The multipliers between the mixed norm spaces in C^n ✩

Xuejun Zhang a,*, Jianbin Xiao b, Zhangjian Hu c

a College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410006, PR China
b The School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310037, PR China
c Department of Mathematics, Huzhou Teachers College, Huzhou, Zhejiang 313000, PR China

Received 1 January 2005
Available online 1 April 2005
Submitted by E.J. Straube

Abstract

In this paper we discuss the pointwise multipliers between the mixed norm spaces on the unit ball of C^n. For normal functions φ_1 and φ_2, we give several full characterizations of the pointwise multipliers $M(H(p, q, \varphi_1), H(p, q, \varphi_2))$ for $0 < p \leq \infty$, $0 < q \leq \infty$ and $M(H(p, p, \varphi_1), H(q, q, \varphi_2))$ for $0 < p < \infty$, $0 < q < \infty$.

Keywords: Pointwise multiplier; Mixed norm space; Bergman space; Unit ball

1. Introduction

Let dv be the Lebesgue measure on the unit ball B normalized so that $v(B) = 1$, and $d\sigma$ be the normalized rotation invariant measure on the boundary ∂B of B so that $\sigma(\partial B) = 1$.

✩ Supported by the National Natural Science Foundation of China (No. 10471039), the Science Technology Foundation of Education Department of China (No. 204063) and the Foundation of Education Department of Hunan Province of China (No. 04C328).
* Corresponding author.
E-mail address: xuejuntt@263.net (X. Zhang).
The class of all holomorphic functions on B is denoted by $H(B)$ and H^∞ denotes the class of all bounded holomorphic functions on B.

A positive continuous function φ on $[0, 1)$ is normal, if there are constants $0 < a < b$ such that

(i) $\frac{\varphi(r)}{(1-r)^a}$ is decreasing for $0 \leq r < 1$ and $\lim_{r \to 1^-} \frac{\varphi(r)}{(1-r)^a} = 0$;

(ii) $\frac{\varphi(r)}{(1-r)^b}$ is increasing for $0 \leq r < 1$ and $\lim_{r \to 1^-} \frac{\varphi(r)}{(1-r)^b} = \infty$.

Let $0 < p \leq \infty$, $0 < q \leq \infty$ and φ be normal on $[0, 1)$. f is said to belong to the mixed norm space $L(p,q,\varphi)$ if f is measurable function on B and $\|f\|_{p,q,\varphi} < \infty$, where

\[
\|f\|_{p,q,\varphi} = \left\{ \frac{1}{\varphi_1(\varphi_1(|z|))} \int_0^1 \left[\frac{1}{\varphi_2(\varphi_2(|z|))} \|f\|_{p,q,\varphi} \right] d\sigma(z) < \infty \right\}.
\]

Let $H(p, q, \varphi) = L(p, q, \varphi) \cap H(B)$. If $0 < p = q < \infty$, then $H(p, q, \varphi)$ is just the weighted Bergman space $L^p(\varphi)$. In particular, $H(p, q, \varphi)$ is Bergman space L^p_a if $0 < p = q < \infty$ and $\varphi(r) = (1-r)^{1/p}$. Otherwise, if $p = q = 2$ and $\varphi(r) = (1-r)^{-\beta/2}$ ($\beta < 0$), then $H(p, q, \varphi)$ is Dirichlet type space D_β (see Lemma 2.1 in [1]).

Let X and Y be two spaces of holomorphic function on B. We call g a pointwise multiplier from X to Y if $gf \in Y$ for every $f \in X$. The collection of all pointwise multipliers from X to Y is denoted $M(X,Y)$.

The multiplier theory has been studied for a long time, and a lot of results have been obtained (for example, [2–8]). All of these results are very useful in the discussion of the theory of operator and the other properties of related function spaces. In this paper, we will try to characterize the pointwise multipliers from the mixed norm spaces $H(p, q, \varphi_1)$ to $H(p, q, \varphi_2)$ ($0 < p \leq \infty$, $0 < q \leq \infty$). At the same time, we will give the corresponding results from spaces $H(p, p, \varphi_1)$ to $H(q, q, \varphi_2)$ ($0 < p \leq \infty$, $0 < q \leq \infty$) also. Our main results are the following:

Theorem A. Suppose $0 < p \leq \infty$, $0 < q \leq \infty$, φ_1 and φ_2 are normal on $[0, 1)$. Then $g \in M(H(p, q, \varphi_1), H(p, q, \varphi_2))$ if and only if $g \in H(B)$ and

\[
\sup_{z \in B} \left\{ \frac{\varphi_2(|z|)}{\varphi_1(|z|)} |g(z)| \right\} < \infty.
\]
Theorem B. Suppose \(0 < p \leq q < \infty \), \(\varphi_1 \) and \(\varphi_2 \) are normal on \([0, 1]\). Then \(g \in M(H(p, p, \varphi_1), H(q, q, \varphi_2)) \) if and only if \(g \in H(B) \) and

\[
\sup_{z \in B} \left(1 - |z|^2\right) \left(\frac{1 - \frac{1}{p}}{1 - \frac{1}{q}}\right) \frac{\varphi_2(|z|)}{\varphi_1(|z|)} |g(z)| < \infty.
\]

Theorem C. Suppose \(0 < q < p < \infty \), \(\varphi_1, \varphi_2 \) and \(\varphi_2/\varphi_1 \) are normal on \([0, 1]\). Then \(g \in M(H(p, p, \varphi_1), H(q, q, \varphi_2)) \) if and only if \(g \in H(k, k, \varphi_2/\varphi_1) \), where \(1/k = 1/q - 1/p \).

2. Some lemmas

In the following, \(z = (z_1, \ldots, z_n) \), \(w = (w_1, \ldots, w_n) \), \(\langle z, w \rangle = \sum_{j=1}^n z_j \bar{w}_j \). We will use the symbol \(c \) or \(c_1 \) to denote a positive constant which does not depend on variables \(z \), \(w \) and may depend on some parameters, not necessarily the same at each occurrence.

Let \(E^*(w, r) = \{z \in B: |\varphi_w(z)| < r\} (w \in B, 0 < r < 1) \), where \(\varphi_w \) is the Möbius transformation of \(B \) with \(\varphi_w(0) = w, \varphi_w(w) = 0, \varphi_w = \varphi_w^{-1} \). If \(z \in E^*(w, r) \), then

\[
\frac{1 - r}{1 + r} (1 - |w|) \leq 1 - |z| \leq \frac{1 + r}{1 - r} (1 - |w|), \tag{2.1}
\]

\[
\frac{1 - r}{1 + r} (1 - |w|^2) \leq 1 - |z|^2 \leq \frac{1 + r}{1 - r} (1 - |w|^2), \tag{2.2}
\]

\[
\sqrt{1 - r}(1 - |w|^2) \leq |1 - \langle z, w \rangle| \leq \frac{1}{1 - r} (1 - |w|^2). \tag{2.3}
\]

In fact, if \(z \in E^*(w, r) \), then

\[
\frac{(1 - |w|^2)(1 - |z|^2)}{(1 - |z||w|)} \geq \frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \langle z, w \rangle|^2} = 1 - |\varphi_w(z)|^2 > 1 - r^2
\]

\[
\Rightarrow \quad (1 - r^2|w|^2)|z|^2 - 2(1 - r^2)|w||z| + |w|^2 - r^2 < 0
\]

\[
\Rightarrow \quad |z| < (|w| + r)/(1 + r|w|) \quad \text{and} \quad |w| < (|z| + r)/(1 + r|z|).
\]

Thus, (2.1)–(2.3) can be obtained easily.

Otherwise, if \(\varphi \) is normal on \([0, 1]\) and \(z \in E^*(w, r) \), then by (2.1) and the definition of normal function, we have

\[
\left\{ \frac{1 - r}{1 + r} \right\}^b \varphi(|z|) \leq \varphi(|w|) \leq \left\{ \frac{1 + r}{1 - r} \right\}^b \varphi(|w|). \tag{2.4}
\]

Lemma 2.1. Suppose \(0 < q \leq \infty \), and \(f \in H(B) \), \(w \in B \). Then

\[
|f(w)| \leq \frac{[4n.36]^1/q}{(1 - |w|^2)^{n/q}} M_q \left(\frac{|w| + 1}{2}, f \right).
\]

Proof. If \(q = \infty \), the result can be obtained by the maximum modulus principle.

Now let \(0 < q < \infty \). If \(z \in E^*(w, r) \), then \(|z| < (|w| + r)/(1 + r|w|) \). This implies that \(E^*(w, r) \subset \frac{|w| + 1}{2} B = \{z: |z| < \frac{1 + |w|}{2}\} \) when \(0 < r < 1/(2 + |w|) \). In particular, \(E^*(w, \frac{1}{2}) \subset \frac{|w| + 1}{2} B \). By subharmonicity of \(|f|^q\) and the monotonicity of \(M(t, f) \) we have
\begin{align*}
|f(w)|^q &= |f \circ \varphi_w(0)|^q \leq 9^n \int_{E^*(0, \frac{1}{2})} |f \circ \varphi_w(z)|^q \, dv(z) \\
&= 9^n \int_{E^*(w, \frac{1}{2})} |f(\eta)|^q \left\{ \frac{1 - |\eta|^2}{|1 - \langle \eta, w \rangle|^2} \right\}^{n+1} \, dv(\eta) \\
&\leq 9^n \int_{\frac{1+|w|}{2} B} |f(\eta)|^q \left\{ \frac{1 - |\eta|^2}{|1 - \langle \eta, w \rangle|^2} \right\}^{n+1} \, dv(\eta) \\
&\leq 2n9^n(1 - |w|^2)^{n+1} \int_{0}^{\frac{1+|w|}{2}} \frac{1}{(1-t|w|)^{2n+2}} \, dt \, M_q^q \left(\frac{|w| + 1}{2}, f \right) \\
&= 2n9^n(1 - |w|^2)^{n+1} \int_{\frac{1-|w|}{2} |w|}^{1} \frac{1}{|w|^t^{2n+2}} \, dt \, M_q^q \left(\frac{|w| + 1}{2}, f \right) \\
&\leq 2n9^n(1 - |w|^2)^{n+1} \int_{1-|w|}^{1} \frac{1}{|w|^t^{2n+2}} \, dt \, M_q^q \left(\frac{|w| + 1}{2}, f \right) \\
&\leq \frac{4n.36^n}{(2n + 1)(1 - |w|^2)^n} M_q^q \left(\frac{|w| + 1}{2}, f \right) \sup_{0 < x < 1} \frac{1 - (1 - x)^{2n+1}}{x} \\
&= \frac{4n.36^n}{(1 - |w|^2)^n} M_q^q \left(\frac{|w| + 1}{2}, f \right). \quad \square
\end{align*}

Lemma 2.2. Suppose $0 < p < \infty$ and φ is normal on $[0, 1)$. If $f \in H(p, p, \varphi)$, then

$$
|f(z)| \leq \frac{2n4^n.3^{n+2+pb}}{\varphi(|z|)(1 - |z|^2)^n/p} \| f \|_{p, p, \varphi} \quad (z \in B).
$$

Proof. For $0 < r < 1$ and $z \in B$, by the subharmonicity of $|f(z)|^p$ and (2.3) we have

\begin{align*}
|f(z)|^p &\leq \frac{1}{r^{2n}} \int_{E^*(z, r)} |f(w)|^p \left\{ \frac{1 - |z|^2}{|1 - \langle w, z \rangle|^2} \right\}^{n+1} \, dv(w) \\
&\leq \frac{1}{r^{2n}} \left(\frac{1 + r}{1 - r} \right)^{n+1} \frac{1}{(1 - |z|^2)^{n+1}} \int_{E^*(z, r)} |f(w)|^p \, dv(w). \quad (2.5)
\end{align*}

In particular, given $r = 1/2$. By (2.1), (2.4) and (2.5) we have

$$
|f(z)|^p \leq \frac{4^n.3^{n+2+pb}}{(1 - |z|^2)^n \varphi(|z|)} \int_{E^*(z, \frac{1}{2})} (1 - |w|)^{-1} \varphi^p(|w|) |f(w)|^p \, dv(w)
$$
$$\leq \frac{4^n 3^{n+2+p_b}}{(1 - |z|^2)^n \varphi^2(|z|)} \int_B (1 - |w|)^{-1} \varphi^p(|w|) |f(w)|^p \, dv(w)$$

$$\leq \frac{2 n 4^n 3^{n+2+p_b} \varphi^p(|z|)(1 - |z|^2)^n}{p} \| f \|_{p,p,\varphi}.$$ \(\square\)

Let \(\beta(. , .)\) denote the Bergman metric on \(B\). The Bergman ball \(E(z, r)\) with center \(z \in B\) and radius \(r > 0\) is defined as

\(E(z, r) = \{ w \in B : \beta(z, w) < r \}\).

It is known that

\(\beta(z, w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad E^*(z, \tanh r) = E(z, r) (0 < r < \infty)\).

Lemma 2.3. Suppose \(\mu\) is a positive Borel measure on \(B\), and \(\varphi\) is normal on \([0, 1)\). Let \(0 < q < p < \infty\) and \(r_0 = (e - e^{-1})/(e + e^{-1})\). Then a sufficient and necessary condition for there to exist a constant \(c\) such that

\[\left\{ \int_B |f(z)|^q \, d\mu(z) \right\}^{\frac{1}{q}} \leq c \left\{ \int_B |f(z)|^p (1 - |z|)^{-1} \varphi^p(|z|) \, dv(z) \right\}^{\frac{1}{p}} \]

for all \(f \in H(p, q, \varphi)\) is that

\[\frac{1}{s} + \frac{q}{p} = 1, \quad \hat{\mu}(|z|) = \frac{\mu(E^*(z, r_0))}{(1 - |z|^2)^n \varphi^p(|z|)}. \]

Proof. Taking \(w^*(z) = (1 - |z|)^{-1} \varphi^p(|z|)\) in Theorem 4 in [9]. \(\square\)

3. Proofs of main results

Proof of Theorem A. The sufficient condition is obvious, and the details are omitted there. We prove the necessary condition only.

If \(g \in M(H(p, q, \varphi_1), H(p, q, \varphi_2))\), then \(C_g : f \to gf\) is a bounded linear operator from \(H(p, q, \varphi_1)\) to \(H(p, q, \varphi_2)\) by the closed graph theorem. On the other hand, we have \(g = gf \in H(p, q, \varphi_2) \subset H(B)\) by taking \(f(z) = 1 \in H(p, q, \varphi_1)\). Let \(a_i, b_i (i = 1, 2)\) be the parameters on the definition of \(\varphi_1, \varphi_2\) and \(a = \min\{a_1, a_2\}, b = \max\{b_1, b_2\}\). For any \(w \in B\), we take

\[f_w(z) = \frac{(1 - |w|^2)^{b+1}}{\varphi_1(|w|)(1 - \langle z, w \rangle)^n/q + b + 1}. \]

By Proposition 1.4.10 in [10] we have

\[M_q(r, f_w) \leq \frac{c(1 - |w|^2)^{b+1}}{\varphi_1(|w|)(1 - r|w|)^{b+1}}. \quad (3.1) \]

If \(0 < p < \infty\), by the definition of normal function, Lemma 2.2 in [11] and (3.1) we get...
\[\| f_w \|_{p,q,\varphi_1}^p = \int_0^1 r^{2n-1} (1 - r)^{-1} \varphi_1^p(r) M_q^p(r, f_w) \, dr \]
\[\leq c \int_0^1 (1 - r)^{-1} \varphi_1^p(r) \frac{(1 - |w|^2)^{p(b+1)}}{\varphi_1(|w|)(1 - |w|)^{p(b+1)}} \, dr \]
\[= c \left(\int_0^{|w|} + \int_{|w|}^1 \right) (1 - r)^{-1} \varphi_1^p(r) \frac{(1 - |w|^2)^{p(b+1)}}{\varphi_1(|w|)(1 - |w|)^{p(b+1)}} \, dr \]
\[\leq 2^{p(b+1)} c (1 - |w|)^p \int_0^{|w|} \frac{(1 - r)^{p(b-1)}}{(1 - |w|)^{p(b+1)}} \, dr \]
\[+ 2^{p(b+1)} c (1 - |w|)^{p(b+1)-pa} \int_{|w|}^1 \frac{(1 - r)^{pa-1}}{(1 - |w|)^{p(b+1)}} \, dr \]
\[\leq 2^{p(b+1)} c (1 - |w|)^p \int_0^1 \frac{(1 - r)^{p(b-1)}}{(1 - |w|)^{p(b+1)}} \, dr \]
\[+ 2^{p(b+1)} c (1 - |w|)^{p(b+1)-pa} \int_0^1 \frac{(1 - r)^{pa-1}}{(1 - |w|)^{p(b+1)}} \, dr \]
\[\leq c_1^p. \]

If \(p = \infty \), by (3.1) and computation we have
\[\sup_{0 \leq r < 1} M_q(r, f_w) \varphi_1(r) \leq \left(\sup_{0 \leq r \leq |w|} + \sup_{|w| < r < 1} \right) \frac{c(1 - |w|^2)^{b+1} \varphi_1(r)}{\varphi_1(|w|)(1 - |w|)^{b+1}} \]
\[\leq c \left\{ \sup_{0 \leq r \leq |w|} \frac{(1 - |w|^2)^{b+1}(1 - r)^b}{(1 - |w|)^{b+1}(1 - |w|)^b} + \sup_{|w| < r < 1} \frac{(1 - |w|^2)^{b+1}(1 - r)^a}{(1 - |w|)^{b+1}(1 - |w|)^a} \right\} \leq c_1. \]

This shows that \(\| f_w \|_{p,q,\varphi_1} \leq c_1. \)

If \(0 < p < \infty \), by monotonicity of \(M_q(r, f) \) we have
\[c_1 \| C_g \| \geq \| C_g \| \| f_w \|_{p,q,\varphi_1} \geq \| g f_w \|_{p,q,\varphi_2} \]
\[= \left\{ \int_0^1 r^{2n-1} (1 - r)^{-1} \varphi_2^p(r) M_q^p(r, g f_w) \, dr \right\}^{\frac{1}{p}} \]
\[\geq \left\{ \int_{\frac{3+|w|}{2}}^{\frac{3+|w|}{2}} r^{2n-1} (1 - r)^{-1} \varphi_2^p(r) M_q^p(r, g f_w) \, dr \right\}^{\frac{1}{p}} \]
\[
\frac{\varphi_2(|w|)}{(1 - |w|)^b} (1 - r)^b \leq \varphi_2(r) \quad \text{as } |w| < r < 1.
\]

By (3.2), (3.3) and Lemma 2.1 we get

\[
c_1 \|C_g\| \geq \left(\frac{1}{2} \right) \frac{2n-1}{p} M_q \left(\frac{1 + |w|}{2}, g f_w \right) \varphi_2(|w|) \left\{ \int_{1+|w|/2}^{3+|w|/2} (1 - r)^{-1} \varphi_2(r) dr \right\}^{1/p}.
\]

This means that (1.1) holds.

If \(p = \infty \), then

\[
c_1 \|C_g\| \geq \|C_g\| \|f_w\|_{\infty,q,\varphi_1} \geq \|g f_w\|_{\infty,q,\varphi_2}
\]

\[
= \sup_{0 \leq r < 1} M_q(r, g f_w) \varphi_2(r) \geq \sup_{|w| + 1 \leq s < \frac{3+|w|}{2}} M_q(r, g f_w) \varphi_2(r)
\]

\[
\geq \frac{1}{4^b} M_q \left(\frac{|w| + 1}{2}, g f_w \right) \varphi_2(|w|)
\]

\[
\geq \frac{1}{4^b \{4n.36^n\}^{1/q}} \left| g(w) f_w(w) \right| \left(1 - |w|^2 \right)^{\frac{n}{q}} \varphi_2(|w|)
\]

\[
= \frac{1}{4^b \{4n.36^n\}^{1/q}} g(w) \frac{\varphi_2(|w|)}{\varphi_1(|w|)}.
\]

This shows that (1.1) holds. This proof is completed. \(\square \)

Proof of Theorem B. If \(p = q \), then the result has been proved in Theorem A. So we discuss the case \(p < q \) only.
If \(g \in M(H(p, p, \varphi_1), H(q, q, \varphi_2)) \), then \(g \in H(B) \) is obvious. For any \(w \in B \), we take

\[
f_w(z) = \frac{(1 - |w|^2)^{b+1}}{\varphi_1(|w|)(1 - \langle z, w \rangle)^{n/p + b + 1}}, \quad \text{where } b = \max\{b_1, b_2\}.
\]

By Theorem A we know \(\|f_w\|_{p, p, \varphi_1} \leq c \). By (2.1)–(2.5) we have

\[
c\|C_g\| \geq \|f_w\|_{q, q, \varphi_2} = \left\{ \int_0^1 r^{2n-1}(1 - r)^{-1} \varphi_2^q(r) M_q^q(r, g f_w) \, dr \right\}^{\frac{1}{q}}
\]

\[
= \left(\frac{1}{2n} \right)^{\frac{1}{q}} \left\{ \int_B \frac{(1 - |z|)^{-1} \varphi_2^q(|z|)|g(z)|^q |f_w(z)|^q \, dv(z)}{1} \right\}^{\frac{1}{q}}
\]

\[
\geq \left(\frac{1}{2n} \right)^{\frac{1}{q}} \left\{ \int_{E^{*(w, \frac{1}{2})}} \frac{(1 - |z|)^{-1} \varphi_2^q(|z|)|g(z)|^q |f_w(z)|^q \, dv(z)}{1} \right\}^{\frac{1}{q}}
\]

\[
= \left(\frac{1}{2n} \right)^{\frac{1}{q}} \left\{ \int_{E^{*(w, \frac{1}{2})}} (1 - |z|^2)^{q(b+1)} \varphi_1^q(|z|) \, dv(z) \right\}^{\frac{1}{q}}
\]

\[
\geq \left(\frac{1}{2n} \right)^{\frac{1}{q}} \left\{ \int_{E^{*(w, \frac{1}{2})}} (1 - |z|^2)^{q(b+1)} \varphi_1^q(|z|) \left(\begin{array}{c} \frac{n+2}{q} + b + \frac{n}{p} + b + 1 \\ \frac{n}{p} + b + 1 \end{array} \right) (1 - |w|^2)\frac{\varphi_2^q(|z|)}{\varphi_1^q(|z|)} \, dv(z) \right\}^{\frac{1}{q}}
\]

This shows that (1.2) holds.

Conversely, if \(g \in H(B) \) and (1.2) holds. For any \(f \in H(p, p, \varphi_1) \), by Lemma 2.2 we have

\[
\|g f\|_{q, q, \varphi_2} = \left\{ \int_0^1 r^{2n-1}(1 - r)^{-1} \varphi_2^q(r) M_q^q(r, g f) \, dr \right\}^{\frac{1}{q}}
\]

\[
= \left(\frac{1}{2n} \right)^{\frac{1}{q}} \left\{ \int_B (1 - |z|)^{-1} \varphi_2^q(|z|)|g(z)|^q |f(z)|^q \, dv(z) \right\}^{\frac{1}{q}}
\]
\[\leq c \left\| f \right\|_{p,p,\varphi_1} \left\{ \int_B \left| f(z) \right|^p \left| g(z) \right|^q (1 - |z|^2) \frac{1}{p} n - 1 \right. \times \varphi_2^q (|z|) \varphi_1^{p-q} (|z|) \, dv(z) \right\}^{\frac{1}{q}} \]

\[\leq c \sup_{z \in B} \left\{ (1 - |z|^2) \left(\frac{1}{p} - \frac{1}{p} \right) n \varphi_2^q (|z|) \left| g(z) \right| \right\} \left\| f \right\|_{p,p,\varphi_1} \times \left\{ \int_B \left| f(z) \right|^p (1 - |z|)^{-1} \varphi_1^p (|z|) \, dv(z) \right\}^{\frac{1}{q}} \leq c_1 \left\| f \right\|_{p,p,\varphi_1}. \]

This implies that \(g \in M(H(p, p, \varphi_1), H(q, q, \varphi_2)). \)

Proof of Theorem C. The sufficient condition is quite easy by Hölder inequality, and the details are omitted there.

Conversely, if \(g \in M(H(p, p, \varphi_1), H(q, q, \varphi_2)) \), then

\[\left\{ \int_B (1 - |z|)^{-1} \varphi_2^q (|z|) \left| g(z) \right| q \left| f(z) \right|^q \, dv(z) \right\}^{\frac{1}{q}} \leq (2n) \frac{1 - r_0^q}{q} \| C_g \| \left\{ \int_B (1 - |z|)^{-1} \varphi_1^p (|z|) \left| f(z) \right|^p \, dv(z) \right\}^{\frac{1}{p}} \]

holds for all \(f \in H(p, p, \varphi_1) \).

Let \(r_0 = (e - e^{-1})/(e + e^{-1}) \). We take \(d\mu(z) = (1 - |z|)^{-1} \varphi_2^q (|z|) \left| g(z) \right| q \, dv(z) \) in Lemma 2.3. By (2.1), (2.4) and (2.5) we get

\[\mu(E^*(z, r_0)) = \int_{E^*(z, r_0)} (1 - |w|)^{-1} \varphi_2^q (|w|) \left| g(w) \right| q \, dv(w) \]

\[\geq r_0^{2n} \left(\frac{1 - r_0}{1 + r_0} \right)^{n+2+q} (1 - |z|^2)^n \varphi_2^q (|z|) \left| g(z) \right|^q. \]

This means that

\[\hat{\mu}(|z|) \geq r_0^{2n} \left(\frac{1 - r_0}{1 + r_0} \right)^{n+2+q} \frac{\varphi_2^q (|z|) \left| g(z) \right|^q}{\varphi_1^p (|z|)}. \] (3.4)

Thus, by Lemma 2.3 we have

\[\infty > \int_B \hat{\mu}(|z|)^\frac{1}{q} (1 - |z|)^{-1} \varphi_1^p (|z|) \, dv(z) \]

\[\geq \left\{ r_0^{-2n} \left(\frac{1 - r_0}{1 + r_0} \right)^{n+2+q} \right\}^{\frac{1}{p-q}} \int_B (1 - |z|)^{-1} \left[\varphi_2^q (|z|) \right]^k \left| g(z) \right|^k \, dv(z). \]

This shows that \(g \in H(k, k, \varphi_2/\varphi_1). \)
Corollary 1. Suppose $0 < p < \infty$, $0 < q < \infty$, and φ is a normal function on $[0, 1)$. Then

1. $g \in M(L^p_0(\varphi), L^q_0(\varphi))$ if and only if $g \in H^\infty$ for $p = q$;
2. $g \in M(L^p_0(\varphi), L^q_0(\varphi))$ if and only if $g \equiv 0$ for $p \neq q$.

Proof. (1) If $p = q$, by Theorem A we can get the result.

(2) If $p < q$, by Theorem B and the maximum modulus principle we have $g \equiv 0$.

If $p > q$ and $g \in M(L^p_0(\varphi), L^q_0(\varphi))$, then, for any $0 < t < 1$, by Lemma 2.3 and (3.4) we have

\[
\infty > N_0 = \int_B \tilde{\mu}(|z|)^{s} (1 - |z|)^{-1} \varphi^p(|z|) \, dv(z)
\]

\[
\geq \left\{ r_0^{n + 2 + q} \right\} \frac{p}{p - q} \int_B (1 - |z|)^{-1} |g(z)|^{\frac{pq}{p - q}} \, dv(z)
\]

\[
= 2n \left\{ r_0^{n + 2 + q} \right\} \frac{p}{p - q} \int_0^1 M^{\frac{pq}{p - q}}(t, g) \, dt
\]

Thus

\[
M^{\frac{pq}{p - q}}(t, g) \leq \frac{ct^{1 - 2n}}{\log(1 - t)^{-1}} \rightarrow 0 \quad \text{as} \quad t \rightarrow 1^-.
\]

This means $g \equiv 0$. □

Corollary 2. Suppose $0 < p < \infty$, $0 < q < \infty$. Then

1. $g \in M(L^p_0, L^q_0)$ if and only if $g \in L^k$ for $p > q$, where $1/k = 1/q - 1/p$;
2. $g \in M(L^p_0, L^q_0)$ if and only if $g \in H^\infty$ for $p = q$;
3. $g \in M(L^p_0, L^q_0)$ if and only if $g \equiv 0$ for $p < q$.

Proof. (1) If $p > q$, by taking $\varphi_1(r) = (1 - r)^{1/p}$ and $\varphi_2(r) = (1 - r)^{1/q}$ in Theorem C we can obtain the result.

(2) If $p = q$, taking $\varphi_1(r) = \varphi_2(r) = (1 - r)^{1/p}$ in Theorem A.

(3) If $p < q$, by taking $\varphi_1(r) = (1 - r)^{1/p}$, $\varphi_2(r) = (1 - r)^{1/q}$ in Theorem B and using the maximum modulus principle we have $g \equiv 0$. □

Corollary 3. Suppose $-\infty < \alpha < 0$, $-\infty < \beta < 0$. Then $g \in M(D_\alpha, D_\beta)$ if and only if $g \in H(B)$ and $|g(z)| = O((1 - |z|)^{\beta - \alpha)/2}$.

Proof. Since $D_\alpha = H(2, 2, (1 - r)^{-\alpha/2})$ and $D_\beta = H(2, 2, (1 - r)^{-\beta/2})$, we can get the result by Theorem A. □
Acknowledgment

The authors thank the referee for his (her) useful suggestions.

References

[1] X. Zhang, The coefficient multiplier between p-Bloch space $\beta^p(B)$ and Dirichlet type space $D_q(B)$ of C^n, Chinese J. Contemp. Math. 24 (2003) 13–22.