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ABSTRACT This novel approach to the
analysis of multiexponential functions is
based on the combined use of the
Laplace transform and Pad6 approxi-
mants (Yeramian, E., and P. Claverie.
1987. Nature (Lond.). 326:169-174). It
is similar in principle to the well-known
Isenberg method of moments (Isen-
berg, I. 1983. Biophys. J. 43:141-148)
traditionally applied to the analysis of
fluorescence decay. The advantage of
the Pad6-Laplace method lies in its
ability to detect the number of compo-

nents in a multiexponential function as
well as their parameters. In this paper
we modified the original method so that
it can be applied to the analysis of
multifrequency phase/modulation
measurements of fluorescence decay.
The method was tested first on simu-
lated data. It afforded recovery up to
four distinct lifetime components (and
their fractional contributions). In the
case of simulated data corresponding
to continuous lifetime distributions
(nonexponential decay), the results of

the analysis by the Pad6-Laplace
method indicated the absence of dis-
crete exponential components. The
method was also applied to real
phase/modulation data gathered on
known fluorophores and their mixtures
and on tryptophan fluorescence in
phospholipase A2. The lifetime and
fraction recoveries were consistent
with those obtained from standard
methods involving nonlinear least-
square fitting.

1. INTRODUCTION

A wide variety of methods exists for the analysis of
fluorescence intensity decays whether these are measured
by the use of time resolved single photon counting (1-6)
or by multifrequency phase fluorometry (7-9). Generally,
the methods of analysis for either type of data have relied
on the use of nonlinear regression techniques. Lately, a
more sophisticated approach to the analysis of fluores-
cence intensity decays has been developed exploiting
global analysis (10-15) for the reduction of both photon
counting and multifrequency data. The results with
global analysis have already been impressive even though
the method is still under active development. In general,
however, if the fluorescence decay is monoexponential,
the analysis of either time correlated single photon
counting or multifrequency phase fluorometry data is
usually straightforward. Problems frequently arise when
the fluorescence decay is not monoexponential as the
decision must then be made whether the decay should be
viewed as simply a sum of exponentials, or is best consid-
ered to be nonexponential.

For studies of the fluorescence of peptides and proteins
the problem has become particularly important since the
observation that even when there is a single fluorophore,
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e.g., a single tryptophan residue, the fluorescence decay
can seldom be described as monoexponential (for review
see reference 13). Sometimes as many as three exponen-
tial terms are needed to provide a good fit to the data
(14, 15). As noted earlier, in such situations one must ask
whether the decay process should be resolved into a set of
exponentials, whether the decay is nonexponential, or
whether the decay ought to be interpreted in terms of a
continuous distribution (15-17). It is important that the
appropriate distinction be made because the inferences
which one might draw regarding the physical basis for the
observed fluorescence decays are very dependent on the
choice one makes regarding the form of the decay process.
However, it is by no means clear just how such a decision
between the "standard" approach to analysis, i.e., in
terms of exponential decay forms and, say, a distribution
model should be made.
Yeramian and Claverie (18) have described an inter-

esting approach to the evaluation of decay processes
which relies on the use of Pade approximants (19, 20).
The latter have long been used in particle and nuclear
physics (e.g., 21, 22). The method of Yeramian and
Claverie offers a useful opportunity for the examination
of fluorescence intensity decays because it does not rely
on standard statistical procedures to arrive at a conclusion
as to whether a decay process is or is not exponential in
form. In this paper we describe the development and
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implementation of the Pade-Laplace (PL) formalism for
the analysis of multifrequency phase fluorometry data. In
particular, we wished to determine the degree of conso-

nance between the fluorescence decay parameters
obtained by use of the PL method and those calculated by
the use of nonlinear regression techniques. We measured
the fluorescence lifetimes of several well-characterized,
"6simple" fluorophores and of a protein bearing a single
tryptophan; the fluorescence intensity decay of the trypto-
phan in this protein is known from other reported data to
be distinctly multiexponential (14, 15). The data have
shown that the PL method generally yields results which
are essentially identical to those found by use of nonlinear
regression techniques.

be represented at a particular po by its Taylor series:

S(p) = , d,(p - po)', di = . E w S(tj)eJ(-tj)', (6)
f-O 1.

where the coefficients d, can be calculated easily. Now we

come to the second step of the PL method, namely to the
application of Pade approximants. The function S(p) can

be approximated by Pade approximants (19, 20, 22)

S(p) = [N/M]S(q) + O(qN+M+i), q = p-Po,
N

[N/M]S(q) = AN(q)
= qF

Bm(q)-I
F b,q'
s-i

(7)

2. THEORY

2.1 Pad6-Laplace method
Let us assume that the observed signal S(t), t > 0
sampled at t1, j = 1, ..., m can be represented by
multiexponential functionf(t):

n

f(t) = Ckef"'
k-i

S(t) = f(t) + n(t), t = tj.

(1)

(2)

n(t) represents the instrumental noise. The parameters Ck
and Igk are unknown as well as the number of exponential
components. The first step in the Pade-Laplace method is
to apply Laplace transformation tof(t),

f(p) = £[f](p) = | eP!f(t) dt, (3)

obtaining
n-I

n C -EUrp
Ck

r-If(p) E=F n
k-i P -Mk E VrP

r-I

(4)

The integral in Eq. 3 is convergent for all complex p

satisfying Re(p) > SUPk [Re(,Lk)1, k = 1, .. ., n and the
function f(p) can be analytically continued to the whole
complex p plane. The unknown parameters Ck and uk are

simply poles and corresponding residues of f(p). The
function f(p) can be calculated by numerical integration,

f(p) S(p) + e.(p), S(p) - wjS(tj)eP'. (5)
j-1

Here the weights wj and t1 are specific to the numerical
integration used. The error em(p) depends on the method
of numerical integration and on the noise n(t). The
function S(p) is analytic in the complex plane p, and can

The coefficients ar and b5 are obtainable from Taylor
coefficients d1 by algebraic methods (e.g., reference 23).
The fact that S(p) is represented (within the error em [p])
by the rational function f(p) (Eqs. 4 and 5) is then taken
into account. It follows that the paradiagonal Pade
approximant [n - l/n]S(q) from Eq. 7 should coincide
with f(p) within errors introduced by numerical integra-
tion and the signal noise:

n Ck
E k = [n - 1/n]S(q) + em(p) + O(q2"). (8)
k-i P - Ak

For em(p) 0, O(q2") should be identically zero and the
roots #k, k = 1, . . ., n of the denominator Bn(q) of [n -
l/n]S(p) correspond to 1k - po. Indeed, [n - 1/n]S(p)
can be rewritten as

n-i

an-l I (q-'
[n- 1/n]§(q) n

bn II (q - )
s-i

n-I

an- 11 (p - a,,
r-I

bn II (p -s)
s-i

E_ k s

k = 13k + PO,
k-i P - (k

'Yk = 4k + Po, (9)

where
n-i

an-. II (t3k -z)
r-I

Dk = (10)

bn II ((6k - As)
s- 1,(s k)

In an ideal situation when em(p) 0, (3k are identical to
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Ilk and Dk are identical to Ck, k = 1, ..., n, which
formally proves the method.

Determination of the number, n, of components is
based on the proven property (20) that paradiagonal Pade
approximants [N -1 /N]f(z) for N > n representing the
approximant [n - /n]f(z), must reduce to [n - 1/

n]f(z) through the cancellation of common factors
between the numerator and denominator. Thus, by subse-
quent construction of approximants [N - /N]S(q), N =

1, ... , n, n +., ... and determination of their poles and
corresponding residues, one should find that for N 2 n

actual poles appear regularly in every approximant
together with spurious ones. Formally any [N - 1/

N]S(q), N > n can be written as

n-I N-I

aN-I (p - a,) (P - 'r)
r-l r-n

[N- 1/N]§(q)= n N (11)

bNI (P -6s) (p- 3)

s-I s-n+1

Spurious (also called artifical) roots h N are

equal to {'yn, -*- 'YN-iJ causing cancellation, and the

second term in the expression

[N- I/N]S(p) == E + E-j
k-IP k k-n+1IP _3k9 (12)

should vanish, i.e., coefficients Dk for k = n + 1, . . ., N
are identically zero (cf. Eq. 10). In real situations when
em(p) 0, these coefficients may have nonvanishing,
though small values. Furthermore, it is observed that the
set of actual roots start to appear for some N' > n. This
may be considered as the effect of the error em(p) +
O(q2N') which is taken into account by N' - n terms
Dk/(P - 13k), k = n + 1, ..., N'. For subsequent
paradiagonal Pade approximants, N = N' + 1, . . . the set
of actual roots appear with noticeable stability while
artificial roots are unstable (18, 24, 25).
A global examination of the Pade-Laplace approach

(see Fig. 1) shows clearly how the method can be general-
ized. Thus, if the measured signal is represented by a

function of the form
n

F(x) = Zf k(X, Ik, Ck),
k-I

and there is a linear transform which, when applied to this

FIGURE 1 Block scheme of the Pad6-Laplace method.
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function leads to the rational function of the form given in
Eq. 4, then we may use the same analysis based on Pade
approximants as described above. With this generaliza-
tion in mind we have investigated the application of the
PL method to the analysis of multifrequency phase-
modulation fluorometry data.

2.2 Pad6-Laplace method in the
frequency domain
So far the original PL method has been applied to the
analysis of time-dependent signals (18, 25) which can be
represented by multiexponential functions. Below we
describe how the PL method can be modified for applica-
tion to signals obtained in the frequency domain which
correspond to multiexponential functions in the time
domain. We assume that the time and frequency domain
are connected as usual by a Fourier transform. In particu-
lar we will consider fluorescence intensity decays studied
by use of multifrequency phase-modulation fluorometry
(7-9).
Assuming that the fluorescence intensity decay is rep-

resented by

n n
I(t) = Zfkr-'et/1k, Eifk = 1, t 2 0, Tk> 0, (13)

k-i k-i

where Tk are the lifetimes and fk are the corresponding
fractions, phase +(w) and modulation M(w) at given
frequency W are (7, 15):

+(w) = arctg[C(w)/S(w)],
M(w) = [C2(W) + SI(W)1,12
C(W) = M(W) cos b(W)

Z~~ fk= 5I(t) cos wlt dt =EIf s
k-i1 + WOTk

S(w) = M(w) sin q(w)

= , I(t) sin wt dt

WI 2 (14)

Now, we can extend the definition of I(t) to the whole
interval (-o, oo) defining I(t) 0 for t < 0. Then

[I](w) = M(w)e'O) = I(t)e"" dt

= C(t) + iS(w) (15)

is the Fourier transform of I(t). The inverse Fourier

transform leads to (see e.g. reference 26):

I(t) =
I

S [I](w)e-"" dw
2w _

1
dw drI(T) cos w (T -

=-| dw | dTI(r)

* [cos wr cos cot + sin wr sin wt]. (16)

Then, by using Eq. 14, we obtain

I(t) = -I [C(w) cos wt + S(w) cos wt] dt. (17)
7r

To get a rational function of the type shown in Eq. 4 we
now apply the Laplace transform to Eq. 17 taking into
account Eqs. 13 and 14:

I(p) L[I](p)= fkTk 1I rpC(W) +WS(W)
k-iP + T k~ 2 +.

We assume that actually measured values of modulation
M(wj) and phase (wI), = 1,... , m are represented by
functions M(w) and +(w):

M(wj) = M(wj) + n(wj), 4(wj) = k(wj) + w(wj),
n(wj) = a(M)n1, 4,(wj) = o(0)1j. (19)

Here n(W) and ,I(w) denote instrumental noise, and v(M)
and o(Q) are standard deviations. In simulations we will
use a Gaussian noise so that nj, iIj are considered as

normally distributed random numbers centered around
zero with unit standard deviation.
The function I(p) can be calculated by numerical

integration leading to

m

I(p) = 3(p) + Em(p), 3(p) = E w,J((w, p)
j-1

J(W, p) = M(w)[p cos 0(w) + w sin o((w)]/(p2 + 2). (20)

Weights wj and frequencies w1 should be chosen depend-
ing on the numerical integration method used. The error
Em(p) depends on the noise n(W) and 4,t(w) as well as on
numerical integration method employed. We can now
proceed with analysis by Pade approximants in a com-
pletely analogous way to that discussed in the original PL
method. Successful recovery of lifetimes and fractions
would depend on the error Em(p) which in principle
behaves differently from em(p). In fact, it might be
expected that Em(p) is on average greater than em(p) due
to the difference in the behavior of the integrands in Eqs.
3 and 18 at infinity. By using Eq. 14 it can be shown that
the integrand in Eq. 18 behaves like 1/(p2 + w2) as
w oc, while the integrand in Eq. 3 falls off exponentially

o J

t)
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when t co. To reduce Em(p) we estimated the behavior

of the integrand in Eq. 18 for w and performed
integration from w.m, W-- to infinity analytically. In this
paper this portion of the integrand is referred to as the
"tail." The details of this procedure are explained in the
Appendix.
To construct Pade approximants we need to calculate

derivatives of J(p). By applying differentiation rules to
J(w, p) it is not difficult to derive the following formula
for Taylor coefficients d1:

1)' d'
=

i! dp J(P)Ip-PO
m

= wj(- 1)'[VfC(Wj)C(wj)
i-I

+ Vc(wj)S(wj)], 1, 2,... (21)

V(Cw) P[poV_i1(w) wV, i(W)],

VS(W) = P[WVf l(w) + pOV_I(w)],

p (p2 + W2) -1, V(W) = poP, Vo(W) =p,

C(@) = M(w) cos +(w), S(w) = M(w) sin 4(w).

Wj = wj for most numerical integration algorithms; the
exception is our "generalized trapezoidal rule" (see below
and Appendix).

Calculating subsequent paradiagonal Pade approxi-
mants, the method as described above should allow recov-

ery of lifetimes Tk as

Tk = -I/(qk + Po),

qk= Real pole of [N I/N]J(p -po),
k = 1,..., n, N> n. (22)

Corresponding fractions fk can be calculated from the
residues at these poles:

whereas it may be a good approximation when one

component is dominant (for details see Appendix). We
have also considered a fitting procedure for C(w) and
S(w) which employs cubic splines and then integration to
the required accuracy. Although intuitively appealing, in
actual examples this method did not show any particular
advantages. The best results were obtained by using
either a simple trapezoidal rule or the generalized trape-
zoial rule. In the latter case we found it convenient to
change the integration variable w according to the trans-
formation: o = wo(I - x)/x, which leads to the change of
integration limits from [0, m] to [0, 1].
The only input parameter for the PL method is po.

Theoretically, the PL method should work for any po, but
numerical calculations have shown that the optimal
choice ofpo is the one which leads to Taylor coefficients di
of the same order of magnitude (24). This can be achieved
if we require that d, II/di when i - oo (24). It may be

shown that if the only singularity on the circumference of
the circle of convergence of the Taylor series

d(p -po)'
i-O

is at polep ,u, then di/di+ I po when i oc. Thus

we may adopt the following procedure for searching
PO,optimal > 0 (24): starting from pojn0tial > 0 we calculate the
corresponding Taylor coefficients d, and then po,optimal is
given by

P.optio,ai = lim (dildi+1) + P,initial + 1. (24)

This means that pO,Opj, is at a distance equal to 1 from
the largest (negative) pole which in our case corresponds
to the longest lifetime.

Resz_q{[N - 1/N]J(z -po)I =fk4'. (23)

It was noted by Yeramian and Claverie (18, 24, 25)
that the choice of the numerical integration method can
improve the recovery of components. They found that
simple trapezoidal and Simpson's rules are good choices
for noisy data. We used both rules and in addition a

method which we developed specifically for analysis of
the phase/modulation data which we have called the
"generalized trapezoidal rule" because the interpolation
between two subsequent abscissas w, and W2 is not linear
but for the functions C(w) and S (w) are given by c,/( +
w2C2) and slwl/(l + w2s2), respectively. The parameters cl
and c2 are easily determined from known values C(Qw) and
C(W2) and analogously, s, and s2 from S(wj) and S(W2).
These interpolating functions represent exactly C(w) and
S (w) in the case of one component and zero noise,

3. RESULTS AND DISCUSSION

3.1 Simulations
The original PL method has been tested on simulated
data with excellent results (e.g., Table 5 of reference 25
shows comparison with other methods for multiexponen-
tial analysis; see also references 18 and 24). Here we
tested the modified Pade-Laplace (MPL) method under
specific conditions of phase/modulation measurements.
The simulations were chosen to show the effectiveness

and limits of the method. The crucial limitation in
recovery of components comes from the level of noise in
the data. Unless otherwise stated we chose to use Gaus-
sian noise with a standard deviation o-(M) = 0.005 in
modulation and cr(Q) = 0.20 in phase, the typical level of
noise in phase/modulation measurements performed in
our laboratory. However, we have observed that it is
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possible to perform measurements with average standard
deviations a(M) < 0.001 and v(+) < 0.040 (e.g., see

measurements on phospholipase A2, section 3.2). To
investigate the limits of the method in the most favorable
case we also chose Gaussian noise with standard devia-
tions a(M) = 0.001 and a(0) = 0.040. The data simulated
with this level of noise will be referred to as low noise data.
Other constraints which are met in actual phase/modula-
tion measurements deal with minimal and maximal fre-
quency. In simulated data we choose the minimal circular
frequency as Wmin = 2lrvmin, Pmin C 4 MHz and maximal
circular frequency Wmax = 2lrvmax,' such that 0(w,) <

80°.
As a first example we applied the MPL method to a

simulated decay with two exponential components (Table
1), and on this example we will explain the features of the
method important for its practical use. For the numerical
integration we used the simple trapezoidal rule (unless
otherwise stated) and tail estimation as described in
Appendix. In Table 1 we have shown only the meaningful
recovered lifetimes and fractions, those which correspond
to the poles and residues with a negligible or zero imagi-
nary part. It is clear that more or less accurate recovery of
two genuine components starts at a Pade approximant of
the order [3/4] and appears repeatedly up to order
[18/19]. The exceptions are Pade approximants of orders
[5/6] and [7/8], where a spurious low fraction compo-

nent appears. Theoretically the recovery of two genuine
components should start at Pade approximant of order
[1/2], but as already mentioned (18, 25) this is not the
case due to the inaccuracy of the numerical integration
and noise in the data. In fact, even for the noiselss data in
this example, we found that Pade approximant [3/4] is
the first to recover genuine components, which are then
accurately (to three or more significant digits) recovered
in all Pade approximants up to the order [19/20]. The
accuracy of a given recovery can be estimated by a single
number which we will call the total relative error (TRE),
defined as:

TRE=Z T-i| + f-fk
k-i Tk fk

(25)

Here Tk and fk are exact, and 4k and fk are recovered
values for lifetimes and fractions, respectively. Obviously,
TRE can be used to determine how close recovered values
are to exact ones only in simulations for which the latter
are known. However, this quantity is also useful for
judging the quality of the tests used to assess the recover-

ies from real data. We investigated several such tests,
combining functions C(w) and S(w) as given by recovered
lifetimes and fractions and by data (cf. Eqs. 14 and 21).
The most useful we found was the standard reduced

TABLE 1 Two-component simulation

[N/N-1] R

[1/2] 1.6336
0.14571

[2/3] 6.0938
1.1169

[3/4] 3.8182
0.9350

[4/5] 3.8113
0.9331

[5/6] 3.9676
2.0206
0.8880

[6/7] 3.8145
0.9391

[7/8] 8.7143
1.0580

[8/9] 3.8105
0.8963

[9/10] 3.7846

0.8750
[10/11] 3.9816

0.9780
[11/12] 3.8090

1.0454
[12/13] 3.8091

1.0455
[13/14] 3.7664

1.0351
[14/15] 4.0400

0.9854
[15/16] 4.0525

0.9886
[16/17] 4.6818

1.0264
[17/18] 3.9686

0.9827
[18/19] 3.9685

0.9827
[19/20] 1.4526

4.4868
0.6085

[A16] 4.07 ± 0.19
1.00 ± 0.01

[A32] 4.05 ± 0.17
1.00 ± 0.01

[LMfit] 3.99 ± 0.07
0.999 ± 0.004

[A16] 3.93 ± 0.03
(200) 1.001 ± 0.008
[LMfit] 3.99 ± 0.09

(200) 0.997 ± 0.008

R x2 TREfk

0.82632
0.02797
0.23103
0.78799
0.32476
0.70497
0.32555
0.70485
0.29093
0.07640
0.67442
0.32455
0.70104
0.04102
0.75706
0.32818
0.76563
0.33100
0.80546
0.30620
0.71076
0.34767
0.80861
0.34733
0.80883
0.36342
0.77734
0.30144
0.71357
0.30013
0.71321
0.36018
0.72428
0.31790
0.70285
0.31802
0.71496
0.43853
0.22039
0.44241
0.302 ± 0.006
0.701 ± 0.018
0.302 ± 0.007
0.700 ± 0.017
0.301 ± 0.004
0.699 ± 0.004
0.309 ± 0.005
0.688 ± 0.005
0.302 ± 0.007
0.698 ± 0.007

0.3293 83.15 2.277

0.01902 20.67 0.960

0.02973 35.50 0.200

0.03041 37.44 0.206

0.04175 76.00

0.02559 28.21 0.191

0.20192 228.15 2.181

0.09381 215.36 0.339

0.13646 415.42 0.433

0.01696 8.10 0.063

0.15629 206.22 0.407

0.15616 206.19 0.406

0.14076 156.11 0.415

0.01501 6.03 0.049

0.01335 4.77 0.044

0.08445 28.63 0.432

0.02074 4.48 0.089

0.03298 10.96 0.107

0.10133 539.15

1.02 0.027

1.03 0.022

1.01 0.009

2.11 0.064

1.07 0.015

Exact lifetimes: ,r - 4 ns, r2 - 1 ns; exact fractions:f1 = 0.3f2 - 0.7. 50
phase/molulation data, equally spaced in frequency were simulated;
maximal frequency, - 300 MHz; minimal frequency, 6 MHz. a (M) -

0.005, a(+) - 0.20; po - 0.8 ns-'. [A16] and [A32] stand for averages
over recoveries with minimal x2 for 16 and 32 different po, respectively
(see text). Two last results marked by (200) correspond to 20 phase/
modulation data, equally spaced in x-variable (see text) with maximal
frequency of 200 MHz, minimal frequency of 4.1 MHz and minimal
difference between two subsequent frequencies of 4.1 MHz.
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chi-squared:

Xv= 7j,1E_[ MR(Wj)]2
x 2~o~(M)

[ () R(Wj)I2
+ O( i)2( )

OR V
= m nR + 1. (26)

Here MR(wj) and OR(Wj) are modulation and phase,
respectively, given by recovered lifetimes T4, fractionsfR
and number of components nR (see Eq. 14). aj(M), j = 1,

m denote standard deviations in modulation and
aj(o) denote standard deviation in phase. Another useful
test for the quality of recovery is the quantity

R = I k |

0.8

0.7

0.6

c- 05-5
0

co 0.4-
lL

0.3

0.2

0.1

0.0 r
) 1 2

(27)

which, according to Eq. 13, should be equal to zero. Table
1 reveals that both XJ and R are reasonably well corre-

lated with TRE, and this we found to be true in many
other examples. However, occasionally a lower Xv may
correspond to a higher TRE as one can see by comparing
recoveries [17/18] and [14/15]. In another simulation
(Tr = 4 ns, r2 = 2 ns,f1 = 0.4,f2 = 0.6), this effect is much
more emphasized: Comparing two recoveries, we found
that X! = 1.18 corresponds to TRE = 0.58 whilex, = 14.4
corresponds to TRE = 0.09 and when the same data were
fitted by a standard least-square technique an almost
ideal x, = 1.01 corresponds to TRE = 0. 19. This phenom-
enon arises from the statistical nature of x,2 which, when
minimized, yields parameters which are most probably,
but not inevitably, closest to the true values. For sake of
comparison, in all presented simulations we add also the
recovery of parameters obtained by standard least-square
fitting via the Levenberg-Marquardt (LM) algorithm as
implemented in reference (27).
The recovery with the lowest TRE in the example

shown in Table 1 corresponds to the minimal R obtained.
This is not always the case, but by imposing an upper limit
to the acceptable R we can eliminate most of those
recoveries which are not close to genuine lifetimes and
fractions. Thus, by imposing the condition that R < 0.05
we can eliminate all recoveries with TRE > 0.21 (with the
only exceptions being recoveries [1/2] and [2/3]). We
found it useful to display all recoveries for which R < 0.05
in two-dimensional scattergrams which show clustering of
recovered lifetime-fraction points around their exact posi-
tions (Fig. 2). In this way one can easily delineate
spurious recoveries (such as the low-fraction component
in [5/6]) and get a feeling for the distribution of lifetimes
and fractions clustered around the best possible recovery.
Such a graphical aid is especially valuable when the
sequence of relatively accurate recoveries does not appear
regularly in subsequent Pade approximants. The irregu-

3 4 5 6

Lifetime (ns)

FIGURE 2 The lifetime-fraction scattergram for a two-component sim-
ulation a of Table 1.

larities occur as a consequence of noise in the data, and
errors in the numerical integration.

According to the procedure of the original PL method
(18, 24), when a certain set of poles and corresponding
residues appear repeatedly in subsequent Pade approxi-
mants with negligible variation in values, it is considered
to represent the recovery of the parameters of underlying
multiexponential function. In the example displayed in
Table 1 we find that the recovery [3/4]: r4 = 3.818 ns,
T2 = 0.935 ns,fR = 0.325,fR= 0.705 is repeated in Pade
approximants [4/5] and [6/7] with fair accuracy. How-
ever, when the ratio of exact lifetimes is smaller (-1.5)
such regular behavior disappears. Therefore, based on
empirical evidence from many simulations we propose
another procedure: As the best estimate of lifetimes and
fractions one chooses the average values of lifetimes and
corresponding fractions obtained from the recovery with
minimal R and the recovery with minimal x2 when 20
subsequent Pade approximants are evaluated. In the
example considered we obtain TR = 4.0106 ns, r =

0.9856 ns,fR
= 0.3090,fR

= 0.7080 with TRE = 0.059,
which is considerably smaller than TRE for the recovery

[3/4]. Often the recovery with minimal XJ is also the
recovery with minimal R.

In the original PL method no procedure was described
to estimate the uncertainties in recovered parameters.
Here we propose a procedure based on variation of the
parameter po. As we already pointed out, theoretically the
PL method should work for any po for which a Laplace
transform exists. However, due to the noise in the data
and errors in numerical integration there is an optimal
choice ofpo given by Eq. 24. By varying po around Po,optimal
we can obtain different sets of recoveries each correspond-
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ing to a given po. Within a given set of recoveries, we
choose as the "best" recovery the one corresponding to
minimal X!. The set of these "best" recoveries for all po
considered form a set from which we determine the
uncertainty in recovered lifetimes and fractions as well as
their best estimates. Sometimes the set of "best" recover-
ies may contain a few recoveries with evidently spurious
components. After removing such recoveries we take the
averages of the rest of the mutually corresponding life-
times and fractions and consider them as the best esti-
mates. We found by simulation that minimal X, lifetimes
and fractions for 256 randomly chosen po (normally
distributed around Po,optima1) do not follow a Gaussian
distribution. Therefore, we estimated the uncertainties on
the basis of Chebyshev's inequality (28) which states that
the proportion of numbers in a population which deviate
from the population mean by at least ka is less than or

equal to l/k2, where a is the standard deviation. We
calculate the standard deviation by use of the above
obtained averages of lifetimes and corresponding frac-
tions as population means. The uncertainty in lifetimes
and fractions is then given by corresponding standard
deviation multiplied by k. We found empirically that k =

X (corresponding to a proportion of 50%) gives satisfac-
tory results. In Table 1 we show the results for 16 and 32
randomly chosen po values normally distributed around
Po,optimal = 0.8 ns- (In the case of 16 "best" recoveries one
contained a spurious component and was removed; in case
of 32, two were removed.) The results are equivalent and
estimated lifetimes and fractions are closer to the true
values than those obtained by averaging recoveries for
minimal X2 and minimal R. As a rule of thumb we have
chosen to use 16 randomly chosen Po distributed normally
with PO,optimal as a mean (usually <1 ns-1) and with a

standard deviation of 0.01 ns-'.
A few remarks are warranted regarding the determina-

tion of Po,optimal. In Fig. 3 we show the typical behavior ofp,
defined as

Pi = di/di+1 + POinitial + 1, i = 1,2, . . . (28)

with and without noise in the simulated data. According
to Eq- 24 POoptimal = lim-. pi and in the case of noiseless
data the limit is readily obtained. For noisy data, the
limiting value is usually less obvious. In such circum-
stances we estimate PO,optimal taking the average

(Pm - 1 + Pm + pm + ,)/3, where Pm denotes the first max-
imum (or minimum) value of pi characterized by slow
change of p, for i < m and faster change for i > m.

In simulation a shown in Table 1, we have chosen
phase/modulation data at 50 equidistant frequencies with
vmax = 300 MHz. The precision of phase modulation
measurements is sometimes decreased at higher frequen-
cies. Therefore in simulation b of Table 1 we choose

3.0

2.5

2.0

1.5

1.0

0.5 7

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0
5 10 20 25 30 35 40

FIGURE 3 The behavior of pi as defined by Eq. 28 for the simulation a
of Table I with (-) and without (0) noise.

vmax= 200 MHz. In this case we used the generalized
trapezoidal integration (described in section 2.1 and in
Appendix). We found this to be more efficient than
simple trapezoidal integration when the maximal fre-
quencies are lower and when less data are available. The
integration is conveniently performed by change of inte-
gration variable c to x = wo/((w + w0), where c0 is
uniquely determined by requiring an equidistant distribu-
tion of data in x-variable, fixed vin, number of data, and a
minimal difference between two subsequent frequencies.
Although in simulation b of Table 1 we sampled only 20
phase/modulation data pairs, parameter recovery by the
MPL method is good.

In the next examples we investigate the limits of the
MPL method. For a given level of noise two components
can still be resolved for some critical ratio (r1/T2)crit. Two
simulations in Table 2 with lifetimes ratio l/jr2 = 1.5 are

identical except for different realizations of the noise in
the data (different sets of random numbers nj, 4Vj; cf. Eq.
19). The quality of recovery from both the MPL method
and standard LM-fitting clearly depends on the noise in
the data. These simulations show how both methods
might give either good or poor results when the lifetime
ratio is close to (rl/r2)cfit- In Fig. 4 we show the phase/
modulation data and the theoretical curves obtained for
recoveries (2) and (3) from Table 2. Although the curve
for recovery (2) does not fit the data as well as the curve

for recovery (3), the lifetimes and the fractions corre-
sponding to recovery (2) are much closer to the true
values. This clearly shows the usefulness of the MPL
method which is directed towards the recovery of the
parameters regardless of the apparent "fits" to the data
profile.
By performing a series of simulations withf, =f2 = 0.5,

86 Biophysical Journal Volume 56 July 1989

A A A

0.0 o

86 Biophysical Journal Volume 56 July 1989



TABLE 2 Two-component simulations with close lifetimes or small fractions

T, T2 f, f2 TRE X2

ns ns
(1) Exact 3 2 0.4 0.6
(2) MPL 2.96 ± 0.07 2.03 ± 0.10 0.43 ± 0.10 0.56 ± 0.05 0.17 4.27
(3) LM-fit 2.76 ± 0.13 1.84 ± 0.10 0.60 ± 0.12 0.40 ± 0.12 0.99 0.85
(4) MPL 3.35 ± 0.22 2.10 ± 0.06 0.24 ± 0.10 0.76 ± 0.10 0.83 0.96
(5) LM-fit 3.02 ± 0.20 1.97 ± 0.07 0.42 ± 0.11 0.58 ± 0.11 0.09 0.98
(6) Exact 3 2.6 0.5 0.5
(7) MPL 2.98 ± 0.09 2.59 ± 0.15 0.53 ± 0.34 0.47 ± 0.34 0.13 1.72
(8) LM-fit 3.72 ± 0.21 2.73 ± 0.01 0.07 ± 0.02 0.93 ± 0.02 2.00 0.94
(9) LM-fit 3.06 ± 0.08 2.63 ± 0.05 0.38 ± 0.14 0.62 ± 0.14 0.51 0.97

(10) Exact 3 1 0.05 0.95
(11) MPL 3.01 ± 0.31 1.007 ± 0.014 0.050 ± 0.010 0.955 ± 0.010 0.02 1.51
(12) LM-fit 3.01 ± 0.40 0.999 ± 0.005 0.051 ± 0.009 0.969 ± 0.009 0.03 1.01

(1) Phase/modulation data with these lifetimes and fractions simulated as in Table 1 a; noise realization A. (2) The result of analysis of data (1) by
MPL-method using 16 different po values (see text). (3) The result of analysis of data (1) by use of least-square fitting (Levenberg-Marquardt
algorithm). (4) and (5) The same as in (2) and (3), respectively, with noise realization B. (6) Phase/modulation data with these lifetimes and fractions
simulated as in Table I a, adding low noise a(M) - 0.001, a(+) = 0.64°. (7) The result of analysis ofdata (6) by MPL-method as in (2). (8) The result
of analysis of data (6) as in (3) with an initial guess -r - 4 ns, r2 - 2 ns,f, = 0.4. (9) The result of analysis as in (8) with an initial guess Tr = 2.9 ns, r2 =
2.5 ns,fj = 0.51. (10) Phase/modulation data with these lifetimes and fractions are simulated as in Table I a. (11) The result of analysis of data (10)
as in (2). (12) The result of analyses of data (10) as in (3).

T1 = 3 ns and r2 varied, we estimated the critical lifetime
ratio for a given level of noise, as 1.4. The next example in
Table 2 corresponds to a simulation with low noise data. It
is an example of the series of simulations with fi = f2 =

0.5, -r = 3 ns and T2 varied between 2.5 ns and 2.8 ns. As
can be seen when r2 = 2.6 ns two components are still
resolved; the critical lifetime ratio for this level of noise is
estimated to be 1.15. Note that the standard method is
very sensitive to the initial guess in this case. The last
example of Table 2 illustrates the ability of the MPL
method to recover components with small fractions

0
.z

'0
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00 150 200
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r.
toe0

6v

(f, = 0.05). The ratio of amplitudes (preexponential fac-
tors) in this case is as much as 57. The method failed to
recover small fraction components when this ratio was
100.

In the case of a three component simulation the MPL
and standard methods can resolve components with ratios
of lifetimes r1/r2 T2/r3 2 2.4 at a given noise level. In
the example (2) shown in Table 3 the MPL method was
more successful than the standard method, but for other
realizations of the noise in the data both methods gave
similar results. The next three component simulation
(Table 3) corresponds to real data analysis of the phase/
modulation data on tryptophan fluorescence from phos-
pholipase A2 (see section 3.2). Only 16 phase/modulation
data pairs with low noise were simulated. By use of the
MPL method with the generalized trapezoidal rule inte-
gration, we obtained satisfactory results. The standard
method in this case provided a result with remarkably low
TRE. We also applied the MPL method to a four-
component simulation. A reasonable recovery is obtained
for low noise data (Table 3, section 3) by both MPL and
standard methods.
Our final example deals with the important question of

lifetime distributions. We simulated phase/modulation
data assuming that the lifetimes are distributed according
to a bimodal Lorentzian distribution (15) with centers at
1.37 ns and 4.33 ns. Results of the analysis by the MPL
method and LM-fitting to the three components are

displayed on Fig. 5 (the details of simulation and analysis
are given in the figure legend). In only one of the Pade
approximants of the orders [2/3], [3/4], ..., [18/19]
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FIGURE 4 Phase/modulation data for simulation I of Table 2 and
theoretical curves obtained for MPL recovery 2 (thick line) and for
LM-fit recovery 3 (thin line).
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TABLE 3 Three- and four-component simulations

Exact MPL LM-fit

()T(ns) 5 5.18 ± 0.09 6.44 ± 0.69
r2(ns) 2.3 2.42 ± 0.32 2.82 ± 0.21
T3(ns) 1 1.03 ± 0.11 1.02 ± 0.02
fi 0.333 0.31 ± 0.03 0.18 ± 0.05
fA 0.333 0.33 ± 0.07 0.45 ± 0.04
A3 0.334 0.35 ± 0.10 0.36 ± 0.06

TRE - 0.26 X! - 1.12 TRE = 1.44 X! = 0.97

(2) -r(ns) 6 5.97 ± 0.07 6.01 ± 0.07
T2(fS) 2 2.00 ± 0.02 2.00 ± 0.03
73(ns) 0.5 0.47 ± 0.01 0.50 ± 0.01
f, 0.3 0.302 ± 0.005 0.300 ± 0.006
f2 0.5 0.502 ± 0.004 0.500 ± 0.003
A3 0.2 0.197 ± 0.003 0.200 ± 0.007

TRE = 0.09 X! -10.15 TRE = 0.007 X!-1.13

(3) Tr(ns) 11 10.82 ± 0.65 10.80 ± 0.12
T2(fS) 3.5 3.42 ± 0.53 3.40 ± 0.07
3()2S) 1 1.01 ± 0.07 0.998 ± 0.006
T4(nS) 0.2 0.20 ± 0.05 0.2002± 0.008
f, 0.2 0.20 ± 0.03 0.207 ± 0.0004
A2 0.2 0.198 ± 0.005 0.195 ± 0.002
A3 0.4 0.392 ± 0.005 0.398 ± 0.002
Ao 0.2 0.21 ± 0.02 0.200 ± 0.005

TRE - 0.17 X! - 172.5 TRE - 0.13 X! - 0.92

(1) Phase/modulation data with this exact lifetime and fractions simulated as in Table 1 a. The results are from the analysis by MPL-method using 16
different po values (see text) and by least-square method. (2) 16 phase/modulation data, equally spaced in x-variable (see text) were simulated;
maximal frequency, 190 MHz; minimal frequency, 20 MHz; minimal difference between two subsequent frequencies, 4 MHz. a(M) - 0.001, a()) =
0.040. (3) 100 phase/modulation data, equally spaced in frequency were simulated; maximal frequency, 500 MHz; minimal frequency, 5MHz; noise
level as in (2).

were two components recovered; all others led to three or

four components. Fig. 5 shows that MPL recoveries are

more dispersed than clustered indicating that there are no

well-defined exponential components. The scattergram of
MPL recoveries may thus serve as a test of whether
phase/modulation data can be better described by contin-
uous lifetime distributions or by discrete lifetimes.

3.2 Tests on real data
Now we present examples in which we have applied the
modified Pade-Laplace method to the analysis of mea-

sured phase/modulation data. Fluorescence lifetimes
were measured by multifrequency phase fluorometry
(7-9). The fluorometer used is similar to that described
earlier (29), but employed a synchronously pumped and
mode-locked Nd:YAG laser (Spectra-Physics Inc.,
Mountain View, CA) as the primary light source (Seda-
rous, S. S., J. M. Francois, J. R. Alcala, C. Gerday, E.
Gratton, and F. G. Prendergast, manuscript in prepara-

tion). The frequency doubled output from the laser was

used to pump a dye laser (rhodamine 6G) and the output

from the dye laser was frequency doubled to yield excita-
tion light in the wavelength range 285-315 nm. For
excitation wavelengths >315 nm the excitation source

was an Argon ion laser (Spectra-Physics 2025) with
ultraviolet excitation at 351 and 363 nm. In this latter
instance a Pockels cell was used to effect amplitude
modulation of the exciting light. All samples were tem-

perature controlled (at 250). Fluorescence was collected
through appropriate cut-off or interference filters to

eliminate Rayleigh and Raman scattering and detected
by use of model R928 phototubes (Hamamatsu Phototon-
ics K.K., Hamamatsu City, Japan). Cross correlation
techniques afforded measurement of phase angles and
relative demodulation. All fluorophores were of laser
grade purity. Purified porcine pancreatic phospholipase
A2 was the kind gift of Dr. S. Hendrickson, St. Olaf
College, Northfield, MN.
Our first example is the fluorescence decay of 2.5 ,uM

anthracene in cyclohexane (Fig. 6). The scattergram

clearly shows one component and the values recovered
agree well with those obtained by standard procedures.
(More details of the analysis are given in the figure
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FIGURE 5 The lifetime-fraction scattergram for the simulation with
bimodal Lorentzian lifetime distribution. The distribution is constructed
using parameters from reference 15, Table 3 for PLA2; center 1, 1.37
ns; width 1, 1.21 ns; fraction, 0.47; center 2, 4.33 ns; width 2, 0.38 ns.
The Gaussian noise with a(M) = 0.001 and a(f) = 0.050 is added to 50
phase/modulation data (equally spaced in frequency) generated by
assuming the lifetime distribution. PL recoveries are obtained with po =
0.9 ns- . Number of Pad6 approximants: 19, 15 satisfying R < 0.05.
Assuming three-component decay, LM least-square fit to these data was
performed with several initial guesses which all led to the result
displayed (X2 = 8.4).

legend.) The parameter po was chosen to be 0.75 ns, and
this value was recovered as POoptimal according to Eq. 24.
(x2 values are high because we didn't attempt to remove

"outliers" in phase/modulation data points.) In this and
the following examples we display the recoveries corre-

sponding to minimal R and minimal x2, their average, and
the average of 16 recoveries for different Po as described
in section 3.1. In addition we show the analysis performed
by least-square fitting using Levenberg-Marquardt algo-
rithm and the analysis performed by standard ISS/
Sperry Univac (Santa Clara, CA) software (which, how-
ever, was set up to use maximally 25 phase/modulation
data points).

In Fig. 7, a and b, we show the results of the analysis for
the fluorescence decay of 5 ,M p-terphenyl in cyclohex-
ane; for this example we analyzed only 18 phase/modula-
tion data points. The scattergrams show that the recover-

ies obtained by use of the generalized trapezoidal rule
with change of integration variable (Fig. 7 b) are more

consistent than the recoveries obtained by use of the
trapezoidal rule (Fig. 7 a). We observed that when there
is a smaller number of phase/modulation data points
(<40), the application of the generalized trapezoidal rule
with change of integration variable gives more consistent
recoveries. The same is true when the maximal frequency
at which phase and modulation ratio have been measured
is relatively low (<200 MHz). In this example all meth-

FIGURE 6 The lifetime-fraction scattergram for 2.5 ,uM anthracene in
cyclohexane at 25C°. Excitation: 351 nm. Emission: KV-418. 42 phase/
modulation data points were collected. Minimal frequency: 4.9 MHz.
Maximal frequency: 180 MHz. Method of integration: trapezoidal rule.
po - 0.75 ns'1. Number of Pade approximants: 15, 11 satisfying R <

0.05.

Recovery n

Min (R)
Min (x2)
Average
Average (16)
LM-fit
ISS-fit*

Tk

1 4.145
1 3.962
1 4.056
1 3.962 ± 0.004
1 3.966 + 0.0004
1 4.126 ± 0.039

fk x2 R

1.001
0.985
0.993
0.985 ± 0.001
I
I

2587.7 0.001
132.0 0.149
772.7 0.007
132.1 0.149
152.9 0
116.4 0

*Only 18 modulation/phase data points were taken into account.

ods gave very similar results. In Fig. 8 we show the results
of the analysis for fluorescence decay of the mixture: 1.25
,M Dim 1,4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene
(POPOP) and 4.9 ,uM 1,6-diphenylhexatriene in ethanol.
The scattergram clearly shows two components; recovery

with minimal R coincides with recovery with minimal xV.
The parameter po was initially chosen to be 0.8 ns-' and
the value 0.708 ns-1 returned as optimal was used to
obtain the result with averaging over 16 recoveries. In this
example all methods gave results consistent within uncer-

tainties of the MPL method and standard least-squares fit
(ISS).
Our last example is the analysis of 10 ,AM phospholi-

pase A2 in 20 mM 3-(N-morpholino) propane sulfonic
acid (MOPS) (Fig. 9). Three components are recovered
in good agreement with results from standard methods.
The curves obtained from MPL average (16) recovery

(Fig. 9 b) deviate somewhat from the data points, but
according to illustration given in Fig. 4 this does not
automatically mean that recovered lifetimes and fractions
are not close to the "true" ones. It is worth noticing that in
this example only 16 phase/modulation data pairs with a

maximal frequency of 189 MHz were available, and
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FIGURE 7 (a) The lifetime-fraction scattergram for 5 MM p-terphenyl
in cyclohexane at 23C°. Excitation 295 nm. Emission: WG-320. 18
phase/modulation data points were collected. Minimal frequency: 8.21
MHz; Maximal frequency: 303.67 MHz. Method of integration: trape-
zoidal rule. po - 1 ns-'. Number of Pad6 approximants: 20, 8 satisfying
R < 0.05. (b) The lifetime-fraction scattergram for the data give in a.
Method of integration: generalized trapezoidal rule. po - 1 ns-1.
Number of Pade approximants: 20, 18 satisfying R < 0.05.
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FIGURE 8 The lifetime-fraction scattergram for a mixture of 1.25 JAM
Dim POPOP and 4.9MAM 1,6-diphenylhexatriene in ethanol. Excitation:
351 nm. Emission: KV-418. 50 phase/modulation data points were
collected. Minimal frequency, 4.9 MHz; maximal frequency, 200 MHz
trapezoidal rule. po = 0.8 ns-'. Number of Pade approximants: 20, 4
satisfying R < 0.05.

Recovery n Tk

Min (R)

Min (x2)
Average (16)

LM-fit

ISS-fit*

fk x,2 R

1 3.723 0.467
2 1.231 0.523
Coincides with Min (R) recovery
1 4.02 ± 0.68 0.45 ± 0.05
2 1.24 ± 0.08 0.58 ± 0.08
1 3.719 ± 0.008 0.460 ± 0.001
2 1.228 ± 0.001 0.539 ± 0.001
1 3.8 ± 0.3 0.51 ± 0.04
2 1.18 ± 0.05 0.49

90.8 0.01

188.5 0.03

22.5 0

4.4 0

*Only 15 modulation/phase data points were taken into account.

application of the PL method with simple trapezoidal
integration failed.

n f k fk x,2 R 4. CONCLUSIONS

Recovery a

Min (R)
Min (x2)
Average (16)

LM-fit

ISS-fit

Recovery b
Min (R)
Min (X2)
Average (16)

1 1.0033 1.0004
Coincides with Min (R)
1 1.0033 1.0004

± 0.0009 ± 0.0001
1.00062 1

± 0.00001
1 1.004 ± 0.002 1

1 1.006 1.009
Coincides with Min (R)
1 1.003 1.001

± 0.004 ± 0.001

*x2 was not weighted, but the phase and the modula
ble because the phase is expressed in radians.

We have shown that the Pade-Laplace method (18, 24)
0.00002* 0.0004 can be modified for analysis of fluorescence intensity

0.00002* 0.0004 decays detected by application of the multifrequency
phase/modulation technique. The attractive feature of

0.00002* 0 the method is that it indicates the number of exponential
components and does not require initial guesses for the

0.633 lifetime and fraction values. As an additional tool to this
method we have proposed visual inspection of lifetime-

0.00002* 0.0009 fraction scattergrams. The MPL analysis of simulated

0.00002* 0.001 data show that as many as four distinct components can
be detected. The values of the lifetimes and fractions
obtained by the MPL method are generally very close to
those obtained by use of least-square fitting, procedures
for both simulations and real data. Among the recoveries
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FIGURE 9 (a) The lifetime-fraction scattergram I
pase A2 in 20 mM MOPS at pH = 7.06. Excitatio
340-20. 16 phase/modulation data points were
frequency, 20.54 MHz, maximal frequency, 188.
integration: modified trapezoidal rule. po 0.976 n

approximants: 20, 7 satisfying R < 0.05.

Recovery n Tk

Min (R) 1
2
3

Min (x2) 1
2
3

Average 1
2
3

Average (16) 1
2
3

LM-fit 1
2
3

ISS-fit 1
2
3

6.267
2.334
0.504
6.200
2.272
0.449
6.234
2.303
0.476
6.02 ± 0.43
2.20 ± 0.14
0.41 ± 0.04
6.009
2.155
0.427
6.04 + 0.26
2.16 ± 0.11
0.42 ± 0.02

fk

0.303
0.455
0.245
0.309
0.463
0.232
0.306
0.459
0.238
0.320 ± 0.026
0.458 ± 0.024
0.224 ± 0.022
0.308
0.469
0.223
0.305 ± 0.025
0.473 ± 0.017
0.222

obtained from subsequent Pade approximants we found
din(R) Recovery that the best are those for which x2 is minimal and/or the
din(Xy) Recovery sum of fractions is closest to one. Unfortunately neither of
,M-Fitting
?L-Recovery these criteria proved conclusive. We have found cases for

which better recovery corresponds to a substantially
higher x2. This issue of the criteria for the best recovery of
lifetimes and fractions deserves further examination. We
have improved Pade-Laplace method by proposing a

procedure for obtaining uncertainities in recovered
parameters. The procedure is based on variation of the

A cb - parameter po around its optimal value and on choosing
recoveries with minimal x2 as the "best" recoveries. In

- this way the MPL method is enriched by the elements of
5 6 7 statistical procedures although it still represents a basi-

cally nonstatistical method. In our opinion a nonstatistical
method for the analysis of multiexponential functions

0.9 supports analyses obtained by statistical methods and it
provides at least a good initial guess for subsequent use of
least-square techniques. This is especially important

0.7 when the ratio of lifetimes is close to 1. We found by
. simulations with a standard level of noise, that for two

0.6 components, the lifetime ratio of 1.4 is the resolution limit
for both MPL and standard methods.

-o.s ;, It is apparent that the Pade-Laplace method can be
improved in at least two ways. First, it may be possible to

0.4 find a more accurate method for numerical integration of

noisy functions. Second, improvement might also be

160 24 lo0.3 achieved by use of other transformation procedures, e.g.,
through the use of a z-transform rather than the Laplace
transform (18), particularly when only a small number of
data points is available for analysis. The original PL

for 10 MM phospholi- method as developed by Yeramian and Claverie (18) was,
n: 295 nm. Emission: after all, oriented primarily towards data that were

collected. Minimal93lleMHz.- Method oessentially continuous in time.
sM'.NumbertofPade An interesting issue is whether the MPL method is

capable of distinguishing between discrete exponential
x2 R and nonexponential fluorescence decays possibly de-

prelimi-

nary assessment suggests that the Pade-Laplace method
applied to data simulated assuming bimodal Lorentzian

1.1 X 104* 0.002 distribution of lifetimes gave numerous and appreciably
more scattered recoveries than those observed in discrete

6 x 10-5 0.003 exponential simulations. Such response of the MPL
method to nonexponential decay is to be expected as it
indicates the absence of well-defined discrete exponential
components. Once thoroughly examined and justified this
capability of the MPL method to distinguish between

5 x 10-5*

6 x 10-6*

0.52

0.002
*X2was not weighted, but the phase and the modulation are commen-
surable because the phase is expressed in radians. The estimated errors

0 in lifetimes and fractions in LM-fit were of the order of 1i-' or less,
which is probably unrealistic. (b) Phase/modulation data for as in a and
theoretical curves obtained from average (16) recovery (solid line) and

0 ISS-fit recovery (dotted line).
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exponential and nonexponential decays will make it espe-
cially useful for fluorescence decay analysis.
On the basis of studies performed in this paper we

conclude that at the present stage of its development
modified Pade-Laplace method is complementary to
other methods currently in use for the analysis of fluores-
cence decay.

APPENDIX

For the calculation of integral given in Eq. 18 and its derivatives with
respect to p we use simple trapezoidal rule. It provides better results
than the Simpson's rule in case of noisy integrands. If C(wj) and S(wj)
are numerically given for w1 ... =)Wm, w., the integral in Eq. 18 is
approximated by

I(p) > 1 pc(wj) + w,S(wi) +2 2

wj = (wj+l - wj-1)12, j = 2,. . . ., m - 1,
wj = (wj - wj,1)/2, j = 1, m,

where I,,(p) is the contribution of the tail part of integrand:

Jo 1f,. PC(@QW) + WS(W) dw.
xr@, p2+ w

This contribution is evaluated by taking into account that the behavior
of the intergrand for W -Xo is given by (see Eq. 14)

pQW@) + W)S(W) _r0>+I +l°)
k-Irkw + Trk +1/2

= ri + r2/1W2 + r3lW4 + O(W-1),
where ri, i - 1, 2, 3 are constant coefficients. Thus,

Im,(p) t (r1Ij + r2I2 + r3I3)/,

where I, = [7r/2 - arctg(w./p)] /p, and

I2 = (i/Wim - 11)/p2, I3 = [1/(3W3) - I21/p2.
The coefficients r, are obtained by least square fitting of

(r1 + r2/@2+ r3/W4)/(p2 + w(2)
to the data for all w, we<< t<<W,..s where coc is such that the integrand is
monotonically decreasing for w> wc.

In a completely analogous way we can evaluate the Taylor coeffi-
cients

(-1'
di= i! dp ).

(The differentiation and integration can be interchanged.) The behavior
of the integrand for d; when c - 00 is now given by:

(p2 + W2)-i/2-S/4+(-i)'/4[rl + r,,IW2 + r3d/04 + 0(@ 8)],

i = 1,2,3,...
Clearly, for higher order Taylor coefficients the contribution of the tail
is less important.

Having described the numerical evaluation of I,(p), we now present
another more sophisticated method for the numerical evaluation of the
finite integration interval part of the integral 18:

fr PC(W) +ws(W)do.
p +w2 (29)

The method may be called the "generalized trapezodial rule" because it
is essentially the trapezoidal rule with nonlinear interpolation between
two subsequent points. The integral 29 can be represented as a linear
combination of the integrals of the following general form:

I fb g(x)f(x) dx,
a

where g(x) is defined for any x e [a, bJ, and f(x) is defined at values
xl, ... ., xm e [a, b], xX = a, Xm = b and it can be written as

n

f(x) = E Vkh(X, Uk).
k-i

Here Vk, and Uk are unknown constants and h(x, u) is defined for any

x E [a, b] and any u e [u,,,,, u.] In our specific casef(x) is C(w) or

S(w) as given by Eq. 14.
For x [xj, xj,l ],j = 1, 2,. . ., m-1 we approximatef(x) by one

"dominant" component:

f(x) - vjh(x,iij), f(xj) = vjh(xj, u;), f(xjj) = -vjh(xj+,j,Uj).
From the last two equalities it follows:

f(xj)/ftxj,+) = h(xj, Tij)/h(xj+1, Ti), j = 1, 2, . . .m - 1.

We assume now that there is a unique solution of this equation for uj
which we will denote by

ui = F(x,, xi+,) e [Umin, U,,] -

In our specific case it is easy to find such solution. The unknown
coefficient v; is given by

ivj == f(xj)/h[xj, F(xj, xj+ 1)]

Using now the proposed one component approximation with explicitly
evaluated iij and Tij, we arrive at the following approximation for the
integral I

mn-i f}X+i g(x)h[x, F(xj, xj+I)] dx
jg(xj)f(Xj), Wi g(x)h [xj, F(xj, x+i )]

The integrals in this formula can be calculated numerically to the
precision desired by the Gaussian, Romberg or any other quadrature
algorithm or even by direct analytical evaluation if the functions g(x)
and h(x, u) are suitable.
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