

Available online at www.sciencedirect.com

Discrete Mathematics 270 (2003) 241-250

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

On $\alpha_r \gamma_s(k)$ -perfect graphs

Dieter Rautenbach*, Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany

Received 10 October 2001; received in revised form 24 April 2002; accepted 21 October 2002

Abstract

For some integer $k \ge 0$ and two graph parameters π and τ , a graph *G* is called $\pi\tau(k)$ -perfect, if $\pi(H) - \tau(H) \le k$ for every induced subgraph *H* of *G*. For $r \ge 1$ let α_r and γ_r denote the *r*-(distance)-independence and *r*-(distance)-domination number, respectively. In (J. Graph Theory 32 (1999) 303–310), I. Zverovich gave an ingenious complete characterization of $\alpha_1\gamma_1(k)$ -perfect graphs in terms of forbidden induced subgraphs. In this paper we study $\alpha_r\gamma_s(k)$ -perfect graphs for $r, s \ge 1$. We prove several properties of minimal $\alpha_r\gamma_s(k)$ -imperfect graphs. Generalizing Zverovich's main result in (J. Graph Theory 32 (1999) 303–310), we completely characterize $\alpha_{2r-1}\gamma_r(k)$ -perfect graphs for $r \ge 1$. Furthermore, we characterize claw-free $\alpha_2\gamma_2(k)$ -perfect graphs.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Domination perfect graphs; Domination; Independence; Distance domination number; Distance independence number

1. Introduction

All graphs will be finite, undirected and without loops or multiple edges. We will use the standard graph-theoretical terminology (cf. e.g. [7]). Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The set of isolated vertices of G is denoted by Iso(G). A clique of G is the vertex set of a complete subgraph of G. The subgraph of G induced by a set of vertices $V' \subseteq V(G)$ is denoted by G[V']. If H is an induced subgraph of G, then we write $H \subseteq_{ind} G$. If $v \in V(G)$, then $G-v=G[V(G)\setminus\{v\}]$. A graph is *claw-free*, if it does not contain the star with three endvertices as an induced subgraph. Let P_r denote the path of order $r \ge 1$. We say that *the graph* H arises from G by attaching a path P_r to a vertex $v \in V(G)$, if $V(H) \setminus V(G) = \{v_2, v_3, \dots, v_r\}$

^{*} Corresponding author. Tel.: +49-241-80-94995; fax: +49-241-80-92136.

E-mail addresses: rauten@math2.rwth-aachen.de (D. Rautenbach), volkm@math2.rwth-aachen.de

⁽L. Volkmann).

⁰⁰¹²⁻³⁶⁵X/03/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0012-365X(02)00836-1

and $E(H) \setminus E(G) = \{vv_2, v_2v_3, \dots, v_{r-1}v_r\}$. The distance of two vertices $u, v \in V(G)$ is denoted by dist_G(u, v). For $V' \subseteq V(G)$ let dist_G(u, V') = min{dist_G(u, v) | v \in V'}.

Let $r \ge 1$. For $u \in V(G)$ let $N_G^r(u) = \{v \in V(G) | v \neq u, \operatorname{dist}_G(u, v) \le r\}$. The neighbourhood and degree of $u \in V(G)$ are denoted by $N_G(u) = N_G^1(u)$ and $d_G(u) = |N_G(u)|$, respectively. A set $I \subseteq V(G)$ is an *r*-independent set of G, if $\operatorname{dist}_G(u, v) \ge r + 1$ for all $u, v \in I$. The *r*-independence number $\alpha_r(G)$ of G is the maximum cardinality of an *r*-independent set of G. An α_r -set of G is an *r*-independent set of cardinality $\alpha_r(G)$.

A set $D \subseteq V(G)$ is an *r*-dominating set of G, if for each vertex $u \in V(G) \setminus D$ there is some vertex $v \in D$ such that $dist_G(u, v) \leq r$. The *r*-domination number $\gamma_r(G)$ of G is the minimum cardinality of an *r*-dominating set of G. A γ_r -set of G is an *r*-dominating set of cardinality $\gamma_r(G)$. For $u \in D \subseteq V(G)$ let

$$PN_G^r(u,D) = (N_G^r(u) \cup \{u\}) \setminus \bigcup_{v \in D \setminus \{u\}} N_G^r(v).$$

In [15], I. Zverovich proposed the following definition of classes of 'perfect' graphs. Let $k \ge 0$ and π and τ be two graph parameters. A graph G is called $\pi\tau(k)$ -perfect, if $\pi(H) - \tau(H) \le k$ for all $H \subseteq_{ind} G$. A graph G is a minimal $\pi\tau(k)$ -imperfect graph, if $\pi(G) - \tau(G) > k$ but $\pi(H) - \tau(H) \le k$ for each $H \subseteq_{ind} G$ with $H \ne G$. There is an extensive literature about $\pi\tau(0)$ -perfect graphs for appropriate choices of π and τ . Well-studied examples of $\pi\tau(0)$ -perfect graphs involve the notions of independence and domination (cf. e.g. [1,2,5,6,8–14,16,17]).

The main goal in the study of $\pi\tau(k)$ -perfect graphs is a characterization in terms of a minimal list of forbidden induced subgraphs. In many cases such characterizations are either trivial (as for $\alpha_1\gamma_1(0)$ -perfect graphs) or hard to find (cf. e.g. [16]).

In [15], I. Zverovich was able to give a surprising and ingenious characterization of $\alpha_1\gamma_1(k)$ -perfect graphs. We will generalize his result by studying $\alpha_r\gamma_s$ -perfect graphs for $r, s \ge 1$. If r+1 > 2s, then $|N_G^s(u) \cap I| \le 1$ for each $u \in V(G)$ and every *r*-independent set *I*. Hence $\alpha_r(G) \le \gamma_s(G)$ and all graphs are $\alpha_r\gamma_s(k)$ -perfect.

Many choices of the parameters r, s and k lead to minimal $\alpha_r \gamma_s(k)$ -imperfect graphs that do not have a simple structure. Therefore, in order to obtain results as elegant as in [15] we have to find the 'good' choices for r, s and k. Two natural candidates for the generalization of $\alpha_1\gamma_1(k)$ -perfect graphs are the classes of $\alpha_{2r-1}\gamma_r(k)$ -perfect graphs and $\alpha_r\gamma_r(k)$ -perfect graphs.

In Section 2 we prove several properties of minimal $\alpha_r \gamma_s(k)$ -imperfect graphs. Generalizing Zverovich's main result in [15], we completely characterize $\alpha_{2r-1}\gamma_r(k)$ -perfect graphs for $r \ge 1$ in Section 3. Furthermore, in Section 4, we characterize claw-free $\alpha_2 \gamma_2(k)$ -perfect graphs. The reader that is interested in further results on $\pi \tau(k)$ -perfect graphs for $k \ge 1$ is referred to [3,4].

2. Properties of minimal $\alpha_r \gamma_s(k)$ -imperfect graphs

Lemma 2.1. Let G be a minimal $\alpha_r \gamma_s(k)$ -imperfect graph for $r, s \ge 1$, $r+1 \le 2s$ and $k \ge 0$. Let I be an α_r -set and let D be a γ_s -set of G. Then $|PN_G^s(v,D) \cap I| \ge 2$ for all $v \in D$. Furthermore, if $r \ge s$, then $D \cap I = \emptyset$.

Proof. If $|PN_G^s(v,D) \cap I| \leq 1$ for some $v \in D$, then let $H = G[V(G) \setminus PN_G^s(v,D)] \neq G$. Since $I \setminus PN_G^s(v,D) \subseteq V(H)$, $\alpha_r(H) \geq \alpha_r(G) - 1$. Since $D \setminus \{v\}$ is an *s*-dominating set of H, $\gamma_s(H) \leq \gamma_s(G) - 1$. Hence $\alpha_r(H) - \gamma_s(H) \geq \alpha_r(G) - \gamma_s(G) \geq k + 1$, which is a contradiction. We obtain $|PN_G^s(v,D) \cap I| \geq 2$ for all $v \in D$.

Now let $r \ge s$. We assume that there is some $u \in D \cap I$. Let $v \in PN_G^s(u,D) \cap I$ with $v \ne u$. We have $r + 1 \le \text{dist}_G(u,v) \le s$, which is a contradiction. \Box

We will now consider certain paths which allow us to study the structure of the minimal imperfect graphs. For further reference we give the following definition.

Definition 2.2. Let G be a minimal $\alpha_r \gamma_s(k)$ -imperfect graph for $r, s \ge 1$, $r + 1 \le 2s$ and $k \ge 0$. Let I be an α_r -set and let D be a γ_s -set of G.

For each $u \in I$ let dom $(u) \in D$ be such that dist_G $(u, dom(u)) = dist_G(u, D)$ and let P(u) be a shortest path from u to dom(u). (Note that the choice of dom(u) and P(u) may not be unique.)

Lemma 2.3. Let $r \ge s \ge 1$ with $r+1 \le 2s$ and $k \ge 0$. Let G, I, D, dom(u) and P(u) for $u \in I$ be as in Definition 2.2. Then

- (i) $V(G) = \bigcup_{u \in I} V(P(u)).$
- (ii) If $N_G(u) \cap V(P(v)) \neq \emptyset$ for $u, v \in I$ with $u \neq v$, then r = s, $N_G(u) \cap V(P(v)) = \{\text{dom}(v)\}$ and $\text{dist}_G(v, \text{dom}(v)) = s$.
- (iii) If $d_G(u) \ge 2$ for some $u \in I$, then r = s and $N_G(u) \subseteq D$.
- (iv) $\alpha_r(G) \gamma_s(G) = k + 1$.
- (v) dist_G $(u, I \setminus \{u\}) = r + 1$ for $u \in I$.

Proof. (i): Let $H = G[\bigcup_{u \in I} V(P(u))]$. Since $I \subseteq V(H)$, $\alpha_r(H) \ge \alpha_r(G)$. Since $V(P(u)) \subseteq N_G^s(\operatorname{dom}(u)) \cup \{\operatorname{dom}(u)\}$ for $u \in I$, $\gamma_s(H) \le \gamma_s(G)$. Hence $\alpha_r(H) - \gamma_s(H) \ge k + 1$. Since G is minimal $\alpha_r \gamma_s(k)$ -imperfect, G = H.

(ii): Let $N_G(u) \cap V(P(v)) \neq \emptyset$ for $u, v \in I$ with $u \neq v$. We have $r+1 \leq \text{dist}_G(u, v) \leq \text{dist}_G(\text{dom}(v), v) + 1 \leq s+1 \leq r+1$. Hence we have equality throughout this chain of inequalities which implies all desired properties.

(iii): If $d_G(u) \ge 2$ for some $u \in I$, then there is some $v \in I$ with $v \ne u$ such that $N_G(u) \cap V(P(v)) \ne \emptyset$. By (ii), r = s and $N_G(u) \cap V(P(v)) = \{\text{dom}(v)\}$. Hence $1 \le \text{dist}_G(u, \text{dom}(u)) \le \text{dist}_G(u, \text{dom}(v)) = 1$. This implies that $N_G(u) \subseteq D$.

(iv): If $\alpha_r(G) - \gamma_s(G) \ge k + 2$, then let $u \in PN_G^s(v) \cap I$ for some $v \in D$. By (iii), $d_G(u) = 1$. Let H = G - u. Clearly, $\alpha_r(H) \ge \alpha_r(G) - 1$ and $\gamma_s(H) \le \gamma_s(G)$. Hence $\alpha_r(H) - \gamma_s(H) \ge k + 1$, which is a contradiction.

(v): If $d_G(u) = 1$ for some $u \in I$ and $\operatorname{dist}_G(u, I \setminus \{u\}) \ge r+2$, then let $v \in N_G(u)$ and H = G - u. Clearly, $\alpha_r(H) \ge |(I \setminus \{u\}) \cup \{v\}| = \alpha_r(G)$ and $\gamma_s(H) \le \gamma_s(G)$. We obtain the same contradiction as above. Hence, by (iii), we can assume that $d_G(u) \ge 2$, r = s and $N_G(u) \subseteq D$. If $v \in PN_G^s(\operatorname{dom}(u), D) \cap I$ with $u \ne v$, then $r+1 \le \operatorname{dist}_G(u, v) \le \operatorname{dist}_G(\operatorname{dom}(u), v) + 1 \le s + 1 = r + 1$. This implies that $\operatorname{dist}_G(u, I \setminus \{u\}) = r + 1$. \Box

Before we come to the next section, we derive some corollaries of the above properties.

Corollary 2.4. Let G be a minimal $\alpha_r \gamma_s(k)$ -imperfect graph for $r \ge s \ge 1$ with $r + 1 \le 2s$ and $k \ge 0$. Then

- (i) $\alpha_r(G) \ge 2\gamma_s(G)$.
- (ii) $\gamma_s(G) \leq k+1$.
- (iii) $|V(G)| \leq (k+1)(2r+1)$, *i.e. there are only finitely many non-isomorphic minimal* $\alpha_r \gamma_s(k)$ -imperfect graphs.

Proof. (i): This immediately follows from Lemma 2.1.

(ii): By Lemma 2.3(iv), $k + 1 = \alpha_r(G) - \gamma_s(G) \ge 2\gamma_s(G) - \gamma_s(G) = \gamma_s(G)$.

(iii): By Lemma 2.3(i) and (iv), we have $|V(G)| \leq s \cdot \alpha_r(G) + \gamma_s(G) = s \cdot (k+1+\gamma_s(G)) + \gamma_s(G) \leq s \cdot (k+1+k+1) + k+1 = (k+1)(2s+1).$

By Corollary 2.4, there are only finitely many non-isomorphic minimal $\alpha_r \gamma_s(k)$ imperfect graphs and all have order at most (k + 1)(2s + 1). Hence for any fixed r, sand k as in Corollary 2.4, it is a 'finite' problem to find all minimal $\alpha_r \gamma_s(k)$ -imperfect graphs. Once these finitely many graphs have been found, the characterization of the $\alpha_r \gamma_s(k)$ -perfect graphs immediately follows. It is e.g. straightforward to check that the three graphs in Fig. 1 are all $\alpha_2 \gamma_2(1)$ -imperfect graphs. Therefore a graph is $\alpha_2 \gamma_2(1)$ -perfect graphs if and only if it does not contain G_1 , G_2 or G_3 as an induced subgraph.

3. $\alpha_{2r-1} \gamma_r(k)$ -perfect graphs

Let $r \ge 1$. Let H be a graph and let I_H be a maximal independent set of H. Let $D = V(H) \setminus (I_H \setminus \text{Iso}(H))$. The graph $f_r(H, I_H)$ arises from H by attaching exactly two paths P_{r+1} to each vertex in D and exactly one path P_r to each vertex in $V(H) \setminus D$. See Fig. 2 for an example.

Since every (2r - 1)-independent set I of $f_r(H, I_H)$ contains at most one vertex from each of the attached paths, $\alpha_{2r-1}(f_r(H, I_H)) \leq 2|D| + |I_H \setminus Iso(H)|$. On the other hand, for r = 1 the set $[I_H \setminus Iso(H)] \cup [V(f_1(H, I_H)) \setminus V(H)]$ and for $r \geq 2$ the set of all

244

endvertices of $f_r(H, I_H)$ is a (2r-1)-independent set of cardinality $2|D| + |I_H \setminus Iso(H)|$. Hence $\alpha_{2r-1}(f_r(H, I_H)) = 2|D| + |I_H \setminus Iso(H)|$.

Since two paths P_{r+1} have been attached to each vertex in D, every γ_r -set of $f_r(H, I_H)$ contains the set D. On the other hand D is a γ_r -set of $f_r(H, I_H)$. Hence $\gamma_r(f_r(H, I_H)) = |D|$. Together, we obtain

$$\alpha_{2r-1}(f_r(H, I_H)) - \gamma_r(f_r(H, I_H)) = |D| + |I_H \setminus \text{Iso}(H)| = |V(H)|.$$

For $k \ge 0$ let

$$\mathscr{F}_r(k) = \{f_r(H,I) | I \text{ is a maximal independent set of } H \text{ and } |V(H)| = k+1\}.$$

The following result generalizes Zverovich's main result from [15]. Our proof works along the lines of [15] dealing with several additional complications.

Theorem 3.1. Let $r \ge 1$ and $k \ge 0$. A graph is $\alpha_{2r-1}\gamma_r(k)$ -perfect if and only if it contains no graph in $\mathcal{F}_r(k)$ as an induced subgraph.

Proof. We will first prove that every minimal $\alpha_{2r-1}\gamma_r(k)$ -imperfect graph belongs to $\mathscr{F}_r(k)$. Then we prove that every graph in $\mathscr{F}_r(k)$ is also a minimal $\alpha_{2r-1}\gamma_r(k)$ -imperfect graph. These two facts establish the desired result.

Let *G* be a minimal $\alpha_{2r-1}\gamma_r(k)$ -imperfect graph. Let *I* be an α_{2r-1} -set and let *D* be a γ_r -set of *G*. Note that *G* has the properties stated in Lemmas 2.1 and 2.3. Hence $D \cap I = \emptyset$ and $|PN_G^r(v,D) \cap I| \ge 2$ for every $v \in D$. For $u \in I$ let dom(*u*) and P(u) be as in Definition 2.2.

Let $u \in I$. Let $u' \in PN_G^r(\operatorname{dom}(u), D) \cap I$ with $u' \neq u$. We have $(2r - 1) + 1 = 2r \leq \operatorname{dist}_G(u, u') \leq \operatorname{dist}_G(u, \operatorname{dom}(u)) + \operatorname{dist}_G(\operatorname{dom}(u), u') \leq r + r = 2r$. Hence, $\operatorname{dist}_G(u, \operatorname{dom}(u)) = r$ for all $u \in I$ and $\operatorname{dist}_G(u, u') = 2r$ for $u, u' \in I$ with $u \neq u'$ and $\operatorname{dom}(u) = \operatorname{dom}(u')$.

For $u \in I$ let dom'(u) be the unique neighbour of dom(u) in V(P(u)). Since I is (2r-1)-independent, we obtain $N_G(v) \subseteq V(P(u))$ for all $u \in I$ and $v \in V(P(u)) \setminus \{\text{dom}'(u), \text{dom}(u)\}$. Furthermore, $N_G(\text{dom}'(u)) \setminus V(P(u)) \subseteq D$ for all $u \in I$.

Let the set X contain two vertices of $PN_G^r(v,D) \cap I$ for each $v \in D$. Let $H = G[D \cup \{ \operatorname{dom}'(u) | u \in I \setminus X \} \}$ and $I_H = \operatorname{Iso}(H) \cup \{ \operatorname{dom}'(u) | u \in I \setminus X \}$. The set I_H is an independent set of H and the set D is a dominating set of H.

If I_H is not a maximal independent set of H, then there is a vertex $v \in D \setminus \text{Iso}(H)$ such that $I_H \cup \{v\}$ is an independent set of H. Since v has no neighbour in $\{\text{dom}'(u) | u \in I \setminus X\}$,

we have $|PN_G^r(v,D) \cap I| = 2$ and thus $PN_G^r(v,D) \cap I \subseteq X$. Since $v \notin Iso(H)$, there is a vertex $w \in D$ such that $v \in N_H(w)$. Let $\{u_1, u_2\} = PN_G^r(v,D) \cap I$ and let $G' = G[V(G) \setminus [(V(P(u_2) \setminus \{v\}) \cup \{u_1\}]]$. Let u'_1 be the unique neighbour of u_1 in G. It is easy to see that the set $(I \setminus \{u_1, u_2\}) \cup \{u'_1\} \subseteq V(G')$ is a (2r - 1)-independent set of G'. Hence $\alpha_{2r-1}(G') \ge \alpha_{2r-1}(G) - 1$. Since $dist_{G'}(w, u'_1) \le r$, the set $D \setminus \{v\}$ is an r-dominating set of G' and hence $\gamma_r(G') \le \gamma_r(G) - 1$. We obtain the contradiction $\alpha_{2r-1}(G') - \gamma_r(G') \ge k + 1$. Hence I_H is a maximal independent set of H and $G = f_r(H, I_H)$. Furthermore, $|V(H)| = \alpha_{2r-1}(G) - \gamma_r(G) = k + 1$, i.e. $G \in \mathscr{F}_r(k)$.

Now, let $G = f_r(H, I_H) \in \mathscr{F}_r(k)$. Let $D = V(H) \setminus (I_H \setminus Iso(H))$. For r = 1 let $I = [I_H \setminus Iso(H)] \cup [V(f_1(H, I_H)) \setminus V(H)]$ and for $r \ge 2$ let I be the set of all end-vertices of G. D is a γ_r -set and I is a α_{2r-1} -set of G. Let dom(u) and P(u) for $u \in I$ be as in Definition 2.2. Let $G' \subseteq_{ind} G$ be a minimal $\alpha_{2r-1}\gamma_r(k)$ -imperfect graph. We have to prove that G' = G. Let

$$D_{1} = \{v \in D | PN_{G}^{r}(v, D) \cap I \cap V(G') \neq \emptyset\},\$$

$$D_{2} = \{v \in D | PN_{G}^{r}(v, D) \cap I \cap V(G') = \emptyset\} \cap V(G'),\$$

$$D_{3} = \{v \in D | PN_{G}^{r}(v, D) \cap I \cap V(G') = \emptyset\} \setminus V(G'),\$$

$$I_{1} = \bigcup_{v \in D_{1}} (PN_{G}^{r}(v, D) \cap I \cap V(G')),\$$

$$I_{2} = \bigcup_{v \in D_{2}} (PN_{G}^{r}(v, D) \cap I) \setminus V(G'),\$$

$$I_{3} = \bigcup_{v \in D_{3}} (PN_{G}^{r}(v, D) \cap I),\$$

$$I_{4} = \left[I \setminus \bigcup_{v \in D} PN_{G}^{r}(v, D)\right] \cap V(G')$$

and

$$I_5 = \left[I \setminus \bigcup_{v \in D} PN_G^r(v, D) \right] \setminus V(G').$$

Let $d_v = |D_v|$ for v = 1, 2, 3. Let $i_v = |I_v|$ for v = 1, 2, ..., 5 and $i'_1 = |I'_1|$. By the construction of $f_r(H, I_H)$, we have $2d_1 \le i_1 + i'_1$, $2d_2 \le i_2$ and $2d_3 \le i_3$. By definition, $D = D_1 \cup D_2 \cup D_3$ and $(I_2 \cup I_3) \cap V(G') = \emptyset$.

Let $u \in I$ and $P(u) : u = u_1 u_2 \dots u_{l-1} u_l = \text{dom}(u)$. By Lemma 2.1, G' has no component that is isomorphic to a path P_v for v < 2r + 1. Thus for $1 \le i \le l-2$, $u_i \in V(G')$ implies $u_{i+1} \in V(G')$. Furthermore, if $N_G^r(u) \cap D \cap V(G') = \emptyset$, then $V(P(u)) \cap V(G') = \emptyset$.

This implies that $\bigcup_{u \in I_3} V(P(u)) \cap V(G') = \emptyset$. Furthermore, for each $u \in (I_4 \cup I_5)$ such that $V(P(u)) \cap V(G') \neq \emptyset$ we have $N_G^r(u) \cap (D_1 \cup D_2) \neq \emptyset$.

Let I' be an α_{2r-1} -set of G'. It is easy to see that we can assume without loss of generality that $(I_1 \cup I_4) \subseteq I'$. This implies $I' \cap \bigcup_{u \in I_1 \cup I'_1 \cup I_4} V(P(u)) = I_1 \cup I_4$.

For each vertex $v \in D_2$, we have $|(I' \setminus I_1 \cup I_4) \cap N_G^r(v)| \leq 1$. Since $\operatorname{dist}_G(u, D_2) \leq r$ for all $u \in I' \setminus I_1 \cup I_4$, this implies that $|I' \setminus (I_1 \cup I_4)| \leq |D_2|$ and $\alpha_{2r-1}(G') = |I'| \leq i_1 + i_4 + d_2$.

Let D' be an *r*-dominating set of G'. We can assume without loss of generality that $D_1 \subseteq D'$ and thus $\gamma_r(G') \ge d_1$. This implies that

$$k + 1 \leq \alpha_{2r-1}(G') - \gamma_r(G')$$

$$\leq i_1 + i_4 + d_2 - d_1$$

$$= (i_1 + i'_1 + i_2 + i_3 + i_4 + i_5) - (d_1 + d_2 + d_3)$$

$$+ 2d_2 - i_2 + 2d_3 - i_3 - i'_1 - d_3 - i_5$$

$$\leq |I| - |D| - i'_1 - d_3 - i_5$$

$$\leq |I| - |D|$$

$$\leq k + 1.$$

We deduce that $i'_1 = d_3 = i_5 = 0$, $i_2 = 2d_2$, $i_3 = 2d_3 = 0$, $\alpha_{2r-1}(G') = i_1 + i_4 + d_2$ and D_1 is a γ_r -set of G'.

We assume that $d_2 \ge 1$. Since $\alpha_{2r-1}(G') > i_1 + i_4$, there is some $u \in I' \cap \bigcup_{w \in I_2} V(P(w))$. Let $v \in I_2$ be such that $u \in V(P(v))$. Since $\{u\} \cup I_1 \cup I_4 \subseteq I'$ and D_1 is a γ_r -set of G', we have $N_G(\operatorname{dom}(v)) \cap \bigcup_{w \in I_1 \cup I_4} V(P(w)) \subseteq D_1 \cup D_2$ and $N_G(\operatorname{dom}(v)) \cap (D_1 \cup D_2) \neq \emptyset$. Hence $\operatorname{dom}(v) \notin \operatorname{Iso}(H)$ and thus $\operatorname{dom}(v) \in V(H) \setminus I_H$.

If $I_H \setminus \text{Iso}(H) \notin \bigcup_{w \in I_1 \cup I_4} V(P(w))$, then there is some $x \in I_H \setminus \text{Iso}(H)$ such that $N_G(x) \cap D = \{y\}$ for some $y \in D_2$. Now the construction of $f_r(H, I_H)$ implies that $i_2 \ge 2d_2 + 1$, which is a contradiction. Hence $I_H \setminus \text{Iso}(H) \subseteq \bigcup_{w \in I_1 \cup I_4} V(P(w))$ and $\{\text{dom}(v)\} \cup I_H$ is an independent set of H, which is a contradiction to the choice of I_H . Hence $d_2 = 0$ and thus G' = G. This completes the proof. \Box

Corollary 3.2 (I. Zverovich [15]). Let $k \ge 0$. A graph is $\alpha_1 \gamma_1(k)$ -perfect if and only if it does not contain a graph in $\mathscr{F}_1(k)$ as an induced subgraph.

4. Claw-free $\alpha_2 \gamma_2(k)$ -perfect graphs

For $l \ge 2$ let G(l) consist of a clique of cardinality l, an independent set of cardinality l and a perfect matching between these two sets. For $l_1, l_2 \ge 2$ let $G(l_1, l_2)$ be the graph with vertex set $\{v\} \cup V(G(l_1)) \cup V(G(l_2))$ that arises by joining the vertex v to the non-endvertices in $V(G(l_1)) \cup V(G(l_2))$. See Fig. 3 for an example.

For $k \ge 0$ a graph G belongs to the class $\mathscr{G}(k)$ if and only if G is the disjoint union of graphs $G(l_1), G(l_2), \ldots, G(l_i), G(l_{i+1}, l_{i+2}), G(l_{i+3}, l_{i+4}), \ldots, G(l_{i+(2j-1)}, l_{i+2j})$

Fig. 3. G(3,3).

such that

$$k+1 = \sum_{\nu=1}^{i} (l_{\nu}-1) + \sum_{\nu=1}^{j} (l_{i+(2\nu-1)} + l_{i+2\nu} - 1).$$

Theorem 4.1. A claw-free graph G is $\alpha_2 \gamma_2(k)$ -perfect for $k \ge 0$ if and only if it contains no graph in $\mathcal{G}(k)$ as an induced subgraph.

Proof. It is easy to check that $\alpha_2(G(l)) - \gamma_2(G(l)) = l - 1$ and $\alpha_2(G(l_1, l_2)) - \gamma_2(G(l_1, l_2)) = l_1 + l_2 - 1$. This implies that no $\alpha_2\gamma_2(k)$ -perfect graph contains a graph in $\mathscr{G}(k)$ as an induced subgraph.

For the converse let G be a minimal $\alpha_2\gamma_2(k)$ -imperfect graph. Let I, D, dom(u) and P(u) for $u \in I$ be as in Definition 2.2. The graph G satisfies the properties given in Lemmas 2.1 and 2.3.

Since *I* is an α_2 -set of *G*, at most one neighbour of a vertex in *D* belongs to *I*. Furthermore, $V(P(u)) \cap V(P(v)) \neq \emptyset$ for $u, v \in I$ implies that dom(u) = dom(v), $V(P(u)) \cap V(P(v)) = \{dom(u)\}$ and $\max\{dist_G(u, dom(u)), dist_G(v, dom(u))\} = 2$. For $v \in D$ let $I(v) = \{u \in I | dom(u) = v\}$ and

$$S(v) = (N_G(v) \cap I(v)) \cup \left[\bigcup_{u \in I(v)} V(P(u)) \setminus (D \cup I)\right] \subseteq N_G(v).$$

Note that $|S(v)| \ge 2$.

If S(v) is a clique for some $v \in D$, then let H = G - v. Since $I \subseteq V(H)$, $\alpha_2(H) \ge \alpha_2(G)$. If $w \in S(v)$, then $(D \setminus \{v\}) \cup \{w\}$ is a 2-dominating set of G and thus $\gamma_2(H) \le \gamma_2(G)$. We obtain $\alpha_2(H) - \gamma_2(H) \ge k + 1$, which is a contradiction.

If $N_G(v) \cap I(v) \neq \emptyset$, then $|N_G(v) \cap I(v)| = 1$ and the unique vertex in $N_G(v) \cap I(v)$ has no neighbour in S(v). Since G is claw-free, this implies that S(v) is the union of two cliques one of which consists of the unique vertex in $N_G(v) \cap I(v)$.

If $N_G(v) \cap I(v) = \emptyset$ and there are vertices $x, y, z \in S(v)$ such that $xy, xz \in E(G)$, $yz \notin E(G)$ and u is the unique neighbour of x in I, then $G[\{x, u, y, z\}]$ is a claw, which is a contradiction. Hence, also in this case, S(v) is the union of two cliques.

For i = 1, 2 let $v_i \in D$ be such that $S(v_i) = C_i \cup C'_i$ where C_i and C'_i are cliques. If $C_2 \subseteq N_G(v_1)$ and $w \in C'_2$, then let $H = G - v_2$. Since $I \subseteq V(H)$, $\alpha_2(H) \ge \alpha_2(G)$. Since $(D \setminus \{v_2\}) \cup \{w\}$ is a 2-dominating set of H, $\gamma_2(H) \le \gamma_2(G)$. We obtain $\alpha_2(H) - \gamma_2(H) \ge k + 1$, which is a contradiction. Hence, by symmetry, $C_2 \not\subseteq N_G(v_1)$, $C'_2 \not\subseteq N_G(v_1)$, $C_1 \not\subseteq N_G(v_2)$ and $C'_1 \not\subseteq N_G(v_2)$.

248

If $w_2 \in C_2$ is adjacent to v_1 , then $|C_2| \ge 2$. Hence $w_2 \notin I(v_2)$ and there is a vertex $u_2 \in I(v_2)$ such that $N_G(u_2) = \{w_2\}$. Let $w_3 \in C_2 \setminus \{w_2\}$. If $w_3 \notin N_G(v_1)$, then $G[\{v_1, w_2, w_3, u_2\}]$ is a claw. Hence $C_2 \subseteq N_G(v_1)$, which is a contradiction. By symmetry, v_1 has no neighbour in $C_2 \cup C'_2$ and v_2 has no neighbour in $C_1 \cup C'_1$.

If there are vertices $w_i \in C_i$ for i = 1, 2 such that w_1 and w_2 are adjacent, then $w_1, w_2 \notin I$ and for i = 1, 2 there are vertices $u_i \in I(v_i)$ such that $N_G(u_i) = \{w_i\}$. Since $w_2 \notin N_G(v_1)$, $G[\{v_1, w_1, w_2, u_1\}]$ is a claw, which is a contradiction.

If v_1 and v_2 are adjacent, then for $x_1 \in C_1$ and $x'_1 \in C'_1$ the graph $G[\{v_1, v_2, x_1, x'_1\}]$ is a claw, which is a contradiction.

This implies that no edge joins a vertex in $\{v_1\} \cup S(v_1) \cup I(v_1)$ to a vertex in $\{v_2\} \cup S(v_2) \cup I(v_2)$. Hence for each $v \in D$ the set $\{v\} \cup S(v) \cup I(v)$ is the vertex set of a connected component of G. If $S(v) = C \cup C'$ for some $v \in D$, $C = \{w\}$ and $w \notin I$, then there is some $u \in I(v)$ such that $N_G(u) = \{w\}$. The graph H = G - u satisfies $\alpha_2(H) - \gamma_2(H) \ge k + 1$, which is a contradiction. This finally implies that every component of G is isomorphic either to a graph G(l) for $l \ge 2$ or a graph $G(l_1, l_2)$ for $l_1, l_2 \ge 1$ which implies that $G \in \mathscr{G}(k)$ and the proof is complete. \Box

It is easy to see that a graph is $\alpha_r \gamma_r(0)$ -perfect if and only if it does not contain P_{r+2} as an induced subgraph. For general k though, we believe that there is no concise description of the minimal $\alpha_r \gamma_r(k)$ -imperfect graphs.

References

- B. Bollobás, E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241–249.
- [2] E.J. Cockayne, O. Favaron, C. Payan, A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math. 33 (1981) 249–258.
- [3] L. Dohmen, D. Rautenbach, L. Volkmann, A characterization of $\Gamma \alpha(k)$ -perfect graphs, Discrete Math. 224 (2000) 265–271.
- [4] L. Dohmen, D. Rautenbach, L. Volkmann, $i\gamma(1)$ -perfect graphs, Discrete Math. 234 (2001) 133–138.
- [5] O. Favaron, Stability, domination and irredundance in a graph, J. Graph Theory 10 (1986) 429-438.
- [6] G. Gutin, V.E. Zverovich, Upper domination and upper irredundance perfect graphs, Discrete Math. 190 (1998) 95–105.
- [7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, NY, 1998.
- [8] M.A. Henning, Irredundance perfect graphs, Discrete Math. 142 (1995) 107-120.
- [9] M.S. Jacobson, K. Peters, Chordal graphs and upper irredundance, upper domination and independence, Discrete Math. 86 (1990) 59–69.
- [10] M.S. Jacobson, K. Peters, A note on graphs which have upper irredundance equal to independence, Discrete Appl. Math. 44 (1993) 91–97.
- [11] J. Puech, Irredundance perfection and P_6 -free graphs, J. Graph Theory 29 (1998) 239–255.
- [12] D. Rautenbach, V.E. Zverovich, Perfect graphs of strong and independent strong domination, Discrete Math. 226 (2001) 297–311.
- [13] J. Topp, Domination, independence and irredundance in graphs, Dissertationes Math., Vol. 342, 1995, 99pp.
- [14] L. Volkmann, V.E. Zverovich, A proof of Favaron's conjecture and a disproof of Henning's conjecture on irredundance perfect graphs, The 5th Twente Workshop on Graphs and Combinatorial Optimization, Enschede, May 1997, pp. 215–217.

- [15] I.E. Zverovich, k-Bounded classes of dominant-independent perfect graphs, J. Graph Theory 32 (1999) 303-310.
- [16] I.E. Zverovich, V.E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20 (1995) 375–395.
- [17] I.E. Zverovich, V.E. Zverovich, An semi-induced subgraph characterization of upper domination perfect graphs, J. Graph Theory 31 (1999) 139–149.

250