for � = 1; 2; 3. Let i� = |I�| for � = 1; 2; : : : ; 5 and i′1 = |I ′1|. By the
construction of fr(H; IH ), we have 2d16 i1 + i′1, 2d26 i2 and 2d36 i3. By de9nition,
D = D1 ∪ D2 ∪ D3 and (I2 ∪ I3) ∩ V (G′) = ∅.
Let u∈ I and P(u) : u= u1u2 : : : ul−1ul=dom(u). By Lemma 2.1, G′ has no compo-

nent that is isomorphic to a path P� for �¡ 2r+1. Thus for 16 i6 l− 2, ui ∈V (G′)
implies ui+1 ∈V (G′). Furthermore, if Nr

G(u)∩D∩V (G′)=∅, then V (P(u))∩V (G′)=∅.
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This implies that
⋃

u∈I3 V (P(u)) ∩ V (G′) = ∅. Furthermore, for each u∈ (I4 ∪ I5) such
that V (P(u)) ∩ V (G′) �= ∅ we have Nr

G(u) ∩ (D1 ∪ D2) �= ∅.
Let I ′ be an �2r−1-set of G′. It is easy to see that we can assume without loss of

generality that (I1 ∪ I4) ⊆ I ′. This implies I ′ ∩⋃
u∈I1∪I ′1∪I4 V (P(u)) = I1 ∪ I4.

For each vertex v∈D2, we have |(I ′\I1∪ I4)∩Nr
G(v)|6 1. Since distG(u; D2)6 r for

all u∈ I ′\I1∪I4, this implies that |I ′\(I1∪I4)|6 |D2| and �2r−1(G′)= |I ′|6 i1+ i4+d2.
Let D′ be an r-dominating set of G′. We can assume without loss of generality that

D1 ⊆ D′ and thus �r(G′)¿d1. This implies that

k + 16 �2r−1(G′)− �r(G′)

6 i1 + i4 + d2 − d1

= (i1 + i′1 + i2 + i3 + i4 + i5)− (d1 + d2 + d3)

+2d2 − i2 + 2d3 − i3 − i′1 − d3 − i5

6 |I | − |D| − i′1 − d3 − i5

6 |I | − |D|
6 k + 1:

We deduce that i′1 = d3 = i5 = 0, i2 = 2d2, i3 = 2d3 = 0, �2r−1(G′) = i1 + i4 + d2 and
D1 is a �r-set of G′.
We assume that d2¿ 1. Since �2r−1(G′)¿i1 + i4, there is some u∈ I ′ ∩ ⋃

w∈I2
V (P(w)). Let v∈ I2 be such that u∈V (P(v)). Since {u} ∪ I1 ∪ I4 ⊆ I ′ and D1 is a
�r-set of G′, we have NG(dom(v)) ∩⋃

w∈I1∪I4 V (P(w)) ⊆ D1 ∪ D2 and NG(dom(v)) ∩
(D1 ∪ D2) �= ∅. Hence dom(v) �∈ Iso(H) and thus dom(v)∈V (H)\IH .
If IH\Iso(H) *

⋃
w∈I1∪I4 V (P(w)), then there is some x∈ IH\Iso(H) such that

NG(x) ∩ D = {y} for some y∈D2. Now the construction of fr(H; IH ) implies that
i2¿ 2d2 + 1, which is a contradiction. Hence IH\Iso(H) ⊆ ⋃

w∈I1∪I4 V (P(w)) and
{dom(v)} ∪ IH is an independent set of H , which is a contradiction to the choice of
IH . Hence d2 = 0 and thus G′ = G. This completes the proof.

Corollary 3.2 (I. Zverovich [15]). Let k¿ 0. A graph is �1�1(k)-perfect if and only
if it does not contain a graph in F1(k) as an induced subgraph.

4. Claw-free �2�2(k)-perfect graphs

For l¿ 2 let G(l) consist of a clique of cardinality l, an independent set of cardi-
nality l and a perfect matching between these two sets. For l1; l2¿ 2 let G(l1; l2) be
the graph with vertex set {v} ∪ V (G(l1)) ∪ V (G(l2)) that arises by joining the vertex
v to the non-endvertices in V (G(l1)) ∪ V (G(l2)). See Fig. 3 for an example.

For k¿ 0 a graph G belongs to the class G(k) if and only if G is the disjoint
union of graphs G(l1); G(l2); : : : ; G(li); G(li+1; li+2); G(li+3; li+4); : : : ; G(li+(2j−1); li+2j)
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Fig. 3. G(3,3).

such that

k + 1 =
i∑

�=1

(l� − 1) +
j∑

�=1

(li+(2�−1) + li+2� − 1):

Theorem 4.1. A claw-free graph G is �2�2(k)-perfect for k¿ 0 if and only if it con-
tains no graph in G(k) as an induced subgraph.

Proof. It is easy to check that �2(G(l))−�2(G(l))=l−1 and �2(G(l1; l2))−�2(G(l1; l2))
= l1 + l2 − 1. This implies that no �2�2(k)-perfect graph contains a graph in G(k) as
an induced subgraph.
For the converse let G be a minimal �2�2(k)-imperfect graph. Let I , D, dom(u) and

P(u) for u∈ I be as in De9nition 2.2. The graph G satis9es the properties given in
Lemmas 2.1 and 2.3.
Since I is an �2-set of G, at most one neighbour of a vertex in D belongs to

I . Furthermore, V (P(u)) ∩ V (P(v)) �= ∅ for u; v∈ I implies that dom(u) = dom(v),
V (P(u)) ∩ V (P(v)) = {dom(u)} and max{distG(u; dom(u)); distG(v; dom(u))}= 2. For
v∈D let I(v) = {u∈ I |dom(u) = v} and

S(v) = (NG(v) ∩ I(v)) ∪

 ⋃
u∈I(v)

V (P(u))\(D ∪ I)


 ⊆ NG(v):

Note that |S(v)|¿ 2.
If S(v) is a clique for some v∈D, then let H=G−v. Since I⊆V (H), �2(H)¿�2(G).

If w∈ S(v), then (D\{v}) ∪ {w} is a 2-dominating set of G and thus �2(H)6 �2(G).
We obtain �2(H)− �2(H)¿ k + 1, which is a contradiction.
If NG(v) ∩ I(v) �= ∅, then |NG(v) ∩ I(v)|= 1 and the unique vertex in NG(v) ∩ I(v)

has no neighbour in S(v). Since G is claw-free, this implies that S(v) is the union of
two cliques one of which consists of the unique vertex in NG(v) ∩ I(v).

If NG(v)∩ I(v)= ∅ and there are vertices x; y; z ∈ S(v) such that xy; xz ∈E(G), yz �∈
E(G) and u is the unique neighbour of x in I , then G[{x; u; y; z}] is a claw, which is
a contradiction. Hence, also in this case, S(v) is the union of two cliques.
For i = 1; 2 let vi ∈D be such that S(vi) = Ci ∪ C′

i where Ci and C′
i are cliques.

If C2 ⊆ NG(v1) and w∈C′
2, then let H = G − v2. Since I ⊆ V (H), �2(H)¿ �2(G).

Since (D\{v2})∪{w} is a 2-dominating set of H , �2(H)6 �2(G). We obtain �2(H)−
�2(H)¿ k + 1, which is a contradiction. Hence, by symmetry, C2 * NG(v1), C′

2 *
NG(v1), C1 * NG(v2) and C′

1 * NG(v2).
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If w2 ∈C2 is adjacent to v1, then |C2|¿ 2. Hence w2 �∈ I(v2) and there is a ver-
tex u2 ∈ I(v2) such that NG(u2) = {w2}. Let w3 ∈C2\{w2}. If w3 �∈ NG(v1), then
G[{v1; w2; w3; u2}] is a claw. Hence C2 ⊆ NG(v1), which is a contradiction. By sym-
metry, v1 has no neighbour in C2 ∪ C′

2 and v2 has no neighbour in C1 ∪ C′
1.

If there are vertices wi ∈Ci for i = 1; 2 such that w1 and w2 are adjacent, then
w1; w2 �∈ I and for i = 1; 2 there are vertices ui ∈ I(vi) such that NG(ui) = {wi}. Since
w2 �∈ NG(v1), G[{v1; w1; w2; u1}] is a claw, which is a contradiction.
If v1 and v2 are adjacent, then for x1 ∈C1 and x′1 ∈C′

1 the graph G[{v1; v2; x1; x′1}] is
a claw, which is a contradiction.
This implies that no edge joins a vertex in {v1} ∪ S(v1) ∪ I(v1) to a vertex in

{v2} ∪ S(v2) ∪ I(v2). Hence for each v∈D the set {v} ∪ S(v) ∪ I(v) is the vertex
set of a connected component of G. If S(v) = C ∪ C′ for some v∈D, C = {w} and
w �∈ I , then there is some u∈ I(v) such that NG(u) = {w}. The graph H = G − u
satis9es �2(H) − �2(H)¿ k + 1, which is a contradiction. This 9nally implies that
every component of G is isomorphic either to a graph G(l) for l¿ 2 or a graph
G(l1; l2) for l1; l2¿ 1 which implies that G ∈G(k) and the proof is complete.

It is easy to see that a graph is �r�r(0)-perfect if and only if it does not contain
Pr+2 as an induced subgraph. For general k though, we believe that there is no concise
description of the minimal �r�r(k)-imperfect graphs.
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