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I. INTRODUCTION 

In 1893 Enestrom [l] proved that, if c,, , cr , ..a, c, (n 2 1) are real numbers 
(not all zero) satisfying 

cg 2 Cl, 2 es a’* 2 c, 2 0, (1) 

then no zero of the polynomial E(z) = Z& cK.sk lies in the disk 1 z / < 1. 
The interested reader may consult Professor Marden’s treatise [2, 5 301 on 
this and related results. A generalization of Enestrom’s theorem for power 
series with complex coefficients was given by Krishnaiah [3]. 

Let V denote the backward-difference operator defined by Vu, = a, - a,-, 
(see, e.g., [4, pp. 207-2081). Then (1) is equivalent to the condition 

vcc, I 0 (k = 1, 2, a**, n + 1) (2) 

where cn+r is taken to be zero. Enestrom’s conclusion follows from the obser- 
vation that 

n+l 
(1 - x) E(z) = c {vc,) (z” - 1) 

k=l 

* This author’s contribution was made during the tenure of a National Academy 
of Sciences - National Research Council Postdoctoral Research Associateship while 
on leave from Syracuse University. 
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which implies that 
n+1 

Re ((1 - x) E(x)} = x (Vc,> Re (9 - 1) > 0 
k=l 

whenever / z ) < 1. 
In this paper we extend Enestrom’s theorem by replacing (2) by similar 

conditions involving fractional order differences. 
Let E denote the displacement operator defined by Ea, = uk+i, and 

let I be the identity operator: Ia, = ak. Then, symbolically, 

Vu = (I - E-1)” = 2 (- 1)” (3 E-” 
m=0 

for every complex a. 
Accordingly, we define Vu by means of the identity (see, e.g., [5, $5.51) 

VU% = 2 (- 1)” (i) Ukprn . 
?lkO 

If uk = 0 for Iz = - 1, - 2, *a., then (3) yields, for k = 0, 1,2, *en, 

v%k = 2 (- 1)” (;) uk-m * 
WL=O 

Given complex numbers OL, a,, a, , *a., uk , we shall always mean by V%zk 
the right-hand side of (4). 

II. POLYNOMIALS WITH POSITIVE COEFFICIENTS 

THEOREM 1. Let E(z) = X,” kxO ck.zk (g 0, n 2 1) be a polynomial, and let 
O<or11.Assumethutc,~O(h=0,1,~~~,n)undthatV~c~~O(h=1,2, 
-a, n), Then no zero of,!?(z) lies in 1 z 1 < 1. 

PROOF. Consider the function 

Setting ck = 0 for k = n + 1, n + 2, me*, we have throughout 1 z 1 I 1 

(1 - +E(z) = 2 12 (- l)m (;) c,-,,I zk 
k=O m=O 

22 WC, = 2 (9 - 1) VECk ) 
k=l 

(6) 
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since 

For k = n + 1, n + 2, *.., we have 

(7) 

Since 

(-l)miJ 10, m== 1,2;**, (8) 

V%zkjO for /z=n+l,n+2;~~. Thus VackIO (K=1,2;**), and 
by (6) not all of these numbers Vack are zero. Hence, for / z / < 1, 

Re ((1 - a)” E(z)) = 2 {V”c,j Re (a” - 1) > 0, 
k=l 

and so E(z) # 0. 

Remarks. (a) Theorem 1 with 01 = 1 is just Enestrom’s theorem. If 
1z = 1 and 01 is a given number satisfying 0 < 01 < 1, then the test of Theo- 
rem 1 is weaker than Enestrom’s test. 

(b) Let 0 < cx < 1, c,, = 16, cr = 2ar, and ca = a(8 - 601). One can apply 
Theorem 1 to E(z) = cc, + crz + caz2 and conclude that it has no zero in 
/ z / < 1. Enestrom’s theorem, however, is not applicable to this E(z). 

(c) Let 0 < oil < cy2 5 1, let n be an integer larger than 1, and set 
E,(z) G (- l)n+r (2)-l + P, E,(z) = Zbs &zk. We can conclude that 
no zero of E,(z) lies in ) z j < 1 by means of Theorem 1 with 01 = 01~ , but 
not by means of Enestrom’s theorem. On the other hand, one can apply to 
E,(z) Enestrom’s theorem, but not Theorem 1 with a = 0~~ , for the condition 
VQ, = 01~ - 01~ < 0 is not fulfilled. 

(d) Let 0 < q < 01~ 5 1, and set E(z) = 4 + 2(01r + a2) z + a2( 1 + or) 9. 
Then one can apply to this E(z) Theorem 1 with 01 = 01~. One cannot, how- 
ever, apply Theorem 1 with 01 = 01~. 

(e) Leti<ol,<a,<l,andset 

E(x) = [Cxl(l - Cxr)]-’ + [ora(l - as)]-’ + zz. 

Then one can apply to this E(z) Theorem 1 with cy. = 01~ , but one cannot 
apply Theorem 1 with 01 = a?a . 
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III. COMPLEX COEFFICIENTS 

We shall now consider polynomials with complex coefficients. 
By a sector with vertex at the origin we mean a set of the form 

THEOREM 2. Let E(x) = XIz0 clczk ($0, n 2 1) be a polynomial with 

complex coeficients, and let 0 < 01 I 1. Set ck = 0 (k = n + 1, n + 2, ..*), 
and let S be a sector with vertex at the origin whose angular measure 20 satisjes 

0 < 28 < 7~. Then each of the following three hypotheses implies that E(z) has 

no zero in 1 z 1 < cos 8 : (I) - ck (k = 0, I, *a*, n) and V%k (k = 1, 2, ***, n) 
belong to S; (II) Vack E S (k = 1, 2, *se, n, n + 1, n + 2, **a); (III) Vck E S 
(k = 1, 2, *a*, n + 1). 

Theorem 2 with hypothesis I and with S taken as the negative real axis 
(including the origin) is our previous Theorem 1. 

To establish Theorem 2, we prove first the following 

LEMMA. Let E(z) = ZZczO ckxk (+ 0) be a power series with complex 
coeficients converging at z = 1, and let 0 < 01 I 1. Let y  and r (0 < r 5 1) 

be real numbers such that, for k = 1, 2, *a*, Vat, = 1 V”ck 1 ei(Q+y) where P)k 

is real and I vk I < arccos rk. Then E(x) has no zero in j x / < r. 
(Whenever arccos, arcsin, or arg appears, its principal value is being used.) 

PROOFOFTHE LEMMA. Due to the absolute convergence of the right-hand 
member of (5) at x = 1, (6) holds in the present case throughout 1 z I < 1. 
Let K be a positive integer for which Vat, f 0. (Such a K exists, for otherwise 
we would get from (6) that E(z) = 0.) Then throughout / z I < r we have 

1 arg [e-@(l - z”) V%,] ] < 1 arg (e-sV%,,) / + 1 arg (1 - 2”) 1 

< arccos rK + arcsin rK = ~12, 

and therefore 

Re {e@‘(l - z”) V%,} > 0. 

If I x ] < r, then by (6), 

Re {ei(n-y) (1 - z>” E(z)} = s Re {e&’ (1 - z”) V”ck} > 0; 
k=l 

and, consequently, E(z) f 0. This proves the Lemma. 
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PROOF OF THEOREM 2. For a suitable real constant y, every x E S can 
be written in the form / x I eL(“lz) 2 J’) where ~ 0 ::: g)(x) 5 0. To prove 
Theorem 2 (with hypothesis II), observe that for every k > 1 we have 

Vat, = 1 Vac,c I e21Tk+1’J 

where C& is real and 

1 P)~ / < B = arccos cos 8 < arccos (cos O)lc. 

By the lemma, E(z) has no zero in 1 z ~ < cos 8. Next, we prove Theorem 2 
with hypothesis I. It is sufficient to show that Vack E S for every K > n. Now, 
for such a k, we see from (7) and (8) that Vack is a weighted sum of - c,, , 
- Cl , a**, - c, with real, nonnegative weights. Since - c, E S for m = 0, 1, 
*+*, n, it follows that Vack also belongs to S. Finally, hypothesis III obviously 
implies II (with 01 = 1). 

Let c0 be a positive number, and let c1 , ca , **a, c,, be nonnegative real 
numbers. Let 0 < a: < 1, and for every Y 2 0, let P(Y) = maxl,k,, Va(r%,). 
Since ~(0) = maxr 5k5.n [( - 1)” (3 co] < 0, there exists a positive Y for 
which p(r) < 0. Every such r has the property that all zeros of E(x) = I&, ckzk 

lie in / x 1 2 r. Indeed, by Theorem 1, no zero of E(G) = C”,=,, ck~%zk lies 
in jzl<l. 

THEOREM 3. Let E(z) = 2;;=, ckzk (+ 0) converge at z = 1. Let 
0 < 01 I 1, and assume that all numbers v%k (k = 1, 2, *a*) lie in some sector 

with vertex at the origin whose angular measure 20 satisfies 0 < 20 < n. 
Then no zero of E(z) lies in j z j < cos 0. 

The proof is the same as that of Theorem 2 (with hypothesis 11). 

IV. FURTHER RESULTS 

Let S be a sector as in Theorem 2, let 0 < 01 < 1, and let c, , c1 , **a be 
complex numbers (not all zero) such that - ck (k = 0, 1, **a) and Vack 
(k = 1,2, *a.) lie in S. Then, as one easily concludes, c,, f 0. For n = 1,2, **o, 
let E,(z) = Xi=, ckak. By Theorem 2 (with hypothesis I), no E,(z) can have 
a zero in / z I < cos 8. If lim I c, I1ln were larger than (cos e)-l, then we 
could find an n such that I c,/c,, 1 l’s > (cos 0)-r. For such an n, the geometric 
mean of the moduli of the zeros of E,(Z) would be smaller than cos 8; and 
therefore E,(Z) would have at least one zero in I x j < cos 0, contradicting 
our above observation. Thus, the radius of convergence of I;:=,, cgk is 2 cos 8; 
and, by Hurwitz’s theorem relating the zeros of a power series to those of its 
partial sums, Xc,“=, ckzk # 0 throughout / z 1 < cos 8. 
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Taking a more general consideration, let 0 < 01 < 1, let y and r be real 
numbers (0 < r < l), and let C, , C, , *a* be complex numbers (not all zero) 
such that - Ck = 1 C, 1 ei(vk+y), & real, ) & j 5 arccos rk+i (k = 0, 1, **a), 
and such that VaCk = j VaCk / ei(@k+y), Qk real, I Dk / <I arccos rk 
(12 = 1, 2, *se). Again it follows that C, f 0. For n = I, 2, a**, set 
E,(x) = c;=, C,x”, and consider some arbitrary E,(Z). Let clc = C, and 
cjk = @k for k = 0, 1, *-*, n, and let ck = 0 for k = n + 1, n $- 2, *a*. If k 

is larger than n, then all the numbers I $,, /, I #r I, *a*, I & 1 are equal to or 
less than arccos rk, and therefore - c,, , - cr , a.*, - c, lie in the sector 
{pei” : p 2 0, y - arccos rk 5 v I y + arccos rk}. Thus, in view of 
(7) and (8), Buck lies in that sector; and, consequently, we may write 
Wck = I Vack / ei(pk+Y), where P)~ is real and I P)~ 1 I arccos rk. Applying 
the lemma to E,(Z) we conclude that E,(Z) has no zero in j z 1 < Y. Now, 
exactly as before we can show that the radius of convergence of Xr=, C,xV 
is at least Y and that this power series is different from zero throughout 
1x1 cr. 

Assume again the hypotheses of Enestrom’s theorem. Since X;ldk=,-, ck > 0, 
E(1) # 0. Therefore, by considerations as presented in the Introduction, 
if Vc, f 0, E(z) has no zero on / z I = 1. If E(z) = 0, I z / = 1, then 
Vc, = 0, and xk = 1 for each k satisfying 2 5 k 2 n + 1, Vc, # 0; in 
particular, z?+l = 1 if c, # 0. See [6]. Furthermore, if for some k with 
1 I k I 1z + 1, vck f 0, a zero x of E(z) satisfies Re (2”) < 1, then there 
exists a k’ (1 5 k’ I n + 1, Vck/ # 0) such that Re (z”‘) > 1. 

Similarly, assume the hypothesis of Theorem 1 with 01 < 1. Again E( 1) # 0. 
However, now we have the result that E(z) has no zero on the unit &cum- 

ference. Indeed, by (7) and (8) it follows that WC, < 0 for k = n + 1, 
n + 2, a**. Also, by hypothesis, vack IO, k = 1, 2, *+*, n. If E(z) = 0, 
1 z I = 1, then since c,“=, {V%&} Re (.sk - 1) = 0, we have xk = 1, 
k = 7t + 1, n + 2, a*.. Therefore x = 1, contradicting our above remark 
that E(1) # 0. 

REFERENCES 

1. ENESTR~M, G. Harledning af en allman formel fiir antalet pensionlrer, som vid en 
godtycklig tidpunkt forefinnas inom en sluten pensionskassa. ofversigt af Kongl. 
Vetenskaps Akad. IGirhandl. 50,405-415 (1893). 

2. MARDEN, M. “The Geometry of the Zeros of a Polynomial in a Complex Variable.” 
Mathematical Surveys, No. III. Am. Math. Sot., 1949. 

3. KRISHNAIAH, P. V. On Kakeya’s theorem. J. London Matk. Sot. 30, 314-319 (1955). 
4. HOUSEHOLDER, A. S. “Principles of Numerical Analysis.” McGraw-Hill, New 

York, 1953. 
5. HARDY, G. H. “Divergent Series.” Oxford Univ. Press, 1949. 
6. HURWITZ, A. Uber einen Satz der Herrn Kakeya. T&oku Math. J. 4,89-93 (1913- 

1914). 



182 CARGO AND SHISHA 

7. ENESTR&M, G. Remarque sur un th&&me relatif aux racines de l’tquation 
a&’ -I- a,,-,x”-’ $ “’ ~1 cl15 I U” 0 oh tous les coeflicients n sent rCels et 
positifs. ZZhoku &i’&. J. 18, 34-36 (1920). 

8. HAYASHI, T. On a theorem of Mr. Kakeya’s. T6hoku Mutk. 3. 2, 215 (1912-1913). 
9. HAYASHI, T. On the roots of an algebraic equation. TGhoku Math. J. 3, 110-115 

(1913). 
10. KAKEYA, S. On the limits of the roots of an algebraic equation with positive coef- 

ficients. T&oku Math. J. 2, 140-142 (1912-1913). 
11. KAKEYA, S. On the zero points of a power series with positive coeficients. TShoku 

Math. J 3, 23-24 (1913). 

12. KEMPNER, A. Extract of a letter to the editor. T%oku Muth. J. 4, 94-95 (1913- 
1914). 

13. KUROKAWA, R. A theorem in algebra. T6hoku Math. J. 3, 173-174 (1913). 


