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Abstract

Unsteady MHD Casson fluid flow through a parallel plate with hall current is investigated. The uniform magnetic field is applied
perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and
the upper plate is moving. Explicit Finite Difference technique has been used to solve the momentum and energy equations. The
effect of pressure gradient, the Hall parameter and other parameters describing in the equations are shown graphically. Effect of
decaying parameter with different Casson number on primary velocity, secondary velocity and temperature distributions are
illustrated in the form of the graph.
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1. Introduction

In recent years, there has been considerable interest in the magnetohydrodynamic effect of viscous
incompressible non-Newtonian Casson fluid flow with heat transfer with or without hall currents. The flow of an
electrically conducting viscous fluid through a parallel plate in the presence of a transversely applied magnetic field
has applications in many devices such as magnetohydrodynamic (MHD) power generators, MHD pumps,
accelerators, aerodynamics heating, electrostatic precipitation, polymer technology, petroleum industry,
pharmaceutical process, purification of crude oil, fluid droplets sprays etc. The most important non-Newtonian fluid
possessing a yield value is the Casson fluid, which are carried significant applications in polymer processing
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industries and biomechanics. Casson fluid is a shear thinning liquid which has an infinite viscosity at a zero rate of
strain. Casson’s constitute equation represents a nonlinear relationship between stress and rate of strain and has been
found to be accurately applicable to silicon suspensions, suspensions of bentonic in water and lithographic varnishes
used for printing inks. The fluid is acted upon by a constant pressure gradient and is subjected to a uniform magnetic
field perpendicular to the plates. The Hall current is taken into consideration while the induced magnetic field is
neglected by assuming a very small magnetic Reynolds number. The configuration is a good approximation of some
practical situations such as heat exchangers, flow meters and pipes that connects system components. Walawander
et al. [1] studied approximate Casson fluid model for tube flow of blood. Batra and Jena [2] showed the flow of a
Casson fluid in a slightly curved tube. Attia [3] discussed unsteady MHD Couette flow and heat transfer of dusty
fluid with variable physical property which is related to the Casson fluid. Attia and Sayed-Ahmed [4] analyzed
Hydrodynamic impulsive Lid driven flow and heat transfer of a Casson fluid. Sayed-Ahmed et al. |5] examinedtime
dependent pressure gradient effect on unsteady MHD couette flow and heat transfer of a casson fluid. Bhattacharyya
et al. [6] showed analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid.

Hence our main aim is to extend the work of Sayed-Ahmed et al. [5] and to investigate unsteady MHD Casson
fluid flow through a parallel plate with hall current. The proposed model has been transformed into nonlinear
coupled partial differential equations by usual transformation. Finally, the governing momentum and energy
equations are solved numerically in case of one dimension flow and explicit finite difference method has been used
to calculate the results and for stability analysis.
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Figure 1:Geometrical configuration of thermal boundary layer.
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and a uniform suction from above and injection from below which are applied at = 0. A uniform magnetic field is
applied in the positive y -direction and is assumed undistributed as the induced magnetic field is neglected by

assuming a very small magnetic Reynolds number. The Hall Effect is taken into consideration and consequently a
z -component for the velocity is expected to arise. The uniform suction implies that the y-component of the velocity

V, is constant. Thus the fluid velocity vector is given by;
v :ui+v0j+wk

The non-dimensional variables that have been used in the governing equations are
- u w T-T
,t:—o,ﬁ=—7W=—7ﬁ= p2 ,0 = I,E: /lz
h Uy Uy pU0 I, -1 K,

Using these above dimensionless variables, the following dimensionless equations have been obtained as;



Md. Afikuzzaman et al. / Procedia Engineering 105 (2015) 287 — 293 289

2

ou S ou —at | O ou)| Hg

—t——=—ae " 4| —| u— |- 5 (u -+ mw) (D
y

ot Re oy oy

1+m

u
ay

ow Sow 1] o ow H2
( j— “2(w—mu) (2)

l1+m

2 2
20 S 80 1 270 ou ow H,E
—+——=——2+Ec1{(—)2+(—)2}+7a > w? +w?) 3
or Redy P oy ay oy A +m")

- ——\I12 ?
= 1+[1D/ /(—”>2+<—>2J @
0y dy

d
where ¢ is the constant pressure gradient (d_p) and q is the decaying parameter.
x
The corresponding non-dimensional boundary conditions are;
t>0 u=0 w=20 T=0 aty=-1
u=1 w=0 T=1 aty=1
Toh pUGh .
— ,Reynolds number R, = — Suction

The non-dimensional quantities are; Casson number 7 D=

parameter § = —>— , Prandtl number P, = ————, Eckert number £, = ————— ,Hartmann number
2
k. k pc ph(T2 - T,)
2.2
UBO h

ke

squared H, =

3. Numerical Solution

In this section the governing second order non-linear coupled
dimensionless partial differential equations with initial and
boundary conditions have been solved. The explicit finite
difference method has been used to solve equations (1-4) subject
to the boundary conditions. The region within the boundary layer
is divided by some perpendicular line of Y -axis, where Y -axis is
normal to the medium as shown in the figure. It is assumed that
the maximum length of the boundary layer is
Yinax = 2i.e.Y varies from —1 to +1and the number of grid
spacing in Y direction ism = 100 . Hence the constant mesh size
along Y-axis becomes AY = 0.02(-1<7Y < 1) with smaller time
step Ar = 0.0001 . Figure 2: Finite difference space grid
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Let U',W'and 6" denote the values U,W and 6 at the end of a time step respectively. Using the explicit finite

difference method the system of partial differential equation (1-3) is obtained an appropriate set of finite difference
equations;
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and the initial and boundary conditions with the finite difference scheme are

t>0 uv,"=0, w,"=0, 6,"=0  whereL=-1

u," =1, w," =0, 6," =1 where L = 1

4. Results and Discussion:

To obtain the steady-state solutions, the computations have been carried out up to dimensionless time ¢ =0
to 20. The results of the computations, however, show little changes in the above mentioned quantities after
dimensionless timef = 5. Thus the solutions for dimensionless time ¢ = Sare essentially steady-state solutions. To
observe the physical situation of the problem, the steady-state solutions have been illustrated in figures 3-7.
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Figure 3: (a) Primary velocity distribution and (b) secondary velocity distributions for different values of Reynolds number at r=5.0
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The primary and secondary velocity distributions have been shown in figures 3(a) and 3(b) for different values of
Reynolds number. Both the primary and secondary velocity distributions have been increased with the increase of
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Figure 4:(a) Temperature distribution for different values of Reynolds number and (b) Temperature distributions for different values of Eckert
number at 1=5.0

The temperature distributions have been shown in figure 4(a) and 4(b) for different values of Reynolds number
R, and Eckert number E . respectively. In both cases the temperature distribution increases with the increase of
R, and E_ It is shown from figure 5(a) and 5(b) the primary velocity component decreases with increasing
decaying parameter for all values of 7p.It is observed that the time at which primary velocity reaches its steady
state value decreases with increasing a for a > 0.Increasing T p increases primary velocity for all values of

decaying parameter but with small difference.
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Figure S: (a) Effect of decaying parameter a on primary velocityat y = Ofor 7, = 0.05and (b) Effect of decaying parameter a on primary

velocity at y = Ofor 7, = 0.1



292 Md. Afikuzzaman et al. / Procedia Engineering 105 (2015) 287 — 293

15
- P =10,E, =00l H, =10 i £ =10, =001 H, =10
i S=1lm=3 i S=tm=3
| ———— 2=0.5
] T — a=1.0
— e a=2.0 —————————— —
"
s | ”/
[ 3 - 7’
E3 | V4
- i ,’
05|
os} 7
| B /
| 7
L ,’
Ll bbb ke ke s irmbirih (6} - et it ki ok b
05 0.5 1 15 2 0 0.5 .1 15 2
> >t
(a) (b)

Figure 6: (a) Effect of decaying parameter a on secondary velocity at y = Ofor 7, = 0.05and (b) Effect of decaying parameter @ on

secondary velocity at y = Ofor 7, = 0.1

The secondary velocity distributions have been shown in figure 6(a) and 6(b) for different values of ™ with
different decaying parameter. It is observed that secondary velocity component decreases with increasing decaying
parameter. These figures indicate that the influence of 7, on secondary velocity depends on t and become more

clear when decaying parameter near to zero but this influence is small for large a. From the figure 7(a) and 7(b), it
have been shown that influence of decaying parameter on temperature distributions depend on ¢.1t is also shown

that increasing « decreases @ while it is not greatly affected by changing 7 D
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Figure 7: (a) Effect of decaying parameter a on temperature at y = Ofor 7p, = 0.05and (b) Effect of decaying parameter @ on temperature at

y =0for 75 = 0.1
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Conclusions:

In this research work, the explicit finite difference method of unsteady one dimensional Casson non-Newtonian fluid
flow through a parallel plate with a hall current is investigated. The physical properties are illustrated graphically for
different values of parameter. The primary velocity, secondary velocity and temperature distributions have been
increased with the increase of Reynolds number. The effect of decaying parameter a , Casson fluid yield stress7 ),
and the Hall parameterm , on the velocity and temperature distributions are studied. The decaying parameter
a affects the main velocity components and the temperature. The result shows that the influence of the parameters
aand 7 pyon velocity components and the temperature depends on Hall parameter mand suction parameter S . The
time at which two velocity component reach the steady state increases with increasing m , but decreases when
7 pincreases. The time at which 0 reaches its steady state increases with increasing m while it is not greatly
affected by changing7 , .
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