Generic fiber rings of mixed power series/polynomial rings

William Heinzer ${ }^{\text {a,* }}$, Christel Rotthaus ${ }^{\text {b }}$, Sylvia Wiegand ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA
${ }^{\text {c }}$ Department of Mathematics and Statistics, University of Nebraska, Lincoln, NE 68588-0323, USA

Received 15 February 2005
Available online 23 September 2005
Communicated by Luchezar L. Avramov

Abstract

Let K be a field, m and n positive integers, and $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ sets of independent variables over K. Let A be the localized polynomial ring $K[X]_{(X)}$. We prove that every prime ideal P in $\widehat{A}=K \llbracket X \rrbracket$ that is maximal with respect to $P \cap A=(0)$ has height $n-1$. We consider the mixed power series/polynomial rings $B:=K \llbracket X \rrbracket[Y]_{(X, Y)}$ and $C:=K[Y]_{(Y)} \llbracket X \rrbracket$. For each prime ideal P of $\widehat{B}=\widehat{C}$ that is maximal with respect to either $P \cap B=(0)$ or $P \cap C=(0)$, we prove that P has height $n+m-2$. We also prove each prime ideal P of $K \llbracket X, Y \rrbracket$ that is maximal with respect to $P \cap K \llbracket X \rrbracket=(0)$ is of height either m or $n+m-2$. © 2005 Elsevier Inc. All rights reserved.

1. Introduction and background

Let (R, \mathbf{m}) be a Noetherian local integral domain and let \widehat{R} denote the \mathbf{m}-adic completion of R. The generic formal fiber ring of R is the localization $(R \backslash(0))^{-1} \widehat{R}$ of \widehat{R}. The formal fibers of R are the fibers of the morphism Spec $\widehat{R} \rightarrow \operatorname{Spec} R$; for a prime ideal P of R, the formal fiber over P is $\operatorname{Spec}\left(\left(R_{P} / P R_{P}\right) \otimes_{R} \widehat{R}\right)$. The formal fibers encode im-

[^0]portant information about the structure of R. For example, the local ring R is excellent provided it is universally catenary and has geometrically regular formal fibers [2, (7.8.3), p. 214].

Let $R \hookrightarrow S$ be an injective homomorphism of commutative rings. If R is an integral domain, the generic fiber ring of the map $R \hookrightarrow S$ is the localization $(R \backslash(0))^{-1} S$ of S. In this article we study generic fiber rings for "mixed" polynomial and power series rings over a field. More precisely, for K a field, m and n positive integers, and $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ sets of variables over K, we consider the local rings $A:=K[X]_{(X)}$, $B:=K \llbracket X \rrbracket[Y]_{(X, Y)}$ and $C:=K[Y]_{(Y)} \llbracket X \rrbracket$, as well as their completions $\widehat{A}=K \llbracket X \rrbracket$ and $\widehat{B}=\widehat{C}=K \llbracket X, Y \rrbracket$. Notice that there is a canonical inclusion map $B \hookrightarrow C$.

We have the following local embeddings.

$$
\begin{aligned}
& A:=K[X]_{(X)} \hookrightarrow \widehat{A}:=K \llbracket X \rrbracket, \quad \widehat{A} \hookrightarrow \widehat{B}=\widehat{C}=K \llbracket X, Y \rrbracket \quad \text { and } \\
& B:=K \llbracket X \rrbracket[Y]_{(X, Y)} \hookrightarrow C:=K[Y]_{(Y)} \llbracket X \rrbracket \hookrightarrow \widehat{B}=\widehat{C}=K \llbracket X \rrbracket \llbracket Y \rrbracket .
\end{aligned}
$$

Matsumura proves in [7] that the generic formal fiber ring of A has dimension $n-1=$ $\operatorname{dim} A-1$, and the generic formal fiber rings of B and C have dimension $n+m-2=$ $\operatorname{dim} B-2=\operatorname{dim} C-2$. However he does not address the question of whether all maximal ideals of the generic formal fiber rings for A, B and C have the same height. If the field K is countable, it follows from [3, Proposition 4.10, p. 36] that all maximal ideals of the generic formal fiber ring of A have the same height.

In answer to a question raised by Matsumura in [7], Rotthaus in [10] establishes the following result. Let n be a positive integer. Then there exist excellent regular local rings R such that $\operatorname{dim} R=n$ and such that the generic formal fiber ring of R has dimension t, where the value of t may be taken to be any integer between 0 and $\operatorname{dim} R-1$. It is also shown in [10, Corollary 3.2] that there exists an excellent regular local domain having the property that its generic formal fiber ring contains maximal ideals of different heights.

Let \widehat{T} be a complete Noetherian local ring and let \mathcal{C} be a finite set of incomparable prime ideals of \widehat{T}. Charters and Loepp in [1] (see also [6, Theorem 17]) determine necessary and sufficient conditions for \widehat{T} to be the completion of a Noetherian local domain T such that the generic formal fiber of T has as maximal elements precisely the prime ideals in \mathcal{C}. If \widehat{T} is of characteristic zero, Charters and Loepp give necessary and sufficient conditions to obtain such a domain T that is excellent. The finite set \mathcal{C} may be chosen to contain prime ideals of different heights. This provides many examples where the generic formal fiber ring contains maximal ideals of different heights.

Our main results may be summarized as follows.
1.1. Theorem. With the above notation, we prove that all maximal ideals of the generic formal fiber rings of A, B and C have the same height. In particular, we prove:
(1) If P is a prime ideal of \widehat{A} maximal with respect to $P \cap A=(0)$, then ht $P=n-1$.
(2) If P is a prime ideal of \widehat{B} maximal with respect to $P \cap B=(0)$, then ht $P=n+m-2$.
(3) If P is a prime ideal of \widehat{C} maximal with respect to $P \cap C=(0)$, then ht $P=n+m-2$.
(4) In addition, there are at most two possible values for the height of a maximal ideal of the generic fiber ring $(\widehat{A} \backslash(0))^{-1} \widehat{C}$ of the inclusion map $\widehat{A} \hookrightarrow \widehat{C}$.
(a) If $n \geqslant 2$ and P is a prime ideal of \widehat{C} maximal with respect to $P \cap \widehat{A}=(0)$, then either ht $P=n+m-2$ or ht $P=m$.
(b) If $n=1$, then all maximal ideals of the generic fiber ring $(\widehat{A} \backslash(0))^{-1} \widehat{C}$ have height m.

We were motivated to consider generic fiber rings for the embeddings displayed above because of questions related to $[4,5]$ and ultimately because of the following question posed by Melvin Hochster.
1.2. Question. Let R be a complete local domain. Can one describe or somehow classify the local maps of R to a complete local domain S such that $U^{-1} S$ is a field, where $U=$ $R \backslash(0)$, i.e., such that the generic fiber of $R \hookrightarrow S$ is trivial?

Hochster remarks that if, for example, R is equal characteristic zero, one obtains such extensions by starting with

$$
\begin{equation*}
R=K \llbracket x_{1}, \ldots, x_{n} \rrbracket \hookrightarrow T=L \llbracket x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \rrbracket \rightarrow T / P=S, \tag{1.2.1}
\end{equation*}
$$

where K is a subfield of L, the x_{i}, y_{j} are formal indeterminates, and P is a prime ideal of T maximal with respect to being disjoint from the image of $R \backslash\{0\}$. Of course, such prime ideals P correspond to the maximal ideals of the generic fiber $(R \backslash(0))^{-1} T$.

In Theorem 7.2, we answer Question 1.2 in the special case where the extension arises from the embedding in (1.2.1) with the field $L=K$. We prove in this case that the dimension of the extension ring S must be either 2 or n.

In [5] we study extensions of integral domains $R \stackrel{\varphi}{\hookrightarrow} S$ such that, for every nonzero $Q \in$ Spec S, we have $Q \cap R \neq(0)$. Such extensions are called trivial generic fiber extensions or TGF extensions in [5]. One obtains such an extension by considering a composition $R \hookrightarrow$ $T \rightarrow T / P=S$, where T is an extension ring of R and $P \in \operatorname{Spec} T$ is maximal with respect to $P \cap R=(0)$. Thus the generic fiber ring and so also Theorem 1.1 give information regarding TGF extensions in the case where the smaller ring is a mixed polynomial/power series ring.

In addition, Theorem 1.1 is useful in the study of (1.2.1), because the map in (1.2.1) factors through:

$$
R=K \llbracket x_{1}, \ldots, x_{n} \rrbracket \hookrightarrow K \llbracket x_{1}, \ldots, x_{n} \rrbracket\left[y_{1}, \ldots, y_{m}\right] \hookrightarrow T=L \llbracket x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \rrbracket .
$$

Section 2 contains implications of Weierstrass' Preparation Theorem to the prime ideals of power series rings. We first prove a technical proposition regarding a change of variables that provides a "nice" generating set for a given prime ideal P of a power series ring; then in Theorem 2.3 we prove that, in certain circumstances, a larger prime ideal can be found with the same contraction as P to a certain subring. In Sections 3 and 4, we prove parts (2) and (3) of Theorem 1.1 stated above. In Section 5 we use a result of Valabrega for the twodimensional case. We then apply this result in Section 6 to prove part (1) of Theorem 1.1, and in Section 7 we prove part (4).

2. Variations on a theme of Weierstrass

In this section, we apply the Weierstrass Preparation Theorem [12, Theorem 5, p. 139, and Corollary 1, p. 145] to examine the structure of a given prime ideal P in the power series ring $\widehat{A}=K \llbracket X \rrbracket$, where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n variables over the field K. Here $A=K[X]_{(X)}$ is the localized polynomial ring in these variables. Our procedure is to make a change of variables that yields a regular sequence in P of a nice form.
2.1. Notation. By a change of variables, we mean a finite sequence of 'polynomial' change of variables of the type described below, where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n variables over the field K. For example, with $e_{i}, f_{i} \in \mathbb{N}$, consider

$$
\begin{gathered}
x_{1} \mapsto x_{1}+x_{n}^{e_{1}}=z_{1}, \quad x_{2} \mapsto x_{2}+x_{n}^{e_{2}}=z_{2}, \quad \ldots, \\
x_{n-1} \mapsto x_{n-1}+x_{n}^{e_{n-1}}=z_{n-1}, \quad x_{n} \mapsto x_{n}=z_{n},
\end{gathered}
$$

followed by

$$
\begin{aligned}
& z_{1} \mapsto z_{1}=t_{1}, \quad z_{2} \mapsto z_{2}+z_{1}^{f_{2}}=t_{2}, \quad \ldots, \\
& z_{n-1} \mapsto z_{n-1}+z_{1}^{f_{n-1}}=t_{n-1}, \quad x_{n} \mapsto z_{n}+z_{1}^{f_{n}}=t_{n}
\end{aligned}
$$

Thus a change of variables defines an automorphism of \widehat{A} that restricts to an automorphism of A.

We also consider a change of variables for subrings of A and \widehat{A}. For example, if $A_{1}=$ $K\left[x_{2}, \ldots, x_{n}\right] \subseteq A$ and $S=K \llbracket x_{2}, \ldots, x_{n} \rrbracket \subseteq \widehat{A}$, then by a change of variables inside A_{1} and S, we mean a finite sequence of automorphisms of A and \widehat{A} of the type described above on x_{2}, \ldots, x_{n} that leave the variable x_{1} fixed. In this case we obtain an automorphism of \widehat{A} that restricts to an automorphism on each of S, A and A_{1}.
2.2. Proposition. Let $\widehat{A}:=K \llbracket X \rrbracket=K \llbracket x_{1}, \ldots, x_{n} \rrbracket$ and let $P \in \operatorname{Spec} \widehat{A}$ with $x_{1} \notin P$ and ht $P=r$, where $1 \leqslant r \leqslant n-1$. There exists a change of variables $x_{1} \mapsto z_{1}:=x_{1}\left(x_{1}\right.$ is fixed), $x_{2} \mapsto z_{2}, \ldots, x_{n} \mapsto z_{n}$ and a regular sequence $f_{1}, \ldots, f_{r} \in P$ so that, upon setting $Z_{1}=\left\{z_{1}, \ldots, z_{n-r}\right\}, Z_{2}=\left\{z_{n-r+1}, \ldots, z_{n}\right\}$ and $Z=Z_{1} \cup Z_{2}$, we have

$$
\begin{array}{ll}
f_{1} \in K \llbracket Z_{1} \rrbracket\left[z_{n-r+1}, \ldots, z_{n-1}\right]\left[z_{n}\right] & \text { is monic as a polynomial in } z_{n}, \\
f_{2} \in K \llbracket Z_{1} \rrbracket\left[z_{n-r+1}, \ldots, z_{n-2}\right]\left[z_{n-1}\right] & \text { is monic as a polynomial in } z_{n-1}, \text { etc. }, \\
\quad \vdots & \\
f_{r} \in K \llbracket Z_{1} \rrbracket\left[z_{n-r+1}\right] & \text { is monic as a polynomial in } z_{n-r+1} .
\end{array}
$$

In addition:
(1) P is a minimal prime of the ideal $\left(f_{1}, \ldots, f_{r}\right) \widehat{A}$.
(2) The $\left(Z_{2}\right)$-adic completion of $K \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$ is identical to the $\left(f_{1}, \ldots, f_{r}\right)$-adic completion and both equal $\widehat{A}=K \llbracket X \rrbracket=K \llbracket Z \rrbracket$.
(3) If $P_{1}:=P \cap K \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$, then $P_{1} \widehat{A}=P$, that is, P is extended from $K \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$.
(4) The ring extension:

$$
K \llbracket Z_{1} \rrbracket \hookrightarrow K \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)} / P_{1} \cong K \llbracket Z \rrbracket / P
$$

is finite (and integral).
Proof. Since \widehat{A} is a unique factorization domain, there exists a nonzero prime element f in P. The power series f is therefore not a multiple of x_{1}, and so f must contain a monomial term $x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}$ with a nonzero coefficient in K. This nonzero coefficient in K may be assumed to be 1 . There exists an automorphism $\sigma: \widehat{A} \rightarrow \widehat{A}$ defined by the change of variables:

$$
x_{1} \mapsto x_{1}, \quad x_{2} \mapsto t_{2}:=x_{2}+x_{n}^{e_{2}}, \quad \ldots, \quad x_{n-1} \mapsto t_{n-1}:=x_{n-1}+x_{n}^{e_{n-1}}, \quad x_{n} \mapsto x_{n}
$$

with $e_{2}, \ldots, e_{n-1} \in \mathbb{N}$ chosen suitably so that f written as a power series in the variables $x_{1}, t_{2}, \ldots, t_{n-1}, x_{n}$ contains a term $a_{n} x_{n}^{s_{n}}$, where s_{n} is a positive integer, and $a_{n} \in K$ is nonzero. We assume that the integer s_{n} is minimal among all integers i such that a term $a x_{n}^{i}$ occurs in f with a nonzero coefficient $a \in K$; we further assume that the coefficient $a_{n}=1$. By Weierstrass we have that:

$$
f=m \epsilon,
$$

where $m \in K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket\left[x_{n}\right]$ is a monic polynomial in x_{n} of degree s_{n} and ϵ is a unit in \widehat{A}. Since $f \in P$ is a prime element, $m \in P$ is also a prime element. Using Weierstrass again, every element $g \in P$ can be written as:

$$
g=m h+q
$$

where $h \in K \llbracket x_{1}, t_{2}, \ldots, t_{n-1}, x_{n} \rrbracket=\widehat{A}$ and $q \in K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket\left[x_{n}\right]$ is a polynomial in x_{n} of degree less than s_{n}. Note that

$$
K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket \hookrightarrow K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket\left[x_{n}\right] /(m)
$$

is an integral (finite) extension. Thus the ring $K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket\left[x_{n}\right] /(m)$ is complete. Moreover, the two ideals $\left(x_{1}, t_{2}, \ldots, t_{n-1}, m\right)=\left(x_{1}, t_{2}, \ldots, t_{n-1}, x_{n}^{s_{n}}\right)$ and $\left(x_{1}, t_{2}, \ldots\right.$, $\left.t_{n-1}, x_{n}\right)$ of $B_{0}:=K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket\left[x_{n}\right]$ have the same radical. Therefore \widehat{A} is the $(m)-$ adic and the $\left(x_{n}\right)$-adic completion of B_{0} and P is extended from B_{0}.

This implies the statement for $r=1$, with $f_{1}=m, z_{n}=x_{n}, z_{1}=x_{1}, z_{2}=t_{2}, \ldots, z_{n-1}=$ $t_{n-1}, Z_{1}=\left\{x_{1}, t_{2}, \ldots, t_{n-1}\right\}$ and $Z_{2}=\left\{z_{n}\right\}=\left\{x_{n}\right\}$. In particular, when $r=1, P$ is minimal over $m \widehat{A}$, so $P=m \widehat{A}$.

For $r>1$ we continue by induction on r. Let $P_{0}:=P \cap K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket$. Since $m \notin$ $K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket$ and P is extended from $B_{0}:=K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket\left[x_{n}\right]$, then $P \cap B_{0}$ has height r and ht $P_{0}=r-1$. Since $x_{1} \notin P$, we have $x_{1} \notin P_{0}$, and by the induction
hypothesis there is a change of variables $t_{2} \mapsto z_{2}, \ldots, t_{n-1} \mapsto z_{n-1}$ of $K \llbracket x_{1}, t_{2}, \ldots, t_{n-1} \rrbracket$ and elements $f_{2}, \ldots, f_{r} \in P_{0}$ so that:

$$
\begin{array}{ll}
f_{2} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n-2}\right]\left[z_{n-1}\right] & \text { is monic in } z_{n-1}, \\
f_{3} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n-3}\right]\left[z_{n-2}\right] & \text { is monic in } z_{n-2}, \text { etc. }, \\
\quad \vdots & \\
f_{r} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}\right] & \text { is monic in } z_{n-r+1},
\end{array}
$$

and f_{2}, \ldots, f_{r} satisfy the assertions of Proposition 2.2 for P_{0}.
It follows that m, f_{2}, \ldots, f_{r} is a regular sequence of length r and that P is a minimal prime of the ideal $\left(m, f_{2}, \ldots, f_{r}\right) \widehat{A}$. Set $z_{n}=x_{n}$. We now prove that m may be replaced by a polynomial $f_{1} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right]$. Write

$$
m=\sum_{i=0}^{s_{n}} a_{i} z_{n}
$$

where the $a_{i} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-1} \rrbracket$. For each $i<s_{n}$, apply Weierstrass to a_{i} and f_{2} in order to obtain:

$$
a_{i}=f_{2} h_{i}+q_{i}
$$

where h_{i} is a power series in $K \llbracket x_{1}, z_{2}, \ldots, z_{n-1} \rrbracket$ and $q_{i} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-2} \rrbracket\left[z_{n-1}\right]$ is a polynomial in z_{n-1}. With $q_{s_{n}}=1=a_{s_{n}}$, we define

$$
m_{1}=\sum_{i=0}^{s_{n}} q_{i} z_{n}^{i}
$$

Now $\left(m_{1}, f_{2}, \ldots, f_{r}\right) \widehat{A}=\left(m, f_{2}, \ldots, f_{r}\right) \widehat{A}$ and we may replace m by m_{1} which is a polynomial in z_{n-1} and z_{n}. To continue, for each $i<s_{n}$, write:

$$
q_{i}=\sum_{j, k} b_{i j} z_{n-1}^{j} \quad \text { with } b_{i j} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-2} \rrbracket .
$$

For each $b_{i j}$, we apply Weierstrass to $b_{i j}$ and f_{3} to obtain:

$$
b_{i j}=f_{3} h_{i j}+q_{i j}
$$

where $q_{i j} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-3} \rrbracket\left[z_{n-2}\right]$. Set

$$
m_{2}=\sum_{i, j} q_{i j} z_{n-1}^{j} z_{n}^{i} \in K \llbracket x_{1}, z_{2}, \ldots, z_{n-3} \rrbracket\left[z_{n-2}, z_{n-1}, z_{n}\right]
$$

with $q_{s_{n} 0}=1$. It follows that

$$
\left(m_{2}, f_{2}, \ldots, f_{r}\right) \widehat{A}=\left(m, f_{2}, \ldots, f_{r}\right) \widehat{A}
$$

Continuing this process by applying Weierstrass to the coefficients of $z_{n-2}^{k} z_{n-1}^{j} z_{n}^{i}$ and f_{4}, we establish the existence of a polynomial $f_{1} \in K \llbracket Z_{1} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right]$ that is monic in z_{n} so that $\left(f_{1}, f_{2}, \ldots, f_{r}\right) \widehat{A}=\left(m, f_{2}, \ldots, f_{r}\right) \widehat{A}$. Therefore P is a minimal prime of $\left(f_{1}, \ldots, f_{r}\right) \widehat{A}$.

The extension

$$
K \llbracket Z_{1} \rrbracket \rightarrow K \llbracket Z_{1} \rrbracket\left[Z_{2}\right] /\left(f_{1}, \ldots, f_{r}\right)
$$

is integral and finite. Thus the ring $K \llbracket Z_{1} \rrbracket\left[Z_{2}\right] /\left(f_{1}, \ldots, f_{r}\right)$ is complete. This implies $\widehat{A}=K \llbracket x_{1}, z_{2}, \ldots, z_{n} \rrbracket$ is the (f_{1}, \ldots, f_{r})-adic (and the (Z_{2})-adic) completion of $K \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$ and that P is extended from $K \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$. This completes the proof of Proposition 2.2.

The following theorem is the technical heart of the paper.
2.3. Theorem. Let K be a field and let y and $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be variables over K. Assume that V is a discrete valuation domain with completion $\widehat{V}=K \llbracket y \rrbracket$ and that $K[y] \subseteq$ $V \subseteq K \llbracket y \rrbracket$. Also assume that the field $K((y))=K \llbracket y \rrbracket[1 / y \rrbracket$ has uncountable transcendence degree over the quotient field $\mathcal{Q}(V)$ of V. Set $R_{0}:=V \llbracket X \rrbracket$ and $R=\widehat{R_{0}}=K \llbracket y, X \rrbracket$. Let $P \in \operatorname{Spec} R$ be such that
(i) $P \subseteq(X) R($ so $y \notin P)$, and
(ii) $\operatorname{dim}(R / P)>2$.

Then there is a prime ideal $Q \in \operatorname{Spec} R$ such that
(1) $P \subset Q \subset X R$,
(2) $\operatorname{dim}(R / Q)=2$, and
(3) $P \cap R_{0}=Q \cap R_{0}$.

In particular, $P \cap K \llbracket X \rrbracket=Q \cap K \llbracket X \rrbracket$.
Proof. Assume that P has height r. Since $\operatorname{dim}(R / P)>2$, we have $0 \leqslant r<n-1$. If $r>0$, then there exist a transformation $x_{1} \mapsto z_{1}, \ldots, x_{n} \mapsto z_{n}$ and elements $f_{1}, \ldots, f_{r} \in P$, by Proposition 2.2, so that the variable y is fixed, and

$$
\begin{array}{ll}
f_{1} \in K \llbracket y, z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right] & \text { is monic in } z_{n}, \\
f_{2} \in K \llbracket y, z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n-1}\right] & \text { is monic in } z_{n-1}, \text { etc., } \\
\quad \vdots & \\
f_{r} \in K \llbracket y, z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}\right] & \text { is monic in } z_{n-r+1},
\end{array}
$$

and the assertions of Proposition 2.2 are satisfied. In particular, P is a minimal prime of $\left(f_{1}, \ldots, f_{r}\right) R$. Let $Z_{1}=\left\{z_{1}, \ldots, z_{n-r}\right\}$ and $Z_{2}=\left\{z_{n-r+1}, \ldots, z_{n-1}, z_{n}\right\}$. By Proposition 2.2, if $D:=K \llbracket y, Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$ and $P_{1}:=P \cap D$, then $P_{1} R=P$.

The following diagram shows these rings and ideals.

Note that $f_{1}, \ldots, f_{r} \in P_{1}$. Let $g_{1}, \ldots, g_{s} \in P_{1}$ be other generators such that $P_{1}=$ $\left(f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right) D$. Then $P=P_{1} R=\left(f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right) R$. For each $(i):=$ $\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ and j, k with $1 \leqslant j \leqslant r, 1 \leqslant k \leqslant s$, let $a_{j,(i)}, b_{k,(i)}$ denote the coefficients in $K \llbracket y \rrbracket$ of the f_{j}, g_{k}, so that

$$
f_{j}=\sum_{(i) \in \mathbb{N}^{n}} a_{j,(i)} z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}, \quad g_{k}=\sum_{(i) \in \mathbb{N}^{n}} b_{k,(i)} z_{1}^{i_{1}} \ldots z_{n}^{i_{n}} \in K \llbracket y \rrbracket \llbracket Z \rrbracket .
$$

Define

$$
\Delta:= \begin{cases}\left\{a_{j,(i)}, b_{k,(i)}\right\} \subseteq K \llbracket y \rrbracket, & \text { for } r>0, \\ \emptyset, & \text { for } r=0 .\end{cases}
$$

A key observation here is that in either case the set Δ is countable.
To continue the proof, we consider $S:=\mathcal{Q}(V(\Delta)) \cap K \llbracket y \rrbracket$, a discrete valuation domain, and its field of quotients $L:=\mathcal{Q}(V(\Delta))$. Since Δ is a countable set, the field $K((y))$ is (still) of uncountable transcendence degree over L. Let $\gamma_{2}, \ldots, \gamma_{n-r}$ be elements of $K \llbracket y \rrbracket$ that are algebraically independent over L. We define

$$
T:=L\left(\gamma_{2}, \ldots, \gamma_{n-r}\right) \cap K \llbracket y \rrbracket \quad \text { and } \quad E:=\mathcal{Q}(T)=L\left(\gamma_{2}, \ldots, \gamma_{n-r}\right) .
$$

The diagram below shows the prime ideals P and P_{1} and the containments between the relevant rings.

$$
\begin{aligned}
& P=\left.\left(\left\{f_{j}, g_{k}\right\}\right) R \quad\right|^{R}=K \llbracket y, Z \rrbracket \\
& D:=K \llbracket y, Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)} \quad \mathcal{Q}(K \llbracket y \rrbracket)=K \llbracket y \rrbracket[1 / y]=K((y)) \\
& P_{1}=\left(\left\{f_{j}, g_{k}\right\}\right) D
\end{aligned}
$$

Let $P_{2}:=P \cap S \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$. Since $f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s} \in S \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$, we have $P_{2} R=P$. Since $P \subseteq\left(x_{1}, \ldots, x_{n}\right) R=(Z) R$, there is a prime ideal \widetilde{P} in $L \llbracket Z \rrbracket$ that is minimal over $P_{2} L \llbracket Z \rrbracket$. Since $L \llbracket Z \rrbracket$ is flat over $S \llbracket Z \rrbracket, \widetilde{P} \cap S \llbracket Z \rrbracket=P_{2} S \llbracket Z \rrbracket$. Note that $L \llbracket X \rrbracket=L \llbracket Z \rrbracket$ is the $\left(f_{1}, \ldots, f_{r}\right)$-adic (and the $\left(Z_{2}\right)$-adic) completion of $L \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$. In particular,

$$
L \llbracket Z_{1} \rrbracket\left[Z_{2}\right] /\left(f_{1}, \ldots, f_{r}\right)=L \llbracket Z_{1} \rrbracket \llbracket Z_{2} \rrbracket /\left(f_{1}, \ldots, f_{r}\right)
$$

and this also holds with the field L replaced by its extension field E.
Since $L \llbracket Z \rrbracket / \widetilde{P}$ is a homomorphic image of $L \llbracket Z \rrbracket /\left(f_{1}, \ldots, f_{r}\right)$, it follows that $L \llbracket Z \rrbracket / \widetilde{P}$ is integral (and finite) over $L \llbracket Z_{1} \rrbracket$. This yields the commutative diagram:

with injective integral (finite) horizontal maps. Recall that E is the subfield of $K((y))$ obtained by adjoining $\gamma_{2}, \ldots, \gamma_{n-r}$ to the field L. Thus the vertical maps of (2.3.0) are faithfully flat.

Let $\mathbf{q}:=\left(z_{2}-\gamma_{2} z_{1}, \ldots, z_{n-r}-\gamma_{n-r} z_{1}\right) E \llbracket Z_{1} \rrbracket \in \operatorname{Spec}\left(E \llbracket Z_{1} \rrbracket\right)$ and let \widetilde{W} be a minimal prime of the ideal $(\widetilde{P}, \mathbf{q}) E \llbracket Z \rrbracket$. Since

$$
f_{1}, \ldots, f_{r}, z_{2}-\gamma_{2} z_{1}, \ldots, z_{n-r}-\gamma_{n-r} z_{1}
$$

is a regular sequence in $T \llbracket Z \rrbracket$, the prime ideal $W:=\widetilde{W} \cap T \llbracket Z \rrbracket$ has height $n-1$. Let \widetilde{Q} be a minimal prime of $\widetilde{W} K((y)) \llbracket Z \rrbracket$ and let $Q:=\widetilde{Q} \cap R$. Then $W=Q \cap T \llbracket Z \rrbracket, P \subset Q \subset$ $Z R=X R$, and pictorially we have:

Notice that \mathbf{q} is a prime ideal of height $n-r-1$. Also, since $K((y)) \llbracket Z \rrbracket$ is flat over $K \llbracket y, Z \rrbracket=R$, we have ht $Q=n-1$ and $\operatorname{dim}(R / Q)=2$. We clearly have $P_{2} \subseteq W \cap$ $S \llbracket Z_{1} \rrbracket\left[Z_{2}\right]_{(Z)}$.
2.3.1. Claim. $\mathbf{q} \cap L \llbracket Z_{1} \rrbracket=(0)$.

To show this we argue as in [7]. Suppose that

$$
h=\sum_{m \in \mathbb{N}} H_{m} \in \mathbf{q} \cap L \llbracket z_{1}, \ldots, z_{n-r} \rrbracket
$$

where $H_{m} \in L\left[z_{1}, \ldots, z_{n-r}\right]$ is a homogeneous polynomial of degree m :

$$
H_{m}=\sum_{|(i)|=m} c_{(i)} z_{1}^{i_{1}} \ldots z_{n-r}^{i_{n-r}}
$$

where $(i):=\left(i_{1}, \ldots, i_{n-r}\right) \in \mathbb{N}^{n-r},|(i)|:=i_{1}+\cdots+i_{n-r}$ and $c_{(i)} \in L$. Consider the E algebra homomorphism $\pi: E \llbracket Z_{1} \rrbracket \rightarrow E \llbracket z_{1} \rrbracket$ defined by $\pi\left(z_{1}\right)=z_{1}$ and $\pi\left(z_{i}\right)=\gamma_{i} z_{1}$ for $2 \leqslant i \leqslant n-r$. Then $\operatorname{ker} \pi=\mathbf{q}$, and for each $m \in \mathbb{N}$:

$$
\pi\left(H_{m}\right)=\pi\left(\sum_{|(i)|=m} c_{(i)} z_{1}^{i_{1}} \ldots z_{n-r}^{i_{n-r}}\right)=\sum_{|(i)|=m} c_{(i)} \gamma_{2}^{i_{2}} \ldots \gamma_{n-r}^{i_{n-r}} z_{1}^{m}
$$

and

$$
\pi(h)=\sum_{m \in \mathbb{N}} \pi\left(H_{m}\right)=\sum_{m \in \mathbb{N}|(i)|=m} \sum_{(i)} \gamma_{2}^{i_{2}} \ldots \gamma_{n-r}^{i_{n-r}} z_{1}^{m} .
$$

Since $h \in \mathbf{q}, \pi(h)=0$. Since $\pi(h)$ is a power series in $E \llbracket z_{1} \rrbracket$, each of its coefficients is zero, that is, for each $m \in \mathbb{N}$,

$$
\sum_{|(i)|=m} c_{(i)} \gamma_{2}^{i_{2}} \ldots \gamma_{n-r}^{i_{n-r}}=0
$$

Since the γ_{i} are algebraically independent over L, each $c_{(i)}=0$. Therefore $h=0$, and so $\mathbf{q} \cap L \llbracket Z_{1} \rrbracket=(0)$. This proves Claim 2.3.1.

Using the commutativity of the displayed diagram (2.3.0) and that the horizontal maps of this diagram are integral extensions, we deduce that $\widetilde{W} \cap E \llbracket Z_{1} \rrbracket=\mathbf{q}$, and $\mathbf{q} \cap L \llbracket Z_{1} \rrbracket=$ (0) implies $\widetilde{W} \cap L \llbracket Z_{1} \rrbracket=(0)$. We conclude that $Q \cap S \llbracket Z \rrbracket=P \cap S \llbracket Z \rrbracket$ and therefore $Q \cap R_{0}=P \cap R_{0}$.

We record the following corollary.
2.4. Corollary. Let K be a field and let $R=K \llbracket y, X \rrbracket$, where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and y are independent variables over K. Assume $P \in \operatorname{Spec} R$ is such that
(i) $P \subseteq\left(x_{1}, \ldots, x_{n}\right) R$ and
(ii) $\operatorname{dim}(R / P)>2$.

Then there is a prime ideal $Q \in \operatorname{Spec} R$ so that
(1) $P \subset Q \subset\left(x_{1}, \ldots, x_{n}\right) R$,
(2) $\operatorname{dim}(R / Q)=2$, and
(3) $P \cap K[y]_{(y)} \llbracket X \rrbracket=Q \cap K[y]_{(y)} \llbracket X \rrbracket$.

In particular, $P \cap K \llbracket x_{1}, \ldots, x_{n} \rrbracket=Q \cap K \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
Proof. With notation as in Theorem 2.3, let $V=K[y]_{(y)}$.

3. Weierstrass implications for the ring $B=K \llbracket X \rrbracket[Y]_{(X, Y)}$

As before K denotes a field, n and m are positive integers, and $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ denote sets of variables over K. Let $B:=K \llbracket X \rrbracket[Y]_{(X, Y)}=$ $K \llbracket x_{1}, \ldots, x_{n} \rrbracket\left[y_{1}, \ldots, y_{m}\right]_{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)}$. The completion of B is $\widehat{B}=K \llbracket X, Y \rrbracket$.
3.1. Theorem. With the notation as above, every ideal Q of $\widehat{B}=K \llbracket X, Y \rrbracket$ maximal with the property that $Q \cap B=(0)$ is a prime ideal of height $n+m-2$.

Proof. Suppose first that Q is such an ideal. Then clearly Q is prime. Matsumura shows in [7, Theorem 3] that the dimension of the generic formal fiber of B is at most $n+m-2$. Therefore ht $Q \leqslant n+m-2$.

Now suppose $P \in \operatorname{Spec} \widehat{B}$ is an arbitrary prime ideal of height $r<n+m-2$ with $P \cap B=(0)$. We construct a prime $Q \in \operatorname{Spec} \widehat{B}$ with $P \subset Q, Q \cap B=(0)$, and ht $Q=$ $n+m-2$. This will show that all prime ideals maximal in the generic fiber have height $n+m-2$.

For the construction of Q we consider first the case where $P \nsubseteq X \widehat{B}$. Then there exists a prime element $f \in P$ that contains a term $\theta:=y_{1}^{i_{1}} \ldots y_{m}^{i_{m}}$, where the i_{j} 's are nonnegative integers and at least one of the i_{j} is positive. Notice that $m \geqslant 2$ for otherwise with $y=y_{1}$ we have $f \in P$ contains a term y^{i}. By Weierstrass it follows that $f=g \epsilon$, where $g \in K \llbracket X \rrbracket[y]$ is a nonzero monic polynomial in y and ϵ is a unit of \widehat{B}. But $g \in P$ and $g \in B$ implies $P \cap B \neq(0)$, a contradiction to our assumption that $P \cap B=(0)$.

For convenience we now assume that the last exponent i_{m} appearing in θ above is positive. We apply a change of variables: $y_{m} \rightarrow t_{m}:=y_{m}$ and, for $1 \leqslant \ell<m$, let $y_{\ell} \rightarrow t_{\ell}:=$ $y_{\ell}+t_{m}^{e_{\ell}}$, where the e_{ℓ} are chosen so that f, expressed in the variables t_{1}, \ldots, t_{m}, contains a term t_{m}^{q}, for some positive integer q. This change of variables induces an automorphism of B. By Weierstrass $f=g_{1} h$, where h is a unit in \widehat{B} and $g_{1} \in K \llbracket X, t_{1}, \ldots, t_{m-1} \rrbracket\left[t_{m}\right]$ is monic in t_{m}. Set $P_{1}=P \cap K \llbracket X, t_{1}, \ldots, t_{m-1} \rrbracket$. If $P_{1} \subseteq X K \llbracket X, t_{1}, \ldots, t_{m-1} \rrbracket$, we stop the procedure and take $s=m-1$ in what follows. If $P_{1} \nsubseteq X K \llbracket X, t_{1}, \ldots, t_{m-1} \rrbracket$, then there exists a prime element $\tilde{f} \in P_{1}$ that contains a term $t_{1}{ }^{j_{1}} \cdots t_{m-1}{ }^{j_{m-1}}$, where the j_{k} 's are nonnegative integers and at least one of the j_{k} is positive. We then repeat the procedure using the prime ideal P_{1}. That is, we replace t_{1}, \ldots, t_{m-1} with a change of variables so that a prime element of P_{1} contains a term monic in some one of the new variables. After a suitable finite iteration of changes of variables, we obtain an automorphism of \widehat{B} that restricts to an automorphism of B and maps $y_{1}, \ldots, y_{m} \mapsto z_{1}, \ldots, z_{m}$. Moreover, there exist a positive integer $s \leqslant m-1$ and elements $g_{1}, \ldots, g_{m-s} \in P$ such that

$$
\begin{array}{ll}
g_{1} \in K \llbracket X, z_{1}, \ldots, z_{m-1} \rrbracket\left[z_{m}\right] & \text { is monic in } z_{m}, \\
g_{2} \in K \llbracket X, z_{1}, \ldots, z_{m-2} \rrbracket\left[z_{m-1}\right] & \text { is monic in } z_{m-1}, \text { etc. }, \\
\quad \vdots & \\
g_{m-s} \in K \llbracket X, z_{1}, \ldots, z_{s} \rrbracket\left[z_{s+1}\right] & \text { is monic in } z_{s+1},
\end{array}
$$

and such that, for $R_{s}:=K \llbracket X, z_{1}, \ldots, z_{s} \rrbracket$ and $P_{s}:=P \cap R_{s}$, we have $P_{s} \subseteq X R_{s}$.

As in the proof of Proposition 2.2 we replace the regular sequence g_{1}, \ldots, g_{m-s} by a regular sequence f_{1}, \ldots, f_{m-s} so that:

$$
\begin{array}{ll}
f_{1} \in R_{s}\left[z_{s+1}, \ldots, z_{m}\right] & \text { is monic in } z_{m}, \\
f_{2} \in R_{s}\left[z_{s+1}, \ldots, z_{m-1}\right] & \text { is monic in } z_{m-1}, \text { etc., } \\
\vdots & \\
f_{m-s} \in R_{s}\left[z_{s+1}\right] & \text { is monic in } z_{s+1},
\end{array}
$$

and $\left(g_{1}, \ldots, g_{m-s}\right) \widehat{B}=\left(f_{1}, \ldots, f_{m-s}\right) \widehat{B}$.
Let $G:=K \llbracket X, z_{1}, \ldots, z_{s} \rrbracket\left[z_{s+1}, \ldots, z_{m}\right]=R_{s}\left[z_{s+1}, \ldots, z_{m}\right]$. By Proposition 2.2, P is extended from G. Let $\mathbf{q}:=P \cap G$ and extend f_{1}, \ldots, f_{m-s} to a generating system of \mathbf{q}, say, $\mathbf{q}=\left(f_{1}, \ldots, f_{m-s}, h_{1}, \ldots, h_{t}\right) G$. For integers k, ℓ with $1 \leqslant k \leqslant m-s$ and $1 \leqslant \ell \leqslant t$, express the f_{k} and h_{ℓ} in G as power series in $\widehat{B}=K \llbracket z_{1} \rrbracket \llbracket z_{2}, \ldots, z_{m} \rrbracket \llbracket X \rrbracket$ with coefficients in $K \llbracket z_{1} \rrbracket$:

$$
f_{k}=\sum a_{k(i)(j)} z_{2}^{i_{2}} \ldots z_{m}^{i_{m}} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}} \quad \text { and } \quad h_{\ell}=\sum b_{\ell(i)(j)} z_{2}^{i_{2}} \ldots z_{m}^{i_{m}} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}}
$$

where $a_{k(i)(j)}, b_{\ell(i)(j)} \in K \llbracket z_{1} \rrbracket,(i)=\left(i_{2}, \ldots, i_{m}\right)$ and $(j)=\left(j_{1}, \ldots, j_{n}\right)$. The set $\Delta=$ $\left\{a_{k(i)(j)}, b_{\ell(i)(j)}\right\}$ is countable. We define $V:=K\left(z_{1}, \Delta\right) \cap K \llbracket z_{1} \rrbracket$. Then V is a discrete valuation domain with completion $K \llbracket z_{1} \rrbracket$ and $K\left(\left(z_{1}\right)\right)$ has uncountable transcendence degree over $\mathcal{Q}(V)$. Let $V_{s}:=V \llbracket X, z_{2}, \ldots, z_{s} \rrbracket \subseteq R_{s}$. Notice that $R_{s}=\widehat{V}_{s}$, the completion of V_{s}. Also $f_{1}, \ldots, f_{m-s} \in V_{s}\left[z_{s+1}, \ldots, z_{m}\right] \subseteq G$ and $\left(f_{1}, \ldots, f_{m-s}\right) G \cap R_{s}=(0)$. Furthermore the extension

$$
V_{s}:=V \llbracket X, z_{2}, \ldots, z_{s} \rrbracket \hookrightarrow V_{s}\left[z_{s+1}, \ldots, z_{m}\right] /\left(f_{1}, \ldots, f_{m-s}\right)
$$

is finite. Set $P_{0}:=P \cap V_{s}$. Then $P_{0} \subseteq X R_{s} \cap V_{s}=X V_{s}$.
Consider the commutative diagram:

The horizontal maps are injective and finite and the vertical maps are completions.
The prime ideal $\overline{\mathbf{q}}:=P R_{s} \llbracket z_{s+1}, \ldots, z_{m} \rrbracket /\left(f_{1}, \ldots, f_{m-s}\right)$ lies over P_{s} in R_{s}. By assumption $P_{s} \subseteq(X) R_{s}$ and by Theorem 2.3 there is a prime ideal Q_{s} of R_{s} such that $P_{s} \subseteq Q_{s} \subseteq(X) R_{s}, Q_{s} \cap V_{s}=P_{s} \cap V_{s}=P_{0}$, and $\operatorname{dim}\left(R_{s} / Q_{s}\right)=2$. There is a prime ideal \bar{Q} in $R_{s} \llbracket z_{s+1}, \ldots, z_{m} \rrbracket /\left(f_{1}, \ldots, f_{m-s}\right)$ lying over Q_{s} with $\overline{\mathbf{q}} \subseteq \bar{Q}$ by the "going-up theorem" $\left[8\right.$, Theorem 9.4]. Let Q be the preimage in $\widehat{B}=K \llbracket X, z_{1}, \ldots, z_{m} \rrbracket$ of \bar{Q}. We show the rings and ideals of Theorem 3.1 below.

$$
\begin{gathered}
\widehat{B}=K \llbracket X, Y \rrbracket=K \llbracket X, z_{1}, \ldots, z_{m} \rrbracket=R_{s} \llbracket z_{s+1}, \ldots, z_{m} \rrbracket \\
\left(\mathbf{q}, Q_{s}\right) \widehat{B} \subseteq Q \\
P \nsubseteq X \widehat{B} \\
G:=R_{s}\left[z_{s+1}, \ldots, z_{m}\right] \\
\mathbf{q}:=P \cap G \\
\mathbf{q}=\left(\left\{f_{i}, h_{j}\right\}\right) G \\
f_{i} \notin R_{s}:=K \llbracket X, z_{1}, \ldots, z_{s} \rrbracket \\
P_{s} \subseteq Q_{s} \subset R_{s} \\
P_{s}:=P \cap R_{s} \subseteq X R_{s} \\
V_{s}:=V \llbracket X, z_{2}, \ldots, z_{s} \rrbracket \\
P_{0}:=P \cap V_{s} \\
V:=K\left(z_{1}, \Delta\right) \cap K \llbracket z_{1} \rrbracket
\end{gathered}
$$

Then Q has height $n+s-2+m-s=n+m-2$. Moreover, from diagram (3.1.1), it follows that Q and P have the same contraction to $V_{s}\left[z_{s+1}, \ldots, z_{m}\right]$. This implies that $Q \cap B=(0)$ and completes the proof in the case where $P \nsubseteq X \widehat{B}$.

In the case where $P \subseteq X \widehat{B}$, let $h_{1}, \ldots, h_{t} \in \widehat{B}$ be a finite set of generators of P, and as above, let $b_{\ell(i)(j)} \in K \llbracket z_{1} \rrbracket$ be the coefficients of the h_{ℓ} 's. Consider the countable set $\Delta=\left\{b_{\ell(i)(j)}\right\}$ and the valuation domain $V:=K\left(z_{1}, \Delta\right) \cap K \llbracket z_{1} \rrbracket$. Set $P_{0}:=P \cap$ $V \llbracket X, z_{2}, \ldots, z_{m} \rrbracket$. By Theorem 2.3, there exists a prime ideal Q of $\widehat{B}=K \llbracket X, z_{1}, \ldots, z_{m} \rrbracket$ of height $n+m-2$ such that $P \subset Q$ and

$$
Q \cap V \llbracket X, z_{2}, \ldots, z_{m} \rrbracket=P \cap V \llbracket X, z_{2}, \ldots, z_{m} \rrbracket=P_{0} .
$$

Therefore $Q \cap B=(0)$. This completes the proof of Theorem 3.1.

4. Weierstrass implications for the ring $C=K[Y]_{(Y)} \llbracket X \rrbracket$

As before K denotes a field, n and m are positive integers, and $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ denote sets of variables over K. Consider the ring $C=K\left[y_{1}\right.$, $\left.\ldots, y_{m}\right]_{\left(y_{1}, \ldots, y_{m}\right)} \llbracket x_{1}, \ldots, x_{n} \rrbracket=K[Y]_{(Y)} \llbracket X \rrbracket$. Then the completion of C is $\widehat{C}=K \llbracket Y, X \rrbracket$.
4.1. Theorem. With notation as above, let $Q \in \operatorname{Spec} \widehat{C}$ be maximal with the property that $Q \cap C=(0)$. Then ht $Q=n+m-2$.

Proof. Let $B=K \llbracket X \rrbracket[Y]_{(X, Y)} \subset C$. If $P \in \operatorname{Spec} \widehat{C}=\operatorname{Spec} \widehat{B}$ and $P \cap C=(0)$, then $P \cap B=(0)$, so ht $P \leqslant n+m-2$ by Theorem 3.1. Consider a nonzero prime $P \in \operatorname{Spec} \widehat{C}$ with $P \cap C=(0)$ and ht $P=r<n+m-2$. If $P \subseteq X \widehat{C}$ then Theorem 2.3 implies the existence of $Q \in \operatorname{Spec} \widehat{C}$ with ht $Q=n+m-2$ such that $P \subset Q$ and $Q \cap C=(0)$.

Assume that P is not contained in $X \widehat{C}$ and consider the ideal $J:=(P, X) \widehat{C}$. Since C is complete in the $X C$-adic topology, [9, Lemma 2] implies that if J is primary for the maximal ideal of \widehat{C}, then P is extended from C. Since we are assuming $P \cap C=(0)$, J is not primary for the maximal ideal of \widehat{C} and we have ht $J=n+s<n+m$, where $0<s<m$. Let $W \in \operatorname{Spec} \widehat{C}$ be a minimal prime of J such that ht $W=n+s$. Let $W_{0}=$ $W \cap K \llbracket Y \rrbracket$. Then $W=\left(W_{0}, X\right) \widehat{C}$ and W_{0} is a prime ideal of $K \llbracket Y \rrbracket$ with ht $W_{0}=s$. By Proposition 2.2 applied to $K \llbracket Y \rrbracket$ and the prime ideal $W_{0} \in \operatorname{Spec} K \llbracket Y \rrbracket$, there exists a change of variables $Y \mapsto Z$ with $y_{1} \mapsto z_{1}, \ldots, y_{m} \mapsto z_{m}$ and elements $f_{1}, \ldots, f_{s} \in W_{0}$ so that with $Z_{1}=\left\{z_{1}, \ldots, z_{m-s}\right\}$, we have

$$
\begin{array}{ll}
f_{1} \in K \llbracket Z_{1} \rrbracket\left[z_{m-s+1}, \ldots, z_{m}\right] & \text { is monic in } z_{m}, \\
f_{2} \in K \llbracket Z_{1} \rrbracket\left[z_{m-s+1}, \ldots, z_{m-1}\right] & \text { is monic in } z_{m-1}, \text { etc. } \\
\vdots & \\
f_{s} \in K \llbracket Z_{1} \rrbracket\left[z_{m-s+1}\right] & \text { is monic in } z_{m-s+1} .
\end{array}
$$

Now $z_{1}, \ldots, z_{m-s}, f_{1}, \ldots, f_{s}$ is a regular sequence in $K \llbracket Z \rrbracket=K \llbracket Y \rrbracket$. Let $T=\left\{t_{m-s+1}\right.$, $\left.\ldots, t_{m}\right\}$ be a set of additional variables and consider the map:

$$
\varphi: K \llbracket Z_{1}, T \rrbracket \rightarrow K \llbracket z_{1}, \ldots, z_{m} \rrbracket
$$

defined by $z_{i} \mapsto z_{i}$ for all $1 \leqslant i \leqslant m-s$ and $t_{m-i+1} \mapsto f_{i}$ for all $1 \leqslant i \leqslant s$. The embedding φ is finite (and free) and so is the extension to power series rings in X :

$$
\rho: K \llbracket Z_{1}, T \rrbracket \llbracket X \rrbracket \rightarrow K \llbracket z_{1}, \ldots, z_{m} \rrbracket \llbracket X \rrbracket=\widehat{C} .
$$

Since $W \in \operatorname{Spec} \widehat{C}$ is of height $n+s$, so is its contraction $\rho^{-1}(W) \in \operatorname{Spec} K \llbracket Z_{1}, T, X \rrbracket$. Moreover $\rho^{-1}(W)$ contains $(T, X) K \llbracket Z_{1}, T, X \rrbracket$, a prime ideal of height $n+s$. Therefore $\rho^{-1}(W)=(T, X) K \llbracket Z_{1}, T, X \rrbracket$. By construction, $P \subseteq W$ which yields that $\rho^{-1}(P) \subseteq$ $(T, X) K \llbracket Z_{1}, T, X \rrbracket$.

To complete the proof we construct a suitable base ring related to C. Consider the expressions for the f_{i} 's as power series in z_{2}, \ldots, z_{m} with coefficients in $K \llbracket z_{1} \rrbracket$:

$$
f_{j}=\sum a_{j(i)} z_{2}^{i_{2}} \ldots z_{m}^{i_{m}}
$$

where $(i):=\left(i_{2}, \ldots, i_{m}\right), 1 \leqslant j \leqslant s, a_{j(i)} \in K \llbracket z_{1} \rrbracket$. Also consider a finite generating system g_{1}, \ldots, g_{q} for P and expressions for the g_{k}, where $1 \leqslant k \leqslant q$, as power series in $z_{2}, \ldots, z_{m}, x_{1}, \ldots, x_{n}$ with coefficients in $K \llbracket z_{1} \rrbracket$:

$$
g_{k}=\sum b_{k(i)(\ell)} z_{2}^{i_{2}} \ldots z_{m}^{i_{m}} x_{1}^{\ell_{1}} \ldots x_{n}^{\ell_{n}}
$$

where $(i):=\left(i_{2}, \ldots, i_{m}\right),(\ell):=\left(\ell_{1}, \ldots, \ell_{n}\right)$, and $b_{k(i)(\ell)} \in K \llbracket z_{1} \rrbracket$. We take the subset $\Delta=$ $\left\{a_{j(i)}, b_{k(i)(\ell)}\right\}$ of $K \llbracket z_{1} \rrbracket$ and consider the discrete valuation domain:

$$
V:=K\left(z_{1}, \Delta\right) \cap K \llbracket z_{1} \rrbracket .
$$

Since V is countably generated over $K\left(z_{1}\right)$, the field $K\left(\left(z_{1}\right)\right)$ has uncountable transcendence degree over $\mathcal{Q}(V)=K\left(z_{1}, \Delta\right)$. Moreover, by construction the ideal P is extended from $V \llbracket z_{2}, \ldots, z_{m} \rrbracket \llbracket X \rrbracket$. Consider the embedding:

$$
\psi: V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \rightarrow V \llbracket z_{2}, \ldots, z_{m} \rrbracket,
$$

which is the restriction of φ above, so that $z_{i} \mapsto z_{i}$ for all $2 \leqslant i \leqslant m-s$ and $t_{m-i+1} \mapsto f_{i}$ for all i with $1 \leqslant i \leqslant s$.

Let σ be the extension of ψ to the power series rings:

$$
\sigma: V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \llbracket X \rrbracket \rightarrow V \llbracket z_{2}, \ldots, z_{m} \rrbracket \llbracket X \rrbracket
$$

with $\sigma\left(x_{i}\right)=x_{i}$ for all i with $1 \leqslant i \leqslant n$.
Notice that ρ defined above is the completion $\hat{\sigma}$ of the map σ, that is, the extension of σ to the completions. Consider the commutative diagram:

where $\hat{\sigma}=\rho$ is a finite map.
Recall that $\rho^{-1}(W)=(T, X) K \llbracket Z_{1}, T, X \rrbracket$, and so $\rho^{-1}(P) \subseteq(T, X) K \llbracket Z_{1}, T, X \rrbracket$ by Diagram 4.1.0. By Theorem 2.3, there exists a prime ideal Q_{0} of the ring $K \llbracket Z_{1}, T, X \rrbracket$ such that $\rho^{-1}(P) \subseteq Q_{0}$, ht $Q_{0}=n+m-2$, and

$$
Q_{0} \cap V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \llbracket X \rrbracket=\rho^{-1}(P) \cap V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \llbracket X \rrbracket .
$$

By the "going-up theorem" [8, Theorem 9.4], there is a prime ideal $Q \in \operatorname{Spec} \widehat{C}$ that lies over Q_{0} and contains P. Moreover, Q also has height $n+m-2$. The commutativity of diagram (4.1.0) implies that

$$
P_{1}:=P \cap V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \llbracket X \rrbracket \subseteq Q_{1}:=Q \cap V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \llbracket X \rrbracket .
$$

Consider the finite homomorphism:

$$
\lambda: V \llbracket z_{2}, \ldots, z_{m-s} \rrbracket[T]_{\left(Z_{1}, T\right)} \llbracket X \rrbracket \rightarrow V \llbracket z_{2}, \ldots, z_{m-s} \rrbracket\left[z_{m-s+1}, \ldots, z_{m}\right]_{(Z)} \llbracket X \rrbracket
$$

(determined by $t_{i} \mapsto f_{i}$ for $1 \leqslant i \leqslant m$) and the commutative diagram:

Since $Q \cap V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \llbracket X \rrbracket=P \cap V \llbracket z_{2}, \ldots, z_{m-s}, T \rrbracket \llbracket X \rrbracket$ and since λ is a finite map we conclude that

$$
\begin{aligned}
& Q_{1} \cap V \llbracket z_{2}, \ldots, z_{m-s} \rrbracket\left[z_{m-s+1}, \ldots, z_{m}\right]_{(Z)} \llbracket X \rrbracket \\
& \quad=P_{1} \cap V \llbracket z_{2}, \ldots, z_{m} \rrbracket\left[z_{m-s+1}, \ldots, z_{m}\right]_{(Z)} \llbracket X \rrbracket .
\end{aligned}
$$

Since $C \subseteq V \llbracket z_{2}, \ldots, z_{m-s} \rrbracket\left[z_{m-s+1}, \ldots, z_{m}\right]_{(Z)} \llbracket X \rrbracket$, we obtain $Q \cap C=P \cap C=(0)$. This completes the proof of Theorem 4.1.
4.2. Remark. With B and C as in Sections 3 and 4, we have

$$
B=K \llbracket X \rrbracket[Y]_{(X, Y)} \hookrightarrow K[Y]_{(Y)} \llbracket X \rrbracket=C \quad \text { and } \quad \widehat{B}=K \llbracket X, Y \rrbracket=\widehat{C}
$$

Thus for $P \in \operatorname{Spec} K \llbracket X, Y \rrbracket$, if $P \cap C=(0)$, then $P \cap B=(0)$. By Theorems 3.1 and 4.1, each prime of $K \llbracket X, Y \rrbracket$ maximal in the generic formal fiber of B or C has height $n+m-2$. Therefore each $P \in \operatorname{Spec} K \llbracket X, Y \rrbracket$ maximal with respect to $P \cap C=(0)$ is also maximal with respect to $P \cap B=(0)$. However, if $n+m \geqslant 3$, the generic fiber of $B \hookrightarrow C$ is nonzero [4], so there exist primes of $K \llbracket X, Y \rrbracket$ maximal in the generic formal fiber of B that are not in the generic formal fiber of C.

5. Subrings of the power series ring $K \llbracket z, t \rrbracket$

In this section we establish properties of certain subrings of the power series ring $K \llbracket z, t \rrbracket$ that will be useful in considering the generic formal fiber of localized polynomial rings over the field K.
5.1. Notation. Let K be a field and let z and t be independent variables over K. Consider countably many power series:

$$
\alpha_{i}(z)=\sum_{j=0}^{\infty} a_{i j} z^{j} \in K \llbracket z \rrbracket
$$

with coefficients $a_{i k} \in K$. Let s be a positive integer and let $\omega_{1}, \ldots, \omega_{s} \in K \llbracket z, t \rrbracket$ be power series in z and t, say:

$$
\omega_{i}=\sum_{j=0}^{\infty} \beta_{i j} t^{j}, \quad \text { where } \quad \beta_{i j}(z)=\sum_{k=0}^{\infty} b_{i j k} z^{k} \in K \llbracket z \rrbracket \quad \text { and } \quad b_{i j k} \in K,
$$

for each i with $1 \leqslant i \leqslant s$. Consider the subfield $K\left(z,\left\{\alpha_{i}\right\},\left\{\beta_{i j}\right\}\right)$ of $K((z))$ and the discrete rank-one valuation domain

$$
V:=K\left(z,\left\{\alpha_{i}\right\},\left\{\beta_{i j}\right\}\right) \cap K \llbracket z \rrbracket .
$$

The completion of V is $\widehat{V}=K \llbracket z \rrbracket$. Assume that $\omega_{1}, \ldots, \omega_{r}$ are algebraically independent over $\mathcal{Q}(V)(t)$ and that the elements $\omega_{r+1}, \ldots, \omega_{s}$ are algebraic over the field $\mathcal{Q}(V)\left(t,\left\{\omega_{i}\right\}_{i=1}^{r}\right)$. Notice that the set $\left\{\alpha_{i}\right\} \cup\left\{\beta_{i j}\right\}$ is countable, and that also the set of coefficients of the α_{i} and $\beta_{i j}$

$$
\Delta:=\left\{a_{i j}\right\} \cup\left\{b_{i j k}\right\}
$$

is a countable subset of the field K. Let K_{0} denote the prime subfield of K and let F denote the algebraic closure in K of the field $K_{0}(\Delta)$. The field F is countable and the power series $\alpha_{i}(z)$ and $\beta_{i j}(z)$ are in $F \llbracket z \rrbracket$. Consider the subfield $F\left(z,\left\{\alpha_{i}\right\},\left\{\beta_{i j}\right\}\right)$ of $F((z))$ and the discrete rank-one valuation domain

$$
V_{0}:=F\left(z,\left\{\alpha_{i}\right\},\left\{\beta_{i j}\right\}\right) \cap F \llbracket z \rrbracket .
$$

The completion of V_{0} is $\widehat{V}_{0}=F \llbracket z \rrbracket$. Since $\mathcal{Q}\left(V_{0}\right)(t) \subseteq \mathcal{Q}(V)(t)$, the elements $\omega_{1}, \ldots, \omega_{r}$ are algebraically independent over the field $\mathcal{Q}\left(V_{0}\right)(t)$.

Consider the subfield $E_{0}:=\mathcal{Q}\left(V_{0}\right)\left(t, \omega_{1}, \ldots, \omega_{r}\right)$ of $\mathcal{Q}\left(V_{0} \llbracket t \rrbracket\right)$ and the subfield $E:=$ $\mathcal{Q}(V)\left(t, \omega_{1}, \ldots, \omega_{r}\right)$ of $\mathcal{Q}(V \llbracket t \rrbracket)$. A result of Valabrega [11] implies that the integral domains:

$$
\begin{equation*}
D_{0}:=E_{0} \cap V_{0} \llbracket t \rrbracket \quad \text { and } \quad D:=E \cap V \llbracket t \rrbracket \tag{5.1.1}
\end{equation*}
$$

are two-dimensional regular local rings with completions $\widehat{D}_{0}=F \llbracket z, t \rrbracket$ and $\widehat{D}=K \llbracket z, t \rrbracket$, respectively. Moreover, $\mathcal{Q}\left(D_{0}\right)=E_{0}$ is a countable field.
5.2. Proposition. Let D_{0} be as defined in 5.1. Then there exists a power series $\gamma \in z F \llbracket z \rrbracket$ such that the prime ideal $(t-\gamma) F \llbracket z, t \rrbracket \cap D_{0}=(0)$, i.e., $(t-\gamma) F \llbracket z, t \rrbracket$ is in the generic formal fiber of D_{0}.

Proof. Since D_{0} is countable there are only countably many prime ideals in D_{0} and since D_{0} is Noetherian there are only countably many prime ideals in $\widehat{D}_{0}=F \llbracket z, t \rrbracket$ that lie over a nonzero prime of D_{0}. There are uncountably many primes in $F \llbracket z, t \rrbracket$, which are generated by elements of the form $t-\sigma$ for some $\sigma \in z F \llbracket z \rrbracket$. Thus there must exist an element $\gamma \in z F \llbracket z \rrbracket$ with $(t-\gamma) F \llbracket z, t \rrbracket \cap D_{0}=(0)$.

For $\omega_{i}=\omega_{i}(t)=\sum_{j=0}^{\infty} \beta_{i j} t^{j}$ as in 5.1 and γ an element of $z K \llbracket z \rrbracket$, let $\omega_{i}(\gamma)$ denote the following power series in $K \llbracket z \rrbracket$:

$$
\omega_{i}(\gamma):=\sum_{j=0}^{\infty} \beta_{i j} \gamma^{j} \in K \llbracket z \rrbracket .
$$

5.3. Proposition. Let D be as defined in (5.1.1). For an element $\gamma \in z K \llbracket z \rrbracket$ the following conditions are equivalent:
(i) $(t-\gamma) K \llbracket z, t \rrbracket \cap D=(0)$.
(ii) The elements $\gamma, \omega_{1}(\gamma), \ldots, \omega_{r}(\gamma)$ are algebraically independent over $\mathcal{Q}(V)$.

Proof. (i) \Rightarrow (ii). Assume by way of contradiction that the set $\left\{\gamma, \omega_{1}(\gamma), \ldots, \omega_{r}(\gamma)\right\}$ is algebraically dependent over $\mathcal{Q}(V)$ and let $d_{(k)} \in V$ be finitely many elements such that

$$
\sum_{(k)} d_{(k)} \omega_{1}(\gamma)^{k_{1}} \ldots \omega_{r}(\gamma)^{k_{r}} \gamma^{k_{r+1}}=0
$$

is a nontrivial equation of algebraic dependence for $\gamma, \omega_{1}(\gamma), \ldots, \omega_{r}(\gamma)$, where each $(k)=$ $\left(k_{1} \ldots, k_{r}, k_{r+1}\right)$ is an $(r+1)$-tuple of nonnegative integers. It follows that

$$
\sum_{(k)} d_{(k)} \omega_{1}^{k_{1}} \ldots \omega_{r}^{k_{r}} t^{k_{r+1}} \in(t-\gamma) K \llbracket z, t \rrbracket \cap D=(0) .
$$

Since $\omega_{1}, \ldots, \omega_{r}$ are algebraically independent over $\mathcal{Q}(V)(t)$, we have $d_{(k)}=0$ for all (k), a contradiction. This completes the proof that (i) \Rightarrow (ii).
(ii) \Rightarrow (i). If $(t-\gamma) K \llbracket z, t \rrbracket \cap D \neq(0)$, then there exists a nonzero element

$$
\tau=\sum_{(k)} d_{(k)} \omega_{1}^{k_{1}} \ldots \omega_{r}^{k_{r}} t^{k_{r+1}} \in(t-\gamma) K \llbracket z, t \rrbracket \cap V\left[t, \omega_{1}, \ldots, \omega_{r}\right] .
$$

But this implies that

$$
\tau(\gamma)=\sum_{(k)} d_{(k)} \omega_{1}(\gamma)^{k_{1}} \ldots \omega_{r}(\gamma)^{k_{r}} \gamma^{k_{r+1}}=0
$$

Since $\gamma, \omega_{1}(\gamma), \ldots, \omega_{r}(\gamma)$ are algebraically independent over $\mathcal{Q}(V)$, it follows that all the coefficients $d_{(k)}=0$, a contradiction to the assumption that τ is nonzero.

Let $\gamma \in z F \llbracket z \rrbracket$ be as in Proposition 5.2 with $(t-\gamma) F \llbracket z, t \rrbracket \cap D_{0}=(0)$. Then:
5.4. Proposition. With notation as above, we also have $(t-\gamma) K \llbracket z, t \rrbracket \cap D=(0)$, that is, $(t-\gamma) K \llbracket z, t \rrbracket$ is in the generic formal fiber of D.

Proof. Let $\left\{t_{i}\right\}_{i \in I}$ be a transcendence basis of K over F and let $L:=F\left(\left\{t_{i}\right\}_{i \in I}\right)$. Then K is algebraic over L. Let $\left\{\alpha_{i}\right\},\left\{\beta_{i j}\right\} \subset F \llbracket z \rrbracket$ be as in 5.1 and define

$$
V_{1}=L\left(z,\left\{\alpha_{i}\right\},\left\{\beta_{i j}\right\}\right) \cap L \llbracket z \rrbracket \quad \text { and } \quad D_{1}=\mathcal{Q}\left(V_{1}\right)\left(t, \omega_{1}, \ldots, \omega_{r}\right) \cap L \llbracket z, t \rrbracket .
$$

Then V_{1} is a discrete rank-one valuation domain with completion $L \llbracket z \rrbracket$ and D_{1} is a twodimensional regular local domain with completion $\widehat{D}_{1}=L \llbracket z, t \rrbracket$. Note that $\mathcal{Q}(V)$ and $\mathcal{Q}(D)$ are algebraic over $\mathcal{Q}\left(V_{1}\right)$ and $\mathcal{Q}\left(D_{1}\right)$, respectively. Since $(t-\gamma) K \llbracket z, t \rrbracket \cap L \llbracket z, t \rrbracket=$ $(t-\gamma) L \llbracket z, t \rrbracket$, it suffices to prove that $(t-\gamma) L \llbracket z, t \rrbracket \cap D_{1}=(0)$. By Proposition 5.3, it suffices to show that $\gamma, \omega_{1}(\gamma), \ldots, \omega_{r}(\gamma)$ are algebraically independent over $\mathcal{Q}\left(V_{1}\right)$. The commutative diagram

implies that the set $\left\{\gamma, \omega_{1}(\gamma), \ldots, \omega_{r}(\gamma)\right\} \cup\left\{t_{i}\right\}$ is algebraically independent over $\mathcal{Q}\left(V_{0}\right)$. Therefore $\left\{\gamma, \omega_{1}(\gamma), \ldots, \omega_{r}(\gamma)\right\}$ is algebraically independent over $\mathcal{Q}\left(V_{1}\right)$, which completes the proof of Proposition 5.4.
5.5. Remark. We remark that with $\omega_{r+1}, \ldots, \omega_{s}$ algebraic over $\mathcal{Q}(V)\left(\omega_{1}, \ldots, \omega_{r}\right)$ as in 5.1, if we define

$$
\widetilde{D}:=\mathcal{Q}(V)\left(t, \omega_{1}, \ldots, \omega_{s}\right) \cap V \llbracket t \rrbracket,
$$

then again by Valabrega [11], \widetilde{D} is a two-dimensional regular local domain with completion $K \llbracket z, t \rrbracket$. Moreover, $\mathcal{Q}(\widetilde{D})$ is algebraic over $\mathcal{Q}(D)$ and $(t-\gamma) K \llbracket z, t \rrbracket \cap D=(0)$ implies that $(t-\gamma) K \llbracket z, t \rrbracket \cap \widetilde{D}=(0)$.

6. Weierstrass implications for the localized polynomial ring $A=K[X]_{(X)}$

Let n be a positive integer, let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n variables over a field K, and let $A:=K\left[x_{1}, \ldots, x_{n}\right]_{\left(x_{1}, \ldots, x_{n}\right)}=K[X]_{(X)}$ denote the localized polynomial ring in these n variables over K. Then the completion of A is $\widehat{A}=K \llbracket X \rrbracket$.
6.1. Theorem. For the localized polynomial ring $A=K[X]_{(X)}$ defined above, if Q is an ideal of \widehat{A} maximal with respect to $Q \cap A=(0)$, then Q is a prime ideal of height $n-1$.

Proof. Again it is clear that Q as described in the statement is a prime ideal. Also the assertion holds for $n=1$. Thus we assume $n \geqslant 2$. By Proposition 5.4, there exists a nonzero prime \mathbf{p} in $K \llbracket x_{1}, x_{2} \rrbracket$ such that $\mathbf{p} \cap K\left[x_{1}, x_{2}\right]_{\left(x_{1}, x_{2}\right)}=(0)$. It follows that $\mathbf{p} \widehat{A} \cap A=(0)$. Thus the generic formal fiber of A is nonzero.

Let $P \in \operatorname{Spec} \widehat{A}$ be a nonzero prime ideal with $P \cap A=(0)$ and ht $P=r<n-1$. We construct $Q \in \operatorname{Spec} \widehat{A}$ of height $n-1$ with $P \subseteq Q$ and $Q \cap A=(0)$. By Proposition 2.2, there exists a change of variables $x_{1} \mapsto z_{1}, \ldots, x_{n} \mapsto z_{n}$ and polynomials

$$
\begin{aligned}
f_{1} \in K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right] & \text { monic in } z_{n}, \\
f_{2} \in K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n-1}\right] & \text { monic in } z_{n-1}, \text { etc. }, \\
\quad \vdots & \\
f_{r} \in K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}\right] & \text { monic in } z_{n-r+1},
\end{aligned}
$$

so that P is a minimal prime of $\left(f_{1}, \ldots, f_{r}\right) \widehat{A}$ and P is extended from

$$
R:=K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right] .
$$

Let $P_{0}:=P \cap R$ and extend f_{1}, \ldots, f_{r} to a system of generators of P_{0}, say:

$$
P_{0}=\left(f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right) R
$$

Using an argument similar to that in the proof of Theorem 2.3, write

$$
f_{j}=\sum_{(i) \in \mathbb{N}^{n-1}} a_{j,(i)} z_{2}^{i_{2}} \ldots z_{n}^{i_{n}} \quad \text { and } \quad g_{k}=\sum_{(i) \in \mathbb{N}^{n-1}} b_{k,(i)} z_{2}^{i_{2}} \ldots z_{n}^{i_{n}}
$$

where $a_{j,(i)}, b_{k,(i)} \in K \llbracket z_{1} \rrbracket$. Let

$$
V_{0}:=K\left(z_{1}, a_{j,(i)}, b_{k,(i)}\right) \cap K \llbracket z_{1} \rrbracket .
$$

Then V_{0} is a discrete rank-one valuation domain with completion $K \llbracket z_{1} \rrbracket$, and $K\left(\left(z_{1}\right)\right)$ has uncountable transcendence degree over the field of fractions $\mathcal{Q}\left(V_{0}\right)$ of V_{0}. Let $\gamma_{3}, \ldots, \gamma_{n-r} \in K \llbracket z_{1} \rrbracket$ be algebraically independent over $\mathcal{Q}\left(V_{0}\right)$ and define

$$
\mathbf{q}:=\left(z_{3}-\gamma_{3} z_{2}, z_{4}-\gamma_{4} z_{2}, \ldots, z_{n-r}-\gamma_{n-r} z_{2}\right) K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket .
$$

We see that $\mathbf{q} \cap V_{0} \llbracket z_{2}, \ldots, z_{n-r} \rrbracket=(0)$ by an argument similar to that in [7] and in Claim 2.3.1. Let $R_{1}:=V_{0} \llbracket z_{2}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right]$, let $P_{1}:=P \cap R_{1}$ and consider the commutative diagram:

The horizontal maps are injective finite integral extensions. Let W be a minimal prime of $(\mathbf{q}, P) \widehat{A}$. Then ht $W=n-2$ and $\mathbf{q} \cap V_{0} \llbracket z_{2}, \ldots, z_{n-r} \rrbracket=(0)$ implies that $W \cap R_{1}=P_{1}$.

We have found a prime ideal $W \in \operatorname{Spec} \widehat{A}$ such that ht $W=n-2, W \cap A=(0)$ and $P \subseteq W$. Since $f_{1}, \ldots, f_{r} \in W$ and since $\widehat{A}=K \llbracket z_{1}, \ldots, z_{n} \rrbracket$ is the $\left(f_{1}, \ldots, f_{r}\right)$-adic completion of $K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right]$, the prime ideal W is extended from $K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right]$.

We claim that W is actually extended from $K \llbracket z_{1}, z_{2} \rrbracket\left[z_{3}, \ldots, z_{n}\right]$. To see this let $g \in$ $W \cap K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right]$ and write:

$$
g=\sum_{(i)} a_{(i)} z_{n-r+1}^{i_{n-r+1}} \ldots z_{n}^{i_{n}} \in K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right],
$$

where the sum is over all $(i)=\left(i_{n-r}, \ldots, i_{n}\right)$ and $a_{(i)} \in K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket$. For all $a_{(i)}$ by Weierstrass we can write

$$
a_{(i)}=\left(z_{n-r}-\gamma_{n-r} z_{2}\right) h_{(i)}+q_{(i)}
$$

where $h_{(i)} \in K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket$ and $q_{(i)} \in K \llbracket z_{1}, \ldots, z_{n-r-1} \rrbracket$. If $n-r>3$, we write

$$
q_{(i)}=\left(z_{n-r-1}-\gamma_{n-r-1} z_{2}\right) h_{(i)}^{\prime}+q_{(i)}^{\prime}
$$

where $h_{(i)}^{\prime} \in K \llbracket z_{1}, \ldots, z_{n-r-1} \rrbracket$ and $q_{(i)}^{\prime} \in K \llbracket z_{1}, \ldots, z_{n-r-2} \rrbracket$. In this way we replace a generating set for W in $K \llbracket z_{1}, \ldots, z_{n-r} \rrbracket\left[z_{n-r+1}, \ldots, z_{n}\right]$ by a generating set for W in $K \llbracket z_{1}, z_{2} \rrbracket\left[z_{3}, \ldots, z_{n}\right]$.

In particular, we can replace the elements f_{1}, \ldots, f_{r} by elements:

$$
\begin{aligned}
h_{1} & \in K \llbracket z_{1}, z_{2} \rrbracket\left[z_{3}, \ldots, z_{n}\right] & & \text { monic in } z_{n}, \\
h_{2} & \in K \llbracket z_{1}, z_{2} \rrbracket\left[z_{3}, \ldots, z_{n-1}\right] & & \text { monic in } z_{n-1}, \text { etc. }, \\
& \vdots & & \\
h_{r} & \in K \llbracket z_{1}, z_{2} \rrbracket\left[z_{3} \ldots, z_{n-r+1}\right] & & \text { monic in } z_{n-r+1},
\end{aligned}
$$

and set $h_{r+1}=z_{3}-\gamma_{3} z_{2}, \ldots, h_{n-2}=z_{n-r}-\gamma_{n-r} z_{2}$, and then extend to a generating set h_{1}, \ldots, h_{n+s-2} for

$$
W_{0}=W \cap K \llbracket z_{1}, z_{2} \rrbracket\left[z_{3}, \ldots, z_{n}\right]
$$

such that $W_{0} \widehat{A}=W$. Consider the coefficients in $K \llbracket z_{1} \rrbracket$ of the h_{j} :

$$
h_{j}=\sum_{(i)} c_{j(i)} z_{2}^{i_{2}} \ldots z_{n}^{i_{n}}
$$

with $c_{j(i)} \in K \llbracket z_{1} \rrbracket$. The set $\left\{c_{j(i)}\right\}$ is countable. Define

$$
V:=\mathcal{Q}\left(V_{0}\right)\left(\left\{c_{j(i)}\right\}\right) \cap K \llbracket z_{1} \rrbracket .
$$

Then V is a rank-one discrete valuation domain that is countably generated over $K\left[z_{1}\right]_{\left(z_{1}\right)}$ and W is extended from $V \llbracket z_{2} \rrbracket\left[z_{3}, \ldots, z_{n}\right]$.

We may also write each h_{i} as a polynomial in z_{3}, \ldots, z_{n} with coefficients in $V \llbracket z_{2} \rrbracket$:

$$
h_{i}=\sum \omega_{(i)} z_{3}^{i_{3}} \ldots z_{n}^{i_{n}}
$$

with $\omega_{(i)} \in V \llbracket z_{2} \rrbracket \subseteq K \llbracket z_{1}, z_{2} \rrbracket$. By the result of Valabrega [11], the integral domain

$$
D:=\mathcal{Q}(V)\left(z_{2},\left\{\omega_{(i)}\right\}\right) \cap K \llbracket z_{1}, z_{2} \rrbracket
$$

is a two-dimensional regular local domain with completion $\widehat{D}=K \llbracket z_{1}, z_{2} \rrbracket$. Let $W_{1}:=$ $W \cap D\left[z_{3}, \ldots, z_{n}\right]$. Then $W_{1} \widehat{A}=W$. We have shown in Section 5 that there exists a prime element $q \in K \llbracket z_{1}, z_{2} \rrbracket$ with $q K \llbracket z_{1}, z_{2} \rrbracket \cap D=(0)$. Consider the finite extension

$$
D \rightarrow D\left[z_{3}, \ldots, z_{n}\right] / W_{1} .
$$

Let $Q \in \operatorname{Spec} \widehat{A}$ be a minimal prime of $(q, W) \widehat{A}$. Since ht $W=n-2$ and $q \notin W$, ht $Q=$ $n-1$. Moreover, $P \subseteq W$ implies $P \subseteq Q$. We claim that

$$
Q \cap D\left[z_{3}, \ldots, z_{n}\right]=W_{1} \quad \text { and therefore } \quad Q \cap A=(0) .
$$

To see this consider the commutative diagram:

which has injective finite horizontal maps. Since $q K \llbracket z_{1}, z_{2} \rrbracket \cap D=(0)$, it follows that $Q \cap D\left[z_{3}, \ldots, z_{n}\right]=W_{1}$. This completes the proof of Theorem 6.1.

7. Generic fibers of power series ring extensions

In this section we apply the Weierstrass machinery from Section 2 to the generic fiber rings of power series extensions.
7.1. Theorem. Let $n \geqslant 2$ be an integer and let y, x_{1}, \ldots, x_{n} be variables over the field K. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Consider the formal power series ring $R_{1}=K \llbracket X \rrbracket$ and the extension $R_{1} \hookrightarrow R_{1} \llbracket y \rrbracket=R$. Let $U=R_{1} \backslash(0)$. For $P \in \operatorname{Spec} R$ such that $P \cap U=\emptyset$ we have:
(1) If $P \nsubseteq X R$, then $\operatorname{dim}(R / P)=n$ and P is maximal in the generic fiber $U^{-1} R$.
(2) If $P \subseteq X R$, then there exists $Q \in \operatorname{Spec} R$ such that $P \subseteq Q, \operatorname{dim}(R / Q)=2$ and Q is maximal in the generic fiber $U^{-1} R$.

If $n>2$ for each prime ideal Q maximal in the generic fiber $U^{-1} R$, we have

$$
\operatorname{dim}(R / Q)= \begin{cases}n, & \text { and } R_{1} \hookrightarrow R / Q \text { is finite, or } \\ 2, & \text { and } Q \subset X R .\end{cases}
$$

Proof. Let $P \in \operatorname{Spec} R$ be such that $P \cap U=\emptyset$ or equivalently $P \cap R_{1}=(0)$. Then R_{1} embeds in R / P. If $\operatorname{dim}(R / P) \leqslant 1$, then the maximal ideal of R_{1} generates an ideal primary for the maximal ideal of R / P. By [8, Theorem 8.4] R / P is finite over R_{1}, and so $\operatorname{dim} R_{1}=$ $\operatorname{dim}(R / P)$, a contradiction. Thus $\operatorname{dim}(R / P) \geqslant 2$.

If $P \nsubseteq X R$, then there exists a prime element $f \in P$ that contains a term y^{s} for some positive integer s. By Weierstrass, it follows that $f=g \epsilon$, where $g \in K \llbracket X \rrbracket[y]$ is a nonzero monic polynomial in y and ϵ is a unit of R. We have $f R=g R \subseteq P$ is a prime ideal and $R_{1} \hookrightarrow R / g R$ is a finite integral extension. Since $P \cap R_{1}=(0)$, we must have $g R=P$.

If $P \subseteq X R$ and $\operatorname{dim}(R / P)>2$, then Theorem 2.3 implies there exists $Q \in \operatorname{Spec} R$ such that $\operatorname{dim}(R / Q)=2, P \subset Q \subset X R$ and $P \cap R_{1}=(0)=Q \cap R_{1}$, and so P is not maximal in the generic fiber. Thus $Q \in \operatorname{Spec} R$ maximal in the generic fiber of $R_{1} \hookrightarrow R$ implies that the dimension of $\operatorname{dim}(R / Q)$ is 2 , or equivalently that ht $Q=n-1$.
7.2. Theorem. Let n and m be positive integers, and let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=$ $\left\{y_{1}, \ldots, y_{m}\right\}$ be sets of independent variables over the field K. Consider the formal power series rings $R_{1}=K \llbracket X \rrbracket$ and $R=K \llbracket X, Y \rrbracket$ and the extension $R_{1} \hookrightarrow R_{1} \llbracket Y \rrbracket=R$. Let $U=R_{1} \backslash(0)$. Let $Q \in \operatorname{Spec} R$ be maximal with respect to $Q \cap U=\emptyset$. If $n=1$, then $\operatorname{dim}(R / Q)=1$ and $R_{1} \hookrightarrow R / Q$ is finite.

If $n \geqslant 2$, there are two possibilities:
(1) $R_{1} \hookrightarrow R / Q$ is finite, in which case $\operatorname{dim}(R / Q)=\operatorname{dim} R_{1}=n$, or
(2) $\operatorname{dim}(R / Q)=2$.

Proof. First assume $n=1$, and let $x=x_{1}$. Since Q is maximal with respect to $Q \cap U=\emptyset$, for each $P \in \operatorname{Spec} R$ with $Q \subsetneq P$ we have $P \cap U$ is nonempty and therefore $x \in P$. It follows that $\operatorname{dim}(R / Q)=1$, for otherwise,

$$
Q=\bigcap\{P \mid P \in \operatorname{Spec} R \text { and } Q \subsetneq P\}
$$

which implies $x \in Q$. By [8, Theorem 8.4], $R_{1} \hookrightarrow R / Q$ is finite.
It remains to consider the case where $n \geqslant 2$. We proceed by induction on m. Theorem 7.1 yields the assertion for $m=1$. Suppose $Q \in \operatorname{Spec} R$ is maximal with respect to $Q \cap U=\emptyset$. As in the proof of Theorem 7.1, we have $\operatorname{dim}(R / Q) \geqslant 2$. If $Q \subseteq$ $\left(X, y_{1}, \ldots, y_{m-1}\right) R$, then by Theorem 2.3 with $R_{0}=K\left[y_{m}\right]_{\left(y_{m}\right)} \llbracket X, y_{1}, \ldots, y_{m-1} \rrbracket$, there exists $Q^{\prime} \in \operatorname{Spec} R$ with $Q \subseteq Q^{\prime}, \operatorname{dim}\left(R / Q^{\prime}\right)=2$, and $Q \cap R_{0}=Q^{\prime} \cap R_{0}$. Since $R_{1} \subseteq R_{0}$, we have $Q^{\prime} \cap U=\emptyset$. Since Q is maximal with respect to $Q \cap U=\emptyset$, we have $Q=\overline{Q^{\prime}}$, so $\operatorname{dim}(R / Q)=2$.

Otherwise, if $Q \nsubseteq\left(X, y_{1}, \ldots, y_{m-1}\right) R$, then there exists a prime element $f \in Q$ that contains a term y_{m}^{s} for some positive integer s. Let $R_{2}=K \llbracket X, y_{1}, \ldots, y_{m-1} \rrbracket$. By Weierstrass, it follows that $f=g \epsilon$, where $g \in R_{2}\left[y_{m}\right]$ is a nonzero monic polynomial in y_{m} and
ϵ is a unit of R. We have $f R=g R \subseteq Q$ is a prime ideal and $R_{2} \hookrightarrow R / g R$ is a finite integral extension. Thus $R_{2} /\left(Q \cap R_{2}\right) \hookrightarrow R / Q$ is an integral extension. It follows that $Q \cap R_{2}$ is maximal in R_{2} with respect to being disjoint from U. By induction $\operatorname{dim}\left(R_{2} /\left(Q \cap R_{2}\right)\right)$ is either n or 2 . Since R / Q is integral over $R_{2} /\left(Q \cap R_{2}\right), \operatorname{dim}(R / Q)$ is either n or 2 .
7.3. Remark. In the notation of Theorem 1.1, Theorem 7.2 proves the second part of the theorem, since $\operatorname{dim} R=n+m$. Thus if $n=1$, ht $Q=m$. If $n \geqslant 2$, the two cases are (i) ht $Q=m$ and (ii) ht $Q=n+m-2$, as in (a) and (b) of Theorem 1.1.

Using the TGF terminology discussed in the introduction, we have the following corollary to Theorem 7.2.
7.4. Corollary. With the notation of Theorem 7.2, assume $P \in \operatorname{Spec} R$ is such that $R_{1} \hookrightarrow$ $R / P=: S$ is a TGF extension. Then $\operatorname{dim} S=\operatorname{dim} R_{1}=n$ or $\operatorname{dim} S=2$.

Acknowledgments

The authors are grateful for the hospitality and cooperation of Michigan State, Nebraska and Purdue, where several work sessions on this research were conducted. Wiegand thanks the National Security Agency for its support.

References

[1] P. Charters, S. Loepp, Semilocal generic formal fibers, J. Algebra 278 (2004) 370-382.
[2] A. Grothendieck, Élements de Géométrie Algébrique IV, Publ. Math. Inst. Hautes Études Sci. 24 (1965).
[3] W. Heinzer, C. Rotthaus, J. Sally, Formal fibers and birational extensions, Nagoya Math. J. 131 (1993) 1-38.
[4] W. Heinzer, C. Rotthaus, S. Wiegand, Mixed polynomial/power series rings and relations among their spectra, preprint.
[5] W. Heinzer, C. Rotthaus, S. Wiegand, Extensions of local domains with trivial generic fiber, preprint.
[6] S. Loepp, Constructing local generic formal fibers, J. Algebra 187 (1997) 16-38.
[7] H. Matsumura, On the dimension of formal fibres of a local ring, in: Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, Tokyo, 1988, pp. 261-266.
[8] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1989.
[9] C. Rotthaus, Komplettierung semilokaler quasiausgezeichneter Ringe, Nagoya Math. J. 76 (1979) 173-180.
[10] C. Rotthaus, On rings with low dimensional formal fibres, J. Pure Appl. Algebra 71 (1991) 287-296.
[11] P. Valabrega, On two-dimensional regular local rings and a lifting problem, Ann. Scuola Norm. Sup. Pisa 27 (1973) 1-21.
[12] O. Zariski, P. Samuel, Commutative Algebra II, Van Nostrand, Princeton, NJ, 1960.

[^0]: * Corresponding author.

 E-mail address: heinzer@math.purdue.edu (W. Heinzer).

