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A b s t r a c t - - W e  reduce the finite-zone solutions of the Korteweg-de Vries equation, sine-Gordon equa- 
t ion and nonlinear SchrSdinger equation associated to a hyperelliptic curve of genus four. 

1. I N T R O D U C T I O N  

Let fl be a g x g Riemann matrix, that  is, a complex symmetric matrix with positive definite 
imaginary part. Then f~ determines a Riemann theta function 0(fl, z) of dimension g. Among the 
examples of g x g Riemann matrices are the period matrices of hyperelliptic curves of genus g, 
and theta  functions associated to such matrices describe solutions of certain nonlinear partial 
differential equations. In this paper we consider three such partial differential equations, i.e., 
Korteweg-de Vries (KdV) equation, sine-Gordon equation, and nonlinear Schrhdinger equation. 
The so-called finite-zone solutions of these equations associated to hyperelliptic curves of genus g 
can be expressed in terms of Riemann theta functions of dimension g. 

Theta  functions of dimension g are essentially g-dimensional Fourier series, so such finite-zone 
solutions are not convenient for actual computations if g is large. For this reason several methods 
of reducing theta functions to lower dimensional theta functions have been developed recently 
(see e.g., [1-4]). One of these methods was proposed by Babich, Bobenko and Matveev [2]. They 
modified a result that was obtained by Appell [5] in the late nineteenth century, and applied this 
to reduce the dimensions of the theta functions that  appear in the solutions of the above partial 
differential equations associated hyperelliptic curves mostly of genus two or three. In this paper 
we apply this method to such solutions associated to a certain class of hyperelliptic curves of 
genus four and express the solutions in terms of the Riemann theta functions of dimension one 
and two only. We also show that  these solutions can further be reduced to the ones involving 
only theta  functions of dimension one. 

2. F I N I T E - Z O N E  S O L U T I O N S  

In this section we describe the finite-zone solutions of the KdV equation uxxx  - 6uu~ + u, -- O, 
the sine-Gordon equation vtt - v ~  = sin v, and the nonlinear Schrhdinger equation iet  + exx - 
21¢12¢ = 0 associated to hyperelliptic curves. Let S be a hyperelliptic curve of genus g given by 
w 2 = P29+l(z) or w 2 = P29+2(z), where P2g+l and P29+2 are polynomials of degree 2g + 1 and 
2g + 2, respectively, without multiple roots. Let { h i , . . . ,  ag, b l , . . . ,bg}  be a canonical basis of 
cycles in 

H I ( S ,  Z) -- Z + . . .  + Z (2g terms) 

such that  ai • aj = bi • bj = 0 and ai • b i = 6ii for 1 < i, j _< g, where 6ij is the Kronecker delta 
and (-)  denotes the intersection number. The dimension of the space of holomorphic 1-forms 
g l ' ° ( S )  of S is g. Let { d u l , . . .  , dug}  be a basis of HI '°(S)  such that  

z k - l d z  and f e  duk = 61k du j  = cjk--'"--~'-- 
k= l  J 
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for 1 < j,  k <: g. Then the matrix B = (bjk) with 

bjk= I dub, l < j ,  k < g  
J b  J 

is called the period matrix of the Riemann surface S and it determines the Riemann theta  function 

O(x I B) = y ~  exp{ri(Bm, m) +2~ri(m,z)}, 
r n f i Z g  

where x is a vector in Cg and ( ,  / denotes the standard inner product on Cg (see e.g., [6-8]). 
More generally, if c~,/3 G R g, then the Riemann theta  function associated to B with characteristic 
[a,/3] is defined by 

O(~)(x l B) = ~ exp{lri(B(m + a),m + ez) + 27ri(m + ot, x +/3)}. 
\ t - ' /  raEZg 

The finite-zone solutions of the KdV equation, sine-Gordon equation and nonlinear SchrSdinger 
equation associated to the above hyperelliptic curve can be given in the following forms (see [2] 
for details): 

(a) KdV equation: u(x, t) = -2~-~x 2 In Og (Vx + W t  + D [ B) + constant, 

(b) sine-Gordon equation: v(x,t) 2 In 0(M/~) (27r-l(Vx + W t )  + ( + A) 
, 0(2 -l(W +¢) 

s0(2.-l(v  + w t  - E I B)  
(c) nonlinear SehrSdinger equation: ¢(x , t )  = 0(27r_X(Vx + W t l B  ) 

3. P E R I O D  M A T R I C E S  OF  CURVES W I T H  N O N T R I V I A L  A U T O M O R P H I S M  

Let S be a hyperelliptic curve of genus g and let { a l , . . . ,  ag, bx . . . .  , bg} be a canonical basis of 
cycles in HI(S, Z) as in Section 1. Suppose that  S has a nontrivial automorphism r such that  
the cycles 7"ai are expressed only in terms of a-cycles and the cycles Tbi are expressed only in 
terms of b-cycles. Then we have 

g g 

a , =  b , =  
k = l  k = l  

for 1 < i < g, where Q = (Qik) and T = (T/k) are integral matrices such that  Q-1 and 
T -1 are also integral. Since {rax, . . . , r%,rbl , . . . , rbg} is also a canonical basis, the bases 
{al, . . . ,aa,bl , . . . ,bg } and {rax, . . . , r%,rbl , . . . , rbg} are related by a symplectic matrix. 

a t Thus, i f a = ( a x ,  , g) a n d b = ( b x ,  b t . . . . . .  , g) , we obtain 

Let dul, . . . ,  dug he holomorphic differentials on S normalized relative to the basis {al . . . .  , ag, 
b l , . . . ,bg} .  Then the differentials r*du I (1 <_ j _< g) are normalized relative to the basis 
{ral  . . . .  , rag, r b l , . . . ,  Tbg}. Since we have 

r*duk = duk and r d k = duk 
J - l a J  i -XbJ 

for 1 < j,  k < g, the a-period and the b-period of 7"*duj with respect to the original basis 
{ a l , . . . ,  b l , . . . ,  bg} are given by the matrices 

Q = (T t)- 1 and TB, 

respectively. Hence the differentials dvl, . . . ,  dvg with 
g 

l ~ j < g  
k = l  

are normalized relative to the basis { a l , . . . ,  a 9, b l , . . . ,  bg} with period matrix TBT t. From the 
uniqueness of the normalized holomorphic differentials, it follows that  dvj = duj for 1 < j < g 
and B = T BT  t. This matrix equation gives linear relations among the entries of the period 
matrix B of the hyperelliptic curve S. 
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4. T H E  R E D U C T I O N  M E T H O D  

In this section we describe the method of reducing the dimensions of Riemann the ta  functions 
associated to matrices of  certain type proposed by Babich, Bobenko and Matveev [2]. Let g 
be an integer greater  than one, and let B = (blj) be a complex symmetr ic  g x g matr ix  whose 
imaginary par t  is positive definite. We assume tha t  the last column of the matr ix  B satisfies the 
condition njbja = 0 for 1 < j < v and njbja = nabaa for v + 1 < j < g - 1. Here nk is a positive 
integer chosen as small as possible for each k. Thus nj = 1 for 1 _< j < v. Let n = ( n l , . . .  ,na) 
be an integral vector with entries nj chosen in such a way, and let x = ( X l , . . . ,  za) be a vector 
in C a. Let f (x )  = ( f l , . . . ,  f a -1 )  be the vector in C a-1 defined by f j  = n jx j  for 1 < j < v and 
f j  = n jx j  - nax a for v +  1 < j < g - 1, and let A = (ai j)  be the (g - 1) x (g - 1) matr ix  defined 
by 

aii -- n~bii for 1 < i < v, aii n~bii 2 = - n a b a a  for v + l < i < g - 1 ,  
2 aij = n ln jb i j  for 1 < i or j < v, aij = n in jb i j  - nabaa for v + 1 < i, j < g - 1. 

g 
For each t = ( t x , . . . , t g )  satisfying 0 < ti < ni - 1 for 1 < i < g, we set q = Y]~i=v+lti/ni E I t  
and define p E I t a -x  by p = ( P I , . . . , P a - 1 ) ,  where pi = t i / n i  for 1 < i < g - 1. Then the 
reduction formula of Babich, Bobenko and Matveev for the Riemann the ta  function of dimension g 
associated to the matr ix  B is given by the following theorem: 

THEOREM 1. / f x  = ( E l , . . .  , z g )  ~. C g, w e  h a v e  

0a(x ,  B) : ~--~ 0a-1 ( P ) ( f ( x ) [  A)01 (q0)(naza I n~bga). 
tET 

PROOF. See [2, Theorem la]. 

In order to reduce the dimensions of the ta  functions further, we also need a reduction formula 
for the ta  functions with characteristics of the form [p, 0], which is given in the following theorem: 

THEOREM 2. Let  p = ( P l , . . . , P g )  and r = ( r l ,  . . . , r 9 - 1  ) be vectors wi th  r i  = ( t i - k - p i ) / n i  for 
g 1 < i < g - 1, and let s = )"]~j=~+l(tj + p j ) / n j .  Then  we have 

(0") (0) (') 0, (x [ B )  = ~ 0a_l ( f (x)  I A) Ox 0 ( n a z '  [n~ba')  exp ( -27 r i (Bp , t ) ) .  
tET 

PROOF. See [2, p. 487]. 

5. T H E  C O M P U T A T I O N  O F  T H E  P E R I O D  M A T R I X  

In the rest of the paper  we shall apply the reduction method described in Section 4 to the 
the ta  function of a hyperelliptic curve of genus four given by an equation of the form 

W 2 = Z(Z 4 --  Ot4)(Z4 -- 134), 

where a and 13 are complex numbers.  Then the hyperelliptic Riemann surface S has a nontrivial 
au tomorphism r sending z to iz .  In this section we determine the period matr ix  of S by using 
the method  described in Section 3. 

The  Riemann surface S has ten branch points e l , . . .  ,el0, where el = a ,  e~ = 13, e3 = ia ,  
e4 = it3, e5 = - a ,  e6 = -13, e~ = - i a ,  es = -i13, e9 = 0, ex0 = cx~. We choose a basis of cycles 
{ a l , . . . ,  a4, b l , . . .  ,b4} in H i ( S ,  Z) as follows: consider S as two copies of the Riemann sphere 
glued using cuts between e2k-1 and e~k for 1 < k < 5. For 1 < k < 4, ak is a simple smooth 
dosed curve winding once around the cut between e2k-1 and e2k in one sheet in the clockwise 
orientation, and b~ is a closed curve s tar t ing from a point on the cut between e2k-1 and e2k going 
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on the first sheet to a point on the cut between e9 and el0 and returning on the second sheet 
(see [8, p. 97]). Then these cycles satisfy the relations 

al = ra3, a2 : --ral,  a3 = --Ta4~ a4 = Ta2; 

hence we have a = Q ( r a )  and b = T ( r b ) ,  where 

Q = 

(ooi !) 
- 1  0 0 

0 0 0 - ' 

0 1 0 

a = (al, a2, a3, a4) t, b = (bl, b2, b3, b4) t, and T = (Qt ) - i  = Q. However, the last column of the 
matr ix  B obtained by solving B = T B T  t for this t does not satisfy the conditions described 
in Section 4. In order to find a matr ix  that  works, we consider the basis {a~ , . . . ,  a~, b~ , . . . ,  b~} 
of Hi(S ,  Z) obtained from the previous basis by the change of basis given by b '  = ¢ b  and 
a' = (~t)-Xa with ( 110) 

~ =  0 1 1 
1 1 1 " 

1 1 0 

Then we have b '  = T ' ( r b ' )  and a '  = Q ' ( r a ' ) ,  where 

T I = ¢ T ¢ - 1  = 0 - 1  
0 - 1  
0 - 1  

Applying the method described in Section 3, the period matr ix  B of S can be computed by 
solving the matr ix  equation B = T~BT n. Thus let B be a symmetric  matr ix  of the form 

(i be,c ) 
f h 
g i j 

Then,  from the condition B = T ' B T  't, we obtain a system of equations 

a = e - 4 f + 4 g + 4 h - 8 i + 4 j ,  b = b - 2 c + 2 d - f + g + 2 h - 4 i + 2 j ,  c = - f + 2 g + 2 h - 6 i + 4 j ,  

d = - f  + g + 2 h - 4 i + 2 j ,  e = a - 2 c + 2 d + h - 2 i + j ,  f = - c + 2 d + h - 3 i + 2 j ,  

g = - c + d + h - 2 i + j ,  h = h - 4 i + 4 j ,  i = h - 3 i + 2 j ,  j = h - 2 i + j .  

Solving these equations we obtain the period matrix of S of the form 

B = 
(a b a 3c 

3c 3c 4c 2 c |  ' 
2c c 2c 2c 

where a, b, and c are arbi trary constants in C. Now the last column of B certainly satisfies the 
condition described in Section 4. 
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6. THE REDUCTION OF THE THETA FUNCTION 

In this section we apply the reduction method described in Section 4 to the theta function 
04(x [ B) of dimension four associated to the period matrix B obtained in Section 5 and express 
04(x [ B) in terms of Riemann theta functions of dimension one and two only. The entries of the 
last column of B satisfies 

1 • B 1 4  = 1 • B 4 4 ,  

Hence we have n I ---- n 3 ---- n 4 ---- 1, n 2  = 2 ,  

[ a - 2 c  2b-2c  
| 

2 • B 2 4  = 1 • B 4 4 ,  1 • B 3 4  - 1 • B 4 4 .  

4e , f(x) = / 2 x 2 -  x 4 / ,  
2c \ z 3 -  x4 / 

and T = ((0,0,0,0)*,(0,1,0,0)'}. We also have p = (0,0,0)t, q = 0 for t = (0,0,0,0)', and 
p = (0, 1/2, 0) t, q = 1/2 for t = (0, 1, 0, 0) ~. Therefore we obtain 

( 0 1 / 2 0 0 )  (1~2) 04(x [ B) = 03(f(x) I A) 01(x4 I 2c) + 0a 0 0 (f(x) [ A) 01 (z4 [ 2c). 

Since the last column of the matrix A also satisfies the condition (4), we can apply the method 
of Appell-Babich-Bobenko-Matveev once again to the theta functions 

By using Theorem 1 we 

0 (f(x) I A) = 02(y I 

03(f(x) lA ) and 0z(~  1/2 ~) 0 (f(x) [ A). 

obtain 

At) Ol(yl8c)..F02(1/4 O) (1~4)  0 0 (y I A')01 (y[8c) 

+02(1~  2 O0)(YlA')Ox(lg2)(y[8c)+02(3~40 o)(YlA')OI(3~4)(Yl 8c, 
+02(y lZ ' ,01  (194)(y[8c)+02 ( 1 / 4 0 0 0 ) ( Y I A " 0 1 ( 3 ~ 4 ) ( y [ 8 c '  

0 +02(1~  2 o)(ylX)Ol(y[8c,+02(3~ 4 ~)(YlA')OI(I~4)(y[8c), 
and by using Theorem 2 we obtain 

( 0 1 / 2 0 0 )  (00 03 0 0 (f(x) i a )  =0~ 

+ 02(  1/401~2) 

+ 02( 1/201~2) 

+ 02 

+ 02 

+ 02 

+ 02 

+ 02 

1/2 0 )(Y[A')O~(I~2) (y[8c) 

(y [A') 01(y[8c) exp(-4a'ib) 

(3~4 l~2)(y,X)Ox(1~4)(y,8c)exp(_67rib) 
(00 lg2)(y[A')Ol(y[Sc) exp(-47ric) 
(1/40 I~2)(YlW)Ot(I~4) (y18c) exp(-27ri(b 
(1, 0 
(3~4 1~2) 

(y IA')01 ( l g 2 )  (y [8c) exp(-ri(2b 

+ 

+ 2c)) 
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where y - -  2 ; v 3  - 2 : r 4 ,  

(4Zl -- 2z3 -- 2z4 
Y "- ~, 2x2 -- 2Zs + Z 4 ] 

and A'=  ( 1 6 a - 4 0 c  8b-16c'~ 
\ 8 b - 1 6 c  4a 1 0 c ] "  

From the computations described above, it follows that the theta function 04(x [ B), and 
therefore the solutions of the KdV equation, sine-Gordon equation, and nonlinear SchrSdinger 
equation associated to the hyperelliptic curve S, can be expressed in terms of theta functions of 
dimension one and two only. 

7. FURTHER REDUCTIONS 

In this section we shall show that the two-dimensional theta functions associated to the matrix 

A' ( 1 6 a - 4 0 c  8b-16c 
= \ 8 b - 1 6 c  4 a - 1 0 c ]  

can be expressed in terms of one-dimensional theta functions. First we state the following theorem 
that characterizes reducible Riemann theta functions of dimension two: 

THEOREM 3. Two dimensional Riemann theta functions associated to a 2 x 2 matrix B : (bij) 
can be expressed in terms of  one-dimensional theta functions i f  and only i f  the entries o r B  satisfy 
the condition 

Ul + ~bxl  + u3612 + u4622 + us(b11622 - b~2) = O, 

where vl . . . ,  u5 are integers such that the number v~ + 4(VlV5 - v2v4) is the square o f  an integer. 

PROOF. See [3, Corol lary 2.2]. 

Now we can easily show tha t  the entr ies  of A ~ satisfy the condi t ion  in Theorem 3 by choosing 

vl = v3 = u5 = 0, v2 = 1, and  u4 = - 4 .  Thus  the finite-zone solut ions of the three par t ia l  
differential  equa t ions  associated to the hyperel l ipt ic  curve S can be expressed in terms of the ta  
func t ions  of d imens ion  one. 
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