Zeros of Polynomials and Fractional Order Differences of Their Coefficients

G. T. Cargo*
Syracuse University, Syracuse, New York
and
National Bureau of Standards, Washington, D. C.
AND
O. Shisha
National Bureau of Standards, Washington, D. C.
Submitted by Richard Bellman

I. Introduction

In 1893 Eneström [1] proved that, if $c_{0}, c_{1}, \cdots, c_{n}(n \geq 1)$ are real numbers (not all zero) satisfying

$$
\begin{equation*}
c_{0} \geq c_{1} \geq c_{2} \cdots \geq c_{n} \geq 0 \tag{1}
\end{equation*}
$$

then no zero of the polynomial $E(z) \equiv \Sigma_{k=0}^{n} c_{k} z^{k}$ lies in the disk $|z|<1$. The interested reader may consult Professor Marden's treatise [2, § 30] on this and related results. A generalization of Eneström's theorem for power series with complex coefficients was given by Krishnaiah [3].

Let $\boldsymbol{\nabla}$ denote the backward-difference operator defined by $\nabla a_{k} \equiv a_{k}-a_{k-1}$ (see, e.g., [4, pp. 207-208]). Then (1) is equivalent to the condition

$$
\begin{equation*}
\nabla c_{k} \leq 0 \quad(k=1,2, \cdots, n+1) \tag{2}
\end{equation*}
$$

where c_{n+1} is taken to be zero. Eneström's conclusion follows from the observation that

$$
(1-z) E(z) \equiv \sum_{k=1}^{n+1}\left\{\nabla c_{k}\right\}\left(z^{k}-1\right)
$$

[^0]which implies that
$$
\operatorname{Re}\{(1-z) E(z)\} \equiv \sum_{k=1}^{n+1}\left\{\nabla c_{k}\right\} \operatorname{Re}\left(z^{k}-1\right)>0
$$
whenever $|z|<1$.
In this paper we extend Eneström's theorem by replacing (2) by similar conditions involving fractional order differences.

Let \mathbf{E} denote the displacement operator defined by $\mathbf{E} a_{k} \equiv a_{k+1}$, and let \mathbf{I} be the identity operator: $\mathbf{I} a_{k} \equiv a_{k}$. Then, symbolically,

$$
\nabla^{\alpha}=\left(\mathbf{I}-\mathbf{E}^{-1}\right)^{\alpha}=\sum_{m=0}^{\infty}(-1)^{m}\binom{\alpha}{m} \mathbf{E}^{-m}
$$

for every complex α.
Accordingly, we define ∇^{α} by means of the identity (see, e.g., $[5, \S 5.5]$)

$$
\begin{equation*}
\nabla^{\alpha} a_{k} \equiv \sum_{m=0}^{\infty}(-1)^{m}\binom{\alpha}{m} a_{k-m} \tag{3}
\end{equation*}
$$

If $a_{k}=0$ for $k=-1,-2, \cdots$, then (3) yields, for $k=0,1,2, \cdots$,

$$
\begin{equation*}
\nabla^{\alpha} a_{k}=\sum_{m=0}^{k}(-1)^{m}\binom{\alpha}{m} a_{k-m} \tag{4}
\end{equation*}
$$

Given complex numbers $\alpha, a_{0}, a_{1}, \cdots, a_{k}$, we shall always mean by $\nabla^{\alpha} a_{k}$ the right-hand side of (4).

II. Polynomials with Positive Coefficients

Theorem 1. Let $E(z) \equiv \Sigma_{k=0}^{n} c_{k} z^{k}(\not \equiv 0, n \geq 1)$ be a polynomial, and let $0<\alpha \leq 1$. Assume that $c_{k} \geq 0(k=0,1, \cdots, n)$ and that $\nabla^{\alpha} c_{k} \leq 0(k=1,2$, $\cdots, n)$. Then no zero of $E(z)$ lies in $|\boldsymbol{z}|<1$.

Proof. Consider the function

$$
\begin{equation*}
(1-z)^{\alpha} \equiv \sum_{m=0}^{\infty}(-1)^{m}\binom{\alpha}{m} z^{m} \quad|z| \leq 1 \tag{5}
\end{equation*}
$$

Setting $c_{k}=0$ for $k=n+1, n+2, \cdots$, we have throughout $|\boldsymbol{z}| \leq 1$

$$
\begin{align*}
(1-z)^{\alpha} E(z) & =\sum_{k=0}^{\infty}\left\{\sum_{m=0}^{k}(-1)^{m}\binom{\alpha}{m} c_{k-m}\right\} z^{k} \\
& =\sum_{k=0}^{\infty} z^{k} \nabla^{\alpha} c_{k}=\sum_{k=1}^{\infty}\left(z^{k}-1\right) \nabla^{\alpha} c_{k}, \tag{6}
\end{align*}
$$

since

$$
\sum_{i=0}^{\infty} \nabla^{\alpha} c_{k}=0 .
$$

For $k=n+1, n+2, \cdots$, we have

$$
\begin{equation*}
\nabla^{\alpha} c_{k}=\sum_{m=k-n}^{k}(-1)^{m}\binom{\alpha}{m} c_{k-m} \tag{7}
\end{equation*}
$$

Since

$$
\begin{equation*}
(-1)^{m}\binom{\alpha}{m} \leq 0, \quad m=1,2, \cdots \tag{8}
\end{equation*}
$$

$\nabla^{\alpha} c_{k} \leq 0$ for $k=n+1, n+2, \cdots$. Thus $\nabla^{\alpha} c_{k} \leq 0 \quad(k=1,2, \cdots)$, and by (6), not all of these numbers $\nabla^{\alpha} c_{k}$ are zero. Hence, for $|\boldsymbol{z}|<1$,

$$
\operatorname{Re}\left\{(1-z)^{\alpha} E(z)\right\}=\sum_{k=1}^{\infty}\left\{\nabla^{\alpha} c_{k}\right\} \operatorname{Re}\left(z^{k}-1\right)>0
$$

and so $E(z) \neq 0$.
Remarks. (a) Thcorem 1 with $\alpha=1$ is just Eneström's theorem. If $n=1$ and α is a given number satisfying $0<\alpha<1$, then the test of Theorem 1 is weaker than Eneström's test.
(b) Let $0<\alpha<1, c_{0}=16, c_{1}=2 \alpha$, and $c_{2}=\alpha(8-6 \alpha)$. One can apply Theorem 1 to $E(z) \equiv c_{0}+c_{1} z+c_{2} z^{2}$ and conclude that it has no zero in $|\boldsymbol{z}|<1$. Eneström's theorem, however, is not applicable to this $E(z)$.
(c) Let $0<\alpha_{1}<\alpha_{2} \leq 1$, let n be an integer larger than 1 , and set $E_{1}(z) \equiv(-1)^{n+1}\left(\begin{array}{l}\alpha_{1}\end{array}\right)^{-1}+z^{n}, \quad E_{2}(z) \equiv \Sigma_{k=0}^{n} \alpha_{2}^{k} z^{k}$. We can conclude that no zero of $E_{1}(z)$ lies in $|z|<1$ by means of Theorem 1 with $\alpha=\alpha_{1}$, but not by means of Eneström's theorem. On the other hand, one can apply to $E_{2}(z)$ Eneström's theorem, but not Theorem 1 with $\alpha=\alpha_{1}$, for the condition $\nabla^{\alpha_{1}} c_{1}=\alpha_{2}-\alpha_{1} \leq 0$ is not fulfilled.
(d) Let $0<\alpha_{1}<\alpha_{2} \leq 1$, and set $E(z) \equiv 4+2\left(\alpha_{1}+\alpha_{2}\right) z+\alpha_{2}\left(1+\alpha_{1}\right) z^{2}$. Then one can apply to this $E(z)$ Theorem 1 with $\alpha=\alpha_{2}$. One cannot, however, apply Theorem 1 with $\alpha=\alpha_{1}$.
(e) Let $\frac{1}{2} \leq \alpha_{1}<\alpha_{2}<1$, and set

$$
E(z) \equiv\left[\alpha_{1}\left(1-\alpha_{1}\right)\right]^{-1}+\left[\alpha_{2}\left(1-\alpha_{2}\right)\right]^{-1}+z^{2}
$$

Then one can apply to this $E(z)$ Theorem 1 with $\alpha=\alpha_{1}$, but one cannot apply Theorem 1 with $\alpha=\alpha_{2}$.

III. Complex Coefficients

We shall now consider polynomials with complex coefficients.
By a sector with vertex at the origin we mean a set of the form

$$
\left\{\rho e^{i \varphi}: \rho \geq 0, \varphi_{1} \leq \varphi \leq \varphi_{2}\right\} .
$$

ThEOREM 2. Let $E(z) \equiv \sum_{k=0}^{n} c_{k} z^{k}(\neq 0, n \geq 1)$ be a polynomial with complex coefficients, and let $0<\alpha \leq 1$. Set $c_{k}=0(k=n+1, n+2, \cdots)$, and let S be a sector with vertex at the origin whose angular measure 2θ satisfies $0 \leq 2 \theta<\pi$. Then each of the following three hypotheses implies that $E(z)$ has no zero in $|z|<\cos \theta:(\mathrm{I})-c_{k}(k=0,1, \cdots, n)$ and $\nabla^{\alpha} c_{k}(k=1,2, \cdots, n)$ belong to S; (II) $\nabla^{\alpha} c_{k} \in S(k=1,2, \cdots, n, n \vdash 1, n+2, \cdots)$ (III) $\nabla c_{k} \in S$ ($k=1,2, \cdots, n+1$).

Theorem 2 with hypothesis I and with S taken as the negative real axis (including the origin) is our previous Theorem 1.

To establish Theorem 2, we prove first the following

Lemma. Let $E(z) \equiv \Sigma_{k=0}^{\infty} c_{k} z^{k}(\not \equiv 0)$ be a power series with complex coefficients converging at $z=1$, and let $0<\alpha \leq 1$. Let γ and $r(0<r \leq 1)$ be real numbers such that, for $k=1,2, \cdots, \nabla^{\alpha} c_{k}=\left|\nabla^{\alpha} c_{k}\right| e^{i\left(\varphi_{k}+\gamma\right)}$ where φ_{k} is real and $\left|\varphi_{k}\right| \leq \arccos r^{k}$. Then $E(z)$ has no zero in $|z|<r$.
(Whenever arccos, arcsin, or arg appears, its principal value is being used.)
Proof of the Lemma. Due to the absolute convergence of the right-hand member of (5) at $z=1$, (6) holds in the present case throughout $|z|<1$. Let κ be a positive integer for which $\nabla^{\alpha} c_{\kappa} \neq 0$. (Such a κ exists, for otherwise we would get from (6) that $E(z) \equiv 0$.) Then throughout $|z|<r$ we have

$$
\begin{array}{r}
\left|\arg \left[e^{-i \gamma}\left(1-z^{\kappa}\right) \nabla^{\alpha} c_{\kappa}\right]\right| \leq \mid \arg \left(e^{\left.-i \gamma^{\prime} \nabla^{\alpha} c_{k}\right)\left|+\left|\arg \left(1-z^{\kappa}\right)\right|\right.}\right. \\
<\arccos r^{\kappa}+\arcsin r^{\kappa}=\pi / 2,
\end{array}
$$

and therefore

$$
\operatorname{Re}\left\{e^{-i v}\left(1-z^{\kappa}\right) \nabla^{\alpha} c_{\kappa}\right\}>0
$$

If $|\boldsymbol{z}|<r$, then by (6),

$$
\operatorname{Re}\left\{e^{i(\pi-\gamma)}(1-z)^{\alpha} E(z)\right\}=\sum_{k=1}^{\infty} \operatorname{Re}\left\{e^{-i \gamma}\left(1-z^{k}\right) \nabla^{\alpha} c_{k}\right\}>0
$$

and, consequently, $E(z) \neq 0$. This proves the Lemma.

Proof of Theorem 2. For a suitable real constant γ, every $z \in S$ can be written in the form $|z| e^{i(q(z) i n)}$ where $-\theta \leq \varphi(z) \leq \theta$. To prove Theorem 2 (with hypothesis II), observe that for every $k \geq 1$ we have

$$
\nabla^{\alpha} c_{k}=\left|\nabla^{\alpha} c_{k}\right| e^{i\left(\mathscr{F}_{k}+\gamma\right\rangle}
$$

where ϕ_{k} is real and

$$
\left|\varphi_{k}\right| \leq \theta=\arccos \cos \theta \leq \arccos (\cos \theta)^{k} .
$$

By the lemma, $E(z)$ has no zero in $|z|<\cos \theta$. Next, we prove Theorem 2 with hypothesis I. It is sufficient to show that $\nabla^{\alpha} c_{k} \in S$ for every $k>n$. Now, for such a k, we see from (7) and (8) that $\nabla^{\alpha} c_{k}$ is a weighted sum of $-c_{0}$, $-c_{1}, \cdots,-c_{n}$ with real, nonnegative weights. Since $-c_{m} \in S$ for $m=0,1$, \cdots, n, it follows that $\nabla^{\alpha} c_{k}$ also belongs to S. Finally, hypothesis III obviously implies II (with $\alpha=1$).

Let c_{0} be a positive number, and let $c_{1}, c_{2}, \cdots, c_{n}$ be nonnegative real numbers. Let $0<\alpha<1$, and for every $r \geq 0$, let $\mu(r)=\max _{1 \leq k \leq n} \nabla^{\alpha}\left(r^{k} c_{k}\right)$. Since $\mu(0)=\max _{1 \leq k \leq n}\left[(-1)^{k}\binom{\left.\frac{\alpha}{k}\right)}{k} c_{0}\right]<0$, there exists a positive r for which $\mu(r) \leq 0$. Every such r has the property that all zeros of $E(z)=\sum_{k=0}^{n} c_{k} z^{k}$ lie in $|z| \geq r$. Indeed, by Theorem 1, no zero of $E(r z) \equiv \sum_{k=0}^{n} c_{k} r^{k} z^{k}$ lies in $|z|<1$.

Theorem 3. Let $E(z) \equiv \Sigma_{k=0}^{\infty} c_{k} z^{k}(\not \equiv 0)$ converge at $z=1$. Let $0<\alpha \leq 1$, and assume that all numbers $\nabla^{\alpha} c_{k}(k=1,2, \cdots)$ lie in some sector with vertex at the origin whose angular measure 2θ satisfies $0 \leq 2 \theta<\pi$. Then no zero of $E(z)$ lies in $|z|<\cos \theta$.

The proof is the same as that of Theorem 2 (with hypothesis II).

IV. Furtier Results

Let S be a sector as in Theorem 2, let $0<\alpha \leq 1$, and let c_{0}, c_{1}, \cdots be complex numbers (not all zero) such that $-c_{k}(k=0,1, \cdots)$ and $\nabla^{\alpha} c_{k}$ $(k=1,2, \cdots)$ lie in S. Then, as one easily concludes, $c_{0} \neq 0$. For $n=1,2, \cdots$, let $E_{n}(z) \equiv \Sigma_{k=0}^{n} c_{k} z^{k}$. By Theorem 2 (with hypothesis I), no $E_{n}(z)$ can have a zero in $|z|<\cos \theta$. If $\widetilde{\lim }\left|c_{n}\right|^{1 / n}$ were larger than $(\cos \theta)^{-1}$, then we could find an n such that $\left|c_{n} / c_{0}\right|^{1 / n}>(\cos \theta)^{-1}$. For such an n, the geometric mean of the moduli of the zeros of $E_{n}(z)$ would be smaller than $\cos \theta$; and therefore $E_{n}(z)$ would have at least one zero in $|z|<\cos \theta$, contradicting our above observation. Thus, the radius of convergence of $\Sigma_{k=0}^{\infty} c_{k} z^{k}$ is $\geq \cos \theta$; and, by Hurwitz's theorem relating the zeros of a power series to those of its partial sums, $\sum_{k=0}^{\infty} c_{k} z^{k} \neq 0$ throughout $|z|<\cos \theta$.

Taking a more general consideration, let $0<\alpha \leq 1$, let γ and r be real numbers ($0<r \leq 1$), and let C_{0}, C_{1}, \cdots be complex numbers (not all zero) such that $-C_{k}=\left|C_{k}\right| e^{i\left(\psi_{k}+\gamma\right)}, \psi_{k}$ real, $\left|\psi_{k}\right| \leq \arccos r^{k+1}(k=0,1, \cdots)$, and such that $\nabla^{\alpha} C_{k}=\left|\nabla^{\alpha} C_{k}\right| e^{i\left(\Phi_{k}+\gamma\right)}, \Phi_{k}$ real, $\left|\Phi_{k}\right| \leq \arccos r^{k}$ $(k=1,2, \cdots)$. Again it follows that $C_{0} \neq 0$. For $n=1,2, \cdots$, set $E_{n}(z) \equiv \Sigma_{k=0}^{n} C_{k} z^{k}$, and consider some arbitrary $E_{n}(z)$. Let $c_{k}=C_{k}$ and $\phi_{k}=\Phi_{k}$ for $k=0,1, \cdots, n$, and let $c_{k}=0$ for $k=n+1, n+2, \cdots$. If k is larger than n, then all the numbers $\left|\psi_{0}\right|,\left|\psi_{1}\right|, \cdots,\left|\psi_{n}\right|$ are equal to or less than arccos r^{k}, and therefore $-c_{0},-c_{1}, \cdots,-c_{n}$ lie in the sector $\left\{\rho e^{i \varphi}: \rho \geq 0, \gamma-\arccos r^{k} \leq \varphi \leq \gamma+\arccos r^{k}\right\}$. Thus, in view of (7) and (8), $\nabla^{\alpha} c_{k}$ lies in that sector; and, consequently, we may write $\nabla^{\alpha} c_{k}=\left|\nabla^{\alpha} c_{k}\right| e^{i\left(\varphi_{k}+\nu\right)}$, where φ_{k} is real and $\left|\varphi_{k}\right| \leq \arccos r^{k}$. Applying the lemma to $E_{n}(z)$ we conclude that $E_{n}(z)$ has no zero in $|z|<r$. Now, exactly as before we can show that the radius of convergence of $\Sigma_{\nu=0}^{\infty} C_{2} z^{v}$ is at least r and that this power series is different from zero throughout $|z|<r$.
Assume again the hypotheses of Eneström's theorem. Since $\Sigma_{k=0}^{n} c_{k}>0$, $E(1) \neq 0$. Therefore, by considerations as presented in the Introduction, if $\nabla c_{1} \neq 0, E(z)$ has no zero on $|z|-1$. If $E(z)-0,|z|-1$, then $\nabla c_{1}=0$, and $z^{k}=1$ for each k satisfying $2 \leq k \leq n+1, \nabla c_{k} \neq 0$; in particular, $z^{n+1}=1$ if $c_{n} \neq 0$. See [6]. Furthermore, if for some k with $1 \leq k \leq n+1, \nabla c_{k} \neq 0$, a zero z of $E(z)$ satisfies $\operatorname{Re}\left(z^{k}\right)<1$, then there exists a $k^{\prime}\left(1 \leq k^{\prime} \leq n+1, \nabla c_{k^{\prime}} \neq 0\right)$ such that $\operatorname{Re}\left(z^{k^{\prime}}\right)>1$.

Similarly, assume the hypothesis of Theorem 1 with $\alpha<1$. Again $E(1) \neq 0$. However, now we have the result that $E(z)$ has no zero on the unit circumference. Indeed, by (7) and (8) it follows that $\nabla^{\alpha} c_{k}<0$ for $k=n+1$, $n+2, \cdots$. Also, by hypothesis, $\nabla^{\alpha} c_{k} \leq 0, k=1,2, \cdots, n$. If $E(z)=0$, $|z|=1$, then since $\Sigma_{k=1}^{\infty}\left\{\nabla^{\alpha} c_{k}\right\} \operatorname{Re}\left(z^{k}-1\right)=0$, we have $z^{k}=1$, $k=n+1, n+2, \cdots$. Therefore $z=1$, contradicting our above remark that $E(1) \neq 0$.

References

1. Eneström, G. Härledning af en allmän formel för antalet pensionärer, som vid en godtycklig tidpunkt förefinnas inom en sluten pensionskassa. Ofversigt af Kongl. Vetenskaps Akad. Förhandl. 50, 405-415 (1893).
2. Marden, M. "The Geometry of the Zeros of a Polynomial in a Complex Variable." Mathematical Surveys, No. III. Am. Math. Soc., 1949.
3. Krishnaiah, P. V. On Kakeya's theorem. F. London Math. Soc. 30, 314-319 (1955).
4. Householder, A. S. "Principles of Numerical Analysis." McGraw-Hill, New York, 1953.
5. Hardy, G. H. "Divergent Series." Oxford Univ. Press, 1949.
6. Hurwitz, A. U'ber einen Satz der Herrn Kakeya. Tôhoku Math. Y. 4, 89-93 (19131914).
7. Eneström, G. Remarque sur un théorème relatif aux racines de l'équation $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}-0$ où tous les coefficients a sont réels et positits. Töhoku Math. 7. 18, 34-36 (1920).
8. Hayashi, T. On a theorem of Mr. Kakeya's. Tôhoku Math. 7. 2, 215 (1912-1913).
9. Hayashi, T. On the roots of an algebraic equation. Tôhoku Math. 7. 3, 110-115 (1913).
10. Kakeya, S . On the limits of the roots of an algebraic equation with positive coefficients. Tôhoku Math. F. 2, 140-142 (1912-1913).
11. Kakeya, S . On the zero points of a power series with positive coefficients. Tôhoku Math. 7. 3, 23-24 (1913).
12. Kempner, A. Extract of a letter to the editor. Tôhoku Math. J. 4, 94-95 (19131914).
13. Kurokawa, R. A theorem in algebra. Tôhoku Math. f. 3, 173-174 (1913).

[^0]: * This author's contribution was made during the tenure of a National Academy of Sciences - National Research Council Postdoctoral Research Associateship while on leave from Syracuse University.

