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Abstract

Max cones are max-algebraic analogs of convex cones. In the present paper we develop a theory of
generating sets and extremals of max cones in Rn+. This theory is based on the observation that extremals are
minimal elements of max cones under suitable scalings of vectors. We give new proofs of existing results
suitably generalizing, restating and refining them. Of these, it is important that any set of generators may be
partitioned into the set of extremals and the set of redundant elements. We include results on properties of
open and closed cones, on properties of totally dependent sets and on computational bounds for the problem
of finding the (essentially unique) basis of a finitely generated cone.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

By max algebra we understand the analog of linear algebra obtained by considering R+ (the
nonnegative reals) with max times operations:
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0024-3795/$ - see front matter ( 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2006.10.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82035029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:p.butkovic@bham.ac.uk
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a ⊕ b := max(a, b),

a ⊗ b :=ab

extended to matrices and vectors. That is, if A = (aij ), B = (bij ) and C = (cij ) are matrices
of compatible sizes with entries from R+ and α ∈ R+, we write C = A ⊕ B if cij = aij ⊕ bij

for all i, j , C = A ⊗ B if cij = ⊕
k aik ⊗ bkj = maxk(aikbkj ) for all i, j and C = α ⊗ A if

cij = α ⊗ aij for all i, j . There are several essentially equivalent1 definitions of max algebra.
An early paper presenting the above version is [24], another early paper presenting an equivalent
version is [7]. For more information on max algebra, its generalizations and applications the
reader is referred e.g. to [2,5,8–10,16,28]. See also [20] for recent developments in the area and
for further references.

We give a summary of the contents of this paper. In Section 2 we begin by defining (max)
cones, extremals, generating sets, independent sets and totally dependent sets. The key obser-
vation is Proposition 11 which extends [18, Proposition 2.9]. We deduce in Theorem 14 that
extremals are minimal elements of max cones under suitable scalings of vectors. This leads us
to a reformulation and new proof of the basic result Theorem 16 which is also easily derived
from [26, Proposition 2.5.3]: Every generating set of a max cone can be partitioned into the
set of the extremals of a cone and a set of redundant elements. It follows that if a cone has a
basis then (under a scaling condition) it consists of the extremals of the cone and hence the cone
has a basis unique up to scalar multiples, see Theorem 18 and its corollaries for more detail. In
Corollary 22 we then turn to the case when the set of extremals of the cone is empty, in which
case every generating set is totally dependent. Discussion of totally dependent sets specifically
may be new. Towards the end of this section we consider topological notions. In Corollary 23
we show that (under a natural restriction) every open cone has totally dependent generators and
in Proposition 24 we prove an analogue of Minkowski’s theorem for closed cones. This result
extends a result due to [17] and it also appears as [14, Theorem 3.1] where a different proof is
given.

In Section 3 we give two simple versions of an algorithm, based on [9, Theorem 16.2] for
finding the (essentially unique) basis of a finitely generated max cone and a MATLAB program
which implements one version. We also relate our problem to the classical problem of finding
maxima of a set of vectors which is described in [19] and in [21, Section 3], and give the bounds
for computational complexity.

We now relate the concepts and techniques of our proofs to those in other publications. Most
of our concepts appear in [17,25,26], sometimes under different names. For instance, extre-
mals are called irreducible elements in [25,26], and minimal elements are called efficient points
in [17]. Our key Proposition 11 may also be derived from (possibly slightly extended) results
found in some of our references. Examples are results in [24] Section 2 in terms of set cover-
ings, see also [7], [9, Theorem 15.6] and [5] Section 2, or the fundamental results of [9] and
[10, Section 3] concerning max linear systems. The latter are also found in [8,12] in terms
of a projection operator. Further, such results on max linear systems as Propositions 11 and
31 can be extended to the case of functional Galois connections, as it is shown in [1]. The
generalizations considered in [1] are useful in many areas including abstract convex analysis,
the theory of Hamilton–Jacobi equation and the Monge–Kantorovitch mass transportation prob-
lem.

1 That is, algebraically isomorphic.
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Our topic is also related to (and partially stimulated by) the emerging field of tropical geometry
which develops basic concepts of max algebra in a different form and with different terminology
and applies these to finitely generated structures, see [12,18,3]. In particular, Proposition 11 can
also be seen as a minor extension of [18, Proposition 2.9] which is important in the theory of
tropical halfspaces. The emphasis of these papers is on geometry, while in this paper it is on
algebraic and order theoretic results. Max cones are also studied in [13,14]. The main effort of
these papers is to develop the theory of max-plus convex sets and their recession cones. This
theory is not present in our paper. In turn, we deal with more general cones and we emphasize the
link to set maxima and give a more detailed description of bases and generating sets.

In max algebra as in linear algebra a basis is normally defined as an indexed set, that is a
sequence if the basis is finite or countable, see [26] for a definition in max algebra or [4, p. 10]
in linear algebra. Since we wish to show the inclusion of the set of extremals (which do not have
a natural order) in every generating set or basis for a cone we define the latter in term of sets in
Section 2. We thereby exclude the possibility of a repetition of elements in generating sets. But
we change our point of view in Section 3 on algorithms for finitely generated cones since we wish
to consider the generators as columns of a matrix.

Max cones have much in common with convex cones, see [22] for a general reference. This
has been exploited (and generalized) in many papers including those just quoted and e.g. [6,27].
To this end, the basic concepts of this paper and such results as Theorem 16, Proposition 24 and
Proposition 25 have their direct analogs in terms of positive linear combinations and in convex
analysis. We do not provide details, as convex geometry is also beyond our scope here.

2. Generating sets, bases and extremals

We begin with two standard definitions of max algebra.

Definition 1. A subset K of Rn+ is a max cone in Rn+ if it is closed under ⊕ and ⊗ by nonnegative
reals.

Definition 2. Let S ⊆ Rn+. Then u is a max combination of S if

u =
⊕
x∈S

λxx, λx ∈ R+, (1)

where only finite number of λx /= 0. The set of all max combinations will be denoted by span(S).
We put span(∅) = {0}.

Evidently, span(S) is a cone. If span(S) = K , we call S a set of generators for K .

Definition 3. An element u ∈ K is an extremal in K if

u = v ⊕ w, v, w ∈ K �⇒ u = v or u = w. (2)

If u is an extremal in K and λ > 0 then λu is also an extremal in K .

Definition 4. An element x ∈ Rn+ is scaled if ‖x‖ = 1.

For most of this section, ‖x‖ may be any norm in Rn (they are all equivalent). However, in the
end we specialize to the max norm, ‖x‖ = max xi , in order to exploit the property that it is max
linear on Rn+. If S ⊆ Rn+ we may call S scaled to indicate that it consists of scaled elements.
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Definition 5. Let S be a set of vectors in Rn+.

1. The set S is dependent if, for some x ∈ S, x is a max combination of S \ {x}. Otherwise, S is
independent.

2. The set S is totally dependent if every x ∈ S is a max combination of S \ {x}.

Thus the empty set of vectors is both independent and totally dependent. Since span(∅) = {0},
the set {0} is totally dependent.

Definition 6. Let K be a cone in Rn+. A set S of vectors in Rn+ is a basis for K if it is an independent
set of generators for K .

The set of all unit vectors {ep, p = 1, . . . , n} defined, as usual, by

e
p
j =

{
1, j = p,

0, j /= p,
(3)

is a basis of Rn+, which is called standard.

Lemma 7. Let S be a set of scaled generators for the cone K in Rn+ and let u be a scaled extremal
in K. Then u ∈ S.

Proof. Suppose u is given by the max combination (1). Since the number of nonzero λx is finite,
we may use Definition 3 and induction to show that u = λxx for some x. But u and x are both
scaled, hence u = x and u ∈ S. �

Lemma 8. The set of scaled extremals of a cone is independent.

Proof. If the set E of scaled extremals is nonempty let u be a scaled extremal in K and apply
Lemma 7 to the cone K1 := span(E\{u}). This shows u /∈ K1 and the result is proved. �

Below we use subscripts for elements of vectors in Rn+ and superscripts to label vectors.

Definition 9. Let v ∈ Rn+. Then the support of v is defined by

supp(v) = {j ∈ {1, . . . , n} : vj > 0}.
The cardinality of supp(u) will be written as |supp(u)|.

In order to relate the natural partial order on Rn+ to results on extremals of cones we introduce
a scaling of vectors in Rn+ for each j ∈ {1, . . . , n} such that for each scaled vector vj = 1.

Definition 10
1. Let u ∈ Rn+ and suppose j ∈ supp(u). Then we define u(j) = u/uj .

2. Let S ⊆ Rn+. We define S(j) = {u(j) : u ∈ S and j ∈ supp(u)} for all j = 1, . . . , n.
3. Let S ⊆ Rn+. An element u ∈ S is called minimal in S, if v � u and v ∈ S implies that v = u.
4. Let K be a cone in Rn+, let u ∈ K , and let j ∈ supp(u). We define

Dj(u) = {v ∈ K(j) : v � u(j)}.
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Our key observation is the following proposition. It can be viewed as a minor but needed
extension of [18, Proposition 2.9], see also the remarks concerning it in our Introduction.

Key Proposition 11. Let S ⊆ Rn+. Then the following are equivalent:

1. u ∈ span(S).

2. For each j ∈ supp(u) there is an xj ∈ S such that j ∈ supp(xj ) and xj (j) ∈ Dj(u).

Proof. 2. �⇒ 1. If 2. holds, then u = ⊕
j∈supp(u) λj x

j where λj = uj/x
j
j .

1. �⇒ 2. Conversely if 1. holds, then it follows immediately from (1) that for each j ∈ supp(u)

there is an xj ∈ S with λjx
j � u and (λjx

j )j = uj . Clearly, λj = uj/x
j
j which yields 2. �

The following immediate corollary to Proposition 11 is essentially found as [17, Theorem II.1]
and as [12, Proposition 5]. It is analogous to Carathéodory’s Theorem.

Corollary 12. Let S ⊆ Rn+. Then u ∈ span(S) if and only if there are k vectors x1, . . . , xk ∈ S,

where k � |supp(u)|, such that u ∈ span{x1, . . . , xk}.

Corollary 13. Let K be a cone in Rn+ and let T be a set of generators for K. Let U ⊆ T and let
S = T \U. Then S generates K if and only if each u ∈ T satisfies condition 2. of Proposition 11.

Theorem 14. Let K be a cone in Rn+ generated by S and let u ∈ S, u /= 0. Then the following
are equivalent:

1. u is an extremal in K.

2. For some j ∈ supp(u), u(j) is minimal in K(j).

3. For some j ∈ supp(u), u(j) is minimal in S(j).

Proof. 1. �⇒ 3. If |supp(u)| = 1 then u(j) is minimal in S(j). So suppose that |supp(u)| > 1
and that u(j) is not minimal in S(j) for any j ∈ supp(u). Then for each j ∈ supp(u) there exists
xj ∈ S(j) such that xj � u(j), xj /= u(j). Therefore u = ⊕

j∈supp(u) uj x
j , and u is proportional

with none of xj . Hence u is not an extremal in K .
3. �⇒ 2. Let v ∈ K and assume that j ∈ supp(v) and v(j) � u(j). We need to show that

v(j) = u(j). By Proposition 11, there is a w ∈ S such that w(j) � v(j). Thus w(j) � v(j) �
u(j) and by 3. it follows that w(j) = v(j) = u(j).

2. �⇒ 1. Let u(j) be minimal in K(j) for some j ∈ supp(u) and suppose that u = v ⊕
w, v, w ∈ K . Then both v � u and w � u and either vj = uj or wj = uj , say (without loss
of generality) that vj = uj . Hence v(j) � u(j) and it follows from 2. that v(j) = u(j). Hence
also v = u which proves 1. �

Note that in Theorem 14 we can of course have S = K . Also note that Corollary 13 may be
combined with Theorem 14 to yield conditions for a set of generators to be redundant.

Corollary 15. Let K be a cone in Rn+. If Dj(u) has a minimal element for each u ∈ K and each
j ∈ supp(u), then K is generated by its extremals.
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Proof. Suppose that xj is a minimal element of Dj(u). Since, for v ∈ K(j), v � xj implies that
v ∈ Dj(u), xj is also a minimal element of K(j). We now obtain the Corollary by combining
Proposition 11 and Theorem 14. �

Essentially, the following fundamental result was proved in [26, Proposition 2.5.3]. We suitably
restate it: every set of generators S for a cone K can be partitioned as E ∪ F , where E is a set of
extremals for K and the remainder F is redundant. Our proof is a combination of Proposition 11
and Theorem 14.

Theorem 16. Let S be a set of scaled generators for a cone K in Rn+ and let E be the set of scaled
extremals in K. Then

1. E ⊆ S.

2. Let F = S\E. Then for any u ∈ F, the set S\{u} is a set of generators for K.

Proof. Assertion 1 repeats Lemma 7.
To prove Assertion 2, let u ∈ F . Since u is not an extremal, by Theorem 14 for each j ∈ supp(u)

there is zj ∈ K such that zj (j) < u(j). Since K = span(S), by Proposition 11 we also have
yj ∈ S such that yj (j) � zj (j) < u(j). Evidently yj /= u, and applying Proposition 11 again,
we get that u is a max combination of {yj : j ∈ supp(u)}, where yj ∈ S are different from u.
Thus in any max combination involving u, this vector can be replaced by a max combination of
vectors in S\{u}, and the theorem is proved. �

The following example shows that the set F of Theorem 16 need not be totally depen-
dent.

Example 17. Let K be the cone in R2+ generated by ur = [1, 1/r]T, r = 1, . . . The elements of
K scaled with respect to the max norm are [1, a]T with 0 < a � 1. Thus u1 is the unique scaled
extremal in K . But the set F = {ur : r = 2, . . .} is not totally dependent since u2 is an extremal
in span(F ) whose scaled elements are [1, a]T with 0 < a � 1/2.

The following is a refinement of Theorem 16, and also of [26, Theorem 5].

Theorem 18. Let E be the set of scaled extremals in a max cone K. Let S ⊆ K consist of scaled
elements. Then the following are equivalent:

1. The set S is a minimal set of generators for K.

2. S = E and S generates K.

3. The set S is a basis for K.

Proof. 1. �⇒ 2. By Theorem 16 we have S = E ∪ F where every element of F is redundant in
S. But since S is a minimal set of generators, we must have F = ∅. Hence S = E.

2. �⇒ 3. The set E is independent and a generating set.
3. �⇒ 1. By independence of S the span of a proper subset of S is strictly contained in

span(S). �
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Theorem 18 shows that if a cone has a (scaled) basis then it must be its set of (scaled) extremals,
hence the basis is essentially unique. We note that a maximal independent set in a cone K need
not be a basis for K as is shown by the following example.

Example 19. Let K ⊆ R2+ consist of all [x1, x2]T with x1 � x2 > 0. If 1 > a > b > 0, then
{[1, a]T, [1, b]T} is a maximal independent set in K which does not generate K .

The following corollary is found e.g. as [12, Proposition 21], [18, Proposition 2.5] and also in
[23, Proposition 1], where it is used to obtain uniqueness results for definite max-plus matrices.
As a special case of this corollary, the standard basis of Rn+ is essentially unique.

Corollary 20. If K is a finitely generated cone, then its set of scaled extremals is the unique
scaled basis for K.

Proof. Since K is finitely generated, there exists a minimal set of generators S. By Theorem 18
S = E and S is a basis. �

Note that in the tropical geometry [12,18] vertices of a polytope are defined to be the essentially
unique generators determined in Corollary 20 and hence vertices correspond to our extremals (and
to Wagneur’s irreducible elements). Next we obtain some corollaries concerning totally dependent
sets.

Corollary 21. If S is a nonempty scaled totally dependent set in Rn+ then S is infinite.

Proof. Suppose that S is finite and let K = span(S). By Corollary 20 K contains scaled extremals
which, by Theorem 16, must be contained in S given that K = span(S). But then S is not totally
dependent. This contradiction proves the result. �

Corollary 22. Let K be a cone in Rn+. The following are equivalent:

1. There is no extremal in K.

2. There exists a totally dependent set of generators for K.

3. Every set of generators for K is totally dependent.

Proof. Since there always exists a set of generators for K (e.g. K itself), each of the Conditions
2 and 3 is equivalent to Condition 1 by Theorem 16. �

We now consider Rn+ in the topology induced by the Euclidean topology of Rn. That is, a set
in Rn+ will be called open if and only if it is the intersection of an open subset of Rn with Rn+. A
cone K is called open if K\{0} is open, and it is called closed if it is closed as a subset of Rn+, or
equivalently of Rn.

Corollary 23. If K is an open cone in Rn+ that does not contain unit vectors, then every generating
set for K is totally dependent.

Proof. It is enough to show that there is no extremal in K , for then the result follows by Theorem
16. Let u ∈ K . Since u is not a unit vector, there are at least two indices k, l ∈ supp(u). Since K
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is open, we have wp = u − εep ∈ K, p = k, l for sufficiently small ε and u = wk ⊕ wl . None
of wp, p = k, l is equal to u, hence u is not an extremal, and the corollary follows. �

An example of an open cone in Rn+ is furnished by the cone K of all positive vectors in Rn+.
We note that, for this particular case, Corollary 23 was shown in [11]. Another example of an
open cone consists of all vectors [a, b]T in R2+ with a > b > 0. We acknowledge the following
proposition, which is analogous to Minkowski’s Theorem, to [14, Theorem 3.1]. There the result
is proved directly by a minimality argument; here we deduce it from a corollary to Theorem 14
which characterizes extremals of cones that may not be closed. It extends earlier results of [17].

Proposition 24. Let K be a closed cone in Rn+. Then K is generated by its set of extremals, and
any point in K is a max combination of not more than n extremals.

Proof. Let u ∈ K and let j ∈ supp(u). It is easily shown that Dj(u) is compact since K is
closed. Hence Dj(u) contains a minimal element xj . The result now follows by Corollary 15 and
Corollary 12. �

The max norm is max linear on Rn+:

‖λu ⊕ μv‖ = λ‖u‖ ⊕ μ‖v‖. (4)

This is exploited in the following proposition.

Proposition 25. If S ⊂ Rn+ is compact and 0 /∈ S, then the cone K = span(S) is closed.

Proof. Consider a sequence ui ∈ K converging to v. Then, by Corollary 12 we have

ui =
n⊕

s=1

λisw
is,

where wis ∈ S and λis ∈ R+. By (4)

‖ui‖ =
n⊕

s=1

λis‖wis‖. (5)

Since the sequence ui converges (to v), the norms ‖ui‖ are bounded from above by some M1 > 0.
On the other hand, we have ‖wis‖ � M2 for some M2 > 0, since S is closed and does not contain
0. Then by (5) λis‖wis‖ � M1 for all i and s, and λis � M1M

−1
2 for all i and s. Thus λis are

bounded from above. But ‖wis‖ are also bounded from above, since S is compact. This implies
that there is a subsequence uj(i) such that for all s = 1, . . . , n the sequences wj(i)s and λj(i)s

converge. Denote their limits by w̄s and λ̄s , respectively, then w̄s ∈ S and λ̄s � M1M
−1
2 . By

continuity of ⊕ and ⊗ we obtain that

v =
n⊕

s=1

λ̄sw̄
s . (6)

Thus v ∈ K . �

Corollary 26. If the set of scaled extremals of a max cone K is closed and generates K, then K

is closed.
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Fig. 1. Max cones of Example 28.

Corollary 27. Any finitely generated max cone K is closed.

We now give a counterexample to the converses of Corollary 15 and Proposition 24 (part 1),
and to the converse of Corollary 26 (part 2).

Example 28. 1. In R3+ let S consist of all vectors [x1, x2, 1]T, 0 � x1 < 1/2 such that x1 +
x2 = 1 and let K = span(S). Then the section of K given by x3 = 1 consists of all vectors
[x1, x2, 1]T, 0 � x1 < 1/2, 0 � x2 � 1 such that x1 + x2 � 1. Note that S is the set of extremals
of K scaled with respect to the max norm, but K = span(S) is not closed and for any u ∈ K there
are no minimal elements in D1(u) and D2(u).

2. Now let S′ = S ∪ {u}, where u = [1/2, 0, 1]T and let K ′ = span(S′). Then the section of
K ′ given by x3 = 1 consists of K together with the line segment whose end points are u and
[1/2, 1, 1]T. Thus K ′ is closed. The set of scaled extremals of K ′ is S′ which is not closed.

The cross sections of K and K ′ by x3 = 1 are shown in Fig. 1, together with the generating
sets S and S′ = S ∪ {u}.

3. Algorithmic considerations

As explained in the introduction we redefine our basic concepts for this section which is
concerned with finitely generated cones. We also restate a suitable adaptation of Corollary 20.

Definition 29. Let V ∈ Rnk+ and let V
î

be the matrix obtained from V by deleting column i, i =
1, . . . , k. Then the cone K generated by the columns v1, . . . , vk of V consists of all vectors of
form V ⊗ x, x ∈ Rk+. Further, the columns of V form a basis for K if, for i, i = 1, . . . , k, there
is no x ∈ Rk−1+ such that V

î
⊗ x = vi .

Proposition 30. Let V ∈ Rnk+ . Then there exists a submatrix U ∈ R
np
+ , 0 � p � k whose columns

form a basis for the cone generated by the columns of V (and every other basis is of form UPD,

where P is a permutation matrix and D is a diagonal matrix with nonzero diagonal elements).

We shall apply the following proposition. Note that all statements in this proposition have been
proved in a more general setting in [8]. See also [5], [10, Chapter III] and [24].

Proposition 31. Let U ∈ Rnk+ with all columns nonzero and let v ∈ Rn+. Let x ∈ Rk+ be defined
by
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xi = min{vj /u
i
j : ui

j /= 0, j = 1, . . . , n} (7)

for i = 1, . . . , k. Then

U ⊗ x � v, (8)

x = max{z ∈ Rk+ : U ⊗ z � v}, (9)

U ⊗ x = max{U ⊗ z : z ∈ Rk+, U ⊗ z � v}. (10)

Further, there exists z ∈ Rk+ such that U ⊗ z = v if and only if U ⊗ x = v.

Proof. Assertion (8) follows from the observation that U ⊗ z � v if and only if zi � vj /u
i
j if

j ∈ supp(ui), i = 1, . . . , k. Note that x ∈ Rk+ since no column of U is zero. Since ⊗ is isotone
(that is, x � y implies A ⊗ x � A ⊗ y), assertions (9) and (10) follow immediately. For the final
statement assume that U ⊗ z = v for some z. By (8) and (10) we have v = U ⊗ z � U ⊗ x � v,
and the statement follows. The converse is trivial. �

Algorithm 32
Input: V ∈ Rnk+ .
Output: An n × p submatrix U of V whose columns form the essentially unique basis for
the cone generated by the columns of V .
Step 1. Initialize U = V .
Step 2. For each j = 1, . . . , k if uj /= 0 set v = uj , and for each i /= j compute xi by (7), if
ui /= 0, and set xi = 0 otherwise. If U

ĵ
x = v, set uj = 0.

Step 3. Delete the zero columns of U . The remaining columns of U are the basis we seek.

Remark 33. The restriction in Proposition 31 that each column U ∈ Rnk+ must have a positive
element was imposed to avoid definitions for a/0, a > 0, or 0/0. The restriction is inessential
in the sense that for general U ∈ Rnk+ we may define xi by (7) whenever ui /= 0 and choose xi

arbitrarily in Rk+ whenever ui = 0. Then all assertions of the Proposition still hold, with exception
of (9). It is possible to extend Rn+ by adding a maximal element ∞ so that (9) still holds.

We omit details and present the MATLAB program maxbas that implements Algorithm 32 but
employs such an extension. We also give an example with some elements equal to 0. Note that in
[9, Theorem 16.2] a related algorithm called A-test has been presented. It enables us to identify
columns that are dependent on other columns of an n × k matrix in O(nk2) time. However, there
is no discussion of bases in connection with this method in [9].

%the unique max times basis for the max col space of A
%function [B,f] = {\ul maxbas}(A),
%B = the unique max times basis for the max col space of A
%f = indices of columns of B in A
%calls {\ul maxpr}, max multiplication of matrices
function [B,f] = maxbas(A)
[m,n] = size(A); B = A; t = max(max(A));
for j = 1:n
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v = compl(j,n);
c = B(:,j); BB = B(:,v); warning(’off’),
e = ones(1,n-1); C = c*e; x = min(C./BB)’;
z= maxpr(BB,x);
if abs(c-z) < t*eps, B(:,j) = 0; end,

end u = max(B); f = find(u >t*eps); B = B(:,f);
A =
Columns 1 through 5

1 9 10 5 9
2 10 10 0 10
3 15 14 7 0
4 20 16 8 12

>> [B,f] = maxbas(A)
B =

1 5 9
2 0 10
3 7 0
4 8 12

f =
1 4 5

We note that a second form of the algorithm may be based on set covering condition (11) below,
which appears in [9, Theorem 15.6]. It can also be found in [24] Section 2 and in [5] Section 2
but only in the case when all vectors are positive. See also [1, Theorem 3.5] for an interesting
functional generalization of this condition (and more). With v and U as in Step 2, denote by Ni

the set {j : v(j) � ui(j)}. By Proposition 11, v ∈ span(u1, . . . , um) if and only if
m⋃

i=1

Ni = supp(v). (11)

With x given by (7), we note that

Ni =
{{j ∈ supp(ui) : vj /u

i
j = xi} if xi /= 0,

∅, if xi = 0.
(12)

Thus Step 2 in Algorithm 32 may be replaced by
Step 2′: For each j = 1, . . . , k such that uj /= 0: set v = uj and for each i /= j compute Ni =

{j : v(j) � ui(j)} according to (12), if ui /= 0, and set Ni = ∅ otherwise. If
⋃

i /=j Ni = supp(v),

set uj = 0.
The version with Step 2′ is also well-known. It is implemented in the max-plus toolbox of

Scilab, a freely distributed software. See [15, Sect.III-B] for the documentation.
Our algorithms are of complexity O(nk2).
If S is the set of columns of the matrix U , then it follows from Theorem 14 that a basis for

the cone generated by S consists of the union of the n sets M(j), j = 1, . . . , n, where M(j)

consist of the vectors minimal in S(j). The problem of finding all maxima (or minima) of k

vectors in Rn is considered in [19], and also in [21, Section 4.1.3], where it is dubbed the problem
of Erehwon Kings. The computational complexity of methods developed in [19,21] is bounded
from above by O(n2k(log2 k)n−2) + O(k log2 k), n � 2, see [21, Theorem 4.9] and [19, Theorem
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5.2].2 To solve our problem we can apply these methods to each S(j), j = 1, . . . , n separately.
Taking into account that for each j we need O(nk) operations to find the coordinates of essentially
(n − 1)-dimensional vectors in S(j), this yields an alternative method with complexity not smaller
than O(n2k) and not greater than O(n3k(log2 k)n−3) + O(k log2 k), n � 3. This method may be
preferred if log2 k is substantially larger than n.
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