Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

On $\alpha_{r} \gamma_{s}(k)$-perfect graphs

Dieter Rautenbach*, Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany

Received 10 October 2001; received in revised form 24 April 2002; accepted 21 October 2002

Abstract

For some integer $k \geqslant 0$ and two graph parameters π and τ, a graph G is called $\pi \tau(k)$-perfect, if $\pi(H)-\tau(H) \leqslant k$ for every induced subgraph H of G. For $r \geqslant 1$ let α_{r} and γ_{r} denote the r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory 32 (1999) 303-310), I. Zverovich gave an ingenious complete characterization of $\alpha_{1} \gamma_{1}(k)$-perfect graphs in terms of forbidden induced subgraphs. In this paper we study $\alpha_{r} \gamma_{s}(k)$-perfect graphs for $r, s \geqslant 1$. We prove several properties of minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graphs. Generalizing Zverovich's main result in (J. Graph Theory 32 (1999) 303-310), we completely characterize $\alpha_{2 r-1} \gamma_{r}(k)$-perfect graphs for $r \geqslant 1$. Furthermore, we characterize claw-free $\alpha_{2} \gamma_{2}(k)$-perfect graphs.

© 2003 Elsevier B.V. All rights reserved.
Keywords: Domination perfect graphs; Domination; Independence; Distance domination number; Distance independence number

1. Introduction

All graphs will be finite, undirected and without loops or multiple edges. We will use the standard graph-theoretical terminology (cf. e.g. [7]). Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The set of isolated vertices of G is denoted by $\operatorname{Iso}(G)$. A clique of G is the vertex set of a complete subgraph of G. The subgraph of G induced by a set of vertices $V^{\prime} \subseteq V(G)$ is denoted by $G\left[V^{\prime}\right]$. If H is an induced subgraph of G, then we write $H \subseteq_{\text {ind }} G$. If $v \in V(G)$, then $G-v=G[V(G) \backslash\{v\}]$. A graph is claw-free, if it does not contain the star with three endvertices as an induced subgraph. Let P_{r} denote the path of order $r \geqslant 1$. We say that the graph H arises from G by attaching a path P_{r} to a vertex $v \in V(G)$, if $V(H) \backslash V(G)=\left\{v_{2}, v_{3}, \ldots, v_{r}\right\}$

[^0]and $E(H) \backslash E(G)=\left\{v v_{2}, v_{2} v_{3}, \ldots, v_{r-1} v_{r}\right\}$. The distance of two vertices $u, v \in V(G)$ is denoted by $\operatorname{dist}_{G}(u, v)$. For $V^{\prime} \subseteq V(G)$ let $\operatorname{dist}_{G}\left(u, V^{\prime}\right)=\min \left\{\operatorname{dist}_{G}(u, v) \mid v \in V^{\prime}\right\}$.

Let $r \geqslant 1$. For $u \in V(G)$ let $N_{G}^{r}(u)=\left\{v \in V(G) \mid v \neq u, \operatorname{dist}_{G}(u, v) \leqslant r\right\}$. The neighbourhood and degree of $u \in V(G)$ are denoted by $N_{G}(u)=N_{G}^{1}(u)$ and $d_{G}(u)=\left|N_{G}(u)\right|$, respectively. A set $I \subseteq V(G)$ is an r-independent set of G, if $\operatorname{dist}_{G}(u, v) \geqslant r+1$ for all $u, v \in I$. The r-independence number $\alpha_{r}(G)$ of G is the maximum cardinality of an r-independent set of G. An α_{r}-set of G is an r-independent set of cardinality $\alpha_{r}(G)$.

A set $D \subseteq V(G)$ is an r-dominating set of G, if for each vertex $u \in V(G) \backslash D$ there is some vertex $v \in D$ such that $\operatorname{dist}_{G}(u, v) \leqslant r$. The r-domination number $\gamma_{r}(G)$ of G is the minimum cardinality of an r-dominating set of G. A γ_{r}-set of G is an r-dominating set of cardinality $\gamma_{r}(G)$. For $u \in D \subseteq V(G)$ let

$$
P N_{G}^{r}(u, D)=\left(N_{G}^{r}(u) \cup\{u\}\right) \backslash \bigcup_{v \in D \backslash\{u\}} N_{G}^{r}(v) .
$$

In [15], I. Zverovich proposed the following definition of classes of 'perfect' graphs. Let $k \geqslant 0$ and π and τ be two graph parameters. A graph G is called $\pi \tau(k)$-perfect, if $\pi(H)-\tau(H) \leqslant k$ for all $H \subseteq_{\text {ind }} G$. A graph G is a minimal $\pi \tau(k)$-imperfect graph, if $\pi(G)-\tau(G)>k$ but $\pi(H)-\tau(H) \leqslant k$ for each $H \subseteq_{\text {ind }} G$ with $H \neq G$. There is an extensive literature about $\pi \tau(0)$-perfect graphs for appropriate choices of π and τ. Well-studied examples of $\pi \tau(0)$-perfect graphs involve the notions of independence and domination (cf. e.g. [1,2,5,6,8-14,16,17]).

The main goal in the study of $\pi \tau(k)$-perfect graphs is a characterization in terms of a minimal list of forbidden induced subgraphs. In many cases such characterizations are either trivial (as for $\alpha_{1} \gamma_{1}(0)$-perfect graphs) or hard to find (cf. e.g. [16]).

In [15], I. Zverovich was able to give a surprising and ingenious characterization of $\alpha_{1} \gamma_{1}(k)$-perfect graphs. We will generalize his result by studying $\alpha_{r} \gamma_{s}$-perfect graphs for $r, s \geqslant 1$. If $r+1>2 s$, then $\left|N_{G}^{s}(u) \cap I\right| \leqslant 1$ for each $u \in V(G)$ and every r-independent set I. Hence $\alpha_{r}(G) \leqslant \gamma_{s}(G)$ and all graphs are $\alpha_{r} \gamma_{s}(k)$-perfect.

Many choices of the parameters r, s and k lead to minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graphs that do not have a simple structure. Therefore, in order to obtain results as elegant as in [15] we have to find the 'good' choices for r, s and k. Two natural candidates for the generalization of $\alpha_{1} \gamma_{1}(k)$-perfect graphs are the classes of $\alpha_{2 r-1} \gamma_{r}(k)$-perfect graphs and $\alpha_{r} \gamma_{r}(k)$-perfect graphs.

In Section 2 we prove several properties of minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graphs. Generalizing Zverovich's main result in [15], we completely characterize $\alpha_{2 r-1} \gamma_{r}(k)$-perfect graphs for $r \geqslant 1$ in Section 3. Furthermore, in Section 4, we characterize claw-free $\alpha_{2} \gamma_{2}(k)$-perfect graphs. The reader that is interested in further results on $\pi \tau(k)$-perfect graphs for $k \geqslant 1$ is referred to [3,4].

2. Properties of minimal $\alpha_{r} \gamma_{s}(\boldsymbol{k})$-imperfect graphs

Lemma 2.1. Let G be a minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graph for $r, s \geqslant 1, r+1 \leqslant 2 s$ and $k \geqslant 0$. Let I be an α_{r}-set and let D be a γ_{s}-set of G. Then $\left|P N_{G}^{s}(v, D) \cap I\right| \geqslant 2$ for all $v \in D$. Furthermore, if $r \geqslant s$, then $D \cap I=\emptyset$.

Proof. If $\left|P N_{G}^{s}(v, D) \cap I\right| \leqslant 1$ for some $v \in D$, then let $H=G\left[V(G) \backslash P N_{G}^{s}(v, D)\right] \neq G$. Since $I \backslash P N_{G}^{s}(v, D) \subseteq V(H), \alpha_{r}(H) \geqslant \alpha_{r}(G)-1$. Since $D \backslash\{v\}$ is an s-dominating set of $H, \gamma_{s}(H) \leqslant \gamma_{s}(G)-1$. Hence $\alpha_{r}(H)-\gamma_{s}(H) \geqslant \alpha_{r}(G)-\gamma_{s}(G) \geqslant k+1$, which is a contradiction. We obtain $\left|P N_{G}^{s}(v, D) \cap I\right| \geqslant 2$ for all $v \in D$.

Now let $r \geqslant s$. We assume that there is some $u \in D \cap I$. Let $v \in P N_{G}^{s}(u, D) \cap I$ with $v \neq u$. We have $r+1 \leqslant \operatorname{dist}_{G}(u, v) \leqslant s$, which is a contradiction.

We will now consider certain paths which allow us to study the structure of the minimal imperfect graphs. For further reference we give the following definition.

Definition 2.2. Let G be a minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graph for $r, s \geqslant 1, r+1 \leqslant 2 s$ and $k \geqslant 0$. Let I be an α_{r}-set and let D be a γ_{s}-set of G.

For each $u \in I$ let $\operatorname{dom}(u) \in D$ be such that $\operatorname{dist}_{G}(u, \operatorname{dom}(u))=\operatorname{dist}_{G}(u, D)$ and let $P(u)$ be a shortest path from u to $\operatorname{dom}(u)$. (Note that the choice of $\operatorname{dom}(u)$ and $P(u)$ may not be unique.)

Lemma 2.3. Let $r \geqslant s \geqslant 1$ with $r+1 \leqslant 2 s$ and $k \geqslant 0$. Let $G, I, D, \operatorname{dom}(u)$ and $P(u)$ for $u \in I$ be as in Definition 2.2. Then
(i) $V(G)=\bigcup_{u \in I} V(P(u))$.
(ii) If $N_{G}(u) \cap V(P(v)) \neq \emptyset$ for $u, v \in I$ with $u \neq v$, then $r=s, N_{G}(u) \cap V(P(v))=$ $\{\operatorname{dom}(v)\}$ and $\operatorname{dist}_{G}(v, \operatorname{dom}(v))=s$.
(iii) If $d_{G}(u) \geqslant 2$ for some $u \in I$, then $r=s$ and $N_{G}(u) \subseteq D$.
(iv) $\alpha_{r}(G)-\gamma_{s}(G)=k+1$.
(v) $\operatorname{dist}_{G}(u, I \backslash\{u\})=r+1$ for $u \in I$.

Proof. (i): Let $H=G\left[\bigcup_{u \in I} V(P(u))\right]$. Since $I \subseteq V(H), \alpha_{r}(H) \geqslant \alpha_{r}(G)$. Since $V(P(u))$ $\subseteq N_{G}^{s}(\operatorname{dom}(u)) \cup\{\operatorname{dom}(u)\}$ for $u \in I, \gamma_{s}(H) \leqslant \gamma_{s}(G)$. Hence $\alpha_{r}(H)-\gamma_{s}(H) \geqslant k+1$. Since G is minimal $\alpha_{r} \gamma_{s}(k)$-imperfect, $G=H$.
(ii): Let $N_{G}(u) \cap V(P(v)) \neq \emptyset$ for $u, v \in I$ with $u \neq v$. We have $r+1 \leqslant \operatorname{dist}_{G}(u, v) \leqslant$ $\operatorname{dist}_{G}(\operatorname{dom}(v), v)+1 \leqslant s+1 \leqslant r+1$. Hence we have equality throughout this chain of inequalities which implies all desired properties.
(iii): If $d_{G}(u) \geqslant 2$ for some $u \in I$, then there is some $v \in I$ with $v \neq u$ such that $N_{G}(u) \cap V(P(v)) \neq \emptyset$. By (ii), $r=s$ and $N_{G}(u) \cap V(P(v))=\{\operatorname{dom}(v)\}$. Hence $1 \leqslant \operatorname{dist}_{G}(u, \operatorname{dom}(u)) \leqslant \operatorname{dist}_{G}(u, \operatorname{dom}(v))=1$. This implies that $N_{G}(u) \subseteq D$.
(iv): If $\alpha_{r}(G)-\gamma_{s}(G) \geqslant k+2$, then let $u \in P N_{G}^{s}(v) \cap I$ for some $v \in D$. By (iii), $d_{G}(u)=1$. Let $H=G-u$. Clearly, $\alpha_{r}(H) \geqslant \alpha_{r}(G)-1$ and $\gamma_{s}(H) \leqslant \gamma_{s}(G)$. Hence $\alpha_{r}(H)-\gamma_{s}(H) \geqslant k+1$, which is a contradiction.
(v): If $d_{G}(u)=1$ for some $u \in I$ and $\operatorname{dist}_{G}(u, I \backslash\{u\}) \geqslant r+2$, then let $v \in N_{G}(u)$ and $H=G-u$. Clearly, $\alpha_{r}(H) \geqslant|(I \backslash\{u\}) \cup\{v\}|=\alpha_{r}(G)$ and $\gamma_{s}(H) \leqslant \gamma_{s}(G)$. We obtain the same contradiction as above. Hence, by (iii), we can assume that $d_{G}(u) \geqslant 2, r=s$ and $N_{G}(u) \subseteq D$. If $v \in P N_{G}^{s}(\operatorname{dom}(u), D) \cap I$ with $u \neq v$, then $r+1 \leqslant \operatorname{dist}_{G}(u, v) \leqslant \operatorname{dist}_{G}($ dom $(u), v)+1 \leqslant s+1=r+1$. This implies that $\operatorname{dist}_{G}(u, I \backslash\{u\})=r+1$.

Fig. 1.

Before we come to the next section, we derive some corollaries of the above properties.

Corollary 2.4. Let G be a minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graph for $r \geqslant s \geqslant 1$ with $r+$ $1 \leqslant 2 s$ and $k \geqslant 0$. Then
(i) $\alpha_{r}(G) \geqslant 2 \gamma_{s}(G)$.
(ii) $\gamma_{s}(G) \leqslant k+1$.
(iii) $|V(G)| \leqslant(k+1)(2 r+1)$, i.e. there are only finitely many non-isomorphic minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graphs.

Proof. (i): This immediately follows from Lemma 2.1.
(ii): By Lemma 2.3(iv), $k+1=\alpha_{r}(G)-\gamma_{s}(G) \geqslant 2 \gamma_{s}(G)-\gamma_{s}(G)=\gamma_{s}(G)$.
(iii): By Lemma 2.3(i) and (iv), we have $|V(G)| \leqslant s \cdot \alpha_{r}(G)+\gamma_{s}(G)=s \cdot(k+1+$ $\left.\gamma_{s}(G)\right)+\gamma_{s}(G) \leqslant s \cdot(k+1+k+1)+k+1=(k+1)(2 s+1)$.

By Corollary 2.4, there are only finitely many non-isomorphic minimal $\alpha_{r} \gamma_{s}(k)$ imperfect graphs and all have order at most $(k+1)(2 s+1)$. Hence for any fixed r, s and k as in Corollary 2.4, it is a 'finite' problem to find all minimal $\alpha_{r} \gamma_{s}(k)$-imperfect graphs. Once these finitely many graphs have been found, the characterization of the $\alpha_{r} \gamma_{s}(k)$-perfect graphs immediately follows. It is e.g. straightforward to check that the three graphs in Fig. 1 are all $\alpha_{2} \gamma_{2}(1)$-imperfect graphs. Therefore a graph is $\alpha_{2} \gamma_{2}(1)$-perfect graphs if and only if it does not contain G_{1}, G_{2} or G_{3} as an induced subgraph.

3. $\alpha_{2 r-1} \gamma_{r}(k)$-perfect graphs

Let $r \geqslant 1$. Let H be a graph and let I_{H} be a maximal independent set of H. Let $D=V(H) \backslash\left(I_{H} \backslash \operatorname{Iso}(H)\right)$. The graph $f_{r}\left(H, I_{H}\right)$ arises from H by attaching exactly two paths P_{r+1} to each vertex in D and exactly one path P_{r} to each vertex in $V(H) \backslash D$. See Fig. 2 for an example.

Since every $(2 r-1)$-independent set I of $f_{r}\left(H, I_{H}\right)$ contains at most one vertex from each of the attached paths, $\alpha_{2 r-1}\left(f_{r}\left(H, I_{H}\right)\right) \leqslant 2|D|+\left|I_{H} \backslash \operatorname{Iso}(H)\right|$. On the other hand, for $r=1$ the set $\left[I_{H} \backslash \operatorname{Iso}(H)\right] \cup\left[V\left(f_{1}\left(H, I_{H}\right)\right) \backslash V(H)\right]$ and for $r \geqslant 2$ the set of all

Fig. 2.
endvertices of $f_{r}\left(H, I_{H}\right)$ is a $(2 r-1)$-independent set of cardinality $2|D|+\left|I_{H} \backslash \operatorname{Iso}(H)\right|$. Hence $\alpha_{2 r-1}\left(f_{r}\left(H, I_{H}\right)\right)=2|D|+\left|I_{H} \backslash \operatorname{Iso}(H)\right|$.

Since two paths P_{r+1} have been attached to each vertex in D, every γ_{r}-set of $f_{r}\left(H, I_{H}\right)$ contains the set D. On the other hand D is a γ_{r}-set of $f_{r}\left(H, I_{H}\right)$. Hence $\gamma_{r}\left(f_{r}\left(H, I_{H}\right)\right)=|D|$. Together, we obtain

$$
\alpha_{2 r-1}\left(f_{r}\left(H, I_{H}\right)\right)-\gamma_{r}\left(f_{r}\left(H, I_{H}\right)\right)=|D|+\left|I_{H} \backslash \operatorname{Iso}(H)\right|=|V(H)| .
$$

For $k \geqslant 0$ let

$$
\mathscr{F}_{r}(k)=\left\{f_{r}(H, I) \mid I \text { is a maximal independent set of } H \text { and }|V(H)|=k+1\right\} .
$$

The following result generalizes Zverovich's main result from [15]. Our proof works along the lines of [15] dealing with several additional complications.

Theorem 3.1. Let $r \geqslant 1$ and $k \geqslant 0$. A graph is $\alpha_{2 r-1} \gamma_{r}(k)$-perfect if and only if it contains no graph in $\mathscr{F}_{r}(k)$ as an induced subgraph.

Proof. We will first prove that every minimal $\alpha_{2 r-1} \gamma_{r}(k)$-imperfect graph belongs to $\mathscr{F}_{r}(k)$. Then we prove that every graph in $\mathscr{F}_{r}(k)$ is also a minimal $\alpha_{2 r-1} \gamma_{r}(k)$-imperfect graph. These two facts establish the desired result.

Let G be a minimal $\alpha_{2 r-1} \gamma_{r}(k)$-imperfect graph. Let I be an $\alpha_{2 r-1}$-set and let D be a γ_{r}-set of G. Note that G has the properties stated in Lemmas 2.1 and 2.3. Hence $D \cap I=\emptyset$ and $\left|P N_{G}^{r}(v, D) \cap I\right| \geqslant 2$ for every $v \in D$. For $u \in I$ let $\operatorname{dom}(u)$ and $P(u)$ be as in Definition 2.2.

Let $u \in I$. Let $u^{\prime} \in P N_{G}^{r}(\operatorname{dom}(u), D) \cap I$ with $u^{\prime} \neq u$. We have $(2 r-1)+1=$ $2 r \leqslant \operatorname{dist}_{G}\left(u, u^{\prime}\right) \leqslant \operatorname{dist}_{G}(u, \operatorname{dom}(u))+\operatorname{dist}_{G}\left(\operatorname{dom}(u), u^{\prime}\right) \leqslant r+r=2 r$. Hence, $\operatorname{dist}_{G}(u$, $\operatorname{dom}(u))=r$ for all $u \in I$ and $\operatorname{dist}_{G}\left(u, u^{\prime}\right)=2 r$ for $u, u^{\prime} \in I$ with $u \neq u^{\prime}$ and $\operatorname{dom}(u)=$ $\operatorname{dom}\left(u^{\prime}\right)$.

For $u \in I$ let $\operatorname{dom}^{\prime}(u)$ be the unique neighbour of $\operatorname{dom}(u)$ in $V(P(u))$. Since I is $(2 r-1)$-independent, we obtain $N_{G}(v) \subseteq V(P(u))$ for all $u \in I$ and $v \in V(P(u)) \backslash$ $\left\{\operatorname{dom}^{\prime}(u), \operatorname{dom}(u)\right\}$. Furthermore, $N_{G}\left(\operatorname{dom}^{\prime}(u)\right) \backslash V(P(u)) \subseteq D$ for all $u \in I$.
Let the set X contain two vertices of $P N_{G}^{r}(v, D) \cap I$ for each $v \in D$. Let $H=G[D \cup$ $\left.\left\{\operatorname{dom}^{\prime}(u) \mid u \in I \backslash X\right\}\right]$ and $I_{H}=\operatorname{Iso}(H) \cup\left\{\operatorname{dom}^{\prime}(u) \mid u \in I \backslash X\right\}$. The set I_{H} is an independent set of H and the set D is a dominating set of H.

If I_{H} is not a maximal independent set of H, then there is a vertex $v \in D \backslash \operatorname{Iso}(H)$ such that $I_{H} \cup\{v\}$ is an independent set of H. Since v has no neighbour in $\left\{\operatorname{dom}^{\prime}(u) \mid u \in I \backslash X\right\}$,
we have $\left|P N_{G}^{r}(v, D) \cap I\right|=2$ and thus $P N_{G}^{r}(v, D) \cap I \subseteq X$. Since $v \notin \operatorname{Iso}(H)$, there is a vertex $w \in D$ such that $v \in N_{H}(w)$. Let $\left\{u_{1}, u_{2}\right\}=P N_{G}^{r}(v, D) \cap I$ and let $G^{\prime}=$ $G\left[V(G) \backslash\left[\left(V\left(P\left(u_{2}\right) \backslash\{v\}\right) \cup\left\{u_{1}\right\}\right]\right]\right.$. Let u_{1}^{\prime} be the unique neighbour of u_{1} in G. It is easy to see that the set $\left(I \backslash\left\{u_{1}, u_{2}\right\}\right) \cup\left\{u_{1}^{\prime}\right\} \subseteq V\left(G^{\prime}\right)$ is a $(2 r-1)$-independent set of G^{\prime}. Hence $\alpha_{2 r-1}\left(G^{\prime}\right) \geqslant \alpha_{2 r-1}(G)-1$. Since $\operatorname{dist}_{G^{\prime}}\left(w, u_{1}^{\prime}\right) \leqslant r$, the set $D \backslash\{v\}$ is an r-dominating set of G^{\prime} and hence $\gamma_{r}\left(G^{\prime}\right) \leqslant \gamma_{r}(G)-1$. We obtain the contradiction $\alpha_{2 r-1}\left(G^{\prime}\right)-\gamma_{r}\left(G^{\prime}\right) \geqslant k+1$. Hence I_{H} is a maximal independent set of H and $G=f_{r}\left(H, I_{H}\right)$. Furthermore, $|V(H)|=\alpha_{2 r-1}(G)-\gamma_{r}(G)=k+1$, i.e. $G \in \mathscr{F}_{r}(k)$.

Now, let $G=f_{r}\left(H, I_{H}\right) \in \mathscr{F}_{r}(k)$. Let $D=V(H) \backslash\left(I_{H} \backslash \operatorname{Iso}(H)\right)$. For $r=1$ let $I=\left[I_{H} \backslash \operatorname{Iso}(H)\right] \cup\left[V\left(f_{1}\left(H, I_{H}\right)\right) \backslash V(H)\right]$ and for $r \geqslant 2$ let I be the set of all endvertices of G. D is a γ_{r}-set and I is a $\alpha_{2 r-1}$-set of G. Let $\operatorname{dom}(u)$ and $P(u)$ for $u \in I$ be as in Definition 2.2. Let $G^{\prime} \subseteq_{\text {ind }} G$ be a minimal $\alpha_{2 r-1} \gamma_{r}(k)$-imperfect graph. We have to prove that $G^{\prime}=G$. Let

$$
\begin{aligned}
& D_{1}=\left\{v \in D \mid P N_{G}^{r}(v, D) \cap I \cap V\left(G^{\prime}\right) \neq \emptyset\right\}, \\
& D_{2}=\left\{v \in D \mid P N_{G}^{r}(v, D) \cap I \cap V\left(G^{\prime}\right)=\emptyset\right\} \cap V\left(G^{\prime}\right), \\
& D_{3}=\left\{v \in D \mid P N_{G}^{r}(v, D) \cap I \cap V\left(G^{\prime}\right)=\emptyset\right\} \backslash V\left(G^{\prime}\right), \\
& I_{1}=\bigcup_{v \in D_{1}}\left(P N_{G}^{r}(v, D) \cap I \cap V\left(G^{\prime}\right)\right), \\
& I_{1}^{\prime}=\bigcup_{v \in D_{1}}\left(P N_{G}^{r}(v, D) \cap I\right) \backslash V\left(G^{\prime}\right), \\
& I_{2}=\bigcup_{v \in D_{2}}\left(P N_{G}^{r}(v, D) \cap I\right), \\
& I_{3}=\bigcup_{v \in D_{3}}\left(P N_{G}^{r}(v, D) \cap I\right), \\
& I_{4}=\left[I \backslash \bigcup_{v \in D} P N_{G}^{r}(v, D)\right] \cap V\left(G^{\prime}\right)
\end{aligned}
$$

and

$$
I_{5}=\left[I \backslash \bigcup_{v \in D} P N_{G}^{r}(v, D)\right] \backslash V\left(G^{\prime}\right)
$$

Let $d_{v}=\left|D_{v}\right|$ for $v=1,2,3$. Let $i_{v}=\left|I_{v}\right|$ for $v=1,2, \ldots, 5$ and $i_{1}^{\prime}=\left|I_{1}^{\prime}\right|$. By the construction of $f_{r}\left(H, I_{H}\right)$, we have $2 d_{1} \leqslant i_{1}+i_{1}^{\prime}, 2 d_{2} \leqslant i_{2}$ and $2 d_{3} \leqslant i_{3}$. By definition, $D=D_{1} \cup D_{2} \cup D_{3}$ and $\left(I_{2} \cup I_{3}\right) \cap V\left(G^{\prime}\right)=\emptyset$.

Let $u \in I$ and $P(u): u=u_{1} u_{2} \ldots u_{l-1} u_{l}=\operatorname{dom}(u)$. By Lemma 2.1, G^{\prime} has no component that is isomorphic to a path P_{v} for $v<2 r+1$. Thus for $1 \leqslant i \leqslant l-2, u_{i} \in V\left(G^{\prime}\right)$ implies $u_{i+1} \in V\left(G^{\prime}\right)$. Furthermore, if $N_{G}^{r}(u) \cap D \cap V\left(G^{\prime}\right)=\emptyset$, then $V(P(u)) \cap V\left(G^{\prime}\right)=\emptyset$.

This implies that $\bigcup_{u \in I_{3}} V(P(u)) \cap V\left(G^{\prime}\right)=\emptyset$. Furthermore, for each $u \in\left(I_{4} \cup I_{5}\right)$ such that $V(P(u)) \cap V\left(G^{\prime}\right) \neq \emptyset$ we have $N_{G}^{r}(u) \cap\left(D_{1} \cup D_{2}\right) \neq \emptyset$.

Let I^{\prime} be an $\alpha_{2 r-1}$-set of G^{\prime}. It is easy to see that we can assume without loss of generality that $\left(I_{1} \cup I_{4}\right) \subseteq I^{\prime}$. This implies $I^{\prime} \cap \bigcup_{u \in I_{1} \cup I_{1}^{\prime} \cup_{4}} V(P(u))=I_{1} \cup I_{4}$.

For each vertex $v \in D_{2}$, we have $\left|\left(I^{\prime} \backslash I_{1} \cup I_{4}\right) \cap N_{G}^{r}(v)\right| \leqslant 1$. Since dist ${ }_{G}\left(u, D_{2}\right) \leqslant r$ for all $u \in I^{\prime} \backslash I_{1} \cup I_{4}$, this implies that $\left|I^{\prime} \backslash\left(I_{1} \cup I_{4}\right)\right| \leqslant\left|D_{2}\right|$ and $\alpha_{2 r-1}\left(G^{\prime}\right)=\left|I^{\prime}\right| \leqslant i_{1}+i_{4}+d_{2}$.

Let D^{\prime} be an r-dominating set of G^{\prime}. We can assume without loss of generality that $D_{1} \subseteq D^{\prime}$ and thus $\gamma_{r}\left(G^{\prime}\right) \geqslant d_{1}$. This implies that

$$
\begin{aligned}
k+1 \leqslant & \alpha_{2 r-1}\left(G^{\prime}\right)-\gamma_{r}\left(G^{\prime}\right) \\
\leqslant & i_{1}+i_{4}+d_{2}-d_{1} \\
= & \left(i_{1}+i_{1}^{\prime}+i_{2}+i_{3}+i_{4}+i_{5}\right)-\left(d_{1}+d_{2}+d_{3}\right) \\
& +2 d_{2}-i_{2}+2 d_{3}-i_{3}-i_{1}^{\prime}-d_{3}-i_{5} \\
\leqslant & |I|-|D|-i_{1}^{\prime}-d_{3}-i_{5} \\
\leqslant & |I|-|D| \\
\leqslant & k+1 .
\end{aligned}
$$

We deduce that $i_{1}^{\prime}=d_{3}=i_{5}=0, i_{2}=2 d_{2}, i_{3}=2 d_{3}=0, \alpha_{2 r-1}\left(G^{\prime}\right)=i_{1}+i_{4}+d_{2}$ and D_{1} is a γ_{r}-set of G^{\prime}.

We assume that $d_{2} \geqslant 1$. Since $\alpha_{2 r-1}\left(G^{\prime}\right)>i_{1}+i_{4}$, there is some $u \in I^{\prime} \cap \bigcup_{w \in I_{2}}$ $V(P(w))$. Let $v \in I_{2}$ be such that $u \in V(P(v))$. Since $\{u\} \cup I_{1} \cup I_{4} \subseteq I^{\prime}$ and D_{1} is a γ_{r}-set of G^{\prime}, we have $N_{G}(\operatorname{dom}(v)) \cap \bigcup_{w \in I_{1} \cup I_{4}} V(P(w)) \subseteq D_{1} \cup D_{2}$ and $N_{G}(\operatorname{dom}(v)) \cap$ $\left(D_{1} \cup D_{2}\right) \neq \emptyset$. Hence $\operatorname{dom}(v) \notin \operatorname{Iso}(H)$ and thus $\operatorname{dom}(v) \in V(H) \backslash I_{H}$.

If $I_{H} \backslash \operatorname{Iso}(H) \nsubseteq \bigcup_{w \in I_{1} \cup I_{4}} V(P(w))$, then there is some $x \in I_{H} \backslash \operatorname{Iso}(H)$ such that $N_{G}(x) \cap D=\{y\}$ for some $y \in D_{2}$. Now the construction of $f_{r}\left(H, I_{H}\right)$ implies that $i_{2} \geqslant 2 d_{2}+1$, which is a contradiction. Hence $I_{H} \backslash \operatorname{Iso}(H) \subseteq \bigcup_{w \in I_{1} \cup I_{4}} V(P(w))$ and $\{\operatorname{dom}(v)\} \cup I_{H}$ is an independent set of H, which is a contradiction to the choice of I_{H}. Hence $d_{2}=0$ and thus $G^{\prime}=G$. This completes the proof.

Corollary 3.2 (I. Zverovich [15]). Let $k \geqslant 0$. A graph is $\alpha_{1} \gamma_{1}(k)$-perfect if and only if it does not contain a graph in $\mathscr{F}_{1}(k)$ as an induced subgraph.

4. Claw-free $\alpha_{2} \gamma_{2}(k)$-perfect graphs

For $l \geqslant 2$ let $G(l)$ consist of a clique of cardinality l, an independent set of cardinality l and a perfect matching between these two sets. For $l_{1}, l_{2} \geqslant 2$ let $G\left(l_{1}, l_{2}\right)$ be the graph with vertex set $\{v\} \cup V\left(G\left(l_{1}\right)\right) \cup V\left(G\left(l_{2}\right)\right)$ that arises by joining the vertex v to the non-endvertices in $V\left(G\left(l_{1}\right)\right) \cup V\left(G\left(l_{2}\right)\right)$. See Fig. 3 for an example.

For $k \geqslant 0$ a graph G belongs to the class $\mathscr{G}(k)$ if and only if G is the disjoint union of graphs $G\left(l_{1}\right), G\left(l_{2}\right), \ldots, G\left(l_{i}\right), G\left(l_{i+1}, l_{i+2}\right), G\left(l_{i+3}, l_{i+4}\right), \ldots, G\left(l_{i+(2 j-1)}, l_{i+2 j}\right)$

Fig. 3. $G(3,3)$.
such that

$$
k+1=\sum_{v=1}^{i}\left(l_{v}-1\right)+\sum_{v=1}^{j}\left(l_{i+(2 v-1)}+l_{i+2 v}-1\right)
$$

Theorem 4.1. A claw-free graph G is $\alpha_{2} \gamma_{2}(k)$-perfect for $k \geqslant 0$ if and only if it contains no graph in $\mathscr{G}(k)$ as an induced subgraph.

Proof. It is easy to check that $\alpha_{2}(G(l))-\gamma_{2}(G(l))=l-1$ and $\alpha_{2}\left(G\left(l_{1}, l_{2}\right)\right)-\gamma_{2}\left(G\left(l_{1}, l_{2}\right)\right)$ $=l_{1}+l_{2}-1$. This implies that no $\alpha_{2} \gamma_{2}(k)$-perfect graph contains a graph in $\mathscr{G}(k)$ as an induced subgraph.

For the converse let G be a minimal $\alpha_{2} \gamma_{2}(k)$-imperfect graph. Let $I, D, \operatorname{dom}(u)$ and $P(u)$ for $u \in I$ be as in Definition 2.2. The graph G satisfies the properties given in Lemmas 2.1 and 2.3.

Since I is an α_{2}-set of G, at most one neighbour of a vertex in D belongs to I. Furthermore, $V(P(u)) \cap V(P(v)) \neq \emptyset$ for $u, v \in I$ implies that $\operatorname{dom}(u)=\operatorname{dom}(v)$, $V(P(u)) \cap V(P(v))=\{\operatorname{dom}(u)\}$ and $\max \left\{\operatorname{dist}_{G}(u, \operatorname{dom}(u)), \operatorname{dist}_{G}(v, \operatorname{dom}(u))\right\}=2$. For $v \in D$ let $I(v)=\{u \in I \mid \operatorname{dom}(u)=v\}$ and

$$
S(v)=\left(N_{G}(v) \cap I(v)\right) \cup\left[\bigcup_{u \in I(v)} V(P(u)) \backslash(D \cup I)\right] \subseteq N_{G}(v)
$$

Note that $|S(v)| \geqslant 2$.
If $S(v)$ is a clique for some $v \in D$, then let $H=G-v$. Since $I \subseteq V(H), \alpha_{2}(H) \geqslant \alpha_{2}(G)$. If $w \in S(v)$, then $(D \backslash\{v\}) \cup\{w\}$ is a 2-dominating set of G and thus $\gamma_{2}(H) \leqslant \gamma_{2}(G)$. We obtain $\alpha_{2}(H)-\gamma_{2}(H) \geqslant k+1$, which is a contradiction.

If $N_{G}(v) \cap I(v) \neq \emptyset$, then $\left|N_{G}(v) \cap I(v)\right|=1$ and the unique vertex in $N_{G}(v) \cap I(v)$ has no neighbour in $S(v)$. Since G is claw-free, this implies that $S(v)$ is the union of two cliques one of which consists of the unique vertex in $N_{G}(v) \cap I(v)$.

If $N_{G}(v) \cap I(v)=\emptyset$ and there are vertices $x, y, z \in S(v)$ such that $x y, x z \in E(G), y z \notin$ $E(G)$ and u is the unique neighbour of x in I, then $G[\{x, u, y, z\}]$ is a claw, which is a contradiction. Hence, also in this case, $S(v)$ is the union of two cliques.

For $i=1,2$ let $v_{i} \in D$ be such that $S\left(v_{i}\right)=C_{i} \cup C_{i}^{\prime}$ where C_{i} and C_{i}^{\prime} are cliques. If $C_{2} \subseteq N_{G}\left(v_{1}\right)$ and $w \in C_{2}^{\prime}$, then let $H=G-v_{2}$. Since $I \subseteq V(H), \alpha_{2}(H) \geqslant \alpha_{2}(G)$. Since $\left(D \backslash\left\{v_{2}\right\}\right) \cup\{w\}$ is a 2-dominating set of $H, \gamma_{2}(H) \leqslant \gamma_{2}(G)$. We obtain $\alpha_{2}(H)-$ $\gamma_{2}(H) \geqslant k+1$, which is a contradiction. Hence, by symmetry, $C_{2} \nsubseteq N_{G}\left(v_{1}\right), C_{2}^{\prime} \nsubseteq$ $N_{G}\left(v_{1}\right), C_{1} \nsubseteq N_{G}\left(v_{2}\right)$ and $C_{1}^{\prime} \nsubseteq N_{G}\left(v_{2}\right)$.

If $w_{2} \in C_{2}$ is adjacent to v_{1}, then $\left|C_{2}\right| \geqslant 2$. Hence $w_{2} \notin I\left(v_{2}\right)$ and there is a vertex $u_{2} \in I\left(v_{2}\right)$ such that $N_{G}\left(u_{2}\right)=\left\{w_{2}\right\}$. Let $w_{3} \in C_{2} \backslash\left\{w_{2}\right\}$. If $w_{3} \notin N_{G}\left(v_{1}\right)$, then $G\left[\left\{v_{1}, w_{2}, w_{3}, u_{2}\right\}\right]$ is a claw. Hence $C_{2} \subseteq N_{G}\left(v_{1}\right)$, which is a contradiction. By symmetry, v_{1} has no neighbour in $C_{2} \cup C_{2}^{\prime}$ and v_{2} has no neighbour in $C_{1} \cup C_{1}^{\prime}$.

If there are vertices $w_{i} \in C_{i}$ for $i=1,2$ such that w_{1} and w_{2} are adjacent, then $w_{1}, w_{2} \notin I$ and for $i=1,2$ there are vertices $u_{i} \in I\left(v_{i}\right)$ such that $N_{G}\left(u_{i}\right)=\left\{w_{i}\right\}$. Since $w_{2} \notin N_{G}\left(v_{1}\right), G\left[\left\{v_{1}, w_{1}, w_{2}, u_{1}\right\}\right]$ is a claw, which is a contradiction.

If v_{1} and v_{2} are adjacent, then for $x_{1} \in C_{1}$ and $x_{1}^{\prime} \in C_{1}^{\prime}$ the graph $G\left[\left\{v_{1}, v_{2}, x_{1}, x_{1}^{\prime}\right\}\right]$ is a claw, which is a contradiction.

This implies that no edge joins a vertex in $\left\{v_{1}\right\} \cup S\left(v_{1}\right) \cup I\left(v_{1}\right)$ to a vertex in $\left\{v_{2}\right\} \cup S\left(v_{2}\right) \cup I\left(v_{2}\right)$. Hence for each $v \in D$ the set $\{v\} \cup S(v) \cup I(v)$ is the vertex set of a connected component of G. If $S(v)=C \cup C^{\prime}$ for some $v \in D, C=\{w\}$ and $w \notin I$, then there is some $u \in I(v)$ such that $N_{G}(u)=\{w\}$. The graph $H=G-u$ satisfies $\alpha_{2}(H)-\gamma_{2}(H) \geqslant k+1$, which is a contradiction. This finally implies that every component of G is isomorphic either to a graph $G(l)$ for $l \geqslant 2$ or a graph $G\left(l_{1}, l_{2}\right)$ for $l_{1}, l_{2} \geqslant 1$ which implies that $G \in \mathscr{G}(k)$ and the proof is complete.

It is easy to see that a graph is $\alpha_{r} \gamma_{r}(0)$-perfect if and only if it does not contain P_{r+2} as an induced subgraph. For general k though, we believe that there is no concise description of the minimal $\alpha_{r} \gamma_{r}(k)$-imperfect graphs.

References

[1] B. Bollobás, E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241-249.
[2] E.J. Cockayne, O. Favaron, C. Payan, A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math. 33 (1981) 249-258.
[3] L. Dohmen, D. Rautenbach, L. Volkmann, A characterization of $\Gamma \alpha(k)$-perfect graphs, Discrete Math. 224 (2000) 265-271.
[4] L. Dohmen, D. Rautenbach, L. Volkmann, $i \gamma(1)$-perfect graphs, Discrete Math. 234 (2001) 133-138.
[5] O. Favaron, Stability, domination and irredundance in a graph, J. Graph Theory 10 (1986) 429-438.
[6] G. Gutin, V.E. Zverovich, Upper domination and upper irredundance perfect graphs, Discrete Math. 190 (1998) 95-105.
[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, NY, 1998.
[8] M.A. Henning, Irredundance perfect graphs, Discrete Math. 142 (1995) 107-120.
[9] M.S. Jacobson, K. Peters, Chordal graphs and upper irredundance, upper domination and independence, Discrete Math. 86 (1990) 59-69.
[10] M.S. Jacobson, K. Peters, A note on graphs which have upper irredundance equal to independence, Discrete Appl. Math. 44 (1993) 91-97.
[11] J. Puech, Irredundance perfection and P_{6}-free graphs, J. Graph Theory 29 (1998) 239-255.
[12] D. Rautenbach, V.E. Zverovich, Perfect graphs of strong and independent strong domination, Discrete Math. 226 (2001) 297-311.
[13] J. Topp, Domination, independence and irredundance in graphs, Dissertationes Math., Vol. 342, 1995, 99pp.
[14] L. Volkmann, V.E. Zverovich, A proof of Favaron's conjecture and a disproof of Henning's conjecture on irredundance perfect graphs, The 5th Twente Workshop on Graphs and Combinatorial Optimization, Enschede, May 1997, pp. 215-217.
[15] I.E. Zverovich, k-Bounded classes of dominant-independent perfect graphs, J. Graph Theory 32 (1999) 303-310.
[16] I.E. Zverovich, V.E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20 (1995) 375-395.
[17] I.E. Zverovich, V.E. Zverovich, An semi-induced subgraph characterization of upper domination perfect graphs, J. Graph Theory 31 (1999) 139-149.

[^0]: * Corresponding author. Tel.: +49-241-80-94995; fax: +49-241-80-92136.

 E-mail addresses: rauten@math2.rwth-aachen.de (D. Rautenbach), volkm@math2.rwth-aachen.de (L. Volkmann).

