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Abstract—We reduce the finite-zone solutions of the Korteweg-de Vries equation, sine-Gordon equa-
tion and nonlinear Schrédinger equation associated to a hyperelliptic curve of genus four.

1. INTRODUCTION

Let Q be a ¢ x g Riemann matrix, that is, a complex symmetric matrix with positive definite
imaginary part. Then Q determines a Riemann theta function 6(S2, z) of dimension g. Among the
examples of g x ¢ Riemann matrices are the period matrices of hyperelliptic curves of genus g,
and theta functions associated to such matrices describe solutions of certain nonlinear partial
differential equations. In this paper we consider three such partial differential equations, i.e.,
Korteweg-de Vries (KdV) equation, sine-Gordon equation, and nonlinear Schrédinger equation.
The so-called finite-zone solutions of these equations associated to hyperelliptic curves of genus g
can be expressed in terms of Riemann theta functions of dimension g.

Theta functions of dimension g are essentially g-dimensional Fourier series, so such finite-zone
solutions are not convenient for actual computations if g is large. For this reason several methods
of reducing theta functions to lower dimensional theta functions have been developed recently
(see e.g., [1-4]). One of these methods was proposed by Babich, Bobenko and Matveev [2]. They
modified a result that was obtained by Appell [5] in the late nineteenth century, and applied this
to reduce the dimensions of the theta functions that appear in the solutions of the above partial
differential equations associated hyperelliptic curves mostly of genus two or three. In this paper
we apply this method to such solutions associated to a certain class of hyperelliptic curves of
genus four and express the solutions in terms of the Riemann theta functions of dimension one
and two only. We also show that these solutions can further be reduced to the ones involving
only theta functions of dimension one.

2. FINITE-ZONE SOLUTIONS

In this section we describe the finite-zone solutions of the KAV equation vz, — 6uu, +u; = 0,
the sine-Gordon equation v;; — vz, = sinv, and the nonlinear Schrodinger equation )y + 9, —
2|%|?¢ = 0 associated to hyperelliptic curves. Let S be a hyperelliptic curve of genus g given by
w? = Pagy1(z) or w? = Pagya(z), where Pyg41 and Pgqs are polynomials of degree 2g 41 and
29 + 2, respectively, without multiple roots. Let {ai,...,a4,b1,...,8,} be a canonical basis of
cycles in

H(S\Z)=Z+ ---+7Z (2g terms)

such that a; -a; = b; -bj = 0 and a; - b; = §;; for 1 <4, j < g, where §;; is the Kronecker delta
and (-) denotes the intersection number. The dimension of the space of holomorphic 1-forms
HY(S) of Sis g. Let {duy,...,du,} be a basis of H°(S) such that

9 k—ld
du; = chkz z and / dur = b1
¢i

w
k=1
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for 1 < j, k < g¢. Then the matrix B = (b;;) with
b= [ due, 1< ksy
b;
is called the period matrix of the Riemann surface S and it determines the Riemann theta function
6(x| B) = Z exp{7i(Bm,m) + 2xi(m,z)},

mezZ9

where x is a vector in CY and (, ) denotes the standard inner product on C9 (see e.g., [6-8]).

More generally, if o, # € RY, then the Riemann theta function associated to B with characteristic
[a, B8] is defined by

] (a) (x|B) = E exp{mi(B(m + a),m + a) + 2ri(m + a,z + B)}.
ﬂ mezZs
The finite-zone solutions of the KdV equation, sine-Gordon equation and nonlinear Schrédinger
equation associated to the above hyperelliptic curve can be given in the following forms (see [2]
for details):

2
(a) KdV equation: u(z,t) = —2% In8,(Vz + Wt + D | B) + constant,
T

: : 2 0(pyn) (2771 (V2 + W) +(+ A)
(b) sine-Gordon equation: v(z,t) = 7 In (Ve FWH 7 0) ,
-1 _
(c) nonlinear Schrodinger equation: YP(z,1) = 59(21r (Vz+Wi—E|B)

0(2x-Y(Vz + Wt | B)
3. PERIOD MATRICES OF CURVES WITH NONTRIVIAL AUTOMORPHISM

Let S be a hyperelliptic curve of genus ¢ and let {a,...,a4,b1,...,b,} be a canonical basis of
cycles in H1(S,Z) as in Section 1. Suppose that S has a nontrivial automorphism r such that
the cycles ra; are expressed only in terms of a-cycles and the cycles 7b; are expressed only in
terms of b-cycles. Then we have

g g
a; = ZQ;k(Tak), b; = ZTik(Tbk)
k=1 k=1

for 1 < i < g, where @ = (Qix) and T = (T;;) are integral matrices such that Q! and
T-! are also integral. Since {ray,...,Ta,,7by,...,7h,} is also a canonical basis, the bases
{a1,...,a4,b1,...,b,} and {ray,...,Tay,7by,...,7b,} are related by a symplectic matrix.
Thus, if @ = (a1,...,a4)* and b = (by,...,b,)", we obtain

§-(3 D) oo

Let duy,...,duy be holomorphic differentials on S normalized relative to the basis {ay,...,a,,
bi,...,bs}. Then the differentials 7*du; (1 < j < g) are normalized relative to the basis

{ray,...,Ta,,7b1,...,7by}. Since we have
7 duy :/ duy,
T"‘bj

/ 7 duyg :/ dug and /
a; T=la; by

J
for 1 < j, k < g, the a-period and the b-period of 7"du; with respect to the original basis
{a1,...,b1,...,b4} are given by the matrices
Q= (TH"! and TB,
respectively. Hence the differentials dv, ..., dv, with

g
dv; = ZTkj(‘r‘duk), 1<j<g
k=1

are normalized relative to the basis {a;,...,a,,by,...,b,} with period matrix TBT*. From the
uniqueness of the normalized holomorphic differentials, it follows that dv; = du; for 1 < j < g
and B = TBT*. This matrix equation gives linear relations among the entries of the period
matrix B of the hyperelliptic curve S.
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4. THE REDUCTION METHOD

In this section we describe the method of reducing the dimensions of Riemann theta functions
associated to matrices of certain type proposed by Babich, Bobenko and Matveev [2]. Let ¢
be an integer greater than one, and let B = (b;;) be a complex symmetric g X g matrix whose
imaginary part is positive definite. We assume that the last column of the matrix B satisfies the
condition n;b;, = 0 for 1 < j < v and n;bj; = ngby, for v+ 1< j < g— 1. Here n; is a positive
integer chosen as small as possible for each k. Thus nj = 1for 1 < j <v. Let n =(n,,...,n,)
be an integral vector with entries n; chosen in such a way, and let x = (z;,...,z,) be a vector
in C4. Let f(x) = (f1,--.., fy~1) be the vector in C9~1 defined by f; = njz; for 1 < j < v and
fi=njz; —ngzyforv+1<j<g-—1,and let A= (a;;) be the (g9 —1) x (¢ — 1) matrix defined
by

Ai = n?b,-; for 1 <t<vyp, aj; = n?bii - ﬂgbgg for v+1 <i<g-1,

a;; = ninjb;; for 1<iorj<v, a;=nin;b;— nzbgg for v+1<1, j<g-1.
For each t = (t),...,t,) satisfying 0 < #; <n; —1for 1 <i<g,weset =37, ti/ni €R
and define p € R"! by p = (p1,...,pg-1), where p; = t;/n; for 1 < i < g — 1. Then the

reduction formula of Babich, Bobenko and Matveev for the Riemann theta function of dimension ¢
associated to the matrix B is given by the following theorem:

THEOREM 1. If x = (z1,...,24) € C9, we have

0y 1 B) = 3 051 (B) 60 1) 02 (£) oz | n2bes).

teT

PROOF. See [2, Theorem laJ.

In order to reduce the dimensions of theta functions further, we also need a reduction formula
for theta functions with characteristics of the form [p, 0], which is given in the following theorem:

THEOREM 2. Let p = (p1,...,p,) and xr = (rq,...,r4_1) be vectors with r; = (t; + p;)/n; for
1<i<g-1,andlets=31_, . (tj +p;)/n;. Then we have

00 (B) 1 B = 00 (5) 0x) 1 4) 01 (g) (nyy 1 2by) exi(—2mi(B, ).

teT
PRroOOF. See [2, p. 487].

5. THE COMPUTATION OF THE PERIOD MATRIX

In the rest of the paper we shall apply the reduction method described in Section 4 to the
theta function of a hyperelliptic curve of genus four given by an equation of the form

,w2 = 2(24 _ a4)(z4 _ /34),
where o and 3 are complex numbers. Then the hyperelliptic Riemann surface S has a nontrivial

automorphism r sending z to iz. In this section we determine the period matrix of S by using
the method described in Section 3.

The Riemann surface S has ten branch points e,,...,e10, where e; = a, €2 = §, e3 = ia,
eq =18, e5 = —a, eg = —f, e7 = —ia, eg = —if3, eg = 0, €10 = 00. We choose a basis of cycles
{a1,...,a4,b1,...,b4} in H,(S,Z) as follows: consider S as two copies of the Riemann sphere

glued using cuts between egr_) and eg; for 1 < k < 5. For 1 < k < 4, a; is a simple smooth
closed curve winding once around the cut between es;—1 and esi in one sheet in the clockwise
orientation, and b;, is a closed curve starting from a point on the cut between eg;_; and es; going
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on the first sheet to a point on the cut between eg and e;9 and returning on the second sheet
(see [8, p. 97]). Then these cycles satisfy the relations

a, =74z, a2 =-—Ta;, a3z = —Ta4, Qa4 = Tas,

hence we have a = Q(ra) and b = T(rb), where

001 0
-1 00 0
@= 0 00 -1}
010

a = (a1, a3,a3,a4)", b = (by,b3,b3,84)", and T = (Q!)~! = Q. However, the last column of the
matrix B obtained by solving B = TBT" for this ¢ does not satisfy the conditions described
in Section 4. In order to find a matrix that works, we consider the basis {a},...,a},b;,..., b}
of H1(S,Z) obtained from the previous basis by the change of basis given by b’ = &b and
a' = (®*)"!a with

1110

1 011

¢= 1 1 11

0110

Then we have b’ = T"(rb’) and a’ = Q'(ra’), where

01 -2 2
' _ -1_(1 0 -1 1
T=eT®" =14 ¢ _1 2
0 0 -1 1

Applying the method described in Section 3, the period matrix B of S can be computed by
solving the matrix equation B = T"BT". Thus let B be a symmetric matrix of the form

a b ¢ d
b e f g
c f h i
d g &t j

Then, from the condition B = T'BT", we obtain a system of equations
a=e—4f+49g+4h—8i+4j, b=b—-2c+2d— f+g+2h—4i+2j, c=—f+29+2h—6i+4j,
d=—f+9g+2h-4i+2j, e=a—-2c+2d+h—-2i+j, f=—-c+2d+h—3i+2j,

g=—c+d+h—2i+j, h=h—4i+4j, i=h-3i+2j, j=h—2+;

Solving these equations we obtain the period matrix of S of the form

a b 3¢ 2
b a 3 ¢

B= 3¢ 3¢ 4¢c 2}’
2c ¢ 2¢ 2¢

where a, b, and ¢ are arbitrary constants in C. Now the last column of B certainly satisfies the
condition described in Section 4.
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6. THE REDUCTION OF THE THETA FUNCTION

In this section we apply the reduction method described in Section 4 to the theta function
04(x | B) of dimension four associated to the period matrix B obtained in Section 5 and express
04(x | B) in terms of Riemann theta functions of dimension one and two only. The entries of the
last column of B satisfies

1 Big=1-Byg, 2-Bzs=1-Byy, 1:-Bzg=1-By.
Hence we have ny = ng=ns =1, np = 2,
a—2¢ 26—2¢ ¢ Ty — 24
A=|20-2c 4a—-2¢ 4c ], f(x)= |2z, —2z4 |,
c 4c 2c T3 — T4

and T = {(0,0,0,0)(0,1,0,0)*}. We also have p = (0,0,0)*, ¢ = 0 for t = (0,0,0,0)*, and
p=1(0,1/2,0), ¢ = 1/2 for t = (0, 1,0,0)*. Therefore we obtain

6a(x | B) = 05(£(x) | A) 01(z4|2c)+03<g 172 0)(f( )| 4) ol( /2 )(z4|2c)

Since the last column of the matrix A also satisfies the condition (4), we can apply the method
of Appell-Babich-Bobenko-Matveev once again to the theta functions

ou(e(x) 1 4) and o5 () P D) @60 1)

By using Theorem 1 we obtain
os(fx) | 4) = 0aty | 4 antw 189 +0x (5 0 ) o 14r 00 () (s
+02(162 °>( | 4% 0, (162)(y|80)+02(364 0)( | 4%y 0, (3/4>(y|8c)
o iare (M) wisa+a (Y a1 (%) eis
v (P D oimawisora (3 O eimn ()i,
and by using Theorem 2 we obtain
(5 7 S)awin=a () ) o1are () wis

w0 (0 ) o1y 0 (P)) (180) exp-2eit

1(/J2 1/2) (y | A") 61(y | 8¢c) exp(—4nib)

364 1(/)2) (y | A) 6, (1/4) (y | 8¢) exp(—6mib)

g 1(/)2) (v | A") 01(y | 8c) exp(—4mic)

164 1/2)(y|A,) 01(1/ )(y|8c) exp(—2mi(b + 2¢))
162 1/2)(y|A,)9 (1/2)(“86) exp(~mi(2b + 2¢))
/
0

R o1 (P wiso,
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where y = 223 — 224,

_ {4z — 223 — 224 + _ [ 16a — 40c 8b— 16¢
y‘(2z2—2z3+z4) and A= 8_16c 4a—10c)"

From the computations described above, it follows that the theta function 84(x | B), and
therefore the solutions of the KdV equation, sine-Gordon equation, and nonlinear Schrodinger
equation associated to the hyperelliptic curve S, can be expressed in terms of theta functions of
dimension one and two only.

7. FURTHER REDUCTIONS

In this section we shall show that the two-dimensional theta functions associated to the matrix

A= 16a — 40c 8b — 16¢
T\ 8 —16c 4a-—10c

can be expressed in terms of one-dimensional theta functions. First we state the following theorem
that characterizes reducible Riemann theta functions of dimension two:

THEOREM 3. Two dimensional Riemann theta functions associated to a 2 x 2 matrix B = (b;;)
can be expressed in terms of one-dimensional theta functions if and only if the entries of B satisfy
the condition

V1 + vabiy + vabia + vabas + vs(bribaz — b3,) = 0,

where v, ..., vs are integers such that the number v + 4(v1v5 — vavy) is the square of an integer.
PRrOOF. See [3, Corollary 2.2)].

Now we can easily show that the entries of A’ satisfy the condition in Theorem 3 by choosing
v =v3 =v5 =0, 1, =1, and vy = —4. Thus the finite-zone solutions of the three partial
differential equations associated to the hyperelliptic curve S can be expressed in terms of theta
functions of dimension one.
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