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Abstract

It is widely accepted that (1) the natural or folded state of proteins is a global energy minimum, and (2) in most
cases proteins fold to a unique state determined by their amino acid sequence. The H-P (hydrophobic-hydrophilic)
model is a simple combinatorial model designed to answer qualitative questions about the protein folding process.
In this paper we consider a problem suggested by Brian Hayes in 1998: what proteins in the two-dimensional H-P
model haveunique optimal (minimum energy) foldings? In particular, we prove that there are closed chains of
monomers (amino acids) with this property for all (even) lengths; and that there are open monomer chains with
this property for all lengths divisible by four.
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1. Introduction

Protein folding [14,22,30] is a central problem in molecular and computational biology with the
potential to reveal an understanding of the function and behavior of proteins, the building blocks of
life. Such an understanding would greatly influence many areas in biology and medicine such as drug
design. In broad terms, the protein-folding problem is to determine how proteins so consistently fold into
a stable state. The most ambitious goal is to understand the entirefolding pathway (see e.g. [33]), i.e.,
the complete dynamics and/or chemical changes involved in going from an unfolded linear state into a
compact folded state. Although naturally posed as a numerical simulation, there are several problems
of scale, including the small energy differences between folded and unfolded states, and the extremely
short interval (approximately 10−15 seconds) for which the dynamics equations remain valid, compared
to the milliseconds to seconds over which the folding takes place [15]. Thethermodynamic hypothesis,
first developed by Anfinsen [4], proposes that proteins fold to aminimum energy state. This motivates
the attempt to predict protein folding by solving certain optimization problems. There are two main
difficulties with this approach: there is as yet no scientific consensus on what the precise energy function
to be minimized might be, and the functions commonly used lead to extremely difficult optimization
problems [20,31].

One of the most popular models of protein folding is the hydrophobic-hydrophilic (H-P) model [14,17,
22]. In the H-P model, proteins are modelled as chains whose vertices are marked eitherH (hydrophobic)
or P (hydrophilic); the resulting chain is embedded in some lattice.H nodes are considered to attract
each other whileP nodes are neutral. Anoptimal embedding is one that maximizes the number ofH-H
contacts. This combinatorial model is attractive in its simplicity, and already seems to capture several
essential features of protein folding such as the tendency for the hydrophobic components to fold to
the center of a globular (compactly folded) protein [14]. Unlike more sophisticated models of protein
folding, the main goal of the H-P model is to explore broad qualitative questions about protein folding
such as whether the dominant interactions are local or global with respect to the chain. For a nice survey
of the kinds of questions asked and conclusions drawn, see [18].

While the H-P model is most intuitively defined in 3D to match the physical world, it is arguably more
realistic as a 2D model for currently computationally feasible sizes. The basic reason for this is that the
perimeter-to-area ratio of a short 2D chain is a close approximation to the surface-to-volume ratio of a
long 3D chain [14,22].

Much work has been done on the H-P model [1,5–9,11–13,16,19,21,26–28,34–36]. Without
theoretical guarantees, there are many heuristic approaches (e.g., [11,19]) and exhaustive approaches
(e.g., [5,6]). In theoretical computer science, Berger and Leighton [9] proved NP-completeness of finding
the optimal folding in 3D, and Crescenzi et al. [16] proved NP-completeness in 2D. Hart and Istrail
[21] have developed a 3/8-approximation in 3D and a 1/4-approximation in 2D of the number ofH-H
contacts in theH-P model. Newman [32] just developed a 1/3-approximation in 2D. Agarwala et al. [1]
have developed constant-factor approximation algorithms for a generalized H-P model allowing multiple
levels of hydrophobicity in the 2D triangular lattice and the 3D face-centered cube (FCC) lattice.

In this paper we are concerned with the question of whether or not H-P chains haveunique optimal
embeddings. This is a natural interpretation of the thermodynamic hypothesis in this model, and a natural
model of folding stability. There are other factors to consider, e.g., Šali et al. [37,38] consider a folding
stable if there is a large score gap between it and the next best folding, but uniqueness seems like a good
candidate for making H-P strings more “protein-like” for the following reasons (among others):
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• Insisting on uniqueness of optimal embeddings defeats the known proofs of NP-hardness [9,16];
• The H-P chains that produce protein-like 3D structures have a small number of optimal foldings [18];
• Algorithmically it is easy to design an H-P chain that folds to particular shape [25] asone of its

optimal states;
• Experiments have shown that synthetically designed polymers tend to have many optimal embed-

dings, and also not fold stably [18].

In particular we explore a problem suggested by Brian Hayes [22] about the existence of stable protein
foldings of all lengths. We solve this problem in a positive sense for circular protein strands. We also
nearly solve the problem for open strands by exhibiting an infinite class of proteins having unique optimal
foldings. More precisely, we prove the following main results, in a sense establishing the existence of
stable protein foldings in the H-P model:

(1) We exhibit a simple family of closed chains of monomers, one for every possible (even) length, and
prove that each chain has a unique optimal folding according to the H-P model.

(2) We exhibit a related family of open chains of monomers, one for every length divisible by 4, with
the same uniquely-foldable property. Note that a result as strong as (1) cannot be obtained for open
chains, because there are some lengths for which no uniquely foldable open chains exist.

In addition, we observe a complementary result about the ambiguity of folding:

(3) We exhibit a family of (open or closed) chains of monomers, one for every length divisible by 12,
and prove that each chain has 2�(n) different optimal foldings, each with�(n) contacts. In biological
terminology, these proteins have a highly degenerate ground state [22].

2. H-P model

In this section we review the H-P model and introduce some terminology common to the rest of the
paper.

Proteins are chains of monomers, each monomer one of the 20 naturally occurring amino acids. In
the H-P model, only two types of monomers are distinguished:hydrophobic (H), which tend to bundle
together to avoid surrounding water, andpolar or hydrophilic (P), which are attracted to water and are
frequently found on the surface of a folding [14]. In our figures we use small gray disks to denote
H monomers and black disks to denoteP monomers. These monomers are strung together in some
combination to form anH-P chain, either an open chain (path or arc) or a closed chain (cycle or polygon).

Proteins are folded onto the regular square lattice. More formally, alattice embedding of a graph is a
placement of vertices on distinct points of the (regular square) lattice such that each edge of the graph
maps to two adjacent (unit-distance) points on the lattice. In the H-P model, proteins must fold according
to lattice embeddings, so we also call such embeddingsfoldings.

The quality of a folding in the H-P model is simply given by the number of hydrophobic monomers
(light-gray H nodes) that are not adjacent in the protein but adjacent in the folding. More formally, the
contact graph of a folding has the same vertex set as the chain, and there is an edge between every two
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Fig. 1. An optimal folding is one that maximizes the number of contacts.

Fig. 2. Missing contacts.

H vertices that are adjacent in the folding onto the lattice, but not adjacent along the chain. The edges of
the contact graph are calledcontacts; in our figures, contacts are drawn as light-gray edges.

An optimal folding maximizes the number of contacts over all foldings (see Fig. 1). Intuitively, if a
protein is folded to bring together many hydrophobic monomers (H nodes), then those monomers are
hidden from the surrounding water as much as possible.

There is a natural bijection between strings in{H,P}∗ and protein chains. We consider the nodes in a
chain as labeled by their order in the string. We sometimes use a limited form of regular expressions to
describe chains where e.g.Hk indicatesk H nodes in sequence. Similarly, if we walk along an embedded
chain in the order given and read off the direction of each edge, we can encode foldings as strings in
{E,W,N,S}∗.

For anyH nodev in a lattice embedded chain, consider its 4 neighbouring lattice points. For each
of the neighbouring lattice points that is occupied by neither an adjacent node on the chain, nor by anH
node, we call the corresponding lattice edge amissing contact. We will also define the number of contacts
adjacent tov as itscontact degree. Therefore for an endpointH node, a vertex’s contact degree plus its
missing contacts totals three; for a nonendpointH node, its contact degree plus its number of missing
contacts is 2.

We will further classify missing contacts into two groups. Consider the axis-parallel bounding box
of the chain. If the missing contact corresponds to an edge outside the bounding box, we refer to it
as anexternal missing contact. We can further classify an external missing contact by the one of four
walls of the bounding box from which it emanates. (At a corner of the bounding box, we consider a
missing contact to emanate from the wall to which the contact is perpendicular.) A missing contact which
corresponds to an edge inside the (closed) bounding box we refer to as aninternal missing contact.
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3. General observations and ambiguous foldings

In this section we prove some basic structural and combinatorial results about contacts in the H-
P model, in particular establishing that some (nontrivial) chains have exponentially many optimal
foldings.

See also [7,8] for upper bounds on the number of contacts based on the patterns of lattice points
occupied byH nodes.

Fact 1. A folding of an open chain with h H nodes has at most h + 1 contacts, and a folding of a closed
chain with h H nodes has at most h contacts.

Proof. The sum of the number of contact and chain edges of any vertex is at most four, and every node
except possibly the ends has at least two incident chain edges.✷
Fact 2. Any lattice-embeddable graph is bipartite.

Proof. Any subgraph of a bipartite graph is bipartite, and the lattice points can be 2-colored in
checkerboard fashion (see Fig. 3).✷
Corollary 3. If a folding of a closed chain (or an open chain with P endpoints) with h H nodes has h

contacts, then its contact graph is a union of vertex-disjoint even cycles.

Proof. In order to achieveh contacts, everyH vertex must have contact degree 2.✷
Corollary 4. There can be a contact between two H nodes only if they have opposite parity (i.e., there is
an even number of nodes between them) in the chain.

Proof. The path between two nodes on the chain, along with the contact, form a cycle in the folding.
Thus the result follows from Fact 2.

Fact 5. Any optimal folding of the (open or closed) chain (PHP)4k has a contact graph consisting of k

4-cycles.

Proof. 4k contacts are achievable, e.g., by a folding analogous to the one shown in Fig. 4, and no higher
number of contacts is achievable by Fact 1. By Corollary 3 the contact graph is therefore a set of cycles.
Now consider some cycle in the contact graph of length greater than 4, and consider the leftmost “�”

Fig. 3. Proving that all lattice-embeddable graphs are bipartite.
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Fig. 4. Example of an optimal folding of(PHP)4k .

Fig. 5. Cases for Fact 5, with the forbidden subsequences they imply.

Fig. 6. Converting a lattice tree into an optimal embedding of(PHP)4k .

corner. Up to symmetry, there are three cases, illustrated in Fig. 5. In each case there is either a singleton
P or a doubleH on the chain. ✷
Fact 6. For any n = 12k, there exists an n-node (open or closed) chain with at least 2�(n) optimal
foldings, all with isomorphic contact graphs of size �(n).

Proof. We argue that any lattice-embeddable tree onk nodes corresponds to an optimal folding of
(PHP)4k. To see this correspondence, take the embedded tree and scale by 4. Replace each node in
the tree with a “gadget” consisting of a 4-cycle from the contact graph, and the associated forced chain
edges (see Fig. 6). Finally replace the edges of the tree with pairs of edges between adjacent “gadgets”,
and close off any remainingPP pairs with chain edges (in the open-chain case, all but one pair is closed
off).

Next observe that there are many lattice-embeddable trees onk nodes. A simple exponential lower
bound can be obtained by considering the north/east staircase paths; because there are 2 choices at each
step, this gives a lower bound of 2k . Each tree (folding) is counted at most a constant number of times.✷
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The preceeding bound on the number of lattice trees can almost certainly be improved. The number of
lattice trees has been studied by the Statistical Physics community, primarily from the point of view of
deviation from exponential growth [23,24,29]. Based on a combination of theoretical and experimental
results it is believed [24] that the number of lattice treestn with n nodes obeys the following bound
tn ∈ �(3.79n/n).

4. Uniquely foldable closed chains

In this section we are concerned with closed H-P chains whose optimal foldings are unique (modulo
isometries). For eachk � 1, we define a closed chainSk as follows. LetAm denote the sequence(HP)m.
Defineu = 	k/2
 andd = �k/2�. Then defineSk asPAuPAd . Note thatSk has exactly twoP-P edges,
i.e. edges between twoP nodes. We also define a foldingFk of Sk as follows (see Fig. 7). LetDm (a
“down staircase”) denote the alternating path(ES)m. Let Um (an “up staircase”) denote the alternating
path(WN)m. If k is even, defineFk asEDdWUu. If k is odd, defineFk asEDdSUu.

The main result of this section is the following theorem.

Theorem 7. For each k � 1, Fk is the unique optimal folding of Sk.

As well as providing evidence that the H-P model captures some approximation of the mechanism of
protein stability for closed chains, Theorem 7 has several less direct consequences. In the next section
we will use this theorem to prove a similar result about open chains. Furthermore, Theorem 7 tells us
something nonobvious about the shape of optimal foldings in the H-P model, namely that there exist
(closed) proteins all of whose optimal foldings are extremely “nonglobular” (noncompact). Along similar
lines, in a preliminary version of this paper [2], we conjectured that every closed H-P chain had an
optimal folding with the minimum possible area (enclosing no grid points). This conjecture turns out to
be false [3].

The conformation graph of an embedding consists of the union of the chain edges and the contact
graph. The idea of the proof of Theorem 7 is to show via parity arguments that the conformation graph of
any optimal embedding ofSj is fixed. Once this is established, the embedding follows from the special
form of the conformation graph (all but one face is a 4-cycle).

Fact 8. There exists a folding of Sk with k − 1 contacts, namely Fk .

Fig. 7. Examples ofSk folded according toFk for k ∈ {2,8,9}.
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Fact 9. The H nodes of Sk fall into two parity classes, separated into odd and even chains by the two P-P
edges.

In the case of an embedded closed chainQ, we distinguish betweenchordal contacts, i.e. those in the
interior ofQ, andpocket contacts, i.e. those exterior toQ.

Lemma 10. There are no pocket contacts in an optimal folding of Sk .

Proof. EachH node on the bounding box causes at least one missing contact. From Fact 8, we know
that an optimal folding can therefore have at most twoH nodes on the bounding box. Because every edge
of the chain but two has at least oneH node, and there must be at least one edge on each wall of the
bounding box, there must be at least two H nodes on the bounding box, and this minimum is achievable
only if both P-P edges are on distinct edges of the bounding box. For eachP-P edge construct a slab by
extending rays perpendicular to the edge from the endpoints (see Fig. 8). In order for a pocket contact to
form, one of the odd or even chains must touch or cross one of the slabs. But if any vertex lies on a slab,
the correspondingP-P edge cannot be on the bounding box.✷
Lemma 11. The contact graph is acyclic in any optimal folding of Sk.

Proof. Consider some optimal folding ofSk . By Lemma 10, we know that all contacts must be chordal.
Further observe that the conformation graph must be a planar graph. Consider an arbitrary planar
embedding of the chainSk. Note that each edge of a contact cycle must go from the odd chain to the
even chain or vice-versa. After two steps along a cycle, there is no way to join the first node of the cycle
to the (current) last node of the cycle without creating a crossing.✷
Corollary 12. The contact graph in an optimal folding of Sk is a path with k nodes and k − 1 edges.

Fig. 8. Illustrating the proof of Lemma 10.



O. Aichholzer et al. / Computational Geometry 25 (2003) 139–159 147

Fig. 9. Up to reversal of the labeling, the labeled contact graph ofSk is fixed.

Proof. This follows from Fact 8 and Lemma 11.✷
Lemma 13. If k is odd, every optimal folding of Sk has the same labeled contact graph. If k is even, there
are two possible labeled contact graphs and the mapping from one to the other is given by the relabeling
j → k + 1− j .

Proof. Note that the endpoints of the contact path must be adjacent to one of theP-P edges on the chain
because otherwise someH node would be stranded. Further note that once the starting point of the path
is chosen, the rest of the path is determined by an argument similar to the proof of Lemma 11. There is
no choice of starting point for the case ofk odd, because both endpoints of the contact path must be in
the larger parity class ofH nodes. ✷

We can deduce the following from the proof of Lemma 13.

Corollary 14. In the conformation graph of an optimal folding of Sk ,

(a) there are two 4-cycles of type PPHH,
(b) there are (k − 2) 4-cycles of type PHHH, and
(c) each contact edge is contained in exactly two 4-cycles.

Fact 15. Every 4-cycle has a unique folding, namely a square.

Proof of Theorem 7. Consider the folded chain as a polygon, decomposed into quadrilaterals by contact
edges. From Corollary 14 we can see that the dual graph of the decomposition is itself a path. We
construct the folding by following this dual path. We start by choosing an orientation for one of the
PPHH 4-cycles and embedding it. Ifk = 2, then we have no choice for the final square. Otherwise, we
choose an orientation for the second square and embed it. After the second square, by looking at degrees
in the contact graph, it follows that we have no choice in embedding the next 4-cycle on the dual path.
Thus our total choice in embedding was one translation, one rotation and one reflection.✷
Corollary 16. For every positive even n there is an n-node closed H-P chain with a unique optimal
folding.
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Table 1
Percentage of H-P chains of lengthn with unique optimal embeddings

n Unique Total Percentage

11 65 2,048 3.174
12 88 4,096 2.148
13 179 8,192 2.185
14 387 16,384 2.362
15 864 32,768 2.637
16 1,547 65,536 2.361
17 3,420 131,072 2.609
18 6,363 262,144 2.427
19 13,486 524,288 2.572
20 24,925 1,048,576 2.377

5. Uniquely foldable open chains

Finally we turn to open H-P chains. Dill et al. [18] computed that for chains of length up to 18,
about 2% of chains have unique optimal foldings. In a similar vein, Hayes [22] found that for each
1 � n � 14 except 3 and 5 there is an open chain with a unique optimal folding. We have duplicated the
experiments of Dill et al. and extended them to chains of length 20, with (partial) results given in Table 1.
We have further found experimentally that there are H-P chains with unique optimal foldings for lengths
15 through 25. Fig. 10 illustrates chains with unique optimal foldings for lengths up to 25, excluding
lengths 2 (trivial) and 4k for k > 3 (covered by a theorem below). The bias towardsH nodes is an artifact
of our search program, which enumerates colourings in “binary-counter” order withH = 0 andP = 1.
It has been reported elsewhere that real proteins haveH to P ratio of about 2: 3 [25]. We will also see
below that in the H-P model, unique optimality is achievable with a ratio very close to 1: 1.

A natural question is for what values ofn there is ann-node open chain with a unique optimal folding.
Based on our results about closed chains, one approach is to consider the open version ofSk with the
first and last nodes removed. That is, defineZk = (HP)u(PH)d whereu = 	k/2
 andd = �k/2�. It turns
out that this chain has multiple optimal folding for oddk, but only one optimal folding for evenk (see
Figs. 11 and 12).

In what follows, we will establish that up to isometries, the only optimal embedding ofZ2k is what
we call thestandard embedding, namely theP-P edge horizontal, the two adjacent edges down, the
remaining edges on the right alternating right and down, and the remaining edges on the left alternating
down and right (the standard embedding ofZ8 is illustrated in Fig. 11). This will establish the following
theorem.

Theorem 17. The open chain Z2j = (HP)j (PH)j has a unique optimal embedding for each positive j .

Combining this theorem with examples illustrated in Fig. 10, it turns out that there are open chains
with unique optimal foldings forn = 2, n = 4, and 6� n � 25.

Despite the seeming simplicity of the claim, and the similarity to Theorem 7, the proof of Theorem 17
requires a number of technical lemmas. We will argue that every embedding ofZ2k has at least four
missing external contacts, and further prove that the standard embedding ofZ2k is the only embedding
with exactly four missing contacts. We accomplish this by reducing the open-chain case to the closed-
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Fig. 10. Examples of H-P chains with unique optimal foldings, shown in their optimal embedding.

chain case discussed in the previous section. In particular, we will show that in an optimal embedding of
Z2k , theH endpoints are on the bounding box and in contact. This will allow us to extend any optimal
embedding ofZ2k to an optimal embedding ofS2k. The proof can be summarized as follows:

(1) An optimal embedding has at most 4 missing contacts (Fact 18, Corollary 19).
(2) An optimal embedding has at least 3 external missing contacts and at most one internal missing

contact (Fact 20, Corollaries 21 and 22).
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Fig. 11. Unique optimal folding ofZ8. Fig. 12. Two optimal foldings forZ9.

(3) There are noH corners (i.e., turns in the chain) on the bounding box (Lemmas 24 and 25).
(4) If an endpoint is on the bounding box, either it is in contact with the other endpoint, or creates an

internal missing contact (Lemma 26).
(5) In an optimal embedding ofZ2k, there is at most oneH node on the bounding box that is neither a

corner, nor an endpoint (Facts 27 and 28, Lemmas 29 and 30).

In the rest of this section, we present the details of the proof of Theorem 17. As in the previous section,
we start by observing that any optimal embedding must be at least as good as our example embedding.

Fact 18. The standard embedding of Z2k has only four missing contacts, all external.

Corollary 19. Any optimal embedding of Z2k has at most four missing contacts.

We begin with the following observation.

Fact 20. In any embedding of Z2k , either

(a) three bounding-box walls contain H nodes, and one contains only the P-P edge of Z2k , or
(b) four bounding-box walls contain H nodes.

Proof. Every bounding-box wall must contain either an edge or an endpoint ofZ2k. Only one edge of
Z2k does not contain anH node, and each endpoint is aH node. ✷
Corollary 21. In an optimal embedding of Z2k, there are missing external contacts emanating from at
least three walls of the bounding box. The fourth wall either contains the P-P edge, or has a fourth
missing external contact.

Corollary 22. Any embedding of Z2k has at least three external missing contacts, and an optimal
embedding has at most one internal missing contact.

Fact 23. For k > 1, the bounding box of any optimal embedding of Z2k has both height and width at least
two.

Proof. If either dimension of the bounding box is less than 2, then all of theH nodes are on the bounding
box. ✷
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Fact 20 implies that there is at least one nonendpointH nodev on the bounding box. We break this
down into two cases. Two edges adjacent tov could be on the bounding box, in which case we callv a
straight H node. Alternatively, only one edge adjacent tov could be on the bounding box, in which case
we callv anH corner. We first argue that in an optimal embedding ofZ2k there are noH corners at the
corner of the bounding box.

Lemma 24. In an optimal embedding of Z2k, there are no H corners at the corner of the bounding box.

Proof. Let v be anH corner which is also on the northeast corner of the bounding box. We distinguish
three cases, as illustrated in Fig. 13. In the first case,v is not adjacent to theP-P edge. In the second,v is
adjacent to theP-P edge but not on the same wall of the bounding box. In the third,v is adjacent to the
P-P edge and on the same wall of the bounding box.

We first consider the case wherev is not adjacent to theP-P edge. Because the twoH nodes nearest
v (two edges away) cannot both occupy the lattice point southwest fromv, one of these two nodes must
also be on the bounding box. Suppose there exists anH node on the bounding box two edges south
from v, and consider the position of the other nodeu (refer to Fig. 13(a)). Ifu is on the bounding box
then there exists a fourth external missing contact along only two walls (north and east) of the bounding
box. This implies the presence of a fifth external missing contact. Thus the embedding is not optimal by
Corollary 19. The other possibility is that the path fromv to u is west-south, but this creates a missing
internal contact betweenu and aP node. Because the presence of a fourth external contact is necessary,
this embedding cannot be optimal.

We next consider the case wherev is adjacent to theP-P edge, but where theP-P edge is not on the
same bounding box wall asv (refer to Fig. 13(b)). This implies that theP-P edge occupies the lattice
point southwest fromv, and therefore there exists anH node two edges south fromv. Because the east
wall has two external missing contacts and theP-P edge cannot be on the south wall, by Corollary 21
theP-P edge must be on the west wall of the bounding box (otherwise, there would be external missing
contacts on each wall, for a total of five, and the embedding would not be optimal). By Fact 23, this is a
contradiction.

Finally, we consider the case wherev is adjacent to theP-P edge and on the same wall (see Fig. 13(c)).
We assume that theP-P edge lies directly south ofv. Because the north and east walls have two external
missing contacts and theP-P edge, any additional external missing contact on these walls would imply
suboptimality by Corollary 21. Therefore the twoH nodes nearestv cannot lie on either of these walls,
and must lie as indicated in the figure. This causes an internal missing contact between anH node and a
P node. Thus there are at least five missing contacts, and the embedding is not optimal.✷

Fig. 13. Illustrating the proof of Lemma 24.
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Fig. 14. Illustrating the proof of Lemma 25.

We now expand the restriction onH corners to include the entire bounding-box wall.

Lemma 25. There are no H corners on the bounding box in an optimal embedding of Z2k .

Proof. By Lemma 24, we need only consider the case of anH corner in the relative interior of a bounding
box edge. Letv be such anH corner. We assume that the edges of the chain adjacent tov are to
the west and the south. We distinguish two cases, as illustrated in Fig. 14. In the first case,v has no
contacts and thus has a missing external contact and a missing internal contact (along the wall of the
bounding box). In the second case,v has an internal contact, which must be with a secondH corner or an
endpoint.

We first consider the case wherev has no contacts. Because there is a missing internal contact, there
can only be three external missing contacts if the embedding is to be optimal. Therefore theP-P edge
must be on the bounding box, and cannot be on the north wall. Furthermore, no otherH node can be
on the north wall. Consider the edge adjacent tov on the north wall, and the nodeu which follows it.
Becauseu cannot be on the north wall, its only possible position is south west off. This creates a second
internal missing contact betweenu and aP node (ifu is anH node) or an extra external missing contact
(if u is part of theP-P edge), causing suboptimality.

We finally consider the case wherev has an internal contact, which must be with a secondH corner or
endpointw. Becausew has a second external missing contact on the north wall, theP-P edge must lie on
the bounding box by Corollary 21. Furthermore, theP-P edge must lie on the path fromv to w because
v andw have different parity. Thus the path fromv to theP-P edge creates a barrier between all points
west of this path and all points after theP-P edge. The endpoint of the same parity asv must lie west of
the path, as the chain cannot go outside the bounding box. This endpoint has three missing contacts, for
a total of five for the chain. Therefore the embedding is not optimal.✷

We have now established that if anH node is on the bounding box, it must either be straight or an
endpoint. With respect to endpoints, we observe the following:
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Lemma 26. In an optimal embedding of Z2k, if an endpoint is on the bounding box, then either there is
an internal missing contact, or the two endpoints are in contact.

Proof. An endpoint has three potential contacts; at least one of which lies along the wall of the bounding
box. Either this is an internal missing contact, or the endpoint is adjacent to anH node. Because there are
no H corners in an optimal embedding, thisH node must be the second endpoint.✷

Because there are only two endpoints and oneP-P edge, we know there must be at least one straightH
node on the bounding box. We define two kinds of straightH nodes. We say a straightH nodev is coupled
if the preceding or followingH node is also on the same wall of the bounding box asv; otherwise it is
solitary. These cases are illustrated in Fig. 15.

Fact 27. In an optimal embedding of Z2k, a solitary straight H node must either be adjacent to the P-P
edge or contact with an endpoint.

Proof. Let v be a solitary straightH node on the north wall of the bounding box which is not adjacent to
theP-P edge. Then there must be twoH nodes immediately southwest and southeast ofv, as illustrated
in Fig. 16. The lattice point south ofv cannot be the adjacentP node of any of theH nodes, nor can it be
vacant, because there would be at least two missing internal contacts, violating optimality.✷
Fact 28. In an optimal embedding of Z2k , there is at most one pair of coupled straight H nodes.

Proof. Eachm-tuple of coupledH nodes causesm external missing contacts on the same bounding box
wall. There can be at most one wall with two external missing contacts, and none with three or more.✷

The following two lemmas establish that there is at most one solitary straightH node.

Lemma 29. In an optimal embedding of Z2k, there is at most one solitary straight H node in contact with
an endpoint.

Proof. Assume there are two such straightH nodes,n ands, which contact with two endpoints,n′ ands′,
respectively. We assumen is on the north wall ands on the south; the argument can be slightly modified

Fig. 15. A pair of coupled straightH nodes, and a solitary straightH node.

Fig. 16. Illustrating the proof of Fact 27.
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Fig. 17. Illustrating the proof of Lemma 29.

for any other case. Becausen′ ands′ are of different parity, so too must ben ands. Therefore there is a
path on the chain fromn to s′ which does not pass throughs, and a path froms to n′ which does not pass
throughn. Assume without loss of generality that the path fromn to s′ leavesn to the east, as in Fig. 17.
Then the path froms to n′ must leaves to the west to avoid intersection. Because the chain is connected,
there must be a path fromn to s. The only possibility left is that the path leavesn to the west, and enters
s from the east. However, this requires the path to either leave the bounding box, or intersect the rest of
the chain, neither of which is possible.✷
Lemma 30. In an optimal embedding of Z2k, there is at most one solitary straight H node on the bounding
box.

Proof. Suppose there is more than one straightH node on the bounding box. By Fact 27 and Lemma 29
there must be exactly two: one must be adjacent to theP-P edge; the other must contact with an endpoint.
We observe that theP-P edge must be on the bounding box, because each wall not containing a solitary
H node must otherwise contain either a pair of coupled straightH nodes or an endpoint; any combination
of these two possibilities leads to a total of at least 5 missing contacts (apply Lemma 26 in the case of an
endpoint).

Assume the north, east and south walls are covered by the two solitary straightH nodes and theP-P
edge. We assume the configuration in Fig. 18(a) without loss of generality (the argument here will not
depend on whether the two solitary nodes are on opposite walls of the bounding box). Call theH node on
the south walls, and theH nodes preceding and following (northeast and northwest ofs) e andw. One
endpoint of the chain is in contact withe, w ands.

Consider the possibilities for covering the west wall of the bounding box: there is either a pair of
coupled straight nodes, or an endpoint. By Lemma 26, either case results in two missing contacts, both
either contained in or emanating from the west wall. It follows that we need only find one more missing
contact to establish suboptimality.

Consider theH nodez east ofs; e cannot be on the bounding box as this would create an external
missing contact. Placing anH node east ofe just creates another internal missing contact, which in turn
cannot be blocked without creating a missing contact with theP node betweens ande on the chain. It
follows that the chain must turn east ate; in order to avoid an internal missing contact, there must be an
H node north ofe (at e′ in Fig. 18(b)), and a chain edge west from thisH node. Note that lattice point
north ofw (i.e. w′) cannot contain anH node, as this would create an internal missing contact.
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Fig. 18. Illustrating the proof of Lemma 30.

By planarity, the subchains containinge and e′ must be connected to theP-P edge as shown in
Fig. 18(c). Consider the polygonQ formed these connecting chains, along with the contactsee′ and
an′. By an argument similar to Lemma 11 (with the extension that no contacts can be formed withw),
all of the remaining contacts forH nodes on this polygon must be internal toQ. Because there is an
imbalance in the parity of potential contacts for nodes onQ, this forces an internal missing contact.✷

We are finally ready to characterize the intersection of an optimal embedding ofZ2k with its bounding
box.

Lemma 31. In an optimal embedding of Z2k , the two endpoints are on the bounding box and in contact,
and the P-P edge is adjacent to a solitary H node, both of which are also on the bounding box.
Furthermore, there are no internal missing contacts.

Proof. By Lemma 30 there is at most one solitary straightH node on the bounding box, and there is of
course only oneP-P edge. On the other two walls of the bounding box, there are either two endpoints,
or one endpoint and one pair of coupled straightH nodes. In the last case, the endpoint causes one
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Fig. 19. Converting an optimal embedding ofZ2k into an optimal embedding into an optimal embedding ofS2k .

internal missing contact by Lemma 26, and the coupled straightH nodes cause two external missing
contacts. Therefore there are no coupled straightH nodes. Furthermore, because both endpoints are on
the bounding box, they must be in contact by Lemma 26 to avoid having two internal missing contacts.
Because the two endpoints contact, and are both on the bounding box, they have two external missing
contacts on the same wall. Therefore there are four external missing contacts in an optimal embedding,
and thus no internal missing contacts.✷

The previous lemma claims in essence that the open chainZ2k behaves just like a closed chain in any
optimal embedding. We formalize this intuition as follows:

Theorem 32. There are as many optimal embeddings of S2k as there are of Z2k.

Proof. By the preceding lemma, in an optimal embedding the endpointsZ2k are in contact and on the
bounding box; thus we can convert an optimal embedding ofZk into an optimal embedding ofS2k by
adding a secondP-P edge, outside the bounding box (see Fig. 19).✷

Theorem 17 is a straightforward consequence of the preceding theorem and Theorem 7.
We expect that by similar methods we can prove the following:

Conjecture 33. For odd k � 5, the open chain Zk has exactly two optimal embeddings.

We have computationally verified this conjecture for chains of length up to 26, that is, for odd
5 � k � 13. Fork = 1 andk = 3, Zk in fact has a unique optimal folding.

6. Conclusions and directions for future work

In this paper we considered a natural characterization of stable protein folding in the 2D H-P model,
namely uniqueness of optimal folding. We established that
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(1) there exist closed H-P chains with unique optimal folds for all (even) lengths, and
(2) there exist open H-P chains with unique optimal folds for all lengths divisible by 4.

We further observed that

(3) there exist arbitrarily long H-P chains with linear sized contact graphs and an exponential number of
optimal foldings.

There are several natural directions for future work, involving more general lattices, asymptotic bounds,
and algorithmic questions, as summarized below.

There is a great deal of natural skepticism about the biological relevance of results stemming from the
2D square lattice. While certain qualitative properties are independant of the lattice used [18], in the case
of the present work it seems clear that the bipartiteness of the lattice plays an important (and difficult-
to-motivate) role. It is thus important to consider nonsquare lattices in 2D, and preferably nonbipartite
lattices in 3D. Examples include the triangular lattice in 2D, and the face-centered cubic (FCC) lattice
suggested by Neumaier [31] as a minimal approximation of chemical bond distances and angles. For
example, Agarwala et al. [1] consider both of these lattices.

The existence of H-P chains with unique embeddings in a given lattice is only a first step to
understanding the behaviour of these models with respect to uniqueness. Experimental results [18] have
shown that about 2% of open chains up to length 18 have unique optimal foldings. It would be very
nice to have asymptotic bounds for the fraction of H-P chains with unique optimal foldings. Rather than
considering arbitrary H-P chains, it would also be useful to see what fraction of the proteins in the Protein
Data Bank [10] fold uniquely in the H-P model. It is likely that the best that can be hoped for is that real
proteins have a small number of optimal foldings.

From a sequence-design point of view, the more interesting question is not whether there exists an H-P
sequence with a small number of optimal foldings, but how to design sequences with this property. From
a combinatorial point of view, this asks for a characterization of what sequences have unique (or a small
number of) optimal foldings.

From an algorithmic point of view, there are two natural questions. The first problem is whether
there is an efficient algorithm to recognize sequences with unique optimal foldings. The second problem
is whether the problem of finding a minimum energy folding of an H-P chain is still NP-hard when
restricted to chains with unique optimal foldings.

Finally, there may be better definitions of folding stability in the H-P model. We have mentioned the
notion of a large gap in the number of contacts between the optimal folding and the next best folding [37,
38]. Given that the H-P model is only approximate, it may also be inappropriate to distinguish between
chains having e.g. 1 and 2 optimal embeddings.
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