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This paper deals with the classes of linear orderings and well-orderings, 
respectively, which are studied using languages with additional Malitz quantifiers. 
For these model classes the elimination of Malitz quantifiers is shown, and the 
decidability of their theories is proved. The main results concerning quantifier 
elimination are the following. Let L~ be obtained by adding, to the elementary 
language L with identity, the Malitz quantifiers Q~' for each a~ e za. Then for 
every formula ~(~) of L~ there is some formula ~p(:~) of L 2 so that q9(~) ~ ~p(£) 
holds in all linear orderings, i.e., the quantifiers Q~ are eliminable with the help 
of the quantifiers Q2. For the class of well-orderings we can do more: ~p(£) can 
actually be chosen from L~, i.e., the Malitz quantifiers are eliminable with the 
help of the unary cardinality quantifiers (the result depends on some weak 
hypothesis on A which will be introduced below). As a consequence we get that 
well-orderings having the same theory in L~ cannot be distinguished using Malitz 
quantifiers. This was already remarked by Slomson, cf. [14, 15]. 

Furthermore, for any finite set A of ordinals, the theory Th2(W0) of 
well-orderings in L 2 is shown to be decidable. If in addition to~ is regular for each 
a~ e A, then (assuming the GCH) the theory Th~(LO) of all linear orderings is 
decidable, too. This generalizes corresponding results for unary cardinality 
quantifiers. Let us give some short remarks concerning the decision problems for 
the classes LO of linear orderings and WO of well-orderings. The elementary 
theories of WO and LO have been proved to be decidable by Mostowski and 
Tarski (see [12]) and by Ehrenfeucht (see [3]), respectively. In [9] L~iuchli and 
Leonhard created a powerful technique for proving decidability. Their method 
turned out to be very useful also for treating the decision problem for 
non-elementary theories. Lipner was the first who proved that every well- 
ordering has a decidable theory in L}~) if too~ is regular, cf. [10]. Afterwards the 
decidability of the following theories has been established: (1) Th}I)(WO) (cf. 
[14,15]), (2) Th}o,l~(WO) (cf. [7]), (3) Th}I~(LO) (cf. [8] and [17]), (4) 
T h ~ ( L O )  for each ordinal a~ (assuming the GCH) (cf. [8]), (5) Th~(LO) for 
each finite set A of ordinals such that to~ is regular for each c~ e A (cf. [18]). 
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Furthermore,  we want to remark that LO possesses an undecidable theory in the 
language with the additional quantifier 'for almost all', cf. [16]. 

We have not mentioned the important results about the monadic theory of 
order due to Biichi, Rabin, Shelah, and others. Monadic theories of orders are 
studied extensively by several people. We do not review that here. The reader is 
referred to the papers [13], [5], and [6]. In Section 1 we give an interpretation for 
Q~ which slightly differs from the original one given by Magidor and Malitz. The 
basic facts of Q~ can be found in [11]. Ehrenfeucht introduced game-theoretical 
methods into the model theory of elementary logic. Badger extended these to 
logics containing Malitz quantifiers. Instead of games we will alternatively use 
equivalence relations & -mod G~ between linear orderings. Their main pro- 
perties are derived in the first section. Section 2 provides us with some 
combinatorial facts of linear orderings. Theorems 2.3 and 2.6 are derived by 
modifying Shelah's proof for his Ramsey theorem for additive colourings (see 
[13]). Applying the combinatorial results the elimination of the m-ary Malitz 
quantifiers by the binary ones (with respect to the class of linear orderings) is 
shown in Section 3. The elimination procedure with respect to the class of 
well-orderings is worked out in Section 4. The last two sections are devoted to the 
decision problems of WO and LO, respectively. We generally work in ZFC, 
except in the last section where we additionally adopt the GCH. Part of the 
results of this paper are contained in the author's Dissertation B. We want to 
express our gratitude to the referee for his valuable comments. 

1. Introduction 

We assume familiarity with the basic concepts for linear orderings and 
summarize here some notions particularly important for what follows. LO is the 
class of all linear orderings. Its members are denoted by A, B, C , . . .  instead of 
( A , < ) ,  ( B , < ) ,  ( C , < ) , . . . ,  respectively. It can be axiomatized in an 
elementary language L which possesses one binary non-logical symbol < only. 
The most important subclass is the class WO of well-orderings. Since every 
well-ordering is isomorphic to an ordinal, we denote them by small Greek letters 
tr, r ,  y , . . .  Cardinal numbers are denoted by R~ or to~. The cardinality of a set X 
is denoted by IxI or card X. Any subset of a linear ordering can be linearly 
ordered by restricting the order to it. We generally assume that subsets are 
ordered in this way. 

(a, b)A is the open interval in A with the endpoints a and b. If no confusion will 
arise, we will omit the subscript. A <a is the initial segment determined by a, i.e., 
A <a=  {x e A ' x  < a } .  The segments A >a, A ~a, and A ~a are similarly defined. 
Intervals and segments have a particular property, they are convex. 

X ~_ A is convex (in A)  if (a, b)A ~_ X for every a, b e X. 
X ~_ A is r-dense in A if [(a, b)A tq XI >I r for every a < b. It is easy to see that 

X is dense in A (in the usual sense) iff X is too-dense in A. 
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A mapping f ' A - - > B  is monoWne if f ( x ) < - f ( y )  for every x<-y;  x, y e A .  

Obviously, the monotone maps are exactly the homomorphisms with respect to 
<~. Each monotone map f : A - - > B ,  therefore, defines an equivalence relation 7 
on A :x 7" Y iff f ( x )  =f (y ) .  

The set A / f  of equivalence classes becomes a linear ordering by setting 
x / f  < ~ y / f i f x < - y .  

The sum A + B and the product A • B are special operations to form new linear 
orderings. We assume the reader familiar with these constructions. 

al <" • " < ak e A abbreviates the fact that a l , . .  •,  ak are all elements of A and 
are ordered in the cited way. If we regard them as distinguished elements, then 
we indicate this by (A ,  a l ,  . . .  , a k ) .  (A ,  a l ,  . . . , a k )  ~ ( P ( C l ,  • • • , Ck) is abbre- 
viated by A ~ ~ ( a l ,  • • • , a k ) ,  where q , . . . ,  Ck are pairwise distinct new constants 
and q g ( q , . . . ,  Ck) is a sentence of L ( { C l , . . . ,  Ck}). 

Any language L'  can be extended by adding for m i> 1 generalized quantifiers 
Qm to it with the additional formation rule: if q0 is a formula and v~, . . . ,  Vm are 
pairwise distinct variables, then Qmv~ • • • vm q~ is again a formula. 

The calculus obtained is denoted by L 'm. If for every natural number m a 
quantifier Qm is added, then we obtain the language L'<% The quantifier can be 
interpreted in various ways. In the cr-interpretation given below it is called Malitz 
quantifier, although it differs from the original one introduced by Magidor and 
Malitz [11]. 

However, as we will see, for ordered structures both interpretations are closely 
related to each other. In the O-interpretation it is also called Ramsey quantifier. 

o:-interpretation o f  Qm. A ~ Qmv 1 • • • 13 m tp(u1, . . . , Vm) iff there exists some 
X ~ A such that I S l  = and A ¢ t p ( a l , . . . ,  am) for all al < -  • • < am ~ X.  

A subset X satisfying the right side above is called tp-orderhomogeneous. If Qm 
is interpreted as above, then we write Qm for it. 

Let pm be the Malitz quantifier with its original m-interpretation given in [11]. 

Proposition 1.1. The quantifier Q~ and the Malitz quantifier P'~ are definable by 
each other. 

Proof. The reader can easily verify the following equivalences: 

A ~ Q'~vl" • • Vm q9 iff A ~ P r a y  I • • • O n  ( V l  ( "  " " ( 13rn 

and 

A g P m ~ t ~ l . . . V m C p  iff A ~ Q m v l . . . V m  A 
(il ..... im)es .  

where Sm is the set of all permutations of ( 1 , . . . ,  m). [] 

u/.), 

This gives us the right for calling Qm also Malitz quantifier. With the help of 
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the ordinal subscripts it is possible to regard several a~-interpretations at the same 
time. Suppose ,4 is an arbitrary set of ordinals; then L~ is the language arising 
from L by adding the quantifiers Qm for all t r e  A to it. L~ °' is similarly defined. 
If not otherwise stated, then in the following A is always finite. Define cf A = {fl: 
there is some te e A with cf too~ = tot~ }. Then to~ is regular for all a: e A iff 
cf A = A. Although L~ and L% are completely different as sets in case that m < n, 
we can identify L~ with some part of L~, because for all models A 

A ~ Q m V l . . .  Vm f p (V l , . . . ,  Vrn ) iff A ~ Q n V l .  • • v n ( / 9 ( 1 ) 1 , . . .  ' V m ) .  

Thus we may regard L~ as a sublanguage of LTa. For the formulae q9 of L~ we can 
define the quantifier rank q(tp) inductively: 

(i) q(qg)= 0 if tp is quantifier free, 
(ii) q(-aq0) = q(q9), 

(iii) q(tp A ap) = q(q0 V lp)= max{q(qg), q(~p)}, and 
(iv) q ( ~ ) = q ( W ) +  1 if qvis 3v~p or Q m v l . . . V m ~  p. 

L ~ ( c l , . . . ,  Ck) denotes the language obtained from L~ by adding the constants 
q , . . . ,  Ck to it. The quantifier rank enables us to introduce the sublanguage 
L ~ ' " ( C l , . . . ,  Ck), which consists of those sentences q9 of L ' ~ ( q , . . . ,  Ck) for 
which q(qg)<-n. Furthermore, it gives rise to some important equivalence 
relations between models with distinguished constants. 

Definition 1.1. (A ,  al,  . . . , ak> and (B,  b l ,  . . . , bk) are 
respect to L~), in terms 

(A ,  a l , . . . , a k > & ( B ,  b l , . . . , b k >  mod L~, 

if they are equivalent in the sublanguage L ~ ' n ( c l , . . . ,  Ck). 

n-equivalent  (with 

Although L"~'"(q, . . . ,  Ck) is infinite, it has a finite subset M'~'", which can be 
effectively determined, so that every sentence of L ' ~ ' " ( q , . . . ,  Ck) is logically 
equivalent to a sentence in M~ '~. This is easily proved by induction on n. The 
theory of ( A ,  a b  . . . , ak> in L"~'~(q, . . . , Ck), in terms Th"~,~((A, al, . . . , ak>), 
is the set of all sentences of L ' ~ ' " ( q , . . . ,  Ck) true in (A ,  a , , . . . ,  ak>. The  

conjunction of M'~'"N Th~ ' " ( (A ,  a l , . . . ,  ak>) can be formed, because this set is 
finite. The conjunction is denoted by " a " , ~ "  ~'L,,...a,[Cl, . .  • ,  Ck), or simply 
4 ~ A , ~ ( q , . . . ,  Ck) in case that A and m are fixed. 

The following proposition is proved in the same way as the corresponding 
result for first-order logic. 

Proposition 1.2. Let  (A ,  al ,  • • . ,  ak) be given, then for  all (B ,  bl ,  • • . ,  bk) 

(A ,  a l , . . . , a k )  "-- (B,  b l , . . . , b k >  m o d L " ~ ( q , .  . . , c k )  

,~,~,,n.n a.  bk). i f f  B ~ ~-A,.r...~wl, • • • , 
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We will next introduce the equivalence relations ~ -mod G~ by induction on n. 
If m and A are fixed these relations are shortly denoted by ~ .  To reduce notation 
we shortly express simultaneous equivalences A1 ~ B1, • • • ,  A k  ~ Bk by 
(A1 ,  • . . ,  A k )  n ( B 1 ,  . . .  , B k ) .  Furthermore, for any sequence al <"  • "<  ak • A  

of elements we set ( a l , . . . ,  ak, A ) ' =  ( A o , . . .  , A k ) ,  where A o = A  <a', A i -1  = 

(ai-x, ai)m for 1 < i ~< k, and A k - - A  >ak. Assume that ~ is already defined, then 
we can derive a partial ordering for pairs (X, A ) with X _ A" (X, A ) ~<" ( Y, B ) 
mod G~ iff for all Xl < -  • - < xm • X there are YI <"  • • < Ym • Y so that 

( X l , . . . , x ~ , A ) ~ ( y l , . . . , y ~ , B )  mod G~. 

Now we are ready to define ~-mod G~. For any linear orderings A and B 
(A or B may be empty) we set A o B mod G~. This immediately implies 
that for arbitrary al  ~ " • • ~ ak • A and b~ ~ " • • ~ bk • B the relation 
( a ~ , . . . ,  ak, A )  o ( b x , . . . ,  bk, B )  moO G~ holds. 

Suppose A ~ B rood G7 is defined, then the following definition of a partial 
ordering between models make sense. 

A <,~+1B mod G~ iff 
(i) for every a • A there is some b • B so that (a, A)  ~ (b, B) mod GT, and 

(ii) for every X ~_ A with IX[ = too,, te • A, there is some Y ~_ B of power to~ so 
that ( Y, B) ~<" (X, A)  mod G~. 

We finally set A "LIB mod G~ iff A <~"+~ B and B ~ n + l A  mod G~. It is easy to 
see that <n+x is reflexive and transitive. Hence, n.~+l is really an equivalence 
relation. There is an alternative way for introducing ~ - m o d  G~ by game- 
theoretical means. 

We refer to [1] for the connection between games and Malitz quantifiers. In the 
case of linear orderings it is easier to work with the equivalences ~-mod G~ than 
with the original games for the Malitz quantifiers. &-mod G~ has the important 
property that it is compatible with the sum operation. 

Lemma (sum property). Le t  A ~ , . . . ,  mk ,  B I , . . . ,  Bk be linear orderings such 

that (A~ ,  . . . , A k )  ~ (B~, . . . , Bk )  mod GT.  Then also 

A I  + • • • + A k  n B1 + . . .  + Bk m o d  G~. 

We omit the proof, since it is straightforward. The sum property is of 
fundamental importance for the investigation of the relations ~-mod G~. It is 
used in the following often without mention. The next proposition shows that 
~-mod G~ and ~-mod L7 are closely related to each other• 

Proposition 1.3. For  any k >I 1 and  any  sequences a l < ' "  < ak • A and b l < 

• • • < bk • B,  respectively,  it holds  

( a l , . . . , a k ,  A ) n  ( b l , . . . , b k ,  B )  m o d G 7  
iff 

( A ,  a l , . . . , a k ) ~ - ( B ,  b l , . . . , b k )  mod L~. 
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The Proposition above enables us to change ~ - m o d G ~  equivalence to 
~-mod L~ equivalence and vice versa. This will be a powerful tool, since the 
verification of ~-mod G~ equivalence is much easier. The proof of the proposi- 
tion is not difficult and is left to the reader. 

Often the main point consists in proving that for every X ~_ A, IXl = ~o~, there 
exists some Y ~ B ,  IYl=c%,  with ( Y , B )  <--n ( X , A )  modG~.  As already 
remarked, for Z ~ X the relation (Y, B) <n { Z, A) mod G~ implies ( Y, B) <~n 
(X, A)  mod G~, i.e., to prove the relation for X it is enough to prove it for some 
convenient subset of X. The next section is devoted to the problem of obtaining 
suitable subsets. 

2. Combinatorics 

A symmetric function f :A2 - -> l  into the finite set I is called a colouring (we 
disregard the values on the diagonal). The colouring f is additive if for every 

x i < Y i < z i r A ,  i = 1 , 2 ,  f (xa,  y l )= f ( x2 ,  Y2) and f (y l ,  z O = f ( y 2 ,  z2) implies 
f (xx ,  Zl) =f(x2 ,  z2). Additivity induces a partial operation + on I. For this reason 
we also write f ( x ,  z)  = f ( x ,  y)  + f ( y ,  z) if x < y  < z. X ___A is called homogeneous 
(with respect to f )  if f is constant on X 2. Shelah proved several combinatorial 
theorems about the existence of homogeneous sets for additive colourings. For a 
proof of the following important fact we refer to [13]. 

Ramsey Theorem for additive colourings (Shelah). Let x be a regular cardinal 
and f be an additive colouring on x. Then there exists a homogeneous subset X c_ r 
o f  power r. 

There is also a generalization of the above property to dense linear orderings 
due to Shelah, however it is not applicable for our purposes. In the following we 
will derive an appropriate generalization. 

Lemma 2.1. Suppose A is K-dense in itself, and P1, • • •, Pk are subsets o f  A with 
IA \(,.Ji~k Pil < r.  Then there are elements a < b ~ A and some Pi, so that Pi is 
r-dense in (a, b ). 

Proof. Assume no one of the P/has the stated property. Then we can produce a 
sequence a l < ' ' ' < a k < b k < ' - ' < b l  with [(ai, bi) N P j [ < g  for all j~<i and 
i <~ k, respectively. Suppose al <"  " • < am <bm <" • • < bl are already defined. In 
case m = k we are done. Otherwise, we can extend the sequence as follows. Since 
P,,,+~ is not r-dense in (am, bin), there are am+l<b,,,+l in (am, bin) with 
[(am+l, bm+l) N Pm+ll < K. Hence [(ara+l, bm+l) N Pjl < K for all j ~ m  + 1. After 
finitely many steps the desired sequence is constructed. Since [(ak, bk)fq P/[ < r 
for all j ~< k and IA \I,_JA, I, P~l < r ,  it follows I(ak, bk)l < r ,  a contradiction to the 
r-density of A. Thus the lemma is proved. [] 
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For every element a • A we set 

l (a )  = {t • I: for every x > a there exists some y • (a, x) with f ( a ,  y)  = t}. 

Roughly speaking, I(a)  is the set of those colours, which converge from above to 
a. Obviously, I(a)  :/: fJ for all a • A if A is a dense linear ordering without greatest 
element, b is said to be minimal  for a if a < b and for every x • (a, b) the colour 

f (a ,  x)  belongs to l (a) .  If b is minimal for a and c • (a, b), then c is also minimal. 
Suppose A has no greatest element, then for every a there is some b minimal for 
it. For each subset D c I we set D ( A )  = {a • A ' I ( a ) = D } .  Clearly, Ds(A) M 

D2(A) = t~ if D1 :/: DE, SO Pow(I), the powerset of I, induces a p a r t i t i o n o f  A. 
These notions, which we have just introduced, are used in proving the next 
lemma. 

L e m m a  2.2. Let  A be x-dense in itself, and f : A2---> I be an additive colouring on 
A.  Then there exists a homogeneous  subset X ~_ A o f  power  x. 

P r o o f .  The proof breaks into two parts: first we will inductively define some 
sequences with prescribed properties. Having established their existence, we will 
then derive from it the existence of a homogeneous set. 

Part A. Applying Lemma 2.1 to the partition of A induced by Pow(I), we 
obtain a < b • A and D ~ I, so that D ( A )  is r -dense  in (a, b). For  each k/> 0 we 

can define the sequences to, • • • ,  tk-1 of colours, a = a0 < al < • • • < ak < bk < 
• • • < bl < bo = b of elements, and D ( A )  fq (a, b) = Xo D_ X1 ~_" " • ~_ Xk  of subsets, 
satisfying, for every i ~< k, the conditions: 

(i) Xi ~_ (ai, bi) and Xi r -dense  in (ai, bi), 
(ii) bi is minimal for ai and ai • Xi-1 if i > 0 ,  and 

(iii) f(ai, x)=ti for a l lx  • X j ,  i < j .  
Assume the sequences defined for m, then we will extend them to m + 1: Set 

Xt = (x • Xm :f(am, x) = t} for t • I; then {X t : t  • I} is a partition of Xm. Again by 
Lemma 2.1 there are am+l <Cm+l •Xm and some t, so that Xt is x-dense in 

Xmf')(am+l, Cm+l)- Choose bm+l•(am+l, Cm+l) which is minimal for am+ 1. 
Define tm+l = t and Xm+l = Xt  fq (am+l, bin+l). From the hypothesis about Xm it 
follows that Xm is x-dense in (am+l, bin+l). Since Xt is x-dense in Xm tq 
(am+l, Cm+l), Xm+l is r -dense  in (am+i, bm+l), so (i) is valid• By construction, 
bm+ 1 is minimal for am+ 1 and am+l • Xm, thus (ii) follows. Since Xm+l ~-- Xt, (iii) 
holds for i = m. For i < m it follows from the induction hypothesis. Hence, we 
can extend these sequences to any finite length. 

Part B. Suppose we have constructed the sequences till length k = I I l+  1. Then 
the sequence t o , . . . ,  tk-1 contains at least two colours which are equal, since 
there are I/l-many colours only. Let m be the least number so that tm= tj for some 
j < m .  

Now let y < z • Xm+l. We want to prove that f ( y ,  z)  = tin. 

C l a i m  A .  tm • D. 
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By (ii), am • ,D(A)  and bm is minimal for am, thus f (am,  y ) •  D, because 

y • (am, bm). But (iii) shows that tm =f(am, y). 

Claim B. tm + tm = tm • 

tm = t] =f(a], y) =f(aj,  am) -b f(am, y) = t] +tm = tm Jr tin, by (iii). 

Claim C. f ( y ,  z )  = tin. 

Xm+l ~-- D(A),  so y • D(A).  Since by Claim A, tm e D, there is some x • (y, z) 
with f ( y ,  x) = tm. Then by Claim B and (iii): 

f ( y ,  z ) = f ( y ,  x) + f (x ,  z) = tm + f (x ,  z) 

=tin +tm + f (x ,  z )= f (am,  y) + f ( y , x )  + f (x ,  Z) 

" - f (am,  Z ) - - t  m. 

By the last claim and (i), X = Xm÷l is homogeneous and of power r ,  so the proof 

is finished. [] 

The lemma just proved, together with the Ramsey theorem for additively 
coloured well-orderings, yields the Ramsey theorem for arbitrary, additively 
coloured linear orderings. For the proof of the general theorem it is enough to 
show that every linear ordering of power x possesses a subset, to which either 
Shelah's lemma or the preceding lemma is applicable. For that reason we 
introduce the equivalence relation ~ :  x ~ y  iff I(x, Y)I < r and I(Y, x)l < r .  
Obviously, each equivalence class is a convex subset, hence the set of equiv- 
alences classes A/K can be canonically ordered. The equivalence class to which a 
belongs is denoted by a/x.  

Theorem 2.3. For a regular cardinal r let A be a linear ordering of  power r, and 
let f :A2-->l be an additive colouring on A. Then there exists a homogeneous 
subset X ~ A of  power r. 

Proof. We regard the linear ordering A / r  defined above. 
Case 1: There is some a / x  of  power r .  Then in a /x  there is an increasing or 

decreasing sequence Y = {y~ ; a~ < x} of length r.  (Hint: Let {u~" a~ < A1} and 
{v~ "te<~,2} be increasing and decreasing, respectively, sequences, which are 
both unbounded in a/x. Then a / r  is the union of all intervals (v~,, us), [3 < ~1 
and a~ < ~2, which are all of power smaller than x, so either ;ta or ~,2 is equal to 
r . )  Restricting the colouring to Y, the hypotheses of Shelah's Lemma are 
satisfied, so we conclude the existence of a homogeneous set of power x. 

Case 2: All a / x  are of  power smaller than x. Then A / x  has cardinality x, since 
r is regular. Choose Y ~_ A, so that I Y f3 a/xl  = 1 for every a e A. Let x < y e Y, 
then I(x, Y)I = x, since they are not equivalent. Also II,_J { z / r : z  • Y f3 (x, Y)}I = 
x, so I Y N ( x , y ) I  =x ,  since I z / x l < x  and r is regular. Hence Y is x-dense in 
itself. Applying Lemma 2.2, we get a homogeneous subset X ~_ Y of power x. 
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In any case we obtain  the desired set X. [] 

We have shown for regular cardinals,  that  we always find homogeneous  subsets 
of the same power.  We may ask, whether  this also holds for singular cardinals. 
However ,  it is not difficult to construct  counterexamples.  But  we can still prove  
the existence of quasi -homogeneous subsets of the same power  as the model ,  and 
this will be sufficient for our purposes.  First, some necessary notions are 
introduced.  

Definition 2.1. (1) Let  X, Y ~_ A be arbi t rary non-empty  subsets. Then  X is said 
to be smaller than Y, in terms X < Y, if each x • X is smaller  than every y • Y. 

(2) A family {Xi : i • J} of non-empty  subsets of A is called an ordered family if 
for all i, j • J, i :/: j, ei ther Xi < Xj or  Xj < Xi is valid. 

If {X~ : i • J} is an ordered family of subsets, then J can be canonically ordered:  
i < j iff Xi < Xj. Assume X is homogeneous  (with respect to a colouring f ) ;  then 
X i s  said to be of colour t, if for all x < y • X f (x, y) = t. 

The index set J is called homogeneous (of colour s) if f (x ,  Y)= s for every 
i < j • J, x • X~, and y • Xj, respectively. 

Definition 2.2. A n  ordered family (Xi:i  • J }  of infinite subsets of A is quasi- 
homogeneous if 

(i) the index set J is homogeneous  (of colour s) and 
(ii) all Xi, i • J, are homogeneous  of the same colour t. 

Then  the family is said to be of  colour (s, t). 

For  IJ[ = 1 or  s = t the union of a quasi -homogeneous family becomes a 
homogeneous  subset.  The u-power  of {Xi" i • J} is the power  of [,_J {Xi:i • J}. 
Suppose the ordered  family {X~:i • J} has u-power ~, then it is called u-singular 
if IJl<Z and IXil<;~ for all i • J .  {Y~'i • J ' }  is a subfamily of { X i ' i • J }  i fJ '~_J  
and Y~ _ Xi for all i • J ' .  

Lemma 2.4. Every u-singular, ordered family {Xi : i • J} with u-power 2~ possesses 
a quasi-homogeneous subfamily {Yi" i • J'} of u-power Z. 

Proof.  {Xi:i e J} is u-singular, so Z is singular. Set x = cf).,  the cofinality of ~.. 
By definition x is regular, and there  is a subset J 1 - J  of power x so that  
{Xi:i • J1} has u-power  )~. Fur the rmore ,  we can choose X + ~_ Xi so that  IX?l is 
regular and {X+:i •J1} has still u-power  ;t. Restricting the colouring to X + we 
can apply Theo rem 2.3, obtaining homogeneous  subsets Y+ ~ X  + of the same 
power.  Thus {Y+:ieJ1} has also u-power ,L Let max Y + and m i n Y  + be the 
greatest  and the least e lement  in Y+, respectively, if they exis t .  If one or  both  of 
max Y+ and min Y+ are defined, let Y~ be Y+ without these elements.  Now given 
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i < j • J 1 ,  let x , y • Y i  and u , v • Y j  be arbitrary. Let Yi•Y~ be so that y i >  
max{x, y } if it exists otherwise set y~ = max Y~ (in this case it exists). Similarly, 
let zj • Yj so that zj < min{u, v}, otherwise set zj = min Y~- (it also exists in this 
case). Then the additivity of f and the homogeneity of Y~- and I<'7 imply: 

f (x ,  u ) = f ( x ,  Yi) + f(Yi, zj) + f (z j ,  u) 

= f ( y ,  Yi) + f(Yi, z j )+ f (z j ,  v ) = f ( y ,  v). 

Hence f induces an additive colouring F :j2.__.> 1 on J1 by setting F(i, j) =f (x ,  u) 
for some x • Y~ and u • ~ ,  respectively. From above it follows that the definition 
does not depend on the choice of x and u. Again by Theorem 2.3, since IJal = r is 
regular, there is a homogeneous (with respect to F) subset J'~_ J1 of power r .  
W.l.o.g. {Y~: ieJ '}  is quasi-homogeneous. To be sure that its u-power is Z, 
we have to make an additional hypothesis about Jl: IY+l- IYTI iff i = j .  W.l.o.g. 
J1 has this property, otherwise we could choose an appropriate subset. Then, 
however, { Y/:i • Jo} has u-power Z for every subset J0 c_ J1 of power r .  Hence, 
{Y~: i • J '} is the desired, quasi-homogeneous subfamily. [] 

A linear ordering A is called X-slim if it has power ;t and IA/;tl = 1, i.e., 
i(a, b)l < Z for every a < b • A. 

Lemma 2.5. Let Z be a singular cardinal and A be ;t-slim. Then there exists a 
quasi-homogeneous, ordered family {Xi : i • J} of subsets of  A with u-power Z. 

Proof. Every linear ordering A of cardinality ;t is the union of a family {Y/: i • J} 
of pairwise disjoint subsets, where in addition IJI ~< cf ;t and all Y/are convex and 
bounded. Thus IJI < ;t because Z is a singular cardinal number. Since A is ;t-slim 
and each Y/ is bounded, we have [Y/I<Z for every i eJ .  Thus {Y/ : i e J}  is 
u-singular. Now, applying Lemma 2.4, we obtain the desired quasi-homogeneous, 
ordered family. [] 

Now we are ready to prove the existence of quasi-homogeneous, ordered 
families of sufficiently high cardinality for arbitrary, additively coloured linear 
orderings of singular cardinality. 

Theorem 2.6. For a singular cardinal Z let A be a linear ordering of  power Z, and 
let f :A2-->l be an additive colouring on A. Then there exists a quasi- 
homogeneous, ordered family {Xi: i • J} o f  subsets of A which has the u-power Z. 

Proof. Regarding the set of equivalence classes A/;t of ~, we can distinguish 
three cases. 

Case 1: la/;t[ = Z for some a • A. By definition a/Z is X-slim. Then, applying 
the preceding lemma, the existence of the desired quasi-homogeneous family 
follows. 
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Case 2: [a/A[ <)-  for all a • A ,  but sup{la/A[ "a • A }  =)-. Let x =cf ) -  be the 
cofinality of )-. There is a subset B _c A of pairwise non-equivalent elements of 
power r ,  so that {a/)- "a • B} has u-power )-. Clearly, {a/)-: a • B} is u-singular. 
Then the application of Lemma 2.4 yields the desired result. 

Case 3: There is some r < ) -  so that la/)-I<--~c for all a • A .  Choose Y~_A,  
which has with each equivalence class a/)- exactly one element in common. Let 
a < b • Y be arbitrary; then they are non-equivalent, hence I(a, b)l = )-. One the 
other hand, [ (a ,b ) l~max{K, l (a ,b ) r[} .  Since r < ) - ,  we conclude that 
[(a, b)x[--)- .  This shows that Y is ).-dense in itself. By Lemma 2.2 there is a 
homogeneous subset X ~_ Y of power )-. Then {X} is a quasi-homogeneous, 
ordered family of u-power )-. This completes the proof of the theorem. [] 

3. Relative elimination of Malitz quantifiers for linear orderings 

The results of the preceding section about colourings can be applied to the class 
of linear orderings to determine the expressive power of Malitz quantifiers. It will 
turn out that for linear orderings the expressive power of L 2 is as strong as that of 

< t O  La • In fact we will prove that each quantifier Qm is eliminable with respect to 
Q2. Induction on n to prove ~-mod G~-equivalence will be our main tool. Firstly 
we will show that for m I--2 the relations ~-mod G~ and ~ -mod  G 2 coincide. 
Here we use the existence of 'homogeneous'  subsets of the same cardinality. This 
already yields that the language LA <°~ is not stronger than L 2. Finally we get the 
explicit elimination of Q~ with respect to Q2. 

We assume A to be finite. 

Lenuna 3.1. n -mod  G~ has finitely many equivalence classes only. 

In the following let l~ .n=  {El, • • •, Ek} be a set of linear orderings which is a 
set of representatives for ~-mod  GT, i.e., 

(i) every linear ordering A is equivalent to some Ei in I~'", i.e., there is some 
1 ~< i ~< k so that A n Ei mod G~, and 

(ii) it is minimal with respect to (i). 
Sometimes m, n, or A are omitted if there is no misunderstanding. The 

elements Ei of I~ 'n are also called colours, since 17 'n generates a colouring on 
each linear ordering. 

Let A be any linear ordering; then define f "A2--->I~ '~ so that 

f (a, b) = E i iff a < b and (a, b )A ~ Ei  mod G7 

or b < a and (b, a)A n El mod G~. 

Lemma 3.2. f is an additive colouring. 

Definition 3.1. Let A be a linear ordering. 
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(i) The subset X c_ A is called (n, A)-order-homogeneous in A iff there are 
linear orderings U, V, and W so that for all a < b e X, (a, b, A)  ~ ( U, V, W) 
mod G 2 (remember that (a, b, A)  is a shorthand for (A <~, (a, b)a, A >b)). 

(ii) The ordered family {X~'o: e J} of subsets of A is called (n, A)-quasi- 
homogeneous in A iff there are linear orderings T, U, V, and W so that 

(a) ( a , b , A ) ~ ( U ,  T, W )  m o d G  2 for all o ~ a n d a l l a < b e X ~ ,  and 

(b) (a, b, A ) ~ ( U, V, W )  modGZa for all o: < fl e J  and all a e X ~  and b eXt3 , 
respectively. 

The results of the preceding section now immediately yield existence theorems 
about (n, A)-order-homogeneous sets and (n, A)-quasi-homogeneous ordered 
families. 

Theorem 3.3. Let A be a linear ordering, zi a finite set of  ordinals, and X c A a 
subset o f  power r.  

(i) I f  r is regular, then there is an (n, A)-order-homogeneous subset Y ~_ X of  
power x. 

(ii) I f  r is singular, then there is an ordered family { Y~ " o: ~ J} of  subsets o f  X, 
which has u-power r and is (n, A)-quasi-homogeneous. 

ProoL Since &-mod G 2 has only finitely many equivalence classes, there exists a 
subset Z ~ X of the same power as X such that for all a, b e Z, (a, A ) z (b, A)  
m o d G  2. Then set U : = A  <a and W : = A  >a for some a e Z .  Let I~" be a set of 
representatives for &-mod G 2 and f:Z2--->12~ n the induced colouring. By the 
preceding lemma this colouring is additive. 

Case (i). By Theorem 2.3 there is a homogeneous (with respect to f )  subset Y 
of power x. Then Y is (n, A)-order-homogeneous. Simply set V := (a, b)A for 
some a < b ~ Y. 

Case (ii). By Theorem 2.6 there is a quasi-homogeneous, ordered family 
{Yo~'a~ e J} of subsets of Z, which has the u-power x. Clearly, {Y,-a~ e J} is 
(n, A)-quasi-homogeneous: set T : =  (a, b)A for some a~ e J and a < b e Y~ and 
V : =  (c, d)A for some a~ < fl ~ J and c ~ Y~ and d e Yt3- [] 

Theorem 3.4. For every linear orderings A and B the equivalence A ~ B mod G 2 
implies A ~ B mod G~ for  every natural number m. 

ProoL The theorem is proved by induction on n. In the case n = 0 the theorem 
obviously holds. Assume it is proved for n and there are given linear orderings A 
and B with A "÷-J B mod G 2. 

Claim. A <n+l B mod G~. 

Let a ~ A; then by the hypothesis there is some b e B so that (a, A)  ~ (b, B) 
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mod G 2. Applying the induction hypothesis we get immediately (a, A ) ~ (b, B ) 
mod G~. Thus condition (i) for the relation A z,,+l B mod G~ is verified. 

To check the second condition let X ~_ A be a subset of power 1% for some 
tee A. We have to distinguish two cases: R~ is singular or regular. 

Case (a): R~ is singular. By Theorem 3.3(ii) there is an ordered family 
{Z~" a~ e J} of subsets of X which is (n, A)-quasi-homogeneous and has u-power 
bl~. Set Z = (._Jo~j Z~. Since by the hypothesis A ~<n+IB mod G 2 there is some 
Y ~ B of cardinality R~ so that ( Y, B) ~<" (Z, A)  mod G 2. Let T, U, V, and W 
be suitable linear orderings, which fit in the definition of (n, A)-quasi- 
homogeneity for {Zo," tee J}. By the choice of Y we know that for every 
a < b ~ Y there are c < d ~ Z with (a, b, B) ~ (c, d, A)  mod GZa. The induction 
hypothesis implies (a, b, B) & (c, d, A)  mod G~, hence (a, b)B ~ T mod G~ or 
(a, b)B ~ V mod GT. Since {Z," a~ e J} is u-singular, there are aq < -  • • < re,, so 
that Z~,, are all infinite, i = 1 , . . . ,  m. Thus there exist elements zij e Z~,, 
j = 1 , . . . ,  m, with zi~ < .  - • < z~.  Clearly, (z#, Z~k)A ~ T mod G7 for j < k and 
(z#, Ztk)A ~ V mod G7 for i < l. Now we check that Y also satisfies (Y, B) <" 
(Z, A )  mod G~. Suppose yl < -  - • <Ym e Y is an arbitrary sequence of length m. 
As already remarked it holds either (Y~, Yi+I)B ~ T mod G~ or 
(Y~, Y~+~)8 & V mod G~ for each i < m. Obviously we can choose an increasing 
subsequence z~,j~ < - - - < z~,.j., so that 

(Yk, Yk+I)B n (ZikJk ' gik+lJk+l) A mod G 2 

for every k < m, i.e., 

( y l , . . . , y m ,  B ) ~ ( z i , j , , . . . , z i , , j , , , A )  m o d G  2. 

Now by the induction hypothesis this equivalence extends to ~-mod G~. 
Case (b): I~= is regular. This case is solved similarly. Instead of (n, A)-quasi- 

homogeneous, ordered families of subsets we use (n, A)-order-homogeneous 
subsets. The details are left to the reader. 

Hence the claim is verified. By the same argument we also obtain B 
~<"+~A mod G~, hence by definition A ,,+1B mod G~ and the  theorem is 
proved. [] 

From the theorem just proved we can conclude that the expressive power of L 2 
is as strong as that of L~ for m > 1. In the following we want to give this equality 
in strength a more explicit form. We are going to prove that Q~ is eliminable 
with the help of Q2. First we give this phrase a precise meaning. 

Definition 3.2. Let L1 be a sublanguage of a language L2 and K a class of 
L2-structures. We say that L2 is reducible to L1 with respect to the class K if for 
every formula tp(,~) of L2 there is a formula ~p(~) of L1 such that K~ ~p(~)*-> 
~p(g). In case that L1 := L~ and L2:-L~ we say Qm is eliminable with the help o f  
Q~ with respect to K. ~ 
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m t - h A , m * , n  { _  Let  q g ( x l , . . . ,  Xk) be any formula of Lzx and ~'A.a~...a~c~,..., Ck) be as 
defined immediately before Proposition 1.2. ,na, m*,~ : -  ~'a,o~...~AXl,.. . ,  Xk) is said to be 
consistent with q0 (over K) iff there is some model B in K so that 

" ,  ~f~A,m*,n t'l~ b k )  B ~ qg(bl, • • bk) ^ ~'A,~...~Wl, • • • , 

for some elements b ~ , . . . ,  bk of B. For fixed A, m*, n, and k there are only 
finitely many non,equivalent .~z~,m*,~- t P ~ l , a l . . . a k ~ X l , . . .  , X k )  , which we denote by 

~ 1 ,  - - "  , t ~ r "  

Let A and q0 be given; then set m* = 2, n = q(tp) the quantifier rank of qg, and 
Ha(tp) = {O~ : 1 ~ i ~< r and ~i is consistent with qg}. 

Theorem 3.5. Suppose m > 1. Then for  every formula c p ( x l , . . . ,  Xk) o f  L'~ it 
holds LO ~ tp ~ V Ha(qg), i.e., Q~ is eliminable with the help o f  Q2 for  the class 

o f  linear orderings. 

Proof. Let q g ( X l ,  . . . , X k )  be an arbitrary formula from L'~, B a linear ordering, 
and bl,  • • ,  bk  E B. Suppose B ~ cp(bl, . • , bk ) .  Then -~a,E,n - • • ~B, br..bk~Xl, . . . ,  Xk) a n d  
q g ( x l , . . . ,  Xk) are consistent for n = q(tp), hence B ~ V Hzx( tp)(b l , . . . ,  bk) and 
one direction of the theorem is proved. To prove the other direction we suppose 
B ~ V H ~ ( q O ( b l ,  . . .  ,bk) .  Then there is some ~i in Hz~(tp) such that B~ 
• i ( b l , . . . ,  bk). By the definition of Ha(tp) there is a linear ordering A and 
elements a ~ , . . . ,  ak in A so that 

A ~ q g ( a l , . . . ,  ak) ^ f J ) i ( a l , . . . ,  ak). 

Since ~i and mA'2'n ~'8.bl...b~ are equivalent, we can apply Proposition 1.2 and can 
conclude that 

(A ,  a l , . . . , a k )  ~ ( B , b l , . . . , b k )  m o d L  2. 

By Proposition 1.3 and Theorem 3.4 we get 

(A ,  a l , . . . , a k ) ~ ( B ,  b l , . . . , b k )  mod L~. 

However q(tp) = n and A ~ qg(al, . . . , ak), hence B ~ qg(bl, . . . , bk). This proves 
the other direction of the theorem. [] 

We want to remark that H,~(qg) can be effectively determined for given tp. 

Corollary 3.6. Let  A be an arbitrary set o f  ordinals. Then L'~ °" is reducible to L 2 
with respect to the class o f  linear orderings. 

The preceding corollary shows that for the class of linear orderings the binary 
Malitz quantifier is sufficient to express everything expressible by arbitrary Malitz 
quantifiers. This generalizes some weaker results obtained in [19] and confirms 
some conjectures made there. 
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For linear orderings the language L~ is obviously stronger than the elementary 
language. However  we may ask whether L 2 is really more expressive than L 1 
with respect to LO. The following theorem answers this question. 

Theorem 3.7. L 2 is not reducible to L 1 with respect to the class o f  linear 
orderings. 

Proof. Clearly, we assume A to be non-empty. We will cite two linear orderings 
A and B, which are equivalent with respect to L~, whereas they can be 
distinguished in L 2. Let o~ be the least ordinal in A. Then set 

and 

A ' =  ((oJ* + o~) • w~) • (o~* + o 0 

B : =  + o J )  • • + • 

A and B can be distinguished in L 2 by the sentences 

Q2~xy ( a ~ z  (x < z < y)) 

in case of a~ > 0 and 

::lwo:Ziwa Q~uv Q~cy (Wo < u  < x  ^ y < v  < wl ^ Qoz (x < z  < y ) )  

if c~ = 0. To show their equivalence with respect to LXa we establish a more 
general fact, which is stated in the next lemma. 

A linear ordering A is said to be n-at-rich iff for every a e A there is a subset 
X c _ A  of cardinality R~ so that for all x eX,  (a, A)  ~ (x, A)  mod G~) .  

Lemma 3.8. Let  D be a n-ol-rich linear ordering. For any linear orderings E and F 
the equivalence E ~ F mod G~ implies 

D . E ~ D . F  mod G~}. 

Proof. The lemma is proved by induction on n. For n = 0 the lemma is obviously 
true. Suppose now it is proved for k and we are going to prove it for k + 1. Let 
a e D • E;  then there are elements x e D and c e E such that a = (x, c).  By the 
hypothesis t he r e  is some d e F such that (c, E )  k (d, F)  rood Go. Set b = (x, d ) .  
Then ( D .  E)  <a is isomorphic to the sum D - E < C +  D <~, similarly ( D .  F) <b is 
isomorphic to D • F <d + D <~. By the induction hypothesis and the sum property 
w e  get (D • E)  <a k (D" F) <b rood G~) .  By the same argument we can conclude 

1 (D-  E) >a ~ (D . F) >b mod G(o,), hence 

1 (a, D .  E)  ~ (b, D .  F) mod G{~), 

thus the first condition in order to show D • E k+l D • F mod G~} is verified. Now 
let X ~_ D • E be a subset of cardinality R~ and a e X. Then as above there are 
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x e D and c e E such that a = (x ,  c ) .  Choose d e F also as above. Since D is 
k + 1-a;-rich, there is a subset Z c_ D of cardinality ~ such that for all z e Z 

(z,D) & (x, D) mod G~,~). 

Let z e Z  be arbitrary, set b = ( z , d ) ;  
1 (a, D -  E)  k (b, D • F )  mod G(~), hence 

for Y =  {(z, d)  "z e Z}. This proves D .  E < . k + I D  • F mod G~) .  By symmetry 
the reverse relation also holds, thus D • E k £ l D  • F mod G~) .  [] 

then again as above we obtain 
(Y, D .  F )  <k (X, D"  E)  mod G~} 

Examples. (1) Let cr > 0; then D := ((to* + to)- to,~) is n-a:-rich for every n. This 
easily follows by induction on n using the following fact (which can be proved also 
by induction)' let A be a finite linear ordering with at least 2 k - 1 elements and fl 
an arbitrary ordinal, then it holds 

A L to + (to* + to) • ~ + to * mod G~. 

1 If fl is countable, then the above equivalence also holds mod G(~), because a~ > 0 
and hence no subsets of power R~ exist. Now set E : = ( t o * +  to) and F : =  
(to* + to). to~. As discrete open orderings E and F are elementarily equivalent. 
Thus by Lemma 3.8, 

D . E n D - F  modG~, )  

for every natural number  n. By Proposition 1.3, the linear orderings D • E and 
D • F satisfy the same sentences of L~) .  Since both orderings have cardinality N,, 
and a~ is the least ordinal in A,  both orderings are also equivalent with respect to 
L~. This completes the proof of Theorem 3.7 for tr > 0. 

(2) Let D := (to* + to); then D is n-0-rich. Set E : = t o - ( t o * + t o )  and 
F :  to • (to* + to) • to; then again E and F are elementarily equivalent. By Lemma 
3.8, D • E ~ D • F mod G~0). This completes the proof of Theorem 3.7 for a~ = 0. 
The details are left to the reader. 

4. Relative elimination of Malitz quantifiers for weH-orderings 

For linear orderings the binary quantifiers Q2 are already sufficient to eliminate 
the quantifiers Qm. This result can be strengthened for the class WO of 
well-orderings. We will prove that L 2 is even reducible to L~ with respect to 
WO. Thus the Malitz quantifiers are eliminable with the help of the unary 
cardinality quantifiers. However, to obtain this result we have to make an 
additional assumption about A, namely cf A _  A (see the first section for the 
definition of cf A). We adopt this additional supposition throughout the section. 

Every well-ordering is isomorphic to some ordinal. In the following we will 
identify well-orderings with the ordinals to which they are isomorphic. The proof 
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of our main result is based on the representation of ordinals as sums of certain 
products given in the first lemma. We are mainly concerned with a detailed study 
of conditions to obtain equivalent products or factors, respectively. The most 
important  fact is stated in Lemma 4.3. It allows to give effective bounds for the 
ordinals we have to consider. 

Lemma 4.1. Let tr, /3, and y be arbitrary ordinals. 
(i) I f  /3 < y, then also c ~ + / 3 < c ~ + y .  

(ii) a~ </3  i f f  there is an ordinal 6 > 0 such that oi + 6 =/3. 
(iii) For every natural number  n and every ordinal /3 > 0 there are uniquely 

determined ordinals / 3 0 , / 3 1 , . . . , / 3 ,  so that ol = /3" . /3 ,  + . . .  +/31./31 +/30 and 

/3i </3 for  i < n. 

Proof.  These properties are easily proved by transfinite induction. The details are 

left to the reader. 

L e m m a  4.2. Let  A and B be any two finite linear orderings with cardinality at least 
2" - 1. Then A ,~1 B mod Go. 

For  a proof we refer to the preceding section (Example (1)). 
Now we are going to make the most important step to prove our main result. 

L e m m a  4.3. Let  ot and/3  be non-zero  ordinals, la = max A. Then fo r  every natural 
number  n: 

(i) "-- m o d  GZa, and 
n n n (ii) a~,- a~-  ~o,-/3 mod GZa. 

P r o o f .  By induction on n. For  n = 0 the proposition holds for trivial reasons. 
.n+l Assume the lemma is true for n. We first prove (i) for n + 1. We regard to, as 

an initial segment of to,- .+1 -/3. L e t  a e to~,- .+1. Then (to,.,+l,>,) and ( to. 'n+l"/3)>,  are 

..+1 a n d  - "+1 ./3, respectively. Applying the induction hypothesis isomorphic to to, to~, 

we obtain 

..+1) ~ (a, . .+1 . /3 )  modGZa. a,  ¢a/t~ oJ .  

_ ,+1 then for the same reason it holds I f X ~  to~, , 

(X, (/)~+1 fl) ~n (X, (/)~+i) modG 2, 

hence rlln+l ~ n  ¢l}n+t _~, _ ,  • fl mod GZa. Now we are going to prove the reverse relation. 
.n+l Let a ~ to.-"+1./3. We have to distinguish two cases: either a ~ to. or 

..+1 According to . ,,÷1 T h e  f irst  case is treated as above. Suppose a ¢ to~, . a ,  to~, . 
Lemma 4.1, the ordinal a can be represented as follows 

n 
a = og~ , .  a n + .  • • + o ~ , .  a q +  a¢o 
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with a~i < to. for all i < n. Furthermore a~. > O, since a does not belong to .n+1 if3. . 

n-1 trn-1 + " "  + re0 which belongs to the initial segment Then set b = t o . +  to. • 
a,~+l By the induction hypothesis and the sum property for the ordinals a and b , • 

(considered as linear orderings) the equivalence a ~ b m o d G  2 follows. 
(to~, are isomorphic to to. y and to. ( t o .  ) a n d  • - • 5 ,  Moreover, .,+1~>b ~ n + l  f l ) > a  n n 

respectively, for some non-zero ordinals y and 5. Using the induction hypothesis 

for (ii) we get 

_ n + l x > b  n .. n + l .  ~ ) > a  (w.  ) ~ ( t o .  m o d G ~  

a n d  f i n a l l y  

(b, w.'n+lX/ ~ (a, w." ,,+1. fl) mod G 2. 

. n + l  This verifies the first condition of the desired relation. Now let X ~_ u,. • fl be a 
subset of cardinality R~ for some v e A. If X N to~+l has cardinality 1%, we 
proceed as in the proof of - . + 1 < . + 1 .  n+a w u wu . f l  m o d G  2. Otherwise we may 

.,,+1 disjoint. Since ~-mod G 2 has only finitely many suppose that X and tou are 
equivalence classes, there exists a subset Z __q X of the same power as X such that 

-,,+1. fl) ~ (b, - ,,+1 for all a < b e Z ,  ( a , w .  w.  . f l ) m o d G  2. Then let X l < X z e Z .  

According to Lemma 4.1, xi and Xz are represented in the following form 
" "-a tr ._l + .  • • + tr0 and x2 n . f i n  + n--1 x l = t o . ' a . + t o .  • = t o .  to. " f l . - l + ' " + f l o ,  

respectively. Since the elements of Z are greater than to.- .+1 the ordinals a~n and fin 
are non-zero. Now we distinguish two cases. 

Case 1: O:n = fl,, f o r  all x l  <x 2  e Z. Clearly, the intervals (to~. - re., to~,- (a~n + 
1)) and (to~,, to~- 2) are isomorphic. Let f be the canonical isomorphism between 
these intervals and Y the image of Z under this isomorphism. Suppose YI < Y2 e Y 
are arbitrary elements. Let u~ = f - l ( y l )  and u 2 = f - i ( y 2 ) .  There is an ordinal 

n such that Yl " +  y and //1 n. y < to. = to. = to. a~,, + y. By the induction hypothesis 
and the sum property Yl ~ ul mod G2a. As above for a and b we also have 

n + l  > y  n . n + l  ( t o . )  ~ - ( t o .  -fl)>'~ m o d G  2. 

By the choice of Ul and u2 the intervals (Ul, u2) and (Yl, Y2) are isomorphic. 
Hence we can conclude that 

(yl, y2, toT, +1) z (ul, u2, rood 

and the second condition is verified. 
Case 2: o:. 4= fl,, f o r  s o m e  X 1 < X 2 E Z. Define 

n n - - 1  Yx = to .  " A + to.  " f i n - - 1  Jl- " • • Jr- f l O  

. , ,+x  a n d  Y h a s  for every ordinal A and Y =  {Yx-A< to~}. Then clearly Y ~  w .  
cardinality R~. For any A1 < A2 the interval (yx , ,  yx~) is isomorphic to to~,-y + 

,,-1./3n-1 + " ' "  +fl0 for some ordinal y. For the same reason the interval t o .  

n n - - 1  (xi, x2) is isomorphic to to . -  6 + to. "fin-1 +"  " " + flo for some ordinal 5 > 0. 
Then by the induction hypothesis and the sum property (xl. x 2 ) ~ ( y x , .  Yz~) 
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mod G 2. For the same reason we have x2 ~ Yxl mod G 2. By the choice of Z then 
x~ "-~ Yxl mod G 2 follows. Again as above we also get 

. n + l  n (tO. " ~) >x2~ ((-0~+I)>YX2 mod G2A. 

All relations together yield 

_ n + l X  n . . + 1 .  fl) mod G2a (Yx,, Yx2, tO, : ~ (Xi ,  X2, tO. 

and the induction step is accomplished. 
The property (ii) follows immediately from (i). [] 

The lemma just proved shows that arbitrary non-empty products with left 
factor to~ are not distinguishable from each other by sentences of quantifier rank 
n. We remark that for this lemma the assumption cfA ___ A is unnecessary. 
Moreover, no special assumptions about the right factors are made. But in 
contrast in the next lemma no suppositions about the left factor are demanded. 

Lemma 4.4. Let  tr and fl be arbitrary ordinals with tr ~ fl mod G 2. Then for  every 
ordinal 6 > 0 6. ot "~. o . fi mod G2a. 

Because of later applications let us note that the proof can also be done with 
i-:_2 ,, replaced by "mod G~". "mod --,a 

Proof. By induction on n. For n = 0 there is nothing to prove. Assume the 
lemma is proved for n and we are given the ordinals a: and fl with o: "+J 
m o d G  2. By symmetry it is enough to show 6 o a : ~ ' + 1 6 - f l  modGZa. Let 
a • 5 -  a:, i.e., a = (al ,  a2) with al • 6 and a2 • 0:. Set b = (b~, b2), where bl and 
b2 are chosen so that b~=a~ and (a2, a:) ~ (b2, fl) mod G2a. Since a: and fl are 
equivalent with respect to ~ l - m o d  G 2, b2 exists. ( 6 .  a:) <a and (5-f l )<b are 
isomorphic to 6 -0 :<%+ 6<al and 6 .  fl<b2+ 6<% respectively. Then by the 
induction hypothesis and the sum property (6 • ~)<° ~ (6 • fl)<b mod G~. For the 
same reason (5 -  a:) >~ ~ (6 -  fl)>b rood G2a, hence 

(a, 6 . ol) ~ {b, 6 . fl) m o d G  2. 

Now suppose X ~ 5 .  a~ is a subset of cardinality N, for some # • A. We are 
searching for a subset Y _ 6 -  fl of cardinality N, so that (Y, 6 .  fi) -<" {X, 6 .  a:) 
mod G 2. 

Case 1. There is a subset U ~ 5 of power N, and an element d • a: so that 
{(c, d ) ' c  • U} is contained in X. Choose e • fl so that (e, fl) ~ (d, a:) mod G2~. 
By the induction hypothesis and the sum property Y = {(c,  e ) ' c  • U} has the 
desired property. 

Case 2. There is a subset D ~ er of power N, so that for each d • D there is 
some x • 5 with (x, d)  • X. We may suppose that there is some y • 6 so that 
(x, 6)  ~ (y, 6)  mod G 2 for every (x, d) • X ,  otherwise we choose a suitable 



72 H.-P. Tuschik 

subset. Since o: n+--: fl m o d G  2, we find E~_fl with (E, fl) ~ n  (D, or) m o d G  2. 
By the induction hypothesis and the sum property Y =  {(y, e ) "e  e E} has the 
desired property. Let Yl < Y2 e Y and el < e 2 6 E with yx = (y, e~) and Y2 = (Y, e2). 
Then there are dl < d2 e D and xl,  x2 e 6 so that (dl, d2, ol) n (e l ,  e2, f l)  
m o d G  2 and Ul = (xl, d~) and u2 = (x2, dE) belong to X. Finally we get 
(Y~, Y2, 6 .  fl) ~ (ul ,  u2, 6 -  ac) mod G 2. Hint: the intervals (yl, Y2)~.# and 
(ul, u2)~.~ are isomorphic to 6 >y + c5- (el, e2)/3 + 6 <y and 6>xl + 6 -  (dl, d2)~ + 
6<~2, respectively. By the choice of y, e~, and e2, the induction hypothesis, and 
the sum property (Yl, Y2)#.# ~ (Ul, u2)~.~ mod G 2 follows. Similarly the other 
equivalences are verified. 

Clearly, if Ru is regular, no further cases occur. Assume now R~ is singular. Let 

cf , = 

Case 3. There is a subset D ~_ oc so that X =  [._J {Xd" d e D) ,  card D < R~,, 
card Xd < R, for every d • D, and the elements of Xd are of the form (x, d) .  We 
may assume that card D = Rv, for all d • D, card Xd is regular, and by Theorem 
3.3 all pl(Xd) = {x • 6" (x, d)  • Xd} are (n, A)-order-homogeneous of the 
same type, i.e., for any x l<xEep l (Xc)  and yl<y2epl(Xd) ,  respectively, 
(x~, x2, 6 )  ~ (y~, Y2, 6 )  mod G 2 holds. Otherwise we choose a subset of X 
which has these properties. Since cf A ~_ A we find a subset E ~_ fl with IE[ = R~ 
and (E, fl) <~ (D, ac) mod G 2. Let f :  E--> D be a bijection between these two 
sets. Define Y ~ = ( ( x , e ) : x e p l ( X 1 ~ ) )  } for e e E  and Y=(_J~EY~. Then Y h a s  
cardinality R~, and satisfies (Y, 6 .  fl) <~  (X, 6 .  a:) rood G 2. Hint: Let Yl < 
Y2 • Y- There are zl, z2 • 6 and el ~< e2 • E with y~ = (zl, el) and Y2 = (z2, e2). 
Two possibilities arise. If e l = e 2 ,  then set ul = (z~, d )  and u2 = (z2, d )  with 
d = f ( e l )  and argue as in the first case. (For simplicity we assume also that D and 
E are (n, A)-order-homogeneous.) If ex < e2, then let d~ < d2 • D be arbitrary and 
u t =  (z~, d~) and u2 = (z2, dE). To show (yl, Y2, 6 - f l )  ~ (u~, u2, 6 -o r )  mod G 2 
proceed as in the second case. 

This completes the proof of the lemma. [] 

Both the preceding lemmata enable us to conclude the equivalence of products 
if the factors satisfy certain assumptions. Now, vice versa, we try to find 
conditions about products from which the equivalence of corresponding factors 
follows. For that reason we introduce the notion "oc divides 7", in terms at/),, 
which means that there is some ordinal fl with a:. fl = y. The unary predicate 
co~/x has the following properties. 

Lemma 4.5. Let k be a natural number, x and Ix arbitrary ordinals. Then" 
(i) to, Ix i f fVy <x  Q~,z (y < z  <x),  
(ii) . k + l , .  to~, i x i f f  tok/x ^ V y < x Q ~ , z ( y < z  <x ^ tok/z), and 

(iii) q(to~/x)= 2k. 

Proof. If x = to~,.a, th~n the formula on the right-hand side of (i) is true. 
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Assume now that x satisfies this formula. By Lemma 4.1, x = tog • a + b, where 
b < tog. Then dear ly  b = 0, hence tog/x. This proves (i). The right side of (ii) 
follows immediately from the left one. In order to prove the reverse direction let 

x satisfy the formula on the right side. Again by Lemma 4.1, x has a 
. k + l  k representation x = tog • ak+l + tog" ak + " • " + ao where ai = 0 for i < k (because 

k divides x) and ak < tog. In addition ak = 0 since x satisfies the given formula. tog 
By recursion we obtain from (i) and (ii) a formula of L~g) which defines the 
relation tok/x. For  short we also use tok/x to denote this formula. (iii) says that it 

has quantifier rank 2k. As q ( t o ~ + l / x ) =  q ( t o ~ / x ) + 2  this is easily proved by 

induction. [] 

k Let/u e A. Suppose we are given the following ordinals: a = tog • tel, tr = a + of 2 
k and/3  k k with 0 < a~2 < tog, = tog"/31 + /32 with /32 ( tog" 

In the next lemma we consider a~ and /3 as linear orderings, whereas a is 
regarded as an element of c~. 

Lemma 4.6. Let  re, /3, and a as above,  b e/3. Then ( a, re) 2k +1 ( b, /3 ~ mod G 

k . /31" implies b = tog 

Proof. Since q ( t o k / x ) =  2k and to~/a, we conclude by Proposition 1.3 that tok/b. 
Furthermore,  a is the greatest element in cr with this property,  i.e., in a~ >~ the 
sentence -7:ix ( tok/x)  holds. However  the quantifier rank of 7 3 x  ( tok/x)  is 2k + 1, 

thus again by Proposition 1.3, b is the greatest element of/3 satisfying the formula 
k bl and/3 k bl + b2, w h e r e  (tog~x). Then there are bl and bE SO that b = tog- = tog- 

k Since this representation is unique, bl =/31 follows. [] bE ~ tog. 

Lemma 4.7. Let  oc and /3 be arbitrary ordinals, k > 1 a natural number,  and 

/z e A. / f  tog • tr ~ tog-/3 mod Gla, then also ol k fl mod G~. 

Proof. First, we remark that for arbitrary ordinals y and 6, ), 1 6 mod G 1 iff (1) 
( 7 = 0  iff 6 = 0 )  and (2) for all v e A (y>t  toy iff 6 1>toy). Now the lemma is 
proved by induction on k. Let k = 2 and tog • tr ~ tog •/3 mod G~a. By symmetry it 
is enough to show c~ <2/3 mod G 1. 

(i) Let aea~.  Set x = t o g - a .  Choose y e t o g - / 3  so that (x, tog-cr)  3 

(y, tog. /3)  mod G~. By the preceding lemma y = tog. b for some b e/3. Now 
a~ >a/> to~ iff there are at least to~-many elements in (tog - a¢) >x which are divisible 
by tog iff the sentence Q~u Vv  < u Qgz  (v < z < u) holds in (tog • oc) >x. Since this 
sentence has quantifier rank 3, it then holds also in (tog •/3)>Y, hence/3>b >1 to,. 
Similarly we can show that te >a > 0  implies /3>b > 0 .  For the same reason 
fl>b >t tov and /3>b > 0 imply a~ >~/> to,, and a~ >~ > 0, respectively. The same 
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relations are derivable for c~ <a and fl<b, hence by the in t roductory  remark  we 
have (a,  a~) ± (b, fl) mod  G~ as desired. 

(ii) Let X ~_ te be a subset of power  R~ for some v e A. Set X '  = {to, • a : a • 
X}. Let Y' ~_ to, - fl be a subset of power  R~ so that (Y ' ,  to~, • fl)  <3 (X ' ,  to, - a~) 
mod  G~. Then  again by the preceding lemma the elements of Y' are divisible by 
to~,, thus there  is a subset Y ~_ fl of power R~ such that Y' = { to, • b : b • Y}. Then  
proceed as in case (i) to show (Y, f l ) < 1  (X, re) m o d G  1. This completes the 

proof  for k - 2. 
Now we are going to verify the induction step. Assume the lemma is proved for 

2 ( k + 1 )  
k >t 2 and we are given tr and fl such that  to~, - a~ - to~, • fl mod  G 1. Again by 
symmetry  it is enough to show O:<~k+lfl mod G~. 

(i) Let a • a~. Set x = to, - a and choose y • to~, • fl so that  

(x, to, • tr} 2~1 (y,  t o , .  fl) mod G 1. As before y = to , .  b for some b • ft. Then  
by the induction hypothesis  we obtain tr <a k fl<b mod G 1. (Hint:  In case that  a 

and b are successor ordinals choose the predecessors before  applying the 
induction hypothesis .)  Now (to, • a) >x and (to, • b) >y are obviously isomorphic to 

to, + to, • tr >a and to, + to,.  fl>b, respectively, hence to, " t~ ">a  2.k to" . ~ > b  

m o d G ~  and finally by the induction hypothesis O:>akfl >b m o d G ~ .  Thus 
(a, re) k (b, fl) mod G~. 

(ii) Now let X_c a~ be a subset of power  Nv for some v • A. Set X ' =  
{to, .a:a e X }  and choose Y' so that  (Y ' ,  to, • fl) <2k+1 ( X ' ,  to ,"  o~) mod  G~ 

and I Y'I = Rv. As before all elements of Y' are divisible by to,. Let Y ~_ fl be such 
that  Y' = { t o , - b ' b  e Y}. To prove (Y, fl) <k (X, a~) mod G~ we proceed as in 
the case (i). [] 

Lemma  4.8. Let ol and fl be any ordinals, I te A, k and m natural numbers, 
m > l .  f f  

k 2 k.m k to , -a~  - t o , - f l  m o d G ~ ,  

then also te m fl mod G xa. 

Proof. By induction on k using the preceding lemma. [] 

Now we have a series of criterions for the equivalence of products  and factors,  
respectively. We use them to eliminate Q~ with the help of Q~ with respect to the 
class of weU-orderings. For that  reason we introduce the recursive function 
F(k, m) defined as follows: 

F(0,  m)  = m + 2 and F(k + 1, m)  = (2m + 1)- F(k, m). 

Obviously F(k, m) is recursive and always greater  than 1. 
Now we are ready to prove the main theorem of the section. 
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Theorem 4.9. Let ol and fl be any ordinals and k be the number of  elements of  A. 
F(k,") 

I f  o: ~ fl mod Gla, then also o: ~ fl mod G 2. 

Proof. By induction on k. If A is empty ,  then there is nothing to prove. Now let 
A be a set of k + 1 ordinals satisfying cf A _  A. Suppose ~ = max A. Then set 

F = A\{/z}.  Clearly, c f F  ~ F. By the induction hypothesis the theorem holds for 
F.  The proof  is accomplished in three  steps: 

Step 1. By Lemma 4.1, a~ and/~  can be represented as follows: 

and 

" m - - l '  
= t o .  • t~ m ÷ t o .  t ~ ' " - -  1 ÷ • . . ÷ tX" 0 

" " - 1  = t o . "  + t o .  • + " "  + 

where cri, fli < to, for i < m. For  0 ~ n < m set 

" m - n  . O L " _ n "  X n = t o g  " t ~ " + ' ' ' W t o g  

To begin with, we assume Xo < xl  ~ ' ' ' ~ X " _  1. Then there are Y0 <Y~ < " "  < 
y " _  ~ e fl satisfying 

( X o , . . . , X m - l ,  Ol) h ( y o , . . . , y m _ l ,  fl) m o 0 G ~  

where h = F(k  + 1, m) - m. Obviously,  we have 

F(k  + 1, m)  = (2 m + 1)-  F(k,  m) >1 (2"  + 1)(m + 2) i> 3m + 1, 

thus h i> 2m + 1. By a successive application of Lemma 4.6 we get 

• "--"' f l"--n for O~<n < m .  = " f l " + . . . W t o .  Y~ tog 

Now suppose Xo<-Xl<~'''<~Xm_I is not strictly increasing. Then,  choosing a 
maximal,  strictly increasing subsequence,  we can proceed as above. 

Step 2. In addition we have: 

h = F(k  + 1, m)  - m = (2"  + 1)- F(k, m) - m >i 2 " .  F(k, m). 

Together  with the results in the first step this yields 

" - - n  2 m ' y ( k ' " )  " - - n  
t o .  • - t o .  m o d  

for 0~<n ~< m. Since F(k,  m ) >  1, Le mma  4.8 is applicable, and we conclude 
F ( k , " )  

% -- fin mod  G~ for 0 ~ n ~ m. By the induction hypothesis  it follows that  
% ~ fl~ mod  G 2. For  n < m this implies o~ ~/3n mod G 2, because an, fl~ < to, 
and A = F t9 {/z}. Fur the rmore ,  using L e m m a  4.4, we can derive 

n ° " n . to ,  a~n~ to ,  fl~ m o d G  2. 

However ,  to'~.te" ~ to'~,, fir,, mod  G 2 is also valid by Lemma 4.3. (It is easily 
shown that  i t "  and f l"  are ei ther  bo th  zero or non-zero,  respectively.) 
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Step 3. The sequences Xo <~ xx <-" • • <~ Xra-1 ~- O~ and Y0 ~< Y~ <~" " • ~< Y,,,-1 e fl 
partition a~ and fl, respectively, so that corresponding parts are equivalent with 
respect to m-mod G 2. Using the sum property we conclude that a~ m fl 
mod G 2. [] 

From the theorem just proved we derive the elimination of Malitz quantifiers 
for well-orderings in the same way as the corresponding result for linear 
orderings. We introduce a similar notation as for the proof of the elimination 
result for linear orderings. Let tp be a formula of L~ and ,ha,m*,,, t -  - . r A , a l . . . a k ~ C l ~  . . . , Ck) as 
defined before Proposition 1.2. Now we fix m* = 1, r the number of elements of 
A, s = q(tp) the quantifier rank, and n = F(r, s). For these fixed values and fixed 
k there are only finitely many non-equivalent 'hA' '* '" t- " ~ A , a l . . . a k l ~ J ( , 1 ,  . . . , X k )  , which we 
denote by ~1, • • •,  ~p. Then define H~(qg) = {~i" 1 ~< i ~<p and ~i is consistent 
with q9 over WO}. This notation is very similar to that following Definition 3.2. 

Theorem 4.10. For every formula q g ( x l , . . . ,  Xk) of  Lr~, WO ~ q0 <--> V HI(tP) 
holds, i.e., Qm is eliminable with the help of  the unary cardinality quantifier Q~ for 
the class o f  well-orderings. 

Proof. With some obvious changes it is completely the same (nearly word by 
word) as that of Theorem 3.5. As an additional argument we have to use 
Theorem 4.9. [] 

Corollary 4.11. Let A be an arbitrary set o f  ordinals satisfying cf A ~_ A. Then L~ '° 
is reducible to L~ with respect to the class of  well-orderings. 

Now we have finished the proof of the desired elimination result. It has been 
derived under the assumption cf A ~_ A. We do not know whether this assumption 
is really necessary. However, it seems to be no proper restriction, for it is a 
desirable property of A. 

5. Decidability for the class of weH-orderings 

An important property of a theory is its decidability. Since the elementary 
theory of weU-orderings is decidable, it is natural to ask whether the theory of 
WO in the extended language LA <°' remains decidable or not. Our main result is 
an affirmative answer to this question. In particular we get the decidability of 
Th~(WO),  which can be already derived from the results of Chapter  5 of [2] 
(under the hypothesis cf A = A). When , proving decidability of theories in L~ 
some additional difficulties arise, because w e  cannot use the axiomatizability of 
the logic of L~. The decision procedure, which we shall devise in the following, is 
based on a generalization of the quantifier elimination method. 
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As before let A be an arbitrary finite set of ordinals which satisfies the closure 
condition cf A ~ A. For notational simplicity we carry out the proof for L 2 only. 

No new ideas are required to generalize it to arbitrary L~, m > 2. 
First we reduce the decision problem for the class WO to the more manageable 

subset R ~, which is defined by induction on the number of elements of A. 
However,  the definition of R ~ requires some more notation. 

Definition 5.1. An order polynomial t(x) is an expression 

t(x) = X k " Pk + xk-1 " Pk--1 +" " " + Po 

where Po, • • •,  Pk are given ordinals, called the coefficients of t(x). 
If Pk :/: O, then k is called the degree of t(x). 

Let H be a set of ordinals. The set of all order polynomials with coefficients 
from H is denoted by H[x]. Usually we assume H to be closed by addition and 
multiplication. Now let t(x) be an order polynomial from H[x] and fl an arbitrary 
ordinal. The value of t(x) at fl is the ordinal t(fl) obtained from t(x) by 
substituting fl for x. The set of all values of polynomials from H[x] at fl is denoted 

by H[fl]. 
Now we give the definition of R a by induction on the number of elements of A. 

Let N be the set of natural numbers (including 0). Clearly, N is closed by addition 
and multiplication. We put R ¢ = N[to]. Now suppose A is non-empty, a~ = max A, 
and F = A \ { c t } .  By the induction hypothesis R r is already defined. Then set 
R A= R r[to~]. The elements of R z~ are also called A-polynomials. Obviously, if 
A 1 ~ A2, then R al _~ R a2. The A-polynomials carry additional informations arising 
from their representations as order  polynomials. To emphasize the representation 
the elements of R zx are also denoted by r, s, t , . . .  (possibly with indices). On the 
other hand, the notation r ° indicates that the additional structure of r is 
disregarded. 

Before we will study R A in detail let us remind the reader of some laws of 
ordinal arithmetic: the associative laws for both addition and multiplication and 
the (left) distributive law. In the following they are used without mention. 

Moreover,  for fl < a~`" we have fl + to~ = t -  to~ = to,,. 
The basic properties of R zx are expressed in the following proposition. 

Proposition 5.1.  (i) 
is unique. 

(ii) R A is 
polynomials 
effectively. 

The representation o f  each element o f  R z~ as a A-polynomial 

closed by addition and 
r and s, the sum r + s  

multiplication. Moreover, for  given A- 
and the product r .  s can be calculated 

Proof. To prove (i) it is sufficient to show that different order polynomials from 
Rr[x] have different values at to~ (assuming c ~ = m a x A  and F =  A\{a,}).  The 



78 H.-P. Tuschik 

The procedure  

multiplication. In  

effectively. [] 

details are left to the reader.  Also the second part of the proposit ion is proved by 

induction on the n u m b e r  of e lements  of  A. We verify the induction step for 

te = max A and F = A \  {a~}. Suppose r and s are given non-zero A-polynomials  of 
k k - - 1  degree k and m, respectively. Then  r=coo:- rg+co,~  " r k - i + ' ' ' + r 0  and 

m m - - 1  s = t o ~ ' S m + c o ~  " S m - I + ' ' ' + S 0  for some r o , . . . , r g ,  S o , . . . , S m  f rom Rr.  

First we calculate the sum r + s. 
C a s e  1: k = m = 0. Then  r and s belong to R r, hence r + s e R r. 

C a s e  2: k < m. In  this case we have r + s = s. 

C a s e  3 : 0  < k = m. Then  

r + s  = to m .  (rm + S m )  + com--I"S, , , --1 + ' ' "  + S o .  

C a s e  4: m < k. A n  easy calculation shows that 

k . t o m + l  m ( r  m . . ~ S m  )dt"  m - 1  r + s = too: rk + " " " +  " rm+l + too: " tooc " S i n - l + ' ' "  + S o .  

In any case the sum is again an e lement  of  R ~. 

Using the distr ibutive law the calculation of r .  s can be reduced to the 

calculations of the  products r . (o91 .  s t ) ,  0 <~ l <~ m .  

C a s e  1: l = 0 .  

C a s e  1.1: So is a l im i t  o rd ina l .  

k- -1  
r "So = ( t o k .  rk + too: " rk-1 + "  " " + ro) "So 

k = ( t o k "  rk) " So COo~" (rk " So). 

Hence  r -  So is a A-polynomial  since rk " SO e R r by the induction hypothesis.  

C a s e  1.2: So is a s u c c e s s o r  o rd ina l .  A similar calculation as in the preceding 

case yields 
k k - - 1  r .  So = too~" (rk " SO) + too: " rk-1 + "  " " + r0 .  

C a s e  2: l > 0. Aga in ,  the desired result follows from an easy calculation: 

r . ( o91 .  s t )  = ( ( o a k .  rk + ' ' "  + ro) " t o l )  " st 

= k = .  k + l  = ( ( ( o k .  rk)"  t o l ) ' S l  too~" (rk"  t o l ) ' S t  tO~ "St. 

described above shows that R a is closed by addit ion and 

addit ion it enables  us to calculate sums and products 

By the preceding proposit ion R a may  be also characterized as the least set of 

ordinals,  which contains {too: "or e A} t.J {0, 1, co} and is closed by addit ion and 

multiplication. Now we are going to prove that the decision p rob lem for the class 

W O  can be reduced  to R ~. For that purpose we introduce the operators  
a .  On---> R a mapp ing  the class of  ordinals into the set of A-polynomials .  They (Jr n . 

are defined by induct ion on the number  of elements of  A. Suppose A is the empty  
set. According to L e m m a  4.1 each ordinal  fl admits a decomposi t ion 

3 = t o  n " 13n + t o n - 1 . 3 n - 1  + ' "  "+  30 
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where f l 0 , . . . ,  fin-1 are finite ordinals. In the following we will freely use this 
decomposition lemma without mention. Set 

O~n(fl) = tO n " E + t O n - l  " p n _  l + . . . + p O  

where e = 0 iff ft, = 0, e = 1 iff fin > 0, and for i < n 

{~i iff ~i < 2 ~ - 1, 

Pi = 2 ~ _ 1  i f f f l i ~ > 2 ~ - l .  

Clearly, crY(r) is the value of an order polynomial from N i x ]  at co. The range of 
cr°~ is denoted by R°n. We have an explicit description of R°~: 

R°~ = {fl" fl = ton" Pn +"  • • + Po where Pn = 0 or Pn = 1, 

and Po, • • •,  P~-I are finite ordinals smaller then 2n}. 

It is not difficult to derive cr°~(fl)~ fl mod G~. Hence the set R°n is a finite set of 
0-polynomials such that each elementary sentence with at most n quantifiers, 
which is satisfiable in some well-ordering, has already a model in the set R~. 

N o w  suppose A is non-empty, a ~ = m a x A ,  and F = A \ { o : } .  Then again 
decompose fl according to the lemma: 

-- to " #n + -1" + " "  + t o, 

where flo, - .  • ,  ft ,-1 are ordinals smaller than co~. Set 

+ + = tO - e + . . . .  

where e = 0 iff fl~ = 0, and e = 1 iff ft, > 0. 
The operators tr~ have the following important property,  which is proved by 

induction on the number  of elements of A using Lemma 4.3, Lemma 4.4, and the 
sum property. 

Lemma 5.2. For  arbi trary  f in i te  A ,  

na tural  n u m b e r  n:  

crY(r)  ~ fl mod G 2. 

cf A ~ A, a n d  every  ord ina l  fl, and  every  

A The range of on is denoted by R~. There is an explicit description of R~ using 
Rr: 

n n - - 1  
Ran = {fl  : fl = to~ " pn + to~ " P n - l  + " " + po w h e r e  

Pk e R ff for k < n, and pn = 0 or Pn = 1}. 

We want to remark that for every n the subsets R~ are finite. Furthermore,  we 
have R a =  I,_J,<o~ R~. Thus the sets R~ may be .considered as finite approxima- 
tions of R ". By Lemma 5.2 we may conclude that the decision problem for WO 
can be reduced to R A. Thus R a is sufficiently large to serve as a substitute for 
WO (with respect to saisfaction of sentences from L2). However R "  has the 
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advantage over WO that its elements are clearly arranged. To get a decision 
procedure for R " we require the notion of a composite A-polynomial. 

Definition 
respect to 

(2) Let 
composite 
c q : c i  for all i < ~ m ,  

( C l ,  . . . , Cm, C). 

5.2. (1) Every A-polynomial t is a composite A-polynomial with 
the empty sequence. 

= ( c ~ , . . . ,  Cm) be a sequence of pairwise different constants, s a 
A-polynomial in ~, and t a A-polynomial. Then for every constant c, 

the formal sum s + c + t is a composite A-polynomial in 

The set of composite A-polynomials in ( C ~ , . . . , C m )  is denoted by 
Ca(c1 ,  . . . ,  cen). If in the definition above all occurring A-polynomials belong to 
R~ a, then the resulting set of composite A-polynomials is denoted by 

A C n ( c l , . . .  ,cen). It is convenient to think of composite A-polynomials 

t (Cl ,  • • • ,  Cm) as sums tl + c~ + t2 + • • " + Cm +ten+l, where t l ,  • • • ,  tm+~ are 
A-polynomials which are called the parts of t. More precisely, ti is the i-th part, 
1 <~ i ~< m + 1, and by defining qi( t )  = ti we introduce the part-functions qi. 

Now we want to relate the composite A-polynomials to linear orderings with 
distinguished constants. Let us recall that r ° denotes the pure linear ordering 
determined by the A-polynomial r (i.e., the additional structure arising from the 
representation of r is completely disregarded). If c is a constant, then c o is the 
one-element linear ordering with domain {c}. Assume we are given a composite 
A-polynomial t = t~ + c I + t2 + " • • + Cm + t m + l .  Then t o is the linear ordering 

0 0 t o + c o + t o + • • • + Cm + tm+l with c ~ , . . . ,  cen as distinguished constants. If there 
is no misunderstanding, we also write t instead of t °. 

The most important property of the set of composite A-polynomials is 
expressed in the following lemma. 

Lemma 5.3. L e t  A be  a we l l -o rder ing  wi th  the  d i s t ingu ished  e l e m e n t s  al  < a2 < 

• " " < am E A ,  A a f in i t e  set  o f  ordinals ,  cf A ~_ A ,  a n d  n a na tura l  n u m b e r .  T h e n  
A 

there  is a c o m p o s i t e  A - p o l y n o m i a l  t e Cn (c l ,  • • • ,  Cm) such  that  

( a l , . . . , a m ,  A ) ~ ( C l , . . . , C m ,  t )  m o d G  2. 

Proof. the elements a l , . . . ,  am partition the set A. Apply Lemma 5.2 to each 
part, and then combine the desired t. [] 

Let t ( c a , . . . ,  Cm) be a composite A-polynomial and c p ( d l , . . . ,  dk)  a sentence 
of L 2 ( d l , . . . ,  dk) .  T h e  sentence q0 is said to be defined in t i f f  the set 
{ d l , . . . ,  dk}  is contained in the set {Cl, . . . ,  Cm}. If tp is defined in t, then t ~ tp 
indicates that tp is valid in t °, where the constants are interpreted in the natural 
way. From the next lemma the importance of the composite A-polynomials will 
become apparent. 
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Lemma 5.4. Let q 9 ( c l , . . . ,  Cm) be a sentence of  L 2 ( c l , . . . ,  Cm) which is 
satisfiable in some well-ordering A with the distinguished elements a~ < . . .  < 
am ~ A.  Then there are a natural number n, which can be calculated eflficiently, and 
a composite a-polynomial t ~ C ~ ( c l , . . . ,  Cm) such that t ~ ~(cl ,  • • . ,  Cm). 

Proof.  Assume A is a well-ordering with the distinguished constants  a l < " "  < 
am E A ,  in which ( p ( c l , . . . ,  cm) is valid. It is sufficient to put  for n the number  of 
quantifiers occurring in qg. By the previous lemma there  is a composite 
A-polynomial t • C~(c~, . . . , cm) such that 

( a l , . . . , a m ,  A ) & ( C l , . . . , C m ,  t) mod G~. 

Using Proposi t ion 1.3 we can conclude t~qg(Cl , . . .  ,cm), because A ~  
q g ( a l , . . . ,  am) by the hypothesis  on A. [] 

In the following the power set of a set Z is denoted  by P(Z) .  For  every natural  
number  n />  1 and every ordinal  tr • A, we define the mappings  fn  : R a---> 
P(C~_s(C)), g$:R  a---> P(C~_I(C)), h $ ' R  ~---> P(C~_I(c, d)) in case to~ is regular,  

A and h$:Ra--->P(C~_l(C, d) x Cn-l(c,  d)) for to~ singular. Before  we give the 
definitions we state the in tended propert ies  which the functions will have 

(I) for each A-polynomial  t and every a • t o there  is some s(c) • f~ ( t )  such that 

(a,  t °) ~ 1  (c o, s 0) mod G 2, (1) 

and, conversely,  for every s(c) • f n ( t )  there is some a • t o which satisfies (1). 
(II) For  each a -po lynomia l  t and every subset X _~ t o of cardinali ty to~,, a~ • A, 

there are some s(c) • g$(t) and a subset X '  _~ X of cardinality ~o~ such that  

for all a • X '  (a,  t °) ,,:1 (c o, s o) mod  G~, (2) 

and, conversely,  for every s(c) • gn(t) there is a subset X '  ~_ t o of cardinali ty to~ 

which satisfies (2). 
(IIIa) for each a -po lynomia l  t and every subset X ___ t o of cardinali ty to,~, te • A 

and to~ regular,  there  are some s(c, d) • h$(t) and a subset X '  ~_ X of cardinality 
to~ such that  

for a l l a < b • X '  ( a , b , t  o ) n : l ( c  o ' d o ' s o ) m o d G  2, (3a) 

and, conversely,  for every s(c, d) • h$(t) there  is a subset X '  _ t o of cardinali ty to~ 

which satisfies (3a). 
(IIIb) For  each a -po lynomia l  t and every subset X ~_ t o of cardinali ty to~, 

a~ • A and to~ singular, there  are some (r(c, d), (s(c, d ) ) •  h$(t) and a subset 
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X'  c_ X of cardinality too~ such that 

for all a < b e X '  either 

(a, b, t °) n'7"l (C 0, d O, r °) mod G 2 or (3b) 

(a, b, t °) "-zl (c °, d °, s °) mod G 2, 

and, conversely, for every (r(c, d), s(c, d))e  h](t) there is a subset X'~_ t o of 
cardinality to~ which satisfies (3b). 

First we define the values of f " ,  g~, and h i  for the elements 0, 1, to, and to o for 
/3 e A. For  every ordinal fl let ,4 n /3  = {y e A" 7 < fl}. Furthermore,  the A- 
polynomials t = to] .  p,, + - • • + Po with p,, = 1 are called monic. The set of monic 
A-polynomials contained in R ,  a is denoted by Qa. 

Definition of f" 

f " ( 0 ) = 0 ,  f " ( 1 ) = { c } ,  f " ( w ) = { k + c + w : k < 2 " - l } ,  

oan0~ for/3 e A. f " ( t o o )  = {s + c + too :s  j 

Remark. c + 0 and 0 + c are usually shortened to c. 

Definition of  g] (tre A) 

g~(0)  = 0 and g~(1)  = 0. 

For the definition of g~(to) we distinguish two cases: put g](w) = 0 for a > 0 and 
g~(to) = {2 "-1 + c + to} for a = 0 .  Now let fl > 0  and/3 e A. 

1. a > /3 .  Set  g~ (w  o) = 0. 
2. tr = /3 .  De f ine  g] ( to~)  = {s + c + to~ :s e ~ . _ 1  j. 

3. a </3. Suppose/~ = max A f3/3. Then g](to0) is obtained by recursion: 

lq~no~ n n - 1  g](too)= {s + c + too'S e ~ . _ l  j U {s + too's e g~(to u )}. 

Definition of  h~ (to~ regular and o: ~ A) 

h ~ ( 0 ) = 0  and h ~ ( 1 ) = 0 .  

Set h~(to) = 0 for cr > 0 and 

h ~ ( t o ) = { 2 " - l + c + 2 n - l + d + w }  for ~ =  0. 

Now let fl > 0 and/3 e A. 

1. cr > /3 .  Put h~(co o) = 0. 
2. a~ = ft. Set h$(to~) = {s + c + s + d + to~:s e Q an~}. 
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. tr < ft. Suppose/~ = max A tq ft. Then h~(tof) is obtained by recursion: 

n n - -1  h~(cof) = {s + wf "s ~ ho~(to~, )} 
n n - -1  

U {o)~z - 1  -t- s + (.off : s  E ho~(to~, )} 
~ a n f /  U {s + c  + s  + d  + ~ f  :s E ~ . _ ~  j .  

Definition o f  h ]  (c% singular) 

h~(O)=O, h'n(1)=O, and h~(w)=O.  

Let fl > 0 and fl e A. 
1. a: > ft. Put h~(cof) = 0. 
2. o: = ft. Define 

h~(o)~) = {(s + c + s + d + to~, s + c + s + d + to~):s e Q~n_~:}. 

3. a~ < ft. Suppose # = max A Iq ft. Then h~(tof) is defined by recursion: 

h~(tof)  = Z1U 7-.2 U Z3 

where the sets ZI, Z2, Z3, and 

Zl = {(r + tof, s + o)f) 

UZ4, 

Z4 have the following meaning: 

n n- -1  • ( r , s )  eh~(to~, )}, 
n n - - 1  n- l  + s + t o f ) ' ( r , s ) e h ~ ( t o ~ ,  )}, Z2 = {(wT, -1 + r + to e, to. 

nanf'~ Z3 = {(s + c + s  + d  + wf, s + c + s  + d  + ~of) :s e ~ _ ~  s, 

n - l  + rl + c + ~-l  + r~ + d + ~of ).  Z4_.  {((./)~--1 "4- r + tof, to~, to~, 
n n - -1  (r, s) e h~(to~, ) for some s and !"1 = ql(r)}. 

In the definition above the values g~(tof) and h~(oof), for a: < t ,  are given only 
by recursion. To calculate them we require further recursions which will be given 
below. To state these recursions readily, we use addition and multiplication of 

elements from a a Rn-1. In general, the resulting ordinals will not belong to Rn-~. In 

such cases, we shall apply the operator  a e,,_l to each component  of the composite 

A-polynomials under  discussion. Since the elements of Ran_~(c) are left fixed by 
a 

on-i,a we may apply cr,,_xa in any case. The application of tr,,_x to a set Z is 
indicated by a,_~Z.a For sums and products, the values of fn, g~,,, and ho," are 
calculated according to the following rules: 

Case 1: t = tl + t2. 

f " ( t )  = o~-1({t l  + s :s E fn( t2)}  U {S + t2:s 6f" ( t l )} ) ,  

• n t g~(t) = o'~-l({h + s s ~ g~(t2)} U {s + t2:s e go,(1)}), 

h~ ( t )=  Orn~_l({h + s : s  ~ h~(t2)} U {s + t2:s 6 h~(tl)}) 
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for to~ regular, and 

h~(t) = o~a_l{(h + r, tl + s ) : ( r ,  s)  • h~(t2)} 

[3 (Tna_l{(r + t 2, S + t2) : (r, s)  • h~(/,)} 

for to~ singular. 

Case 2: t = t o e - t l ,  fl • A or f l=O.  

fn ( t )  =O,-l{toea . s  1 + r  + We "s2" r • f " ( t o e )  a n d s l  + c  + S 2 " - S  • f " ( h ) } ,  

g~(t) = O'n_l((D f l A  "sl + r + toe~" $2 "[r • g~(we) and sl + c + $ 2 :  S • f n ( t l )  ] 

or [r e f " ( toe)  ands1 + c + Sz= S • g"~(t,)]}, 

h~(t) = a O,-l( toe . s l  + r + toe . sE:r  • h~(tob) and sl + c + s2 = s • f " ( q ) }  

U a o,~-t{toe " sl + r(c) + toe" s2 + r(d) + toe -s3: 

r(c) • f " ( t o e )  and sa + c + s2 + d + s3 = s • h~(q)} 

for too, regular, and 

-- {7 n _ l U 3 (Tn_lU 1 U O n _ l U  2 U hn(t) a a 

for to~ singular, where 

U, = {(to~ - s ,  + u + toe .s2,  toe - s l  + v + toe .s2): 

(u, v) • hi(toe) and sl + c + s2 = s • f"(q)},  

u 2 =  {(toe" u,  + s ( c )  + toe . u2 + s ( d )  + toe . u3, 

toe" Vl + s(c)  + toe " Vz + s (d)  + toe" v3): 

s(c)  • fn( toe)  and (u, v)  • h ] (q )  where 

u = u l + c  + u z + d + u 3  and v = v ~ + c  + v z + d + v 3 } ,  

and 

U 3 =  {((.off • s l + u  + o) e -s3, o)fl ° s  l + u  l + C + u  3 +  (Dfl . s  2 +  u 1 

+ d + u3 + tog" s3" (u, v) • h~(toe) and s • h~(h)  where 

U = U l + C  + u 2 + d + u 3 ,  S = S  1 +C + S E + d + s 3 ,  and to~ = cf to~}. 

As an example we demonstrate the calculation of f3(to2 +2).  We have to 
calculate the following values: f3(1), f3(2), f3(to), f3(to2), and f3(to2 + 2). Using 
the definition of f3(t) for t = l  and t = t o  we easily get f3 (1)=  {c} and 
f3(to) = {k + c + to :k < 4}. Applying the recursions for addition and multiplica- 
tion w e  o b t a i n :  

f3(2) = f 3 ( 1  + 1) = {c + 1, 1 + c}, 

f3(0)2) = f 3 ( t o ,  tO) 

= o # ( t o  -s~ + ~ + to~:r e f t ( t o )  
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and sl = ql(s) for some s e f3(to)} 

= {co. k + l +  c + co2:0 <~ k,/<~ 3}, 

f3(co2 + 2)= {oo. k + l +c  + to2 + 2:O<~k,l<~3} 

U {t02+C + 1, tO2+ 1 + C}. 

The existence of functions f " ,  g~, and h~ with the properties (I)-(III) ,  
respectively, already follows from Lemma 5.2. The advantage of the definition 
above consists in the constructive way it is given. 

Lemma 5.5. For each n >i I and o: ~ A, the functions f" ,  g], and h~ are recursive. 

Proof. The operations + and • are recursive by Proposition 5.1. Furthermore, 
a restricted to R a is also recursive. Hence f" ,  g~, and h~, are recursive. [] (Tn--1 

It remains to check that fn, g~, and h~ have indeed the properties (I)-(III) ,  
respectively. 

Before we shall do this let us define the (n, A)-characteristic of elements and 
subsets. Let A be an arbitrary well-ordering and al < .  • • < am E A. By Proposi- 

A tion 5.2 there is some s e C,  (c l , .  • •,  Cm) such that 

( a l , . . . , a m ,  A } ~ ( c ° , . . . , C m , °  s o} m o d G  2. 

In this case the A-polynomial s is called an (n, A)-characteristic of al < .  • - < am 
(in A). Note that there may be different A-polynomials in Can(c~, , . . ,  Cm) 
satisfying the equivalence above. We consider them as defining one and the same 
(n, A)-characteristic. According to property (I), f~(t) contains exactly those 

( n -  1, A)-characteristics of elements (up to "-:l-equivalence) which are realized 

in t °. Now this concept is extended to subsets X c A as follows. X is said to be 
(n, A)-uniform iff all of its elements have one and the same (n, A)-characteristic 
which is then called the (n, A)-characteristic of X. Thus g~(t) characterizes the 
different ( n -  1, A)-uniform subsets of t °. Furthermore, by Proposition 5.2 we 
may conclude that a subset X ~ A is (n, A)-order-homogeneous iff there is some 
A-polynomial s ~ Can(C, d) such that all pairs a < b  e X have the (n, A)- 
characteristic s. Suppose X has the (n, A)-characteristic's = Sl + c + s2 + d + s3 
then the elements of X have the (n, A)-characteristic sl + c + s3. In case that co,~ 
is regular, h~(t) describes the possible ( n -  1, A)-order-homogeneous subsets of 
t °. Now let to~ be singular and X = {Xi: i e J} an ordered family of subsets of A. 
Again by Proposition 5.2, the ordered family X is (n, A)-quasi-homogeneous in A 
iff there are A-polynomials r, s ~ Can(c, d) such that each pair a < b e X has either 
the (n, A)-characteristic r if a < b  ~Xi for some i ~J,  or s otherwise. The 
A-polynomial r (s) is called the inner (outer) (n, A)-characteristic of X. Note that 
we may assume ql(r) = ql(s) and q3(r) = q3(s). In the singular case, hT,(t) consists 
of the (n, A)-characteristics (r, s) of the possible (n, A)-quasi-homogeneous 
ordered families in t o . 
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Lemma 5.6. For every n >1 1 and o: • A: 

(A)  f "  has property (I), 
(B) g~ has property (II),  and 

(C) h~ has property (III).  

Proof. The lemma is proved  by induction on the complexity of A-polynomials.  
The cases t = 1 and t = to can be easily verified and are, therefore,  omitted.  The 
induction step for sums is straightforward and is left to the reader.  

Proof of (A) 
Case A. I :  t = co o for  /3 • A. Let  a • too. Then On_l(to 0 A  <a) = S • "'n-1-/Pz~f30 Thus 

f"(toO) has the form given in the definition. 

Case A.2: t = too "t~ f o r /3  • A or fl = 0. Using the induction hypothesis  for tl ,  
we may conclude that  every element  of t o has an ( n -  1, A)-characteristic 
contained in f " ( t l ) .  Then the desired result, 

f'~(t) = a On-l{tO o " sl + r + to o • Sz r ~ fn(to0) and sl + c + s2 = s • fn ( t l ) } ,  

is derived by arguing in the same way as in the f r s t  part  of the proof  of Lemma 
4.4. 

Proof of (B) 
Case B. 1: t = to o fo r /3  • A. The  trivial case a: >/3  is omitted.  Now let X ~_ too 

be a subset of cardinali ty to,~. Clearly, there  is an ( n -  1, A)-uniform subset 
X '  ~_ X of the same cardinality. In case a~ =/3,  X '  has to be cofinal in too, Hence 

~ a n ~  If o¢</3, the (n - 1, A)-characterist ic of X '  has the form s + c + w~, s e ~ , , -1  • 
"-1=0. As a then by taking subsets we may  assume ei ther  X '  ~_ to~-i or X '  N to~, 

consequence we get the recursion given in the definition of g~. For  details we 
refer to the proof  of Lemma  4.3. 

Case B.2: t = t o o . t l  f o r  /3 • A or fl = O. To overcome this case, we use the 
following two proper t ies  of (n, A)-uniform subsets: 

(P1) Assume Y_~ too and Z ~ t o are non-empty  (n, A)-uniform subsets; then 
X = Y x Z is (n, A)-uniform in t °. 

(P2) Let X ~ t  ° be a non-empty  (n, A)-uniform subset. Then  there are 
non-empty  (n, A)-uniform subsets Y ~  too and Z _~ t °, respectively, such that  
Y x Z has the same (n, A)-characteristic as X. If in addition IX[ I> to, ,  then Y and 
Z can be chosen so that e i ther  IYI/> to~ or  IZI I> to~. 

All the necessary arguments  to derive (P1) and (P2) are contained in the proofs 
of the Lemmata  4.3 and 4.4. For  the second part  of (P2) we require in addition 
L e m m a  3.1. Using (P1), (P2), and the induction hypothesis for tl, we get the 
desired recursion for g~(t). 

Proof of (C) 
Case C.1: t = too for  f l~  A. Assume te ~</3. Let  X ~_ too be a subset of 

cardinali ty to~. In case- '~ = /3  we proceed as in case B.1. Now let a~ </3  and 
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~t = max ,4 tq ft. For  the 
relations: 

n - - 1  a ~ b mod to. 

elements of t o we define the 

iff ( a < b  a n d b < a +  w,"-~) 

n - - 1  or ( b < - a a n d a < b + o g ,  ). 

The equivalence classes can be 
relations are convex. Note that 
greatest) is isomorphic to w~-~ 

Case C.I . I :  o9~ is regular. 

following equivalence 

ordered canonically, because the equivalence 
every equivalence class (except possibly the 

By Lemma 3.3 there is an ( n -  1, A)-order- 
homogeneous subset X'~_ X of cardinality o9o, Since wo~ is regular, we may 
choose X '  so that either (1) any two elements of X '  are equivalent to each other 
(with respect to ~ -mod  a~-x),  or (2) X '  has with each equivalence class of 

n-1 at most one element in common. Suppose X '  satisfies (1). Then the ~-mod m.  

(n - 1, A)-characterist ic  of X '  is either s + w e or w~ -a + s + wt~ where s • 
n n - - 1  X r h ~ ( w ,  ). In case that satisfies (2), the (n - 1, A)-characteristic of X '  has the 

,,~ant~ This implies the desired recursion. form s + c + s + d + w e for some s • ~,,-x • 

Case C.1.2: w~ is singular. Suppose w~ = cf w~. By Lemma 3.3 there is an 
(n - 1, A)-quasi-homogeneous ordered family {Xi : i < w~ } of subsets of X which 
has u-power coo,. Now we proceed as in the previous case with X ' =  (..J { X i : i  < 

w~ }. Note  that there arises an additional case (3). If X '  does not satisfy (1) or (2) 

,,-z iff there of C.I .1 ,  then it can be chosen so that for all a < b  e X ' :  a = b  mod w ,  
is some i < c0~ such that a < b • Xi. The third case is reflected in the recursion for 

h~(wt~ ) by the set Z4. The details are left to the reader. 

Case C.2: t = w e • tz f o r  fl • A or  fl = 0. We proceed as in Case C. 1. However,  
n - - 1  instead of =-mod w,  we use the equivalence relation ~-mod or3. The details 

can be obtained from the proof of Lemma 4.4. This completes the proof of the 

lemma. [] 

For any A-polynomials s, t • c A ( c 1 , . . . ,  Cm) we set s ~ t  iff qi(s)  ° ~ qi(t)  ° 

mod G 2 for each i, 1 ~< i ~< m + 1. If we want to emphasize that t is considered as 
a representative of an equivalence class of ~ ,  then we write more precisely t / n  

instead of only t. Similarly, Z / n  denotes the set of equivalence classes of 
A-polynomials arising from Z,  Z / n  = { t / n : t • Z } .  In the next lemma the 
relations ~ are characterized by means of the functions f~, g~, and h~. 

Lemma 5.7. Let  s, t • cA(c1 , . . . ,  Cm) and n >1 1. Then s ~ t i f f  f n ( q i ( s ) ) / n  - 1 = 

p ( q i ( t ) ) / n  - 1, g ~ ( q i ( s ) ) / n -  1 = g ~ ( q i ( t ) ) / n -  1, and hn (q i ( s ) ) / n  - 1 = 

h~(q i ( t ) ) /n  - 1 f o r  every i, 1 <<- i <<- m + 1, and  every ordinal  o: • A.  

Proof. By definition s ~ t i f f  qi(s)  ~ qi(t) for all i, 1 ~< i ~< m + 1. Hence, it is 
sufficient to prove the lemma for A-polynomials without constants. We may, 
therefore,  assume s, t • R a. Now suppose s ~ t. 

Claim 1. f n ( s ) / n -  1 ~_fn( t ) /n  - 1. 
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Let s '  =sx  + c + s 2 • f " ( s ) .  By Property (I) of f "  there is some a • s  ° so that 

<a,s°> '=l<c° , s ' °> .  By the hypothesis there is some b • t  ° satisfying 

<a, sO> ~=1 <b, t°>. By Property (I) there is some t' = t l  + c + t 2 • f " ( t )  such that 

(b, t °> n~l <C 0, t,o>. Thus t ln~' lS 1 and t2n~ls2,  and finally s '  n~x t'. This means 

that s ' / n  - 1 • f ~ ( t ) / n  - 1. 

Claim 2. h~(s) /n  - 1 ~_ h~( t ) /n  - 1 for  each ordinal o: • "4 with to~ regular. 

Let s '  = s~ + c + s2 + d + s3 • h~(s).  By Property (IIIa) of h~ there is some 
subset X '  ~_ s o of cardinality to~ so that for all al < a2 • X ' ,  

(a~, a2, t °> ,=1 (c o, d o, s,O>. Since s ~ t  there is some subset Y ~_ t o of cardinality 

to~ with property (Y, t °) ~<"-~ ( X ' ,  s°>. Again by Property (IIIa) of h~ there is 
some t' = tl + c + t2 + d + t3 in h~(t)  which satisfies (3). Then we can conclude 

tx n~l SI, t2 n~l S2, and t3 ' 'z l  s~. Hence s ' / n  - 1 = t ' / n  - 1 • h~( t ) /n  - 1. 

By symmetry we get the inverse inclusions, hence equality. The remaining 
cases are verified in the same way. Now, on the other hand, suppose 

f n ( s ) / n -  1 = f ~ ( t ) / n -  1, g ~ ( s ) / n -  1 = g ~ ( t ) / n -  1, and h ~ ( s ) / n -  1 = h ~ ( t ) / n -  
1 for each cr • ,4. We show s <n-~ t. 

(i) Let a • s °. By Property (I) of f "  there is some s '  = Sx + c + s2 e f t ( s )  such 

that ( a , s  °> ~ 1  (cO, s,O>. Since f n ( s ) / n -  l = f ~ ( t ) / n  - 1 there is some t' = t ,  + 

c + t2 e f n ( t )  (n - 1)-equivalent to s ' .  Again by Property (I) there is some b • t o 

satisfying (b, t °> ~=1 {c o, t,o>. Thus (a, s °> ,=1 (b, t°>. 

(ii) Let X ~_ s o with I S l  = ~ • ,4. Suppose a~ is regular. By Property (IIIa) 
of h~ there is some s ' = s , + c + s 2 + d + s 3 • h ~ ( s )  and a subset X ' ~ X  of 
cardinality 0~ such that for all al  < a2 • X '  it holds 

<al, a2, s °> n~l <C 0, dO , t,o>. 

Since h $ ( s ) / n -  1 = h $ ( t ) / n -  1 there is some t' e h$(t)  ( n -  1)-equivalent to s' .  
By Property (IIIa) we find some subset Y _~ t o of cardinality ~0~ so that for all 
b~ < b2 e Y 

(b l ,  b2, t °) ~:1 (c o, d o, t,o) is valid. 

Hence (Y, t °) ~<"-x (X, s°).  The singular case is treated similarly. This proves 
s <--"-~ t. In the same way we can derive t <n-1 s. This completes the proof of the 
lemma. [] 

For A-polynomials t and s we can define the substitution of the ith part of t by 
s. The resulting A-polynomial is denoted by t (qi:s) .  More precisely, let 
t • C A ( c l , . . . ,  cm) and s e C ~ d l , . . . ,  dk) where t can be represented as 
tx + cx + • • • + Cm + tm+l. Then t(qi : s) denotes the A-polynomial tl + • • • + ci + 
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s +c~+1 + " "  + tm+S provided that the constants d l , . . . ,  dk are different from 
each of the constants c ~ , . . . ,  Cm. 

A 
Lemma 5.8. Le t  t e Cn (cl,  . . . , Cm), n >~ 1. Suppose 99(x) and ~p(x, y )  are 
formulas  o f  L 2 ( c l ,  . . . , Cm) with quanttfier ranks at mos t  n - 1. Then: 

(I) t ~ 3 x 9 9 ( x )  i f f  t~99(cj) for  some j<~m,  or there are some i < - m +  1 and 

s(c)  ~ f~(q i ( t ) )  such that t(qi :s(c)) ~ 99(c). 
(II) t ~ Q ~ x 9 9 ( x )  i f f  there are some i < ~ m +  1 and s ( c ) e g ~ ( q i ( t ) )  such that 

t(qi :s(c)) ~ 99(c). 
(III) For to~ regular, t ~ Q 2 x y  ap(x, y)  i f f  there are some i <~ m + 1 and 

s(c, d)  e h~(qi(t))  such that t(qi :s(c, d))  ~ ~p(c, d). 

(IV) For o9~ singular, t ~ Q 2 x y  ~p(x, y )  i f f  there are some i <- m + 1 and 

(r, s) ~ h~(qi(t))  such that t(qi :r(c, d)) ~ ~p(c, d) and t(qi :s(c, d))  ~ ~p(c, d). 

Proof. Suppose t ~ 3x 99(x). Then there is some a e t with (1) t ~ 99(a). Assume 
a ~ qi(t) for some i ~< m + 1. By Property (I) o f f  ~ there is some s(c)  ~ (q~(t)) such 

that (a, qi( t))  ~ 1  ( c , s ( c ) ) .  Since then 

(c l ,  . . . .  , ci, a, ci+l, . . . , Cm, t} ~ 1  (C~, . . . , Ci, C, Ci+l, . . . , Cm, t ( q i : s ( c ) ) ) ,  

we can conclude t (q i : s (c ) )~99(c)  using Property 1.3 and (1). The converse 
implication follows similarly. This proves (I). The remaining parts (II)-(IV) are 
derived in the same way using the properties of g~ and h~. [] 

In the following let K = {cl, c2, .  • • } be a countable set of new constants. Then 
C~(K)  denotes the set of A-polynomials with constants from K (in their natural 
ordering given by the enumeration). Now we can state the main theorem. 

Theorem 5.9. There is a decision procedure which effectively decides "t ~ 99" f o r  

any A-polynomial  t f r o m  C~(K)  and any sentence 99 o f  L 2 ( K ) .  

Proof. We may assume that q9 is defined in t. If 99 is atomic, then "t  ~ qg" can be 
easily decided. Now by induction on the complexity of sentences: in case that q9 is 
a conjunction 991 ^ 992 or a negation ~ p ,  respectively, then "t ~ 99" can be decided 
using the induction hypotheses. There remain the following two cases (we 
suppose t ~ CZ~(cl, . . . , Cm)): 

Case 1:q9 = 3x ~p(x, Cl, •. •,  Cm) and q(99) = n. By the preceding lemma, t ~ q9 
iff (1) t ~ ~p(cj, c l , . . . ,  Cm) for some ] ~ m or (2) there are some i ~< m + 1 and 
some s(c)  ~ fn (q i ( t ) ) ,  respectively, so that t(qi :s(c)) ~ Ip(c, c l , . . . ,  Cm). For given 
t, fn (q i ( t ) )  can be effectively calculated, and t ~ ~p(cj, cx, . . . ,  Cm) and t(qi :s(c)) 
ap(c, c ~ , . . . ,  Cm) can be effectively decided by the induction hypothesis (after 
renaming). Hence t ~ 99 is also effectively decidable. 
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Case 2:q9 = QE~xy ~p(x, y, c1, • • • ,  Cm) for  some tee  A and q(qg) - n. Again by 
Lemma 5.8, "t ~ (p" has an equivalent representation which is decidable by the 
induction hypothesis. [] 

As an easy consequence we get: 

Corollary. Every A-polynomial  has a decidable theory in L2A. 

Moreover, we can state our desired result. 

Theorem 5.10. Let  A be a finite set o f  ordinals. Then: 

(a) For every natural number  m, Th~(WO)/s  decidable. 

(b) Th~°'(WO)/s decidable. 

Proof. (b) is a consequence of (a). Part (a) is proved only for m = 2. In case 
m > 2 w e  have to generalize all the necessary facts to ~-mod G~ (this requires 
much more notation but no new ideas). Alternatively we can prove that the 
elimination of Q~ with respect to L 2, m > 2, can be carried out effectively. 

Now let (p be a sentence of L 2 with quantifier rank n. According to Lemma 5.2 
and Proposition 1.3, the sentence (p is valid in all well-orderings iff "t ~ (p" is true 
for all t e R~. However, this is effectively decidable by Theorem 5.9 and the 
finiteness of R~ .Thus, for every sentence (p we can effectively decide after 
finitely many steps whether it is true in all well-orderings or not. [] 

Note that we get further decidable theories of well-orderings by taking finite 
extensions of Th~(WO), for instance the theories of the classes of infinite, 
countable, or uncountable well-orderings, respectively, are such finite extensions. 

6. Further decidability results 

From the preceding section the question arises whether the theory of all linear 
orderings in a language with Malitz quantifiers is also decidable. The question is 
answered affirmatively for languages which only contain quantifiers with inter- 
pretations in regular cardinalities. In the following we assume that A is a finite set 
of ordinals such that to~ is regular for each o~ e A. Furthermore let 0 e A. 
Contrary to the case of weU-orderings additional set-theoretical axioms are 
required to make sure that there are no independent sentences in L~ °'. For 
certain extensions of ZFC the decidability of the theory of all linear orderings in 
the language L~ was proved in [18]. For simplicity in this section we adopt the 
GCH although weaker assumptions would be sufficient. The main result will be 
the decidability of the theory of all linear orderings in the language LA <°'. In fact 
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we will only prove it for L 2, but everything can be easily generalized to LT. We 
restrict us to L 2 for notational convenience. The proof of the decidability is as 
follows. We will single out a set P zx of 'simple' linear orderings. It will turn out 
that every sentence, which has an ordered set as a model, has already a model in 
P~, i.e. topologically speaking, pzx is dense in the model space of linear 
orderings. In this sense p A corresponds to R a of the preceding section. The 
orderings in P a carry additional informations which are used to form a decision 
procedure. 

The main defect of R a (with respect to the class of all linear orderings) is that it 
does not contain dense linear orderings. To get P a we require some well-behaved 
dense linear orderings which we will introduce now. Let A be an arbitrary linear 
ordering and W 1 , . . . ,  Wk be a partition of A, i.e., they are pairwise disjoint 
non-empty subsets and their union is A. The partition is said to be minimal if 
IWi fq (a, b)al = IW/I for every a < b c A  and every i, 1 <~ i <~ k. Clearly, in this case 
all W/have to be dense in A, thus IAI 2 gw/ . by the GCH, 2 Iw'l = IW I ÷, hence 

either IW l = IAI o r  + = IAI. Remark: this is the main point where we use the 
GCH. 

To have a better reference we state the property above in a proposition. 

Proposition 6.1 (GCH). L e t  A b e  a l inear  o r d e r i n g  a n d  W~, . . . , Wk be  a m i n i m a l  

part i t ion o f  A .  Then f o r  every i, 1 ~ i <- k,  either I = [AI or I Wi[ + = IA[. 

For every regular cardinal o9~ and for 
fixed linear ordering without endpoints 

UI, . . . , Uk, V~, . . . , VI SO that 
(i) I Ud = for each i, 1 ~ i ~ k, and 

(ii) IV I = for each j, 1 ~< j ~< l 
(if a~ is a limit ordinal condition (i) is omitted). 

all k,  I >i 0 with 1 + k > 0 let sko~ 1 be a 
which possesses a minimal partition 

A proof of the existence of s kJ  can be found in [2]. 
Partitions of linear orderings enable us to form various sorts of products. Let 

W 1 , . . . ,  Wm be a partition of A and H = ( C 1 , . . . ,  C,,,) a finite sequence of 
linear orderings. Then A ( H )  denotes the product ordering arising from A by 
substituting for every element of W/, 1 ~< i <~ m, a copy of Ci. In the particular 
case that A is sko; 1 the above product is denoted by S~(F, G)  where F = 
( A 1 , . . . ,  A k )  and G = ( B 1 , . . . ,  BI) a r e  two sequences of linear orderings (k 
and l are omitted because they are uniquely determined by the sequences F a n d  
G). The product S~(F, G)  is called the shuffling of (F, G). 

Now we define the set P a of so-called A-terms that can be considered as 
canonical names of certain 'simple' linear orderings. 

Definition 6.1. (1) I is a A-term. 
(2) If t is a A-term, then t -  w~ and t-  w~ are A:terms for each tr ~ A. 
(3) If tl and t2 are A-terms, then tl + t2 is a A-term. 
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(4) If F and G are finite sequences of A-terms 
sequence), then S~(F, G) is a A-term for each a~ e A. 

(5) Nothing else is a A-term. 

(not both are the empty 

For every A-term t there is a linear ordering t o which is defined inductively as 

follows. 
(1) 1 ° denotes an ordering with a one-element domain, say the ordinal 1. 

* t o s o t 0 : =  s o * (2) If t = s" wò  or t = s • wo`, then := • too` or - too,, respectively. 
(3) If t=tx + t2, then t ° : = t  ° + t °. 

(4) If t=So`(F, G) where F = ( S l , . . .  , sk)  and G = ( t l , . . . ,  t l )  are sequences 
of A-terms, then to:= SO`(F °, G°). 

R e m a r k .  +,  -, and So  ̀ are used as symbols in the definition of Pa ,  and at the 
same time they denote operations on the class of linear orderings. In the 
following we shall not distinctly distinguish between t and t °. Sometimes, to avoid 
additional considerations, we require a term 0 representing the ordering with 
empty domain. In such cases we assume that 0 belongs to P a. In this paper we 
are not interested in the 'word problem' of A-terms, i.e., in the various different 
representations of linear orderings as A-terms. 

To reduce the notation we make the following simplifications: Since A is fixed 
throughout this section, it is always omitted if possible. Furthermore,  we restrict 
our considerations to L 2 and the relations ~ -mod  G 2, thus mod G 2 can be also 
omitted. 

In the following many proofs will be proved by induction on n. To avoid 
endless repetitions of trivial facts the cases n = 0 will be regarded as solved. 
Assuming the theorems proved for n - 1 the induction steps for n will be shown. 

Usually we have to prove equivalences of the form A ~ B. This will be done 
showing A z "  B. Then by symmetry B ~ " A ,  hence A z B. 

To show A ~<"B we have to verify the two conditions (i) and (ii) of the 
definition of <n. For short we call (i) the element condition (E-condition) and (ii) 
the quantifier condition (Q-condition). For the Q-conditions we make further 
simplifications. 

In most cases we have situations like the following: we are given a linear 
ordering A, a subset X ~ A, IXI = too` for some a~ e A, and a monotone mapping 
f:A---~C. By the regularity of too` either (1) IXNf-l(c) l  = to,~ for some c e C or 
(2) ]f(X)l -- too`. In the first case we may additionally assume that X =f- l (c)  and 
that X is (n, A)-order-homogeneous in the subordering f - l (c)  ~ A. In the second 
case we may assume that [ f - l (c)  fq X] <~ 1 for all c e C and that for all a < b e X 

(a, f -x( f (a)))  ~ (b, f - l ( f (b) ) ) .  

Subsets X with the properties above are called n-sections over C. Let X ~ A, 
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Y ~_ B , . f  :A---> C, and g" B---> D be given. Suppose X and Y are n-sections over C 
and D, respectively, such that for all a e X and all b e Y 

(a, f - l ( f ( a ) ) )  ~ (b, g - l (g (b ) ) ) .  

Then X and Y are said to be n-equivalent. 
To show that P a is dense in the model space of linear orderings we need some 

basic properties of ~ which we are going to prove now. To clarify the proofs of 
the following lemmata the reader is advised to draw pictures for himself. 

Lemma 6.2. Let A,  B, and C be linear orderings. Suppose f : A ---> C and g: B---> C 
are monotone mappings such that for  each c ~ C the equivalence f - l ( c )  ~ g- l (c)  
holds. Then A ~ B. 

Proof. By induction on n. We show A <~" B. 
E-condition. Let a c A  and c = f ( a ) .  Then 

( a, f - l ( c )  ) ,,.:1 

the lemma for 

reason A >a n~l 

there is some b e g - l ( c )  with 

(b, g - l ( c ) ) .  Hence f r A<a and g [ B <b satisfy the hypothesis of 

n -  1. By the induction hypothesis A <a ~:1 B<b. For the same 

B >b, thus ( a , a )  ~-) ( b , B ) .  

Q-condition. Let  X ~_ A. IXI = to~ for some t re  A. 
QI:  X ~_f- l (c)  for  some c e C. Choose Y ~_g-l(c), IYI = to, so that 

( y ,  g - l (c  )) <,,-1 (X,  f -X(c)  ). 

This is possible because f - ~ ( c ) m g - ~ ( c )  by the hypothesis. By the induction 
hypothesis (Y, B) <n-s (X, A)  immediately follows. 

Q2: X is an n-section over C. For every a e X we can choose an element b e B 
so that 

g ( b ) = f ( a ) = c  and ( a , f - l ( c ) )  ~:~ ( b , g - l ( c ) ) .  

Thus there is an ( n -  1)-section Y ~ _ B  over C, I YI = to~, which is ( n -  1)- 
equivalent to X, hence (Y, B)  <~-1 (X, A)  by the induction hypothesis. [] 

Corollary. The relation ~ is compatible with the operations +, • to~, a n d .  to* for  
any ordinal o:. 

Proof. Use the canonical mappings A + B---> 2, A " too,---> to~, and A . to *---> to ~ 
and apply the preceding lemma. [] 

In the same way we can prove the following two lemmata. 

Lernnta 6.3. Let A ,  B, C, and D be linear orderings with C ~ D. Suppose there 
are monotone onto mappings f :A-->C and g'B---> D, respectively, so that 
f - l ( c )  ~ g - l ( d )  for  all d*'~ C and all d ~ D. Then A ~ B. 
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Lenuna 6.4. Let A,  B, C, and D be linear orderings without endpoints. Suppose 
there are monotone onto mappings f :A--> C and g : B---> D, respectively, and 
minimal partitions U1, • • •, Uk and V1, . • . ,  Vk of  C and D, respectively, so that 

(i) [U/[ ~> co~ iff  lVi[~og~for every o~ ~ A and every i, 1 <~i <~k, 
(ii) f - l ( c )  ~ g- l (d )  for all c e Ui and all d ~ Vi, for  each i, 1 <~ i <~ k. 

Then A ~ B. 

The next lemma is a crucial step in the proof that PZ~ is dense in the model 
space of linear orderings. To state the lemma we require the following notions. 
Let C be any linear ordering and C ' =  C + 1. The greatest element of C' is 
denoted by c. For every ordinal Z define 

G = ( c '  . ( to* + . z .  

The ordering Cx can be identified with the cross product Z x (Z x C')  ordered 
lexicographically (where 7/is the set of integers). 

V~,k and v~ denote the elements (tr, k, c) and (tr, 0, c) ,  respectively, of Cx. 
Furthermore, set V = {v~ :re < Z}. Obviously V is a strictly increasing cofinal 
sequence of length Z in Cx. Now let A be a given linear ordering with a strictly 
increasing cofinal A-sequence U = {u~, :tr < Z} which is in addition (n, A)-order- 
homogeneous. Suppose C was chosen so that C ~ (Uo, Ul)A. Define B = A "'o + 
C' • to + Cx. We are mainly interested in the elements of B which belong to the 
part Cx. For simplicity we keep on the same notation for the elements of Cx if 
they occur as elements of the sum B. We assume that Z is a regular cardinal. 

Lemma 6.5. (i) V is (n, A)-order-homogeneous and 
(ii) A ~ B. 

The proof breaks into several cases. Most of them are similar to ones occurring 
in the preceding lemmata. For each case, therefore, we only give some hints and 
then refer to the corresponding case already proved. 

Proof. By induction on n we prove (v~, va)B ~ (Uo, Ul)A for all te < fl < Z. In the 
following we will omit the subscripts A and B at the intervals. 

Claim 1. (Uo, u3) <n (v~, vl3 ) for  all o: < fl < Z. 

E-condition. Let a e (u0, u3). Then the following cases arise: (1) a e (u0, Ul), 
(2) a e (u l ,  u2), (3) a e(u2, u3), (4) a = u l ,  or (5) a =u2.  Then choose b e 
(v~, v,,,1)(1), be(V~.l ,V~,2) (2), b e ( v a . _ l ,  Va) (3), b=V~. l  (4), or b = v a , _ l ,  
respectively, and then argue as in the preceding lemmata using the induction 
hypothesis. 

Q-condition. Let  X ~_ (Uo, u3), IXI -- to~ for some 6 e A. We may distinguish 
the following cases: (1) X ~ (Uo, ul), (2) X ~_ (Ul, u2), or (3) X ~  (u2, u3). All 
cases are like the Ql-cases of the preceding lemmata. 
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o a i m  2. (v0, -<" (Uo, 

E-condition. Let a • (v0, Vl). We have the following cases: (1) a • (Vo, k, Vo, k+~] 
for some k 1> 0 or (2) a • [Vl,k-1, Vl,k) for some k ~< 0. 

Both cases are treated as in Claim 1. As an example we discuss the case 
a • (vl,-5, vl,-4). Since (vl,-5, vx,-4) ~ (uo, ul) and U is (n, ,4)-order- 
homogeneous,  we find some b • (u~,, uo~+~) satisfying 

(a, (v1,-5, Vl,--4)) n,~l (b, (uo,, u,o+l)). 

By the induction hypothesis (Vo, v~,_5) ~ (Uo, uo,) 

(uo,+l, uo~ +2), thus 

(a, (Vo, v l ) ) , : 1  (b, (Uo, uo,+2)). 

and (vl,-4, v l ) ,~a  

Q-condition. Let X ~ (Vo, Vl), IX[ = o9~ for some 6 • A. We may restrict us to 
the following cases (other cases are reduced to them by taking subsets): (1) 
X=_(Vo, k;, Vo, k+l) for some k~>0, (2) Xc_(Vl ,k-1 ,  Vl,k) for some k~<0, (3) X is 
countable, i.e. 096 = o9, and for all k >I 0 X A (VO, k, Vo, k+l) contains at most one 
element whereas X fq (Vl,-k-1, Vl,--k) is empty,  or (4) X is countable, i.e. a~ = co, 
and for all k >~ 0 (Vo, k, V0,k+l) is empty whereas X f3 (Vl,-k-~, Vl,-k) contains at 
most one element.  

The cases (1) and (2) are like the Ql-cases of the preceding lemmata.  On the 
other hand, (3) and (4) are treated like Q2-cases of the preceding lemmata: we 
choose Y~_ (Uo, uo~) so that for each k >10, Y N (U2k+l , U2k+2 ) contains exactly 
one element and Yr l  (u~,, Uzk+a) is empty,  i.e., Y is something like an 
(n - 1)-section which is (n - 1)-equivalent to X. 

Claim 3. (v~, v~) <<-" (u~, Us+z ) for every a < 13 < ~. 

We prove the claim by transfinite induction on/3. If 13 is a successor ordinal, 
then the claim easily follows from the induction hypothesis on 13 - 1 (in case that 
13 > 1) or from Claim 2 (for /3 = 1) using the (n, A)-order-homogeneity of U. 
There remains the case that /3 is a limit. 

E-condition. Let a • (v,,, vt3 ). Then either (1) a • (v~, V~,k) for some a~ <~ y </3  
and some k I>0 or (2) a • (Vtj, k_l, V~,k) for some k ~<0. 

In Case (1) the induction hypothesis on y is used. Case (2) is similar to Case (2) 
of the E-condition of Claim 2. 

Q-condition. Let X _~ (v,~, vt3 ), IXl  = for some 6 • ,4. We may restict us to 
the following cases: 

Case 1. X ~ (v~, v~) for some a~ < y </3. 
Case 2. IX n (v~, v~,)l < w6 for all y </3  but ( x  n = o9 . 

Case 3. X ~_ (Vo, k-a, VtJ,k) for some k ~< 0. 
Case 4. X is countable, i.e. o96 = o9, and for each k <<-0 X n (Vtj,k_ ~, Vt~,k ) 

contains at most one element,  and X is a subset of Uk~<O (Va,k-~, Va, k). 
The first case is solved using the induction hypothesis for y. In Case 2 we define 
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a monotone mapping f:(v,~,v~)-->(tr, fl) where (tr, fl) denotes the interval 
between tr and fl in the class of ordinals. Then we may assume that X is an 
n-section over (tr, fl) and proceed as in the Q2-cases of the preceding lemmata. 
The cases 3 and 4 are similar to the cases (2) and (3), respectively, of the 

Q-condition of Claim 2. 
This proves the claim for limit ft. 
Since U is (n, A)-order-homogeneous the third claim implies that (v,~, va)~<" 

(u0, ul). From Claim 1 we get the relation (Uo, Ul)<."(v,~,va), hence 
(v,~, vt3 ) ~ (Uo, ul) as stated. 

In the same way we can prove that A>""~B >''. The initial part of B is 
isomorphic to A -<'°. Let u~ be the greatest element of this initial part. Clearly, 
(u~, Vo) ~ (Uo, ua). Thus for all ix < Z, A <'-  ~ B <'*. We can conclude that V is 
(n, A)-order-homogeneous. Moreover it follows A Z B. This completes the 

proof. [] 

Definition 6.2. A linear ordering A is said to be (n, A)-term-like iff there is some 
A-term t • P a so that A & t. 

The (n, A)-term-like linear orderings form a subclass of the class of all linear 
orderings. As we shall see below it is not a proper subclass. 

Lemma 6.6. The class of  (n, A)-term-like linear orderings is closed under +, 
multiplication with to~ and to*, respectively, and under the shuffling operation 
S~(F, G) for every o: • A. 

ProoL By the corollary to Lemma 6.2 and Lemma 6.4. [] 

Lemma 6.7. Let A be any linear ordering. I f  every bounded segment of  A is 
(n, A)-term-like, then A itself is (n, A)-term-like. 

Proof. We may assume that A has a least element. The proof is similar in the 
other cases: if A has a greatest element, then we use the corresponding results for 
the inverse orderings; in case that A has neither least nor greatest element we 
partition A = B + C + D where B has a greatest element, D has a least element, 
and C is bounded. If A has a greatest element,  then we are done. Otherwise there 
is a strictly increasing cofinal sequence U ~_ A. Let U be of shortest length, say ~.. 
Clearly, ~. is a regular cardinal. By Theorem 3.30) we may assume that U is 
(n, A)-order-homogeneous. Furthermore set C = (Uo, Ul)A. Then 

A Z A  <-'0 + C'  • to + C ' -  (to* + to)- 

by the preceding lemma. Since every bounded segment of A is (n, A)-term-like 
there are terms to and tl so that A <-'° ~ to  and C'  & tx, respectively. Thus 

A n ( t  O + t l "  W -t- t I " (W* + W)"  ~. 
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by Lemma 6.2. From the preceding section we know that there is some s • R "  
such that s ~ ~, hence using Lemma 6.3 we can conclude 

A ~ t o + t x  • w +t~. (w* + w ) . s .  

Thus A is (n, A)-term-like. [] 

L e m m a  6.8. Every linear ordering is (n, A)-term-like. 

P r o o f .  We prove the lemma in a series of steps. Let A be a given linear ordering. 
We define the following ~quivalence relation ~ on A: x ~-y iff (i) x = y, (ii) x < y 
and every segment of the closed interval [x, Y]A is (n, A)-term-like, or (iii) y < x 
and every segment of the closed interval [y, x]A is (n, A)-term-like. 

We are going to prove that all elements of A are equivalent to each other. 

1. ~ is an equivalence relation, and each of its equivalence classes is convex. 

ProoL By the definition of -~ and Lemma 6.6. [] 

2. Every equivalence class C has the property that each segment of it is 
(n, A)-term-like. 

P r o o f .  By the definition of ~ each bounded segment of C is (n, A)-term-like, 
hence any segment of C is (n, A)-term-like by Lemma 6.7. [] 

3. Let M = A/-~ be the quotient ordering, i.e., the set of equivalence classes with 
the canonical ordering. Then M has order type 1, or equivalently, all elements of 
A are equivalent to each other. 

P r o o f .  Assume on the contrary that M has at least two elements C < D • M. 
Case 1: There are no elements between C and D. Let a • C and b e D be any 

elements. Furthermore, let U be a segment of [a, b]A. We show that U is 
(n, A)-term-like. If U is contained in C or D, respectively, then U is (n, A)-term- 
like by (2) above. Otherwise, C and D induce a partition on U with the parts 
U tq C and UN D which are (n, A)-term-like by (2) above. Then U is also 
(n, A)-term-like by Lemma 6.6. Thus a -~ b, what contradicts C < D. 

Case 2: M is dense and C < D  • M are chosen so that the cardinality o f  
I(C, D)~[ is minimal, say [(C,D)MI=to~. Let l ~ n = { E l , . . . , E p }  be a set of 
linear orderings which is a set of representatives for ~ (cf. Section 3). The set of 
those parts B ~ (C, D)M satisfying B ~ E i  is denoted by W~, 1 <~i ~<p. Without 
loss of generality we assume that W1, . . . ,  Wk axe non-empty and Wk+~ = ' ' ' =  
Wp = t~ for some k ~< p. Now suppose C < D • M were chosen so that V¢1, . . . ,  Wk 
form a partition of (C, D)M which is minimal. From (2) above it follows that 
there are A-terms t l ,  • • . ,  tk such that ti ~ Ei for each i, 1 ~< i ~< k. B y  Proposition 
6.1 for each i, 1 <~i <~k, either IW/I- oa or IW/I = tot3-1 (if fl is not a limit 
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ordinal). We may assume that IWd = - " =  IW/I = co _1 and I W / + x l - ' - - - - I W k l  = 

t0t3 for some l ~< k (if there is no W/with IWd < toa, then set l = 0). 
Now we distinguish the following cases: 

Case 2.1: fl • A. Let U b e  a segment of A so that U1 = U/= has no endpoints 
and belongs to (C, D)M. By Lemma 6.4 we get 

V ~ Sa(F, G) 

where F =  ( t l , . . . ,  h) and G = ( t ~ + l , . . . ,  tk) (if l = 0  set F = O ) .  
Case 2.2: f l¢  A. Let a~ • A be the greatest ordinal with a~< ft. As in the 

preceding case let U be a segment of A so that //1 = U/= has no endpoints and 
U1 ~_ (C, D)M. Again by Lemma 6.4 we can conclude that U ~ S~(F, G) where 
F = t~ and G -  (tl ,  • • •,  tk), respectively. 

Now let a • C and b • D be any elements. Furthermore,  let U be a segment of 
[a, b]A. U1 = U / ~  denotes the segment of [C, D]M induced by U. Using the 
results of the cases 2.1 and 2.2, together with (2) above, we infer U is 
(n, A)-term-like. Thus a = b contradicting the hypothesis C < D. 

Thus M cannot possess more than one element as stated. Thus A is 
(n, A)-term-like by (2) again. [] 

An application of Lemma 6.8 is given in the next theorem. 

Theorem 6.9. Each sentence q9 o f  L 2, which has an ordered set as a model, has a 
model in pa.  

Proof. Let A be a linear ordering which is a model of (p. Suppose q(tp) = n. By 
Lemma 6.8 there is some A-term t e P zx so that A ~ t, thus t ~ (p by Proposition 
1.3. [] 

We have reduced the decision problem for the class of all linear orderings to 
the set P a of A-terms. This has been the first step in our solution of the decision 
problem. Now we are going to study the set P zx in detail. The set of equivalence 
classes of P ~ with respect to the relation ~ is denoted by P ~/n. 

Lemma 6.10. P a/n is a finite algebraic structure with respect to the functions +, 
• w~, • w~, and sk ' l for  each tr e A and all natural numbers k and I with k + I > 0 .  

Proof. By Lemma 3.1, Pa/n  is finite, the functions are well-defined by Lemma 
6.4 and the corollary of Lemma 6.2. [] 

For simplicity the elements of Pain  are represented by A-terms instead of 
writing classes. Moreover, from now 0 is always included in the set of A-terms. 
For our decision procedure we require A-terms with constants which are defined 
by recursion. 
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Definition 6.3. The set P a ( C l ,  . . . , C m )  of A-terms with the constants Cl, . . . , C m 
is the set of formal expressions described as follows: 

ea(ca,  . . . , Cm)= {S + Cm + t :s  e Pa(cl ,  . . . , Cm-1) and t e P a } .  

It is convenient to think of the elements of P a ( c l , . . . ,  Cm) as sums 

t l  + c l  + t 2 +  • • • +tin +Cm +tm+l 

where t l , . . . ,  tm+~ are elements of pa .  
The terms t ( C l , . . . ,  Cm) are interpreted as linear orderings with distinguished 

constants as follows: 

0 0 tO(Cl,...,Cm):=tO+cO+tO+'''+tO+cm+tm+l 

where c o are one-element orderings. 

If Z is any set, then Po,(Z) denotes the set of all finite subsets of Z. For  every 
natural r:umber n and every ordinal a~ e A we introduce the mappings f "  : p  a___> 

p~,(pa(c~) ' gn:pa___> po,(pa(c)), and h"~:Pa---> Po~(Pa(c, d))  with the following 
properties: 

(i) For  each A-term t and every a e t o there is some s (c) e f " ( t )  so that 

(a, t °) n•l (cO, sO), (1) 

and for every s(c) e f " ( t )  there is some a e t o which satisfies (1). 

(ii) For  each A-term t and every subset X ~ t o of cardinality w~, a~ e ,4, there is 
some s(c) e g$(t) and a subset X '  ~ X of cardinality ~o~ so that 

for all a e X '  (a, t °) n=l (C 0, sO), (2) 

and for every s (c) e g](t)  there is a subset X '  ~ t o of cardinality w= which satisfies 
(2). 

(iii) For  each A-term t and every subset X _~ t o of cardinality w~, c~ e A, there 
is some s(c, d) e h~(t) and a subset X '  c_ X of cardinality o9o~ so that 

f o r a l l a < b e X '  ( a , b , t ° )  "=1 ( c ° , d ° , s ° ) ,  (3) 

and for every s(c, d)eh"~(t)  there is a subset X '  ~_t ° of cardinality w~ which 
satisfies (3). 

The existence o f f " ,  gn, and h~ is easily shown using Lemma 6.8. However,  we 
will give a definition of f" ,  gn, and h ]  by recursion on terms. As an immediate 
consequence we get the recursiveness of the mappings f " ,  g] ,  and h i .  The proof 
that they have in fact the properties (i)-(iii) uses a rguments  similar to those of 
the previous lemmata. It is similar to the proof of Lemma 5.6. The details are left 
to the reader.  

1. We already have determined the values for 1: 

f " (1 )  = {c}, g~(1) = O, and h](1) = O. 
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2. The values f~ (wa) ,  gn(wa),  and h~(wa) can be determined effectively using 

the results of the preceding section. 
3. n • n • n • h ~ ( w s )  are as w e same f (we) , and determined in the way for using 

the corresponding results for the inverse orderings. 

4. f ~ ( t l + t 2 ) = { t l + s : s e f ~ ( t 2 ) } U ( s + t 2 : s e f ~ ( t l ) } ,  

g~(tl  + t2) = {h + s :s • g~(t2)} U {s + t2:s • g~(h)}, 

h~(tx + t2)--  {tx + s:s  ~ hn(t2)} [.J {s q- t2:s • h~(/1)}. 

5. f ~ ( t  " wl~) = {t " S~ + S(C) + t " wl~ :s(c)  e f~ ( t )  

and s ,  + c + wa 

gn(t  " Wa) = { t ' s l  + S(C) + t" 

or Is(c) e f " ( t )  

• fn (w , ) ) ,  

wt~ : [s(c) e g~(t)  and sl  + c + wl~ • fn(wl3)] 

and sl  + c + w e • g~(wa)]}, 

h~(t " wt3 ) = {t " sl  + s(c, d)  + t " wl~ :s(c, d)  e hn(t)  and sl + c + wt3 ef"(wt3)} 

LJ {t . s l  + t l (c)  + t . s2 + t l (d)  + t . we: 

s l  + c + s2 + d + wl3 e h~(wi~ ) and tl(C) e fn( t )} ,  

6. Let F = (sl ,  • • • ,  sk) and G = ( h , -  • . ,  tt) be two sequences of A-terms so 
that k + l > 0 .  

fn(sl3(F , G))  = {S#(F, G) q- s(c)  q- Si3(F , G)  :s(c) • fn($i) for some i <<- k 

or s(c)  e fn ( t j )  for some j ~< l} 

g~(Sa(F, G) )  = (Sa(F,  G)  + s (c )  + Sa(F, G ) : s ( c )  e gn(si) 

for some i ~<k or s(c)  e g~(tj) for some j ~<l or s(c)  • T~,a} 

where T~,/~ is defined as follows: 

T,,,/~ = ~ if t r >  fl, 

T~,~ = {s(c)  :s (c)  e f t ( t 1 )  for some]  <1}, and 

Toe,13 = {S(C):S(C) • f n ( t i )  for some i ~< l or 

s ( c ) e f n ( s i ) f o r s o m e i < ~ k }  if o~< ft. 

h~(Sz(F,  G ) )  = (St~(F, G)  + s(c,  d)  + Sa(F, G ) : s ( c ,  d)  • h~(si) 

for some i ~< k or s(c,  d)  • h~(tj) for some j ~< l) 

u G) + s(c) + S (F, C) + s(d) + &(F, C):s(c)  • 

where T~,t3 is the set defined above. 
Now we continue as in the previous section. The part-functions qi are defined 

for terms with constants in the same way as for composite A-polynomials. For  any 
terms s, t e P a ( c l ,  . . . , cm) define s ~ t iff  qi(s)  & qi(t)  for each i, l <~i <<-m +1 .  
The corresponding quotient sets are denoted by P a / n ( c l , . . . ,  Cm). By modifying 
the definitions of t / n  affd Z / n  we get an analogue of Lemma 5.7. 
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Lemma 6.11. Let  s, t • Pa(c l ,  . . . , Cm) and n >I 1. Then s ~ t i f f  f " ( q i ( s ) ) / n  - 1 = 

f " ( q i ( t ) ) / n -  1, g ~ ( q i ( s ) ) / n -  1)=  g ~ ( q i ( t ) ) / n -  1, and h ~ ( q ~ ( s ) ) / n -  1 = 
h~(qi( t ) ) /n  - 1 for  every i, 1 <~ i <~ m + 1, and every tr e A. 

Proof. See Lemma 5.7. [] 

Lemma 6.12. There is a decision procedure which decides whether  "s ~ t" is true 
or not  where s, t, and n vary over  A- terms (with constants) and natural numbers,  
respectively. 

Proof. We may assume that s and t Contain exactly the same constants, say 
c l , . . . ,  cm (otherwise the relation in question is false). Now we proceed by 
induction on n. In case n = 0  the equivalence s & t  is true for any s , t •  
P ~ ( c l , . . . ,  cm). Suppose n I> 1. By the preceding lemma we have s &t iff 
f " ( q i ( s ) ) / n  - 1 = f " ( q i ( t ) ) / n -  1, g~(q~(s))/n - 1 = g~(q~(t))/n - 1, and hn(qi(s)) /  

n - 1 = h~(q~(t))/n - 1 for all i ~< m + 1 and a~ • A, respectively. The values of 
f " (q i ( x ) ) ,  g~(qi(x)) ,  and h~(qi(x))  for x = s, t can be calculated effectively. By the 
induction hypothesis the equations above can be verified effectively, hence the 
truth of "s ~ t" can be decided after finitely many steps. [] 

The structure P ~ ( c x , . . . ,  cm)/n is said to be presented effectively iff it has a set 
{to,. • . ,  t,,} ~_ P~(c l ,  • • • ,  cm) of representatives for & which can be effectively 
specified. 

Lemma 6.13. For each n, PZ~c 1, . . . ,  cm)/n is effectively presented. 

Proof. Clearly, it suffices to prove the lemma for pa /n .  P ~ is finitely generated 
by {0, 1} using the operations + ,  • w=, - w*, and skj I for te • A. Hence P a / n  can 
be generated from {O/n, 1 /n}  by successive applications of the operations 
mentioned above. Since P a / n  is finite, the process generating it stops after finitely 
many steps. By the preceding lemma we can effectively determine when the 
process generating P a i n  will stop. Then a set of representatives can be specified 
effectively using again Lemma 6.12. [] 

For any A-terms t and s we define the substitution of the i-th part of t by s as 
for composite A-polynomials. Again the resulting term is denoted by t(qi: s). The  

following propositions are proved in the same way as the corresponding theorems 
in the previous section. 

Lemma 6,14. Let  t • P~(c l ,  . . . ,  Cm), n >I 1. Suppose qg(x) and ~p(x, y)  are 
formulas  o f  L 2 ( c l , . . . ,  cm) with quantifier ranks at most  n - 1. Then: 

(I) t k :ix qg(x) i f f  t k qg(c~) f o r  some  j <~ m,  or there are some i <- m + 1 and 
s(c)  • f " (q i ( t ) )  such that t(qi :s(c)) k tp(c). 

aZ~ottw~ 
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(II) t~Q~,x cp(x) iff  there are some i<-m + 1 and s(c)eg~(qi( t ))  such that 

t(qi :s(c)) ~ qg(c). 
(III) t g Q ~ y  ~O(x, y)  iff there are some i <~ m + 1 and s(c, d )~  h~(qi(t)) such 

that t(qi :s(c, d)) ~ ~p(c, d). 

Proof. See Lemma 5.8. [] 

Theorem 6.15. There is a decision procedure which effectively decides "t ~ qg" for 
any A-term t (with constants) and any sentence cp of  L 2 (with constants). 

Proof. See Theorem 5.9. [3 

Corollary. Every A-term has decidable theory in L~. 

Theorem 6.16. Let A be a finite set of  ordinals such that cf A = A. Then: 
(a) For every natural number m, ThT(LO)/s  decidable. 
(b) Th~° ' (LO)/s  decidable. 

Proof. (b) is an immediate consequence of (a). Let us prove (a) for m = 2. By 
Lemma 6.9, ThZa(LO) is equal to the set of all sentences of Lad which are valid in 
all A-terms t (~0).  Let q9 be an arbitrary sentence of LzA. Assume q(qg)= n. 
According to Lemma 6.13 we effectively find a set {to=0,  t l , . . . ,  trn} of 
representatives for &. By Proposition 1.3 the sentence q0 holds in all non-zero 

A-terms iff ti ~ q9 for all i, 1 ~ i ~< rn. 
By Theorem 6.15 it is effectively decidable whether ti ~ q9 is true or not. Thus 

we have a method to decide effectively whether some sentence q9 holds in all 
linear orderings or not. To prove (a) for m > 2, all the results of this section have 
to be generalized to &-mod G~. Alternatively we can prove (a) by showing that 
the elimination of Q~ with respect to L 2 can be carded out effectively. [] 

Since every finite extension of Th~'°(LO) is also decidable we get further 
decidable theories in languages with various Malitz quantifiers. 

For  example the theories of the following classes are all decidable (provided 
cf A = A): ILO (infinite linear orderings), ULO (uncountable linear orderings), 
DLO (dense linear orderings without endpoints), and UDLO (uncountable dense 
linear orderings without endpoints). 

We close the paper with some questions. 

1. Is the theory Than(LO) decidable for arbitrary finite A? An affirmative answer 
would imply the decidability for singular Malitz quantifiers. 

2. How does ThZa(LO) depends on A? In particular, what conditions on A and F 
are equivalent to ThZa(LO) = Th~-(LO)? 

3. How does Th~(LO) depends on the various set-theoretical assumptions? 
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4. Suppose A = {to). Is Qm eliminable with the help of Q2 with respect to LO? 
Or, more generally, is the assumption cf A ~_ A really necessary? 

5. Are the theories Th~o,~(LO) and Th~o,l~(LO) equal to each other? In case they 
are not, find some simple sentence which is valid in one interpretation but not in 
the other one! 
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