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Abstract

The goal of this work is to study in some detail the asymptotic behaviour of a non-

autonomous Lotka–Volterra model, both in the conventional sense (as t-N) and in the

‘‘pullback’’ sense (starting a fixed initial condition further and further back in time). The non-

autonomous terms in our model are chosen such that one species will eventually die out, ruling

out any conventional type of permanence. In contrast, we introduce the notion of ‘‘pullback

permanence’’ and show that this property is enjoyed by our model. This is not just a

mathematical artifice, but rather shows that if we come across an ecology that has been

evolving for a very long time we still expect that both species are represented (and their

numbers are bounded below), even if the final fate of one of them is less happy. The main tools

in the paper are the theory of attractors for non-autonomous differential equations, the sub-

supersolution method and the spectral theory for linear elliptic equations.
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1. Introduction

In this paper we analyse the long-time behaviour of the non-autonomous
competitive Lotka–Volterra system

ut � Du ¼ uðl� aðtÞu � bvÞ in O� ðs;þNÞ;
vt � Dv ¼ vðm� cv � duÞ in O� ðs;þNÞ;
u ¼ v ¼ 0 on @O� ðs;þNÞ;
uðs; xÞ ¼ u0ðxÞ; vðs; xÞ ¼ v0ðxÞ in O;

8>>><
>>>:

ð1Þ

where O is a bounded domain of RN ; NX1; with a smooth boundary @O; b; c; d are
positive constants, l; mAR and 0oaðtÞpA: Problem (1) models the interactions
between two competing species inhabiting a region O: uðx; tÞ and vðx; tÞ represent the
population densities at location xAO and time t:Moreover, we are assuming that O
is completely surrounded by inhospitable areas, because both population densities
are subject to homogeneous Dirichlet boundary conditions. Here, the operator �D
takes into account the diffusivity of the species, l and m are the growth rates of the
species, b and d describe the interaction rates between the species and finally, aðtÞ
and c are the limiting effects of crowding in each population.
The starting point of this paper is the following observation, which forms the basis

of the relatively recent theory of non-autonomous attractors as developed by Crauel
et al. [10], Kloeden and Schmalfuss [19], and Schmalfuss [30]. Suppose that xðt; s; x0Þ
denotes the solution of some system at time t that is equal to x0 at time s: For an
autonomous system we always have

xðt; s; x0Þ ¼ xðt � s; 0; x0Þ

and so considering the time asymptotic behaviour as t-þN is exactly the same as
considering what happens as s-�N: However, in a non-autonomous system the
initial time is as important as the final time, and these two different types of ‘‘time
asymptotic behaviour’’ are not equivalent. We do not aim here to assert the primacy
of one of these approaches over the other, but rather to demonstrate that the
‘‘pullback’’ procedure (considering the behaviour as s-�N) is a useful tool that
can add to our understanding of non-autonomous systems. Similar ideas are applied
to the ordinary differential equation version of (1) in [21] for which more detailed
results are possible.
In population dynamics, a basic question is to determine whether the two species

will survive in the long term. This has been formalized as the criterion of permanence

(see [12,16] and references therein). System (1) is said to be permanent if for any
positive initial data u0 and v0; the solution ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ enters in finite
time into a compact set strictly bounded away from zero in each component.
In the autonomous case, that is when aðtÞ ¼ a40; results about permanence have

been obtained using various techniques. These results depend on the value of l and m
with respect to certain principal eigenvalues of associated linear elliptic problems.
We need some notation in order to state these results. Given fALNðOÞ; we denote by
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l1ðf Þ the principal eigenvalue of the problem

�Dw þ f ðxÞw ¼ sw in O;

w ¼ 0 on @O:

(

We write l1 :¼ l1ð0Þ: On the other hand, given g; eAR and e40; we denote by w½g;e�
the unique positive solution of

�Dw ¼ gw � ew2 in O;

w ¼ 0 on @O:

(

Observe that w is related to the stationary solution when only one species is present.
It is well known that w½g;e� exists if, and only if, l1og; and w½f ;e� 	 0 if l1Xg:
On the other hand, if lpl1 or mpl1; then one of the two species (or both of them)

will be driven to extinction. This extinction region was enlarged by López-Gómez
and Sabina [25] (Corollary 4.5) to a region in the ðl;mÞ-plane delimited by the curves
l ¼ l0ðmÞ and m ¼ m0ðlÞ: However, if l and m satisfy

l4jðmÞ and m4cðlÞ; ð2Þ

where jðmÞ ¼ l1ðbw½m;c�Þ and cðlÞ ¼ l1ðdw½l;a�Þ; then (1) is permanent (see [2,4,5,24]).
We would like to point out that l ¼ l1ðbw½m;c�Þ and m ¼ l1ðdw½l;a�Þ define two curves
in the ðl; mÞ-plane whose behaviour is analysed in detail in [2,24]. In Fig. 1 we have
summarized the autonomous case for particular values of the parameters. In this
figure we have denoted by P :¼ fðl; mÞ: l; m satisfy ð2Þg and by E :¼
fðl; mÞ: lol0ðmÞ or mom0ðlÞg:
In the non-autonomous case, previous work focuses on non-linearities that are

periodic in time or that are bounded by periodic functions. In the first case, the

λ1
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λ

µ

λ=ϕ(µ)λ=λ 0 (µ)

µ=ψ(λ)

µ=µ0(λ)

P

λ1

Fig. 1. Autonomous case. E: extinction region, P: permanent region.
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spectral theory still works and similar results to the autonomous case can be
obtained, see [14,15]. The second case was studied by Cantrell and Cosner [3]. In [3]
the authors assume that 0oa0paðtÞpA for all tX0; and using a comparison
method, they show that if l and m satisfy

l4l1 þ
mb

a0
and m4l1 þ

ld

c
;

then (1) is permanent [3, Corollary 3.1].
In this work, we do not assume that aðtÞ is bounded below by a positive constant

and in fact we are mainly interested in the case aðtÞ-0 as t-þN:We prove in this
case that there is no bounded absorbing set for (1), and so the system is not
‘‘permanent’’ in any conventional sense. In fact, we analyse the forward behaviour in
time of (1) in detail and we show that one or both species are driven to extinction
when

lol1 or l4jðmÞ: ð3Þ

See Fig. 2 where we have represented this case. We have denoted by E ¼ fðl; mÞ: l; m
satisfy (3)g:
The idea of pullback convergence from the theory of random and non-

autonomous attractors (cf. [10,19,30]) allows us to ask (and answer) other questions
about the behaviour of our model (1). In particular, we define here a notion of
pullback permanence: we say that (1) is pullback permanent if there exists a time-
dependent family of (bounded) absorbing sets that are bounded away from zero in
each component. This idea is not intended to replace the standard notion of
permanence, but rather to complement it. This definition has an interesting
biological interpretation: if we arrive at an island on which two species have already

λ1 λ
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λ=ϕ(µ)

λ1
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E

Fig. 2. Forward behaviour in time when aðtÞ-0 as t-N:
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been competing (according to our model) for a long time then we can guarantee that
neither species will have died out (and their numbers are bounded below in a uniform
way, no matter how long this ecology has been running). This is new information,
not available by considering the behaviour as t-þN: indeed, one might expect
from the inevitability of extinction as t-N that such behaviour would not occur.
We get here pullback extinction if lol1 or mol1: Moreover, assuming that

aðtÞ-a040 as t-�N and l and m satisfy

l4jðmÞ and m4cðl; a0Þ; ð4Þ

where cðl; a0Þ ¼ l1ðdw½l;a0�Þ; then (1) is pullback permanent. We have summarized
this in Fig. 3, where E ¼ fðl; mÞ: lpl1 or mpl1g:
In fact, we can give a bit more information about the structure of the pullback

attracting states (‘‘the non-autonomous attractor’’) by using the order-preserving
property of (1) (we define an appropriate order in Section 3, cf. [15], for example): a
result due to Langa and Suárez [22] shows that (1) possesses two trajectories,
maximal and minimal, that are globally stable from above and below, respectively.
Finally, we should mention the use of skew product flows [11,29] in studying non-

autonomous problems, particularly in the periodic, quasi-periodic, or almost
periodic case. The idea is to construct an autonomous semiflow SðtÞ on the product
space H �F; where H is the natural phase space where the dynamics take place
(here the dynamics of u and v) and F is the hull (see [29]) of all the time dependent

Pullback 
Permanence

λ

µ

λ1
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λ=ϕ(µ)

µ=ψ(λ,a0)

Fig. 3. Non-autonomous case. E: pullback extinction region.

J.A. Langa et al. / J. Differential Equations 190 (2003) 214–238218



terms of the equation. Provided thatF is compact in some appropriate topology the
general theory of dissipative dynamical systems can be applied to study SðtÞ on the
space H �F: However, with an entirely general non-autonomous term there is no
clear choice of topology on F that will make it compact, a property crucial to this
approach.3 This is highlighted in the theory of attractors for non-autonomous
equations developed by Chepyzhov and Vishik [6,7], while their strongest results
require almost periodicity, precisely in order to obtain a compact F; they study
general non-autonomous terms without appealing to skew product flows using the
concepts of a ‘‘kernel’’ and ‘‘kernel sections’’, the latter corresponding exactly to the
time slices AðtÞ of the non-autonomous attractor whose definition we recall below.
An outline of this paper is as follows: in Section 2 we introduce the concept of a

process, give the definition of a non-autonomous attractor and state conditions that
guarantee its existence. In Section 3 we study properties of order-preserving
processes and in particular recall a result about their stability. In Section 4 we study
in detail a non-autonomous logistic equation which governs the behaviour of one of
the species in absence of the other: this section plays a crucial role throughout all that
follows. In Section 5 we analyse both the forwards and pullback behaviour of system
(1), and finish in Section 6 with the existence of a non-autonomous attractor for (1)
and conditions for pullback permanence.

2. Non-autonomous attractors

In this section we introduce the definitions of a non-autonomous attractor and of
pullback permanence.
Let ðX ; dÞ be a complete metric space (with metric dÞ and fSðt; sÞgtXs; t; sAR be a

family of mappings satisfying:

(a) Sðt; sÞSðs; tÞu ¼ Sðt; tÞu; for all tpspt; uAX ;
(b) Sðt; tÞu is continuous in t; t and u:
(c) Sðt; tÞ is the identity in X for all tAR:

Such a map is called a process. Usually, Sðt; tÞu will arise as the value of the solution
of a non-autonomous equation at time t with ‘‘initial condition’’ u at time t: As
remarked in the introduction, for an autonomous equation the solutions only
depend on t � t; and we can write Sðt; tÞ ¼ Sðt � t; 0Þ:
Let D be a non-empty set of parameterized families of non-empty bounded sets

fDðtÞgtAR: In particular, DðtÞ 	 BAD; where BCX is a bounded set. In what

follows, we will consider a fixed base of attraction D and throughout our analysis the
concepts of absorption and attraction will be referred to this fixed base.

3Using uniform convergence on R requires almost periodicity. An interesting extension should be

possible under the assumption that the non-autonomous terms enjoy a uniform modulus of continuity

over R; for then the topology of uniform convergence on compact subsets of R will makeF compact, cf.

[17], and the recent monograph by Chepyzhov and Vishik [8].
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For A;BCX define the Hausdorff semidistances as

distðA;BÞ ¼ sup
aAA

inf
bAB

dða; bÞ; DistðA;BÞ ¼ inf
aAA

inf
bAB

dða; bÞ:

Definition 1.

(a) Given t0AR; we say that Kðt0ÞCX is attracting at time t0 if for every fDðtÞgAD

lim
t-�N

distðSðt0; tÞDðtÞ;Kðt0ÞÞ ¼ 0:

A family fKðtÞgtAR is attracting if Kðt0Þ is attracting at time t0; for all t0AR:
(b) Given t0AR; we say that Bðt0ÞCX is absorbing at time t0 if for every fDðtÞgAD

there exists T ¼ Tðt;DÞAR such that

Sðt0; tÞDðtÞCBðt0Þ for all tpT :

A family fBðtÞgtAR is absorbing if Bðt0Þ is absorbing at time t0; for all t0AR:

Note that every absorbing set at time t0 is attracting.
As discussed in the introduction, this notion takes the final time as fixed

and moves the initial time backwards towards �N: We are not evolving one
trajectory backwards in time, but rather we consider the current state of the system
(at the fixed time t0) which would result from the same initial condition starting at
earlier and earlier times. This is called pullback attraction in the literature (cf.
[18,19,30]).

Definition 2. Let fBðtÞgtAR be a family of subsets of X : This family is said to be
invariant with respect to the process S if

Sðt; tÞBðtÞ ¼ BðtÞ for all ðt; tÞAR2; tpt:

Note that this property is a generalization of the classical property of an invariant
set for a semigroup. However, in this case we have to define the invariance with
respect to a family of sets depending on a parameter.

Definition 3. The family of compact sets fAðtÞgtAR is said to be the global

non-autonomous (or pullback) attractor associated to the process S if it is
invariant, attracts every fDðtÞgAD (for all t0AR) and minimal in the sense
that if fCðtÞgtAR is another family of closed attracting sets, then AðtÞCCðtÞ for
all tAR:

The general result on the existence of non-autonomous attractors is a general-
ization of the abstract theory for autonomous dynamical systems [11,32]:

J.A. Langa et al. / J. Differential Equations 190 (2003) 214–238220



Theorem 4 (Crauel et al. [10], Schmalfuss [30]). Assume that there exists a family of

compact absorbing sets. Then, the family fAðtÞgtAR defined by

AðtÞ ¼
[

DAD

LðD; tÞ

is the global non-autonomous attractor, where LðD; tÞ is the omega-limit set at time t of

D 	 fDðtÞgAD;

LðD; t0Þ ¼
\

spt0

[
tps

Sðt0; tÞDðtÞ:

Using the pullback idea introduced above we can now give the following
definition of ‘‘pullback permanence’’. As in [5] we suppose that X ¼ X0,@X0; where
X0 is open, and X0; @X0 are invariant with respect to the process S: In our
application, @X0 will be the set of solutions with at least one component identically
zero.

Definition 5. We say that a system has the property of pullback permanence (or that
it is permanent in the pullback sense) if there exists a time-dependent family of
bounded sets U :R/X ; satisfying

(a) UðtÞ absorbs every bounded set DCX (cf. Definition 1).
(b) DistðUðtÞ; @X0Þ40 for all tAR:

Following Definition 3, we can define a global attractor AþCX0 that attracts
every bounded set in X0: its existence follows using Theorem 4.

3. Order-preserving non-autonomous differential equations

In this section we define what it means for a process to be order-preserving. For
such a process we can determine some of the structure of the non-autonomous
attractor and prove the existence of a minimal and maximal trajectory on the
attractor with some particular stability properties.

Definition 6. We say that the process fSðt; sÞ :X-XgtXs is order-preserving if there

exists an order relation ‘%’ in X such that, if w1%w2; then Sðt; sÞw1%Sðt; sÞw2 for
all tXs:

The next definition generalizes the concept of equilibria in [14] (see also [1]
in the stochastic case and [9] in the non-autonomous case under stronger
conditions).

J.A. Langa et al. / J. Differential Equations 190 (2003) 214–238 221



Definition 7. Let S be an order-preserving process. We call the continuous map
w :R-X a complete trajectory if, for all sAR; we have

Sðt; sÞwðsÞ ¼ wðtÞ for tXs:

From ð
%
w; %wÞ such that

%
wðtÞ% %wðtÞ; for all tAR; we can define the ‘‘interval’’

I %w

%
w ðtÞ ¼ fwAX :

%
wðtÞ%w% %wðtÞg:

The following result was proved in [22] and it gives sufficient conditions for the
existence of upper and lower asymptotically stable complete trajectories, and
provides some information about the structure of the non-autonomous attractor.

Theorem 8. Let S be an order-preserving process and AðtÞ its associated pullback

attractor attracting time-dependent families of sets in a base of attraction D: Let

%
w; %wAD be such that

%
wðtÞ% %wðtÞ; for all tAR; and assume that

AðtÞCI %w

%
w ðtÞ 8tAR:

Then there exist two trajectories w
*
ðtÞ; wnðtÞAAðtÞ such that

(i) w
*
ðtÞ%w%wnðtÞ; 8tAR and 8wAAðtÞ:

(ii) w
*
ðwnÞ is minimal (maximal) in the sense that there is no complete trajectory in

the interval I
w
*

%
w ðI %w

wnÞ:
(iii) w

*
ðtÞ is globally asymptotically stable from below, that is, for all zAD with

%
wðtÞ%zðtÞ%w

*
ðtÞ; for all tAR; we have

lim
s-�N

dðSðt; sÞzðsÞ;w
*
ðtÞÞ ¼ 0:

wnðtÞ is globally asymptotically stable from above, that is, for all zAD with

wnðtÞ%zðtÞ% %wðtÞ; for all tAR; we have

lim
s-�N

dðSðt; sÞzðsÞ;wnðtÞÞ ¼ 0:

4. The non-autonomous logistic equation

In the absence of one species, the evolution of the other is given by the non-
autonomous logistic equation

wt � Dw ¼ qðx; tÞw � bðtÞw2 in O� ðs;þNÞ;
w ¼ 0 on @O� ðs;þNÞ;
wðx; sÞ ¼ w0ðxÞ in O;

8><
>: ð5Þ

where qALNðO� ðs;NÞÞ and 0obðtÞpB for all tAR:
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Firstly, we introduce some results which will be very useful. Given fALNðOÞ we
denote by l1ðf Þ the principal eigenvalue of the problem

�Dw þ f ðxÞw ¼ sw in O;

w ¼ 0 on @O;

(
ð6Þ

and by j1ðf Þ the unique positive eigenfunction such that jjj1ðf ÞjjN ¼ 1: It is well
known that l1ðf Þ is increasing and continuous in f ; decreasing and continuous in O
and that if f ðxÞ40 in O then (see [23, Theorem 6.4])

lim
b-N

l1ðbf Þ ¼ N: ð7Þ

We denote l1 :¼ l1ð0Þ: Finally, given fALNðOÞ and eAR; e40; we consider the non-
linear elliptic equation

�Dw ¼ f ðxÞw � ew2 in O;

w ¼ 0 on @O:

(
ð8Þ

The next result collects the main results on the existence and uniqueness of a positive
solution for (8) and some important properties of this solution.

Lemma 9. Problem (8) possesses a positive solution if, and only if, l1ð�f Þo0:
Furthermore, if such a solution exists then it is unique: we denote it by w½f ;e� and set

w½f ;e� 	 0 if l1ð�f ÞX0: In addition,

(a) w½f ;e� is bounded below:

� l1ð�f Þ
e

j1ð�f Þpw½f ;e� in O; and ð9Þ

(b) the maps fALNðOÞ/w½f ;e� and eAð0;NÞ/w½f ;e� are continuous.

Proof. The existence and uniqueness of a positive solution are well known, see for
instance [14]. Observe that the pair

ð
%
w; %wÞ ¼ � l1ð�f Þ

e
j1ð�f Þ; fM

e

� 	

is a sub-supersolution of (8), where fM :¼ ess supxAO f ðxÞ: Indeed, it is not hard to
prove that

%
w and %w satisfy the following inequalities:

�D
%
wpf ðxÞ

%
w � e

%
w2; �D %wXf ðxÞ %w � e %w

2 in O
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and

%
w ¼ � l1ð�f Þ

e
j1ð�f Þp� l1ð�fMÞ

e
¼ fM � l1

e
o

fM

e
¼ %w:

Thus,

� l1ð�f Þ
e

j1ð�f Þpw½f ;e�p
fM

e
ð10Þ

from which (9) follows. Now, by (10), the continuity of the maps f/w½f ;e� and

e/w½f ;e� can be obtained. &

The following result provides us with the existence and uniqueness of positive
solution for (5), as well as its ‘‘forward’’ and ‘‘pullback’’ asymptotic behaviour. We
consider the Banach space

C0ð %OÞ :¼ fuACð %OÞ: u ¼ 0 on @Og

ordered by its positive cone P :¼ fuAC0ð %OÞ: uX0 in Og:

Proposition 10. Given w0APWf0g; there exists a unique positive solution of (5),
denoted by y½q;b�ðt; s;w0Þ; which is strictly positive for t4s: Moreover:

(a) y½q;b�ðt; s;w0Þ is increasing in q and decreasing in b.

Now, assume that qðx; tÞ 	 qðxÞ: Then,

(b) If bðtÞ ¼ b040; then jjy½q;b0�ðt; s;w0Þ � w½q;b0�jjN-0 as t-N or s-�N:

(c) If l1ð�qÞ40; then jjy½q;b�ðt; s;w0ÞjjN-0 as t-N or s-�N:

(d) If l1ð�qÞo0 and bðtÞ-0 when t-N; then jjy½q;b�ðt; s;w0ÞjjN-N as t-N:

(e) Given tAR and l1ð�qÞo0; there exist VACð %OÞ; V40; and Tðt;w0Þ such that

VðxÞpy½q;b�ðt; s;w0ÞprðtÞ for any spTðt;w0Þ; ð11Þ

where

rðtÞ ¼ ejjqjjNt

1
2

R t

�N
ejjqjjNtbðtÞ dt

:

Proof. The existence and uniqueness follow in a standard way. The positivity of the
solution for t4s follows by the strong maximum principle for parabolic equations.
For part (a), take q1ðx; tÞpq2ðx; tÞ for all xAO; tXs: Then, y½q1;b�ðt; s;w0Þ is a

subsolution of (5) with q ¼ q2; and so by the uniqueness of the solution it follows
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that

y½q1;b�ðt; s;w0Þpy½q2;b�ðt; s;w0Þ:

A similar reasoning shows the monotony with respect to b:
Part (b) has been proved, for instance, in [4, Lemma 5.1] when t-N: As we have

indicated before in the autonomous case

y½q;b0�ðt; s;w0Þ ¼ y½q;b0�ðt � s; 0;w0Þ;

and so the result follows when s-�N:
For part (c), since l1ð�qÞ40 and by the continuity of the principal eigenvalue

with respect to the domain, there exists a regular domain O1 such that OC %OCO1
and

0olO11 ð�qÞol1ð�qÞ;

where lO11 ð�qÞ stands for the principal eigenvalue of (6) in O1 with f ¼ �q: We

denote by jO1
1 ð�qÞ its associated positive eigenfunction and take %w :¼

Kegðt�sÞjO1
1 ð�qÞ: Then, %w is a supersolution of (5) provided that

KjO1
1 ð�qÞXw0 in O;

gþ lO11 ð�qÞ þ KbðtÞegðt�sÞjO1
1 ð�qÞX0 in O� ðs;NÞ:

We can take K sufficiently large and �lO11 ð�qÞpgo0; and so

y½q;b�ðt; s;w0ÞpKegðt�sÞjO1
1 ð�qÞ

whence the result is obtained.
We now prove (d). Fix M40 and l1ð�qÞo0: Taking

e :¼ � l1ð�qÞ
2M

;

since bðtÞ-0 as t-N; there exists teAR such that for any tXte

bðtÞpe:

Observe that,

y½q;b�ðt; s;w0Þ ¼ y½q;b�ðt; te; ze;sÞ; ð12Þ

where

ze;s ¼ y½q;b�ðte; s;w0Þ:
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Now, by part (a) we have that

y½q;b�ðt; te; ze;sÞXy½q;e�ðt; te; ze;sÞ for tXte: ð13Þ

By part (b), there exists t1AR such that for tXt1; we get

y½q;e�ðt; te; ze;sÞXw½q;e� þ
l1ð�qÞ
2e

X� l1ð�qÞ
e

j1ð�qÞ þ l1ð�qÞ
2e

;

this last inequality thanks to (9). Therefore, by (12) and (13), for tXt1 we get

y½q;b�ðt; s;w0ÞX� l1ð�qÞ
e

j1ð�qÞ þ l1ð�qÞ
2e

;

and so, since jjj1ð�qÞjj
N

¼ 1; we obtain

jjy½q;b�ðt; s;w0ÞjjNXM:

This completes part (d).
For part (e), since bðtÞpB for all tAR; it follows that

y½q;B�ðt � s; 0;w0Þ ¼ y½q;B�ðt; s;w0Þpy½q;b�ðt; s;w0Þ

and the existence of a positive function V follows by part (b). On the other hand,

%w :¼ yðt; s; jjw0jjNÞ

is a supersolution of (5), where yðt; s; y0Þ is the solution of

y0 ¼ jjqjj
N

y � bðtÞy2; yðsÞ ¼ y0

which is given explicitly by

yðt; s; y0Þ ¼
ejjqjjNðt�sÞ

1
y0
þ
R t

s
ejjqjjNðr�sÞbðrÞ dr

:

Now, it suffices to let s-�N: This completes the proof. &

Proposition 10 provides us with a complete description of the long-time behaviour
of the positive solution of (5). In the autonomous case, part (b), w½q;b0� is globally

asymptotically stable, and so the species is driven to extinction when l1ð�qÞX0 and
(5) is permanent when l1ð�qÞo0:
In the non-autonomous case, the species is driven to extinction in the ‘‘forward’’

and ‘‘pullback’’ senses when l1ð�qÞ40: However, when l1ð�qÞo0 there is a drastic
change of behaviour: by part (d), we cannot expect forward permanence, whereas in
[22] it was proved that for l1ð�qÞo0 Eq. (5) is permanent in the pullback sense.
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5. Non-autonomous Lotka–Volterra competition model

Our first result in this section guarantees the existence and uniqueness of a positive
solution of (1) and provides some helpful estimates.

Theorem 11. Given u0; v0APWf0g; there exists a unique positive solution of

(1), denoted by ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ; which is strictly positive for t4s:
Moreover,

y½l�by½m;c�;a�pupy½l;a� y½m�dy½l;a�;c�pvpy½m;c�: ð14Þ

Proof. We take

ð
%
u; %uÞ :¼ ðy½l�by½m;c�;a�; y½l;a�Þ ð

%
v; %vÞ :¼ ðy½m�dy½l;a�;c�; y½m;c�Þ:

Firstly, by Proposition 10(a), it is clear that
%
up %u and

%
vp%v: Moreover, it is not hard

to prove that this couple satisfies

%
ut � D

%
u ¼

%
uðl� aðtÞ

%
u � b%vÞ; %ut � D %u ¼ %uðl� aðtÞ %uÞX %uðl� aðtÞ %u � b

%
vÞ;

%
vt � D

%
v ¼

%
vðm� c

%
v � d %uÞ; %vt � D%v ¼ %vðm� c%vÞX%vðm� c%v � d

%
uÞ:

Thus the existence of a positive solution of (1) follows from Theorem 8.3.2 in [31].
Uniqueness follows by a standard argument to complete the proof. &

5.1. Asymptotic behaviour forward in time

The asymptotic behaviour of (1) depends on the values of l and m: The next result
shows cases where the trivial solution and the semi-trivial one are globally
asymptotically stable, and so at least one species is driven to extinction.

Proposition 12. Suppose lol1:

(a) If mpl1; then ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ-ð0; 0Þ as t-N:
(b) If m4l1; then ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ-ð0;w½m;c�Þ as t-N:

Proof. If lol1; then observe that l1ð�lÞ ¼ l1 � l40: Hence, from (14) and
Proposition 10(c) we get that uðt; s; u0; v0Þ-0 as t-N: Similarly, when mpl1 we get
that vðt; s; u0; v0Þ-0 as t-N:
Now, we assume m4l1: Let d40 be such that m4l1 þ dd: For such d there exists

t0AR such that

jjuðt; s; u0; v0ÞjjNod for any tXt0:
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On the other hand, using the definition of y½q;b� we obtain

u ¼ y½l�bv;a� and v ¼ y½m�du;c�: ð15Þ

Then, by (14) and Proposition 10(a), we have

y½m�dd;c�py½m�du;c� ¼ vpy½m;c� for tXt0:

It is sufficient to apply Proposition 10(b) and the continuity of the map
f/w½f ;e�: &

The following result shows that the system is not permanent when l and m satisfy
an easily verifiable condition. The system is not permanent because one species (u)
increases indefinitely and drives the other to extinction.
We note here that although under the condition aðtÞ-0 the equation is

‘‘asymptotically autonomous’’ in the sense of Markus [26] (see also more recent
works by Thieme [33], Mischaikow et al. [27]) the general results that are available
for such systems are not sufficiently detailed to give us all the information we
need: for example, it is known that if all the solutions of the limit equation are
unbounded then so are the solutions of the non-autonomous equation [26], but we
wish to show that while one species grows without bound the other is driven to
extinction.

Proposition 13. Suppose aðtÞ-0 as t-N: If l4l1ðbw½m;c�Þ; then

ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ-ðN; 0Þ as t-N:

Observe that w½m;c� ¼ 0 if mpl1; so l4l1ðbw½m;c�Þ means l4l1 when mpl1:

Proof. Assume mpl1; then by Proposition 10(c) we have that vpy½m;c�-0 as t-N:

Moreover, since l4l1; we can obtain that

l� by½m;c�4l1 for tXt1:

Hence,

l1ð�lþ by½m;c�Þol1ð�l1Þ ¼ 0;

and so, by Proposition 10(d)

y½l�by½m;c�;a�-N;

and the result follows by (14).
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Now, suppose m4l1 and l4l1ðbw½m;c�Þ: We define

e :¼
l� l1ðbw½m;c�Þ

2b
:

Since vpy½m;c�-w½m;c� as t-N; then there exists te such that for tXte

vpw½m;c� þ e;

and so, by (15)

u ¼ y½l�bv;a�Xy½l�bðw½m;c�þeÞ;a� for tXte:

Since, aðtÞ-0 as t-N; given dAð0; 1� there exists td such that for tXtd we have
aðtÞpd; and so,

uXy½l�bðw½m;c�þeÞ;a�Xy½l�bðw½m;c�þeÞ;d�; tXmaxfte; tdg: ð16Þ

Now, observe that

l1ð�lþ bw½m;c� þ beÞ ¼ l1ðbw½m;c�Þ � lþ be ¼ �
l� l1ðbw½m;c�Þ

2
o0: ð17Þ

Taking account (16) and (17), a similar argument to the used in the proof of
Proposition 10(d) shows that given a small positive s40 there exists ts such that for
tXts; we have

uXF :¼
l� l1ðbw½m;c�Þ

2d
j1ð�lþ bðw½m;c� þ eÞÞ � s: ð18Þ

Taking s such that

0oso
l� l1ðbw½m;c�Þ

4
p
l� l1ðbw½m;c�Þ

4d
; ð19Þ

we get that

jjujj
N
XjjFjj

N
X
l� l1ðbw½m;c�Þ

4d
:

Hence, it is sufficient to take d sufficiently small in order to show that u approaches
infinity.
Finally, observe that by (18) we get

v ¼ y½m�du;c�py½m�dF;c�; tXts;
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and if we can take mol1ðdFÞ; by Proposition 10(b) we obtain that v goes to 0: But,
mol1ðdFÞ is equivalent to

mol1
l� l1ðbw½m;c�Þ

2d
j1ð�lþ bðw½m;c� þ eÞÞ

� 	
� s;

which is true by (19) and (7) taking d sufficiently small. This completes the
proof. &

5.2. Pullback asymptotic behaviour

The next two results show ‘‘pullback’’ extinction for some values of l and m: The
first one is similar to Proposition 12 and so we omit the proof.

Proposition 14. Suppose lol1:

(a) If mpl1; then ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ-ð0; 0Þ as s-�N:
(b) If m4l1; then ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ-ð0;w½m;c�Þ as s-�N:

Hereafter, we denote A :DðAÞ/C0ð %OÞ the linear operator associated to the
Laplacian.

Proposition 15. Given tAR; l4l1 and mpl1; then

ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ-ðy½l;a�ðt; s; u0Þ; 0Þ as s-�N:

Proof. Since mpl1; then vpy½m;c�-0 as s-�N: Now, given d40 there exists sd
such that

vðt; s; u0; v0Þpd for spsd:

Hence, by (15), we get

y½l�bd;a�py½l�bv;a� ¼ upy½l;a� for spsd;

and so,

y½l�bd;a� � y½l;a�pu � y½l;a�p0 for spsd:

Thus, it suffices to prove that

wd :¼ y½l�bd;a� � y½l;a�-0; as d-0: ð20Þ
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It is not hard to prove that wd satisfies

ðwdÞt � Dwd ¼ lwd � bdy½l�bd;a� � aðtÞwdðy½l�bd;a� þ y½l;a�Þ:

Now, if we denote by

gdðr; sÞ ¼ l� aðrÞðy½l�bd;a�ðr; s; u0Þ þ y½l;a�ðr; s; u0ÞÞ

and writing wd from the variation of constants formula, we obtain

wdðt; s; u0Þ ¼
Z t

s

e�Aðt�rÞðgdðr; sÞwdðr; s; u0Þ � bdy½l�bd;a�ðr; s; u0ÞÞ dr;

and so, since jje�Aðt�rÞjjopp1; we get

jjwdðt; s; u0ÞjjNp
Z t

s

jjgdðr; sÞjj
N
jjwdðr; s; u0ÞjjN dr þ bd

Z t

s

jjy½l�bd;a�ðr; s; u0ÞjjN dr;

and by Gronwall’s lemma we obtain

jjwdðt; s; u0ÞjjNpbd
Z t

s

jjy½l�bd;a�ðr; s; u0ÞjjN dre

R t

s
jjgdðr;sÞjjN dr

: ð21Þ

On the other hand, by Proposition 10 we have

jjy½l�bd;a�ðt; s; u0ÞjjNpjjy½l;a�ðt; s; u0ÞjjNprðtÞ for spTðtÞ;

for some TðtÞ and rðtÞ independent of d: Now, (20) follows by taking d to zero in
(21). &

The next result shows that for a fixed final time t0; the positive solution of (1) is
bounded away by positive functions for s sufficiently small.

Proposition 16. Fix t0AR: Assume that

inf
sAð�N;t0�

aðsÞ ¼ aðt0Þ40;

l4l1ðbw½m;c�Þ; and m4l1ðdw½l;aðt0Þ�Þ:

Then, there exist s0pt0 and eiAC0ð %OÞ positive functions (depending on t0), such that

for all sps0:

uðt0; s; u0; v0ÞXe1 and vðt0; s; u0; v0ÞXe2:
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Proof. Since aðt0ÞpaðtÞpA for all tpt0; we have

y½l;A�ðt0; s; u0Þpy½l;a�ðt0; s; u0Þpy½l;aðt0Þ�ðt0; s; u0Þ for spt0:

Since l4l1ðbw½m;c�Þ; m4l1ðdw½l;aðt0Þ�Þ; we can choose e40 sufficiently small such that

l4l1ðbðw½m;c� þ eÞÞ and m4l1ðdðw½l;aðt0Þ� þ eÞÞ: ð22Þ

For such e40; and by Proposition 10(b), we obtain

w½l;A� � epy½l;a�ðt0; s; u0Þpw½l;aðt0Þ� þ e for sps0;

for some s0: Using again Proposition 10(a) and (14), we get

y½m�dðw½l;aðt0Þ�þeÞ;c�pv for sps0: ð23Þ

On the other hand, by Proposition 10(a)

y½l�by½m;c�;A�py½l�by½m;c�;a�pu

and by part (b),

w½m;c� � epy½m;c�ðt0; s; u0Þpw½m;c� þ e for sps0;

and so,

y½l�bðw½m;c�þeÞ;A�pu: ð24Þ

Now, by Proposition 10(b), we have that as s-�N;

y½m�dðw½l;aðt0Þ�þeÞ;c� -w½m�dðw½l;aðt0Þ�þeÞ;c�;

y½l�bðw½m;c�þeÞ;A� -w½l�bðw½m;c�þeÞ;A�:

Proposition 10(b), (22)–(24) complete the proof. &

Assuming that aðtÞ tends to a positive constant as t-�N; we obtain a
similar result to Proposition 16 but where the conditions on l and m do not
depend on t:
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Corollary 17. Assume aðtÞ-a040 as t-�N; for each tAR

inf
sAð�N;t�

aðsÞ ¼ aðtÞ40;

l4l1ðbw½m;c�Þ and m4l1ðdw½l;a0�Þ:

Then, for all tAR; there exist s0ðtÞpt and fiAC0ð %OÞ positive functions (depending on t),
such that for all sps0 it holds:

uðt; s; u0; v0ÞXf1 and vðt; s; u0; v0ÞXf2:

Proof. Since m4l1ðdw½l;a0�Þ and from the continuity of the map e/w½l;e�; there exists

e40 such that m4l1ðdw½l;a0�e�Þ: On the other hand, since aðtÞ-a0 as t-�N; there

exists TAR such that for all tpT ; a0 � epaðtÞpaðtÞpA: Then, for any t0pT we
have that

m4l1ðdw½l;aðt0Þ�Þ;

and so by Proposition 16, we get that there exist two positive functions ei such that

uðt0; s; u0; v0ÞXe1 and vðt0; s; u0; v0ÞXe2:

Furthermore, for all tXt0 we have

uðt; s; u0; v0Þ ¼ uðt; t0; uðt0; s; u0; v0Þ; vðt0; s; u0; v0ÞÞ

from which, by the strong maximum principle, we obtain the result. &

6. Existence of a non-autonomous attractor and pullback permanence for the Lotka–

Volterra competition model

We define X :¼ C0ð %OÞ � C0ð %OÞ and the following process in X : for t; sAR; tXs;

Sðt; sÞ :X/X ; Sðt; sÞðu0; v0Þ ¼ ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ;

where ðuðt; s; u0; v0Þ; vðt; s; u0; v0ÞÞ is the unique positive solution of (1) for u0; v0AP:
Moreover, in X we define the following order: given ðu1; v1Þ; ðu2; v2ÞAX ;

ðu1; v1Þ%ðu2; v2Þ if ; and only if ; u1pu2 and v1Xv2;

where ‘‘p’’ is the order defined by P in C0ð %OÞ: It is well known, see [15], that Sðt; sÞ is
an order-preserving process, that is, if ðu1; v1Þ$ðu2; v2Þ; then
Sðt; sÞðu1; v1Þ%Sðt; sÞðu2; v2Þ: Moreover, we consider the norm jðu; vÞj

N
¼ jjujj

N
þ

jjvjj
N
in X :

In the next two sections we will prove the existence of a non-autonomous attractor
for (1).
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6.1. Absorbing set in X

Let DCX be bounded, i.e., supdAD jdj
N
pM; for M40; and ðu0; v0ÞAD: By (14)

and Proposition 10(e), there exists Tðt; u0; v0ÞAR such that

jjuðt; s; u0; v0ÞjjNpjjy½l;a�ðt; s; u0ÞjjNprlðtÞ for spTðtÞ; ð25Þ

where

rlðtÞ ¼
2eltR t

�N
eltaðtÞ dt

:

Similarly,

jjvðt; s; u0; v0ÞjjNprmðtÞ for spTðtÞ; ð26Þ

where

rmðtÞ ¼
2emt

c
R t

�N
emt dt

¼ 2m
c
:

Clearly, this means that the ball in X with radius r1ðtÞ ¼ rlðtÞ þ rmðtÞ; BX ð0; r1ðtÞÞ; is
absorbing for the process Sðt; sÞ:

6.2. Absorbing set in C10ð %OÞ � C10ð %OÞ

In order to obtain a family of absorbing sets in C10ð %OÞ we need the following result
from [28], see also [4, Lemma 3.1]. Here, for a Banach space Y ; Y b will denote the

usual fractional power spaces with norm j � jb: Recall that A :DðAÞ/C0ð %OÞ is the
linear operator associated to the Laplacian.

Lemma 18. The operator A generates an analytic semigroup on Y ¼ Ck
0 ð %OÞ for k ¼

0; 1: Moreover,

Y b+C
kþq
0 ð %OÞ for q ¼ 0; 1 and 2b4q:

Given DCX bounded, we define for rXs

hðr; sÞ ¼ luðr; s; u0; v0Þ � aðrÞu2ðr; s; u0; v0Þ � buðr; s; u0; v0Þvðr; s; u0; v0Þ:

Then, writing u from the variation of constants formula, we obtain

uðt; s; u0; v0Þ ¼ e�Aðt�sÞu0 þ
Z t

s

e�Aðt�rÞhðr; sÞ dr:

Hence, between t � 1 and t; we get

uðt; s; u0; v0Þ ¼ e�Auðt � 1; s; u0; v0Þ þ
Z t

t�1
e�Aðt�rÞhðr; sÞ dr:
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Hence,

juðt; s; u0; v0Þjb ¼ jjAbuðt; s; u0; v0ÞjjNpjjAbe�Ajjopjjuðt � 1; s; u0; v0ÞjjN

þ sup
rA½t�1;t�

jjhðr; sÞjj
N

Z t

t�1
jjAbe�Aðt�rÞjjop dr:

Now, using the estimate

jjAbe�Aðt�rÞjjoppCbðt � rÞ�be�dðt�rÞ

for some constants Cb; d40 (cf. Henry [13]), and estimates (25) and (26), we obtain
the existence of MðtÞ and T0ðtÞ such that

juðt; s; u0; v0ÞjbpMðtÞ for all spT0ðtÞ;

with bo1� e; and any eAð0; 1Þ: Applying now Lemma 18 with q ¼ 1 and b41=2;
we obtain

jjuðt; s; u0; v0ÞjjC1pR1ðD; tÞ for all spT0ðtÞ:

Similarly, it can be proven that

jjvðt; s; u0; v0ÞjjC1pR2ðD; tÞ for all spT0ðtÞ;

for some R2ðD; tÞ; and so the ball in C10ð %OÞ � C10ð %OÞ; Bð0;RðtÞÞ is absorbing in
C10ð %OÞ � C10ð %OÞ; for RðtÞ ¼ R1ðtÞ þ R2ðtÞ; where again we have used the norm
jðu; vÞjC1ð %OÞ ¼ jjujjC1ð %OÞ þ jjvjjC1ð %OÞ in C10ð %OÞ � C10ð %OÞ:
We can repeat the argument taking Y ¼ C10ð %OÞ and D a bounded set in Y � Y : In

this case, using Lemma 18 again, we obtain

jjuðt; s; u0; v0ÞjjC2pNðD; tÞ for all spT1ðtÞ;

and hence, the existence of an absorbing set that is bounded in C20ð %OÞ � C20ð %OÞ; and
so compact in X :
Analogously, we can show the existence of the global attractor Aþ attracting

every bounded set in X0:

6.3. On the structure of the pullback attractor and pullback permanence

In this section we apply the results of Section 3 to our model. We take

%
wðtÞ ¼ ð0; rmðtÞÞ and %wðtÞ ¼ ðrlðtÞ; 0Þ:

Firstly, observe that
%
wðtÞ% %wðtÞ: On the other hand, by (25) and (26) it follows that

AðtÞCI %w

%
w ðtÞ:
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Finally, we define the base of attraction in our model as

D :¼ w :R/X continuous; such that; lim
s-�N

egs

jjwðsÞjj
N

¼ 0
� 

;

where g ¼ minfl; mg: Note, that given w ¼ ðu; vÞAD;

lim
s-�N

distðSðt; sÞðuðsÞ; vðsÞÞ;AðtÞÞ ¼ 0: ð27Þ

Indeed, we have that for s small enough

jjuðt; s; uðsÞ; vðsÞÞjj
N
pjjy½l;a�ðt; s; uðsÞÞjj

N
p

elt

els

jjuðsÞjj
N

þ
R t

s
eltaðtÞ dt

prlðtÞ:

Moreover, it is clear that ð
%
w; %wÞAD: So, applying Theorem 8, there exist complete

trajectories w
*
(minimal) and wn (maximal) that are stable in the sense of Theorem 8.

In a similar way, for Aþ we can also apply Theorem 8 for

%
wðtÞ ¼ ðf1ðtÞ; rmðtÞÞ; %wðtÞ ¼ ðrlðtÞ; f2ðtÞÞ;

so that, for strictly positive initial data, the non-autonomous attractor is bounded
above and below by strictly positive bounds. Finally, we can conclude the pullback
permanence of our model.

Theorem 19. Assume that aðtÞ-a040 as t-�N; for each tAR

inf
sAð�N;t�

aðsÞ ¼ aðtÞ40;

l4l1ðbw½m;c�Þ and m4l1ðdw½l;a0�Þ:

Then (1) is permanent in the pullback sense.

Proof. We write X ¼ X0,@X0; where X0 ¼ ðintPÞ2 and @X0 ¼ XWX0: The
permanence follows with

UðtÞ ¼ fwAX : ðf1ðtÞ; rmðtÞÞ%w%ðrlðtÞ; f2ðtÞÞg;

where f1; f2 are defined in Corollary 17 and rl and rm in (25) and (26), respectively. By

Section 6.1, UðtÞ is absorbing and by Corollary 17 DistðUðtÞ; @X0Þ40: This
completes the proof. &
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7. Conclusions

We have considered a Lotka–Volterra system with a non-autonomous term that
produces only a weak dissipativity effect. This effect is so weak that there are no
bounded absorbing sets, and hence we cannot expect any kind of permanence as
t-N: In order to understand the dynamics of the system further we have
introduced the concept of ‘‘pullback permanence’’: for our example we could show
the existence of a time dependent family of sets, bounded above and below by
positive functions, that absorbs every trajectory of the system ‘‘in the pullback
sense’’. This gives a sense in which, even though one species will eventually die out,
the system exhibits some kind of permanence: at any time t0; no matter how long the
system has been running, the species numbers are uniformly bounded below.
We note here that the region in the ðl; mÞ-plane defined by l4l1ðbw½m;c�Þ and

m4l1ðdw½l;a0�Þ can be empty depending on the values of the parameters a0; b; c and d

(cf. [24, Section 7]). Even in the autonomous case, aðtÞ ¼ a40; results of permanence
are not known when bc is large with respect to ad: In this case the region defined by
l4l1ðbw½m;c�Þ and m4l1ðdw½l;a�Þ is empty, and it is known that if l and m belong to
the region defined by lol1ðbw½m;c�Þ and mol1ðdw½l;a�Þ; then there exists an unstable
stationary positive solution of (1) (cf. [25, Theorem 5.3]).
To understand the behaviour of this model in more detail would require an

analysis of the local stability and instability of the complete trajectories that play a
major role in the dynamics. There is some progress on this for the ODE version of (1)
(see [21]), but in general the subject is still in its infancy: even one-dimensional non-
autonomous examples show a much richer and more complex dynamics than their
corresponding autonomous counter-parts (cf. [20]).
As emphasized above, the notion of ‘‘pullback permanence’’ that we have defined

is not intended as a candidate to replace the standard definition. Rather we believe
that the results presented here offer strong evidence that the pullback procedure is a
valuable tool with which we can further our understanding of non-autonomous
systems.
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