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1.  I N T R O D U C T I O N  

The use of Markov-style processes to analyse genetic sequences, and reconstruct evolutionary 
trees is a major enterprise in molecular and evolutionary biology [1]. They  seem especially useful 
when matched with the maximum likelihood criterion. Under these Markov models, sites undergo 
random mutations along the edges of the evolutionary tree connecting the extant  species under 
s tudy (whose sequences label the leaves of the tree). It is usually assumed that  these mutations 
occur independently between sites, and according to some Markov-style process, which varies 
between sites only by being scaled up or down according to an associated rate parameter A. At 
each site, we have a corresponding site pattern f which maps each sequence to the corresponding 
nucleotide which occurs at tha t  site in the sequence. Thus, once the details of the model are 
described (including the underlying tree T),  it is possible to calculate the probability of generating 
any given site pat tern f ,  if the site evolves at rate A, and we will denote this probability as: 
P[f]A]. If we now regard A as a random variable, then the expected probability of generating 

f ,  •[f] is just f IP[flA ] dF(A). We wish to quickly estimate these probabilities, particularly 
when the number of sequences n is large. When there is no variation of rates across sites, 
the calculation of likelihoods is straightforward, using the standard algorithm of [2]. With a 
continuous distribution of site rates, and for certain classes of models, exact likelihood methods 
have been independently developed by Yang [3-5], and (using the Hadamard representation) by 
Steel et al. [6], Waddell [7], and Waddell and Penny [8]. Presently, only approximate integrations 
axe practical with large numbers of taxa, such as using a discrete approximating distribution, as 
suggested by Yang [4]. An alternative approach to dealing with site rate heterogeneity is that  
of Felsenstein and Churchhill [9] using hidden Markov models. Here, we explore a different type 
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of approximation,  in which the continuity of the rate distribution is irrelevant to the complexity 
of the calculations. I t  depends, instead, on the total  expected number of mutat ions in the tree 

being small (e.g., sequences from within populations). The approximations we describe here are 

applicable to all reversible models, but were inspired by an approximation to the Hadamaxd 
conjugation approach [6,10]. They may also be useful in est imating ML branch lengths for a tree, 

as we indicate at the end of this paper. 

2 .  S T A T I O N A R Y ,  R E V E R S I B L E  M O D E L S  

Suppose we have a s ta t ionary reversible model on r states, with rate matr ix  R and associated 

equilibrium vector r = [Tr~]. Let p ~ ( A )  denote the probabili ty tha t  on edge e, a site evolving at 

(relative) rate A is in state v at one end of the edge, given tha t  it was in state # at the other end 
(by reversibility we need not distinguish these two ends). By the spectral  theory of reversible 

Markov processes [11], we have 

peZ~()~) = ~ c~/v exp(-biveA),  (1) 
i=1 

where {b~} are the eigenvalues of R (with bl = 0) and where Ve is a characteristic "length" 

associated with edge e. Consequently, using the expansion e x p ( - x )  = )--]~=o((-1)J/fi)x j and 

rearranging we get: p~e~()~) v ' ~  - ~ J ~ J  where ~ V ' r  ~ Note tha t  = z_,j=o~j ,e , aj = ((-1)J/J!)z-,~=l i ~. 
~ = 0. For brevity we will let ~ denote ~" Thus, t,~ = 1 if # = v, otherwise a o aj aj . ao 

_#A 2~2 tt~k)~k p ~ ( A )  = 1 + a ? v e A  + u2"r ~A + . . .  + a k ,  e., + O (~/~+1), (2) 

= + + . .  + + O ( ¢ + 1 ) ,  ¢ (3) 

Let mp denote the pth moment  of the rate distribution. We may assume tha t  this distribution has 

mean 1. Note tha t  Ve is proportional  to the expected number of substitutions on edge e per site, 

and (with m l  = 1) the constant of proportionality is - ~ 7rt, Rt, t,. Thus, m0 = m l  -- 1, m2 = 

a 2 + 1 where a 2 is the variance of the rate distribution, and M ( x )  = ~p>o(mp/p!)xP is the asso- 
ciated moment  generating function. Now, suppose site pat tern  f assigns s tate  # to sequence 1. 
Then,  the probabil i ty P[flA] of site pat tern  f evolving on the tree under a corresponding site 

rate  ~ is given by P[fl~] = ~r t, ~-~F rle=(u,v)pF(u)f(v)()~), where the summat ion  is over all exten- 

sion F of f to all vertices of the tree. Thus, from equation (1), P[fl)~] = ~ - ~ 0  u~(f) )~i for values 
k m u i ( f )  tha t  depend on T, R, and {'Ye}. Thus, P[f] = ~i=o u~(f)mi .  Let p(k)[f] ~--]~=o u~(f) ~, 

which we will call the kth-order approximation to P[f], since from equations (2),(3), we have 
p[f]  __ p(k)[f] + O(7k+1) where 3' := maxe{ve}. For each k, these sum to 1 as we show formally 

nOW. 

L E M M A  1. For each k > 1, ~-~f p(k)[f] = 1. 

PROOF. Let F0 denote the set of site pat terns  tha t  assign the same state  to all leaves in 

the tree. Then,  ~--]feFo Uo(f)mo = 1, while for any f ~ F0, we have uo(f )  = 0. Thus, 
oo ~ m ~-']I~tFo(~--]~=l u~(f)m~) = 0. Rearranging the order of summation,  we see tha t  )--~.~=~ f~ ~ = 0, 

where ~ = ~I~tFo u~(f). Thus, 0 = f~ = ~2 = f~3 . . . .  since we can take m~ = c~ ~-~ for 
variable a : 0 < c~ < 1 by selecting the rate distribution for which 1 - c~ proportion of sites evolve 
at 0 rate, and c~ proportion evolve at rate c~ -1 (thus, re(x) = 1 - c~ + c ~ e x p ( - x / a ) ) .  Hence, 

= E / E i = o  u i ( f ) m i  = E f e F o  uo( f )  + Ei=0  ~i i 1. | 
We now describe a quadratic approximation to P[f]. In principle, higher-order approximations 

axe possible, but  they become increasingly complicated to describe (however, Theorem 2 provides 
a closed form power series for P[f] for a certain class of models). Let S = S (~) := )-~-e 7e; S (~) := 
~ e  3, 2. Given site pa t te rn  f ,  let L( f ,  T)  denote the parsimony score of f on T - - t h a t  is, the 
minimal number  of edges tha t  must be assigned different states at their endpoints in order to 

extend f to all vertices of T. 
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THEOREM 1. We distinguish four cases, depending on L = L ( f ,  T) .  

1. L = O. In this case, f is unvaried, and so assigns a single statc 
Then, 

zay i t - - t o  all the species. 

. 

( 1 S(2))) Ip(2)[f] = ~r, 1 + a~S + a~m2S (2) + ~m2 (a?) 2 ( S  ~ - 

L = 1. In this case, f can be generated by a change of s tate on jus t  one edge e of  T,  say 

from state # on one side (R = right) o f t  to a different state u on the other side (L = left). 

Wi thou t  10ss of  generality, we may suppose that there are two edges el, eu on the R-side 

of  e each incident with e. I f  e is an internal edge, then there are also two edges e3, e4 on 
the L-side of  e each incident with e. Then, 

~ ( 2 )  [ f ]  = 7rtta?~,,.~e .~_ ~r~a 2 m 2 ~ e  -b 7rtLa 1 m 2 7 e  a~"&, + a~"&, 

\ e ' E R  e 'EL / 
tttJ ~'tt 

+ al al m2(r ,%~%2 ÷ lr~%a%4). 

3. L = 2. In this case, f can be generated by changes of states on jus t  two edges (however, 
there may be more than jus t  one such pair of  edges). 

V" aO~aVV '- ~(2)[f]----Trt~m2/_.~ 1 1 " l e l ' / e 2 ,  

where the summation is over the (at most  three) pairs of  edges el,  e2 on which f can be 

generated at the leaves of  T by inducing a change from # to v on edge el and a change 
v to v ~ on edge e2. 

4. L > 2. In this case, F(2) [f] = 0. 

PROOF. 

• ,,-, ~u,-,,212 CASE 1 We have ~[]l~'] = ~ ,  l - I ~ ' ( : ' )  + O('Y ~) = ~,  1-k(1 + a;'yo,~ + ,~.~,, + . . .  ) + O(,y~). 
Expanding the product term, and integrating according to the rate distribution we get: ]p(2) [f] = 
r , (1  + a~S + a~m2S (2) + (a~')2m2)-]{~,~'):e#e' %%') and noting that the last summation term is 
just 1/2(S 2 - S(2)), we obtain the result. 

CASE 2. We have 

P[flA] = 7rt~P~ev(A) H pe~ff(A) H PeVY(~) 
e 'ER e 'EL 

7F v vtt vv 
+ ,,~: (a)p~, (~)p~ (~) l-I ~,"(a) l-[ pF(a) l-[ pV(a) 

etER1 e~ER2 e ' E L  

v/z Dv /~D v v  vv  
+ ~pe3 (~)p~4 (~);~ (A) I I  p~' (~) l-[ ;~' (~) l-[ pF(~)  + o (~3), 

e~ E L1 e~ E L2 el E Tl 

where L1, L2 are the two subtrees of L incident with edges O, e2 while R1, R2 are the two subtrees 
of R incident with e3, e4. The result now follows from equations (2),(3). 

Cases (3) and (4) are straightforward. I 

3. A P O W E R  S E R I E S  E X P A N S I O N  

We now describe a generic power series expansion which covers all trees, and handles a gener- 
alization of the Kimura 3ST model that allows nonstationary rate matrices, and nonstationary 
base composition. It also applies to submodels of this model, including the Kimura 3ST, 2ST, 
and Jukes-Cantor (= Neyman 4-state) models [1]. An analogous, and simpler treatment exists 
for the Neyman 2-state model• Under the ordinary Kimura 3ST model, four site patterns now 
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have equal probability (assuming a uniform distribution of states). Adding the probabilities of 
these site patterns together gives a vector s with 4~ -1 components. From [6], we can write this 
vector (even for the nonstationary generalizations) as s = H-I(M(H3"))  where H is a Hadamard 
matrix, and where 3' is the "tree spectrum", most of whose entries are 0. We index each com- 
ponent of s and 3' and each row and column of H by a quadripartition of {1 , . . .  ,n  - 1}- - tha t  
is, a pair /9 = (al,cr2) of subsets of { 1 , . . . n  - 1} as in [12]. For example, s(o,¢ ) is the ex- 
pected proportion of sites where all sequences take the same state (the "unvaried" sites). Let 
s(T) := {p(i) : p • T, i = 1, 2, 3}, where p(1) = (p,0), p(2) = (~,p), and p(3) = (p, p). Then, 

3'0 = 0 for 0 ¢ s(T) U {0, 0}, 3'(0,0) = - Eoes(T) 3'0. 

THEOREM 2. 
P 

s ° = 5 ° + E ( - 1 ) P ~ .  E ,°,1113`o,, 
p> l (01 ..... Op):g i,OiEs(T) i=1 

where 
1, i f 0 = ( 0 , 0 ) ,  

V0(01 , . . .  ,0p)  = E ( - 1 )  Isl, 5o = 0, else. 
SC{1,...,p}:O=~ieSgi 

PROOF. By definition, so = (H-1M(H3"))o = 4 1 - n ~  O, ho,o,ro, where ro, = M((H3")o,) = 
~--'~p>o(mp/p])(H3")~,. Thus, 

= E --~-Bo,p, so = 4 ' -n boo, + E 7 5o + 
p:>l O' p>_l p" 

where Ba,p = 41-n ~-'~o' ho,o,(H3")~,. Now, (H3')o, = - ~O,,Es(T)(1 -- ho,,o,,)7o,,. Thus, 

B ° , p = ( - 1 ) P 4 1 - ' ~ E  h°,°' E (1-ho,,o,,)3`o,, 
O' O"Es(T) 

= ( - 1 ) P  E [ I  3`0' 4 1 - n E h o ' o ' Y I ( 1 - h o " O ~ )  " 
(01 ..... Op):Vi,OIEs(T) i=1 0' j = l  

Now, we invoke the identity 

41-n E ho,o' 1-I ho,,ol = 1, if 0 = Gi=10i, 
O' i=1 0, else, 

to deduce that  41-n Y~o, ho,o, 1--[~-=1(1 - ho,,o~) = uo(O1,..., Op) and the result now follows. | 

Theorem 2 leads to the following first-order and second-order approximations for so. Let 

S :~-- EOEs(T)3"0, S(2) :--~ E a E s ( T ) 3 ' 3 '  s(T) 2 = {{01,02} : 01,02 • s(T)} , s (T)  (2) = {01 • 02 : 

01,02 • s(T)} and recall that  m2 = 1 + a 2. Then we have the first-order approximation 

3'0, 

s ~ l )  = 1 - -  

O, 

and the second-order approximation 

3"0 -- m270S + m2 

E 
OEs(T) 

if/9 E s(T), 

7o, if O = (@,0), 

else, 

~ 7o,7o2, if 0 E s(T),  
{ 01,02 ) E s( T) 2 :01~02=O 

1 
1 - S + ~m2 (S 2 + S(2)), if 0 = (0,0), 

m2 ~ 701702, if 0 E s(T) (2), 
{01,02 }Es(T) 2:01 ~02=0 

0, else. 

Moreover, in either approximation, the so sum to 1 by virtue of the following. 
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THEOREM 3. Let  s(o r) denote the r t h - o r d e r  a p p r o x i m a t i o n  f o r  so o b t a i n e d  b y  a l l o w i n g  p in  T h e -  

orem 1 t o  r a n g e  from 0 to r.  Then 
s~r)= 1. 

PROOF. Let r e ( x )  := ~ , r p = o ( m p / p ! ) x P .  Then, s~ r) = ( H - t m ( H ' / ) ) o  and since the elements in 

the vector H - l m ( H ' / )  sum to m(0) = 1, so, too, do the elements s~ ~) | 

3.1. E x a m p l e :  T h e  N e y m a n  2 - S t a t e  M o d e l  

To illustrate these formulae, we consider the simple case of the Neyman 2-state model [13], 
in which there are just  two states, and the rate matrix is symmetric. Such a model can be 

regarded as either a stat ionary reversible model (in which case Theorem 1 applies) or the simpler 
analogue of Theorem 2 (for the Neyman 2-state model) could alternatively be invoked. We have 

= ( 1 / 2 ) ( 1  + and  so a? = - 1 ,  = 1 For , # we  have  = 
Izv lzv 

(1/2)(1 - exp(-2A'/e))  and so, a 1 = 1, a 2 - 1 .  We specialise further now, and consider a 
fully resolved tree with just n -- 4 leaves, labelled 1 , . . . ,  4 in which leaves 1,2 are separated from 
3,4 by a central edge. Assign length '/i to the edge ei incident with leaf i, and assign length '/5 on 
the central edge. In this example, we let Pi be the probability of generating the parti t ion induced 
by a single mutat ion on edge ei, and let Pij be the probability of generating the parti t ion induced 
by single mutations on edges ei and ej. Let So denote the uniform pat tern (all leaves in the same 
state). Thus, s12 -- s5 is the probability that  leaves 1,2 are in one state, and leaves 3,4 are in the 
other state. Note that  each s value is a sum of precisely two equal ~[f] values. Then, we have the 
following second-order approximation to the s values. As before, let S := '/1 + '/2 + "/3 + '/4 + '/5 
and ' / : =  max~ {% }. Let 

s~ 2) = "/1 - m 2 ( ' / 1 S  - "/2"Y~), 

8(22) = "/2 - m 2  ( "/2 8 - "/1"/5 ) , 

8~ 2) = "/3 - m 2 ( ' / a S  - "/4"/5), 

s(42) = "/4 - m 2 (  "/48 - "/3"/5 ), 

s~ 2) = "/s - m 2  ( "/~S - "/1"/2 - "/3"/4 ) , 

(2) _-- m 2 ( ' / 1 ' / 3  4- ' / 2 ' / 4 ) ,  13 

= m2('/1'/4 + ' /2 ' / 3 ) ,  

8(:)= 1 -  s +,-,,2 
# 

Then, s~ = s(~ 2) + 0( ' /3)  and (2) 
/~8/~ ---- 1. 

3.2. Numerical  Example  

Let the 4-species tree described above have [ ' /1,-. . ,  75] = [0.01,0.02, 0.03, 0.04, 0.05], while the 
site rates follow a gamma distribution with mean = 1 and shape parameter k -- 2 (so 6 2 ---- 1/2). 
Then,  as a test example, under the Neyman 2-state model the approximate calculation gives the 
site pat tern vector 

[so : 0.87100, 81 : 0.00925, s2 : 0.01625, 83 : 0.02625, 

s4 : 0.03325, s5 : 0.04085, s13 : 0.00165, s14 : 0.00150], 

while the exact probabilities are 

[So : 0.86858, sl : 0.00929, s2 : 0.01681, s3 : 0.02658, 

s4 : 0.03410, 85 : 0.04204, s13 : 0.00135, s14 : 0.00125]. 
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Here, even though the most divergent sequences are 11% apart (over twice the average divergence 
between human and chimpanzee genomes, e.g., [14]) the probabilities are still quite close. A useful 
measure of the difference of these sequence probability vectors is via the likelihood ratio statistic: 

G 2 = ~-~ csi ln(s~2)/si),  where c is the sequence length and si are the exact probabilities. This 
is also equal to the expected difference in log likelihood (ln L). Assuming the sequences are 1000 
sites long, then for the model given above, the difference in the likelihood of the whole data  due to 
the approximations is only 0.0963 (out of a total In L of -596.65). In a real situation, such a small 
difference would be insignificant. The Pearson X 2 statistic gives similar results. To evaluate how 
much the tree shape, the distribution of site rates, and the overall rate of evolution affect the 
accuracy of these calculations, we present the results in Figure 1. The tree is alternatively one 
obeying equal rates of evolution % = 0.1 for all i, or a Felsenstein [15] tree with 7i values [0.05, 
0.175, 0.175, 0.05, 0.05] where rates of evolution in different lineages are highly unequal (note, 
the sum of edge lengths is equal in both cases). Site rates are assumed to be either identical rates 
(mean = 1, a 2 -- 0), or to be highly unequal in rate and follow a gamma distribution (mean 1 and 
a 2 = 1). The x axis is equal to the total percentage evolution across the tree (e.g., at 10%, 10% 
of all sites are expected to have changed). 

4 

3 • 

G 2 

2 . 

0 

0 

• O = 1 

F E 

5 10 15 2 0  2 5  

% total change  on t ree 

Figure 1. A plot of S the total expected number of substitutions) on the model tree 
versus difference of log likelihood for sequences 1000 long (E: equal edge rates, F: 
Felsenstein tree). 

Figure 1 shows the approximations are very close up to moderate rates of substitution, when 
site rates are identical. Note that  while the shape of the tree makes some difference, the variance 
of site rates is overall more important.  However, even under the worst combination, the calculated 
likelihoods are quite accurate at divergences found within species, between closely related species, 
and for some types of change (e.g., transversions) between species ~n different families (e.g., 
humans to monkeys). If we use other site rate distributions in place of the gamma (e.g., the 
inverse Gaussian [10]), then we get similar results. 

3.3. A p p r o x i m a t i n g  M L  B r a n c h  L e n g t h s  

In maximum likelihood analyses, one frequently seeks branch lengths (and/or  parameters) that  
maximize the likelihood score on a given tree (given a collection of sequences, and a model of 
site substitution). It is, therefore, useful to have good estimates of these optimal branch lengths 
in order to speed up any search algorithm, and one such approach was described recently in [16]. 
Here, we point out that  the approximations described above can also provide initial settings 
for maximum likelihood algorithms. Consider for example, the first-order approximation for the 
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Kimura 3ST model, described in Section 3. Then, the settings of the ~/e for 0 E s ( T )  that 
maximize the likelihood score when each s~ 1) is substituted for so (and sites of parsimony length 
> 1 are ignored) is provided by setting ~/e = max(0, (xo/x(O,0)) - c}  where xe is the number of 
sites inducing the quadripartition 0, and where c = (Is(T)l  + 1) -1 ~-:~aes(T)(xo/x(o,O)). 
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