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Abstract

The general relation between the standard expansion coefficients and the beta function for the QCD coupling is exactly derived in a mathen
cally strict way. It is accordingly found that an infinite number of logarithmic terms are lost in the standard expansion with a finite order, and the
lost terms can be given in a closed form. Numerical calculations, by a new matching-invariant coupling with the corresponding beta function
four-loop level, show that the new expansion converges much faster.
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It is of crucial importance to consider the renormalizationwith 30 = 891¢3/32 4+ 149753768~ 2284606573,831 =
group (RG) scale dependence of the strong coupling, in order16273/864 — 10783620736~ —54.26788763, 832 =
to have full consistency in QCD and its applicati¢h®]. Asis  80%3/1296+ 5006520736~ 3.164758128, where is the
well known, the QCD running coupling = o /7 = g%/(47%)  Riemann zeta function, anth = 72/6, ¢3 ~ 1.202056903,

satisfies the RG equation t4 = m*/90, ¢5 ~ 1.036927755. In this Letter, all color fac-
- tors are given foiv; = 3. Comparing the beta expressions here
dor ; with those in Ref][6], one would find a difference by a factor
— i T2 — ,
U ——Zoﬁzal = f(a), (1) ofo2i+1
1=

In practical applications, it is convenient to have an ex-
where theg function was calculated to one-loop level in QCD plicit expression of ther as a function of the renormalization
more than thirty years ad@], to two-loop in Ref[4], to three-  point u. The standard approach is to expand it to a series of
loop in Ref.[5], and to four-loop in Ref[6], in the minimal L =1/In(u?/A%), whereA is the QCD scale parameter. How-
subtraction schemg]. It can be expressed as polynomials of ever, how the expansion coefficients are connected to the beta
the number of flavorsavs, i.e., B; (Nf) = 2/20/8,-,ij’. The function is not generally known, though one can find the rela-

color factorg; ; is presently available to 4-loop level, i.e., tion to order 3 in Ref[8], and to order 4 in Refl9]. In this
1 1 Letter, the general relation between the expansion coefficients
2 3 0 0 and the beta function is provided. It is accordingly found that
571 —% 0 0 an infinite number of known logarithmic terms are lost in the
[Bi.j1= %? _%%2 137_2258 0 (2)  standard expansion with a finite order, and these lost terms can

be given in a closed form. Numerical calculations, by a new

matching-invariant coupling with the corresponding beta func-

tion to four-loop level, show that the new expansion, with the
E-mail addresses: gxpeng@ihep.ac.¢uxpeng@Ins.mit.ed(G.X. Peng). lost terms included, converges much faster.
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To solve Eq(1), let us define

ﬂg[i_ﬂl 1}

T BilB@  BEa Poo?] ®)

B1

With the series expression f@(«) in Eq. (1), one can easily
get an explicit expression

Zﬁo(ﬂoﬂﬂrz/ﬂl - ,3]'+1)Olj
Z?io ﬁiai ’

which indicates thag(«) is analytic atx = 0, and can thus be
expanded to a Taylor series as

fla) =

(4)

Bl@)=Y_ prat.

k=0

(5)

The expansion coefficieni can be obtained from the normal
mathematical formula

o
——B(@)

Br = 1 o

(6)

a=0
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N (—DF
Biza= . + (=11 Bop2
k—4
1
+ _ [( 1) ﬂk §S— 2
k
s=1
2 s+r lp—1—1 s+r—1
(r) 5
X Z( Z )Bl,rs 1_[ 'qu_lq+11|
r=0 \ p=1[p=s+r—p+L q=0
kaz k=2
+ = [ﬂle + 2 Bra+ Babi) Bio—iy
I1=1
k=2 I —
+ Z Zﬂzo 1B 12/312+2]
=2 lr=
k-2 Sk 4
ﬁ ﬁ Br+1
Br + Zﬂzo sBs+2 0 k =, (13)
wherelg =k — 1, Bl(? = ﬂls’ Bl(,s = 13]S+1+1 + B2le+1' Bl(,i) =

/3.1.&+2+21 andBi - IBi /ﬂl (l = 07 17 2, .. )
Now suppose we have a solution of the form

Another easy way to obtain these coefficients is to use the re-

cursive relation
k
B2 B 1 .
_———— - — — _ R 7
=8 ﬁOZﬁk 1B @)
with the obvious initial conditiorfo = B2/81 — 1/ Po-

Let L = 1/In(u/A), where A is a d|menS|onaI parame-
ter, then Eq(1) becomes—ng"z = pa), or %5 = e, —
[—— + ﬁzl Z,B(a)]doz Integrating this equatlon gives

oa® " oo ﬂ

i 1
__C 7oz T 5 |not+ﬁ—gf0 B(x)dx, or

L B1

1- CL——+ﬁ—LI ﬂlLZﬂ“k

Boo ®

where(’ is the constant of integration.
Leta = %Y(L), then

1 >
S+ L Iny +) gLy =1-cL*— L*InL,
Y k=1

whereL* = (B1/B3)L, C =

N Bo\¥
Bk = <ﬂ>ﬁk1

The graved beta functiofiy can be easily obtained from the
expression for the acute beta functignin Eq. (6) or (7), and
here are the results:

9)
(B2/B1)C’ —

In Bo, and

(10)

B1=—1+ Bop2. B2=1/2— Pob2+ (1/2)B3Bs,  (11)

N 1 .. 1., . . 1.5,
Pa=—3 + Poba — 3$5(2s + B3) + 5 Adha. (12)

Y(L)= ZZf,jL*’ In/ L, (14)
i=0j=0
then
00 i i ( 1)k iy
= foo+2£2) ];fk+l|_|f,,L ‘L, (15)
i j=

i—1 ( 1)k 1
(Z p |_|ﬁ 11)L*’WL (16)
1 fOO

i=2 j:O k= 1,0
00 oo i—2 — ) .
T3 TN B
k=1 i=2 j=0 \k=2

17)
where the square cup operatpr], has been defined in the
appendix. Substituting these expressions into (B).we can
obtain all f; ; by comparing the corresponding coefficients
of L* In/ L. For (i, j) = (0,0), (1,0), and (1,1), we have
foo=1, fio=C, fu1=1. Fori >2 andj =i, we have
i1 (=DF L5 o fii = 0, which givesf; ; = 1. And fori > 2
andj =i — 1, we get

(1)klk

Z( bk |_|f” 1+Z | |ficnica=0.  (18)
1,0
whose solution isf; ;1 =iC + YiZXi/1— 1)
Fori >2and 0< j <i — 2, we have
‘ ( 1)k 1
f,,—Z( 1) |_|ﬁ +Z |_|f,-_1,,~
1,0
i—j— k
Z |_| —k—1,j- (19)
k=1 00
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Please note, there are only termsfpt; ;- ; on the right-hand Itis found thatf; ; satisfies
side of this equation. Therefore, it is a recursive relation. Here .
are the solution to order 5:
. flj_Zfl ]kZ(Z )'(J l),|_|<1>1, (31)
f20=C?+C+ B, (20)
where |_|o @, are the Taylor coefficients of il + x), i.e.,
5 N N N k
fa0=C2+2C?+ @l + 1C + 1+ e @1  Inf@+0) = 20(Uo @x' = (T2 Bix)k = (22, 7xHE.
Accordingly we have@g = 0, ¢;>1 = 1/1, ug @ = 80,
R kg — lp, —
f2.1=3C?4+5C +3p1 +1, (22) Llo ®o=6x.0. Llo®: = ¢, and
, . , k>2 k=1 I—k+s =0T pq 1 =
fao=C*+(13/3)C%+ (61 +9/2C | |#is1= (1‘[ ) )lT [1- ©2
. . - 3 . s=1 ps=1 - Zqzl Pq s=1 Ps
+(hr+ 42+ DC + 261 + Z Bi, (23) One can naturally consider to prove Eg1) by mathemat-
i=1 ical induction. We have numerically checked it to order 100.

3 ) . N . Now we directly use it to give an expression fr;, i.e.,
fa1=4C7+13C°+ (1261 + 9C + 71 +4p2+1,  (24)

5 A @) 5
fa2=6C?+13C +6p1 +9/2, (25) i _X_:Pj’kﬂk’ (33)

whereP(’,Z can be obtained by repeatedly using E2{L). For
These correspond to the standard form in &ifatorder 3, r =i — jandk=i — j — 1, itis easy to get

and agree to that in RgR] at order 4, i.e.,

4 i! 4 i— <~ =)
1 B1InIn(u/A) Py = VI Pgl-)_ 1=
a(u) = —{ - JITT = ) Ji= (=N G-DU
Boln/M) |~ pZIn(u/A) s Piat T gy
Igf u  1\?> PBop2 5 Generally fork =i — j —l orl =i — j — k, careful derivations
BEIN2(u/A) [( A E) g2 Z] give
B3 o 5\ AR le,i_QomQ(z—sz
—_—— n _—— —
BoIn®(w/4) [( A 6) 263 216 1 s FEs
(3582 49\ it 11 (26) +Z{<1‘[ > )[Q(i,j,sl)
13]2_ 12 A r=1 s,,_l
To give a general representation for the expansion coeffi- - :
cients f; ;, introduce a set of new functiors by the recursive xQli—j- qu’ S0l = ZS‘I
relation

i kt1 ko ok '—'—r ,l—r ,0
Bi = Z[(—l)kl( |_| Bi + % Llﬂi—l) + Br I_l,Bi—k—l:|- g Q(l ! ;sq ;Sq )
k=1 1 1 0 r—1 p—1
GO VIS || R
p=1 g=1

From the initial conditiongg = 1 andB; = C, one can easily

etall 3; from Eq.(27). If C =0, for example, we have . . . .
9 p a.(27) P where@ is a function of three non-negative integers and defined

Bo=1, p1=0, B2 =P, Bs=P1+ B2  (28) by

J
3 4 (i —D!
_ N N _ . 9. NN Qa, j k)= . (36)
Pa=) Bi+2Bf.  PBs=) Pi+Pi+5hp2  (29) n' ,Z (=D! |—|
i=1 i=1 ‘
For a giveni, one can regard) = [PV)] as a matrix of
orderi + 1. The specially simple elements arzé(’z>l_j =0,

5
_ N o 154, <y . 2o

Po= ; Pt SBi+ Pt Whrhet OPa+ 305 GO po_y p g O g PO = SN/~ 1)
: Pi(i)l’l =i. Here are the®?® matrix fori from 0 to 4:
Please note, even when one setsalb to zero, noBy-» will 00 1
be zero. This is one of the most important reason for us to knovy ) _ [1]. pL — [2 (1)] ’ p@ _ |:1 2 0:| ’

the general relation betwegf ; and the beta function. 10 0
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000 1 R where a1 = 7037/1536 — 820433/27648~ 1.014382432.
3 1 2 30 @ S 760 0 Then the new matching-invariant coupling is
PP=15 30 0 A I S SN 2633, \ 4 8
1 0 0 O iOOOO o =o 72f05 asi 62208 " for .
(37) The renormalization equation fef is
In the traditional minimum subtraction schemdS), the , 0 ‘
strong couplinge(u) as a function of the re-normalization n— — _ ﬂi’a’”z, (49)

point # is not continuous at the quark masses. Let us derive a du i=0

matching-invariant coupling by absorbing loop effects into th
MS definition and give the corresponding beta function to fou

loop level.

Suppose the new coupling is connected to the original

couplinga by

o0
a’::jzzaial+y
i=0

Then, using the matching conditién= "5, Cja/** with the
matching coefficientf9,10]

(38)

Co=1  C1=0, Cp=1172, (39)
(. 575263 82043 2633 @0)
3= 124416 27648° 31104
one has
00 i k+1
& = Z{Zék | | Cikj|ai+l, (41)
i=0L k=0 0

where an overhead check means decreaBirgy one flavor to

the corresponding\; — 1)-flavor effective theory. Accordingly,

comparing the coefficients of in the equalitye’ = o’ yields

i k+1

a; = Zék I_l Ci_g.
k=0 0

Assumeqi = Z;:Oai,ijj, the_n ay = Z.];:Oak’j(Nf — 1)/,
Substitution into Eq(42) then gives

i k+1 k .
> [ai,ka" - ( || Cik) ar, j (Nt — 1)]} =0, (43)
0 0

k=0 j=

(42)

whose solution is

11
ap = ao,o, ai=aio, az=azo+ 7—2610,0va (44)
oo [(7037_ 82043 PEESEN
43 =030 1536 276482 )00 1 3gLo |
2633 )
_ N 45
62208 0> (45)

To definitely fix the new coupling, one needs to choase.
The simplest non-trivial choice would kg o = §; . With this
convention, one has

ap=1, a1 =0, az = (11/72) Ny, (46)
2633 ,
a3z = a3,1Nf - m]vf s B (47)

reThe primed beta functiofi; can be obtained as such. Operating

with u% on both sides of E((38), applying Egs(49) and (1)
and then comparing coefficients will gije’_o[5; |16 % ai—x —
(k + Daxpi—1] = 0, namely,; are given by the recursive rela-
tion

i-1  k+2

Bi=Y (k+Darfix—Y B | |ais
k=0 k=0 0

On application of Eqs(46) and (47) one immediately has the
following explicit expressions for the new beta function:

(50)

Bo=Bo=11/2— N¢/3, (51)

B1 = B1=51/4— (19/12) Ny, (52)
B5 = B2+ azfo — a1(B1 + a1fo)
2857 4549 79

=" " Ni+ —N?, 53

64 576 ' T 5760 (53)

Bh = B3+ 2asfo — 2a1P2 + aif1 + 4a3po — 6arazfo
23
=B + BNt + BN + NP, (54)

576

with B = 149753768+ (891/32)¢3 ~ 2284606573 8" =
—6673341472— (31817992163 ~ —43.10968087 85 =
—68767/62208+ (35977/13824 3 ~ 2.022919969.

It should be mentioned that a different expressiongfpwas
previously given in Ref[11]. The difference is caused by the
fact that a wrong value fo€2 was quoted therfl 2].

As an application of the general relation betwggnand the
beta function, one can develop another expansion which con-
verges much faster. For this one can observe, more carefully,
the standard expansion

00 ,30 i oo
i1 .
a:Zc:]EL*H_ ;)fi’jln]LEZ(;Ji'
1= J= 1=

Representing the terms in this expansion with the correspond-
ing coefficientsf; ;, all the terms can be arranged in a matrix
as

(55)

1 0 0 0 O
fio 1 0 0 0
fa0 fo1 1 0 0 :
ijl= ’ ’ 56
L7i.j1 fzo fz1 fz2 1 O (56)
fa.0 1

fa1 fa2 fas

The standard expansion corresponds to summing the terms row
by row. When one takes the expansion to a finite order, i.e.,
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replacing theco in Eq. (55) with a positive integetV — 1, as
has been done in the usual way, then all the terms fike
(N — 1< j < o0) on the diagonal andf;;1 ; on the next to

diagonal are missed, although these terms are all known and
have nothing to do with beta functions. Generally, the terms

fi+k,j for 0 < j < oo on thekth next to diagonal involves only
Bo<i<k—2- But all the termsf; ; with j > N — 1 are lost,
though no such terms are zero even when one sef;-glito
zero.

To include the contribution from the terms just mentioned,

we can consider to sum over diagonals, which can be achieved

by takingi = j + k in Eq.(55), i.e.,

o % Z Z fi+k,j(L*In L)jL*k+1 _

k=0 j=0

(57)

oo
> ok,
k=0
where the expressions fg_; ; can be obtained from E¢(33):

J

i+ 1 .
fii=1 fj+1,j=Z<JT—1)+(]+1)C» (58)
=1
B N G+ +2)
2. .
fit2.j= ?(J +D(+2)+ <C + 5) ;st
1258 6+ )6+ 2)
+ —Z Z _—, (59)
2s=o = rUmsen)
From these expressions, we can give compact forfip:to
L& ‘ L/Bo
Io=—) (L*InL) = ——— = BoX
0 ﬂojz::’)( nL) Y BoX, (60)
I = Bop1X?[C —Inx], (61)
_ p.p2y3 2
I = oBi X[ f20 — f21lnx +In’x], (62)

where x 1+ (,31/,35)InIn(u/A)/In(u/A), and X =
L*/(B1x) = 1/[B&In(u/A) + BrInIn(u/A)].

In Eq.(57), there are an infinite number of logarithmic terms
like L*/*t%+1In/ I which are included inf;, even when one
takes the expansion to a finite order, say= Y~ ' I;. The
first severall;s have been worked out to a closed form in
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Fig. 1. The QCD coupling as functions of the 't Hooft unit of mass. The dot,
dash, solid, and dot-dash lines are, respectively, for the avdéom 1 to 4

with the scaleA indicated inTable 1 The full dots are the experimental data
of, in increasing order of, T width, T decay, deep inelastic scattering;es

event shapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV,
Z width, and € e~ event shapes at 135 and 189 GeV.

60

40 k1

-20

Fig. 2. The relative difference between the new expansion in@3).and the
conventional expansion in E¢5).

the mass o bosons. Setting = 0 requires distincA for dif-
ferent effective flavor regimes, and we usg, As, A4, and A3
foru>m;, mp <u <my, me <u <myp, andm; < u < me,
respectively, where the relevant quark masses are taken, in

Eqgs.(60)—(62) The procedure is, to some extent, similar to thatthe present calculations, to be = 175 GeV,m;, = 4.2 GeV,

in Ref.[13] for the matching function. Here we can, in fact, give
the closed form foi; to arbitrary order:

oo k
a=) fopiX Y (=1 fisln'x.
k=0 1=0
In Egs.(63) and (55) there are two arbitrary constants:
andC. Because the renormalization group equatié®) or (1)
is of the first order, only one of them is independent. So we ca

(63)

m, = 1.2 GeV, andn, = 100 MeV.

In Fig. 1, the coupling is shown as a function of the renor-
malization point, calculated from Ed63) with the infinity
replaced byN — 1, and the ordeV from 1 to 4. The same
calculation has also been performed from the conventional ex-
pansion in Eq(55). The relative difference between the results
from Eq. (63) and Eq.(55) is shown inFig. 2 It can be seen
that, with decreasing, the difference becomes more and more
significant.

arbitrarily take one of them, while the other is determined by To compare the convergence speed of E§3) and (55)all
giving an initial condition. It nearly becomes standard, nowa-the A; (i = 3—-6) are listed irifable 1 There are two columns

days, to takeC = 0 [14], which makes expressions somewhat
simpler, andx(mz) = 0.1187/7, whereM, = 91.1876 GeV is

corresponding to each;, the left column is for Eq(63) while
the right column is for Eq(55). It is obvious that the new ex-
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Table 1 wherec! = Zf;} p: if s > 1, and 0 otherwise. The meaning
QCD renormalization group scale parametefor the order from 1to 4. For  of ¢/ is similar to this. Here are several special simple cases:

each A;, the left column is for the new expansion in §§3) and the right k k k k k
. . - =8m.oag, ||, ai<km =0,|], axm =as,.
column is for the conventional expansion in E85) I—]m a0 m, 0701 Llm “1<km » Lm “km m
e A " " " The two-dimensional extension of the square cup operator,
e . .
(Mev) 46 5 4 3 LI . is defined by
N=1 88.4 44.6 208 91.5 286 124 325 147 ’
N=2 90.7 95.5 217 235 303 335 347 377
N=3 90.9 908 216 214 299 296 340 334 o i koo i k
N=4 90.7 90.5 215 215 299 298 340 338 (Z Z ﬁ,jxiyj> — Z Z(Ll fl_)]_>xiyj. (A.3)
i=m j=n i=0 j=0 \m,n

pansion(63) converges much faster than the original expansion

(55). Even at the leading ordeN(= 1), the corresponding;  Similarly, one has [0, , fi.j = 1.08;.0, Ly fi<m,j<n = O,
for Eq. (63) has_nearly approached to its value at order 4. Scu%l  fism.jsn = fi.j. Andfork > 2, we have

in practical applications, it should be very accurate to calculate™
the coupling simply by

8o k k=1i—(k—s)m—cP pt k—1
‘= BaIn(u/A) + Brinin(u/A) (64) L—J!ﬁj - (Hl ;:;n qé)ﬁ—séij—gz’ r_l_[lfpﬁqr’(A Y

It should be pointed out that one customarily us¢sifa?),
rather than I/A), in particle physics. When one takes the Where py = min[ps,j — (k — s)n — ¢/l and o =
substitution I /A) — In(u?/A2) in all the above expressions, Maxn, > ;_; p; — ¢{ — i + j). Here are special examples:
one should also takg; — B;/2. For application convenience, Llf;,n Joo= 5m,05n,oféfo, Uﬁl,n Si<km,j<tn =0, I_Ifn,n Sm jen =
the A; (i = 3,4,5,6) in Table lare given after the simultane- fﬁ’n,
ous transformation.

In summary, the general relation between the standard ex-
pansion coefficients and the beta function is carefully derived®
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