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Given two bounded linear operators F , G on a Banach space X such that G2 F = G F 2 = 0,
we derive an explicit expression for the Drazin inverse of F + G . For this purpose, firstly,
we obtain a formula for the resolvent of an auxiliary operator matrix in the form M =( F I

G F G

)
. From the provided representation of (F + G)D several special cases are considered.

In particular, we recover the case G F = 0 studied by Hartwig et al. [R.E. Hartwig, G. Wang,
Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207–217]
for matrices and by Djordjević and Wei [D.S. Djordjević, Y. Wei, Additive results for the
generalized Drazin inverse, J. Aust. Math. Soc. 73 (1) (2002) 115–126] for operators. Finally,
we apply our results to obtain representations for the Drazin inverse of operator matrices
in the form M = ( A B

C D

)
which are extensions of some cases given in the literature.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The Drazin inverse for bounded linear operators on complex Banach spaces was investigated by Caradus [3]. Therein it
was established that the Drazin inverse of a bounded operator A on a Banach space X exits if and only if 0 is at most a
pole of the resolvent R(λ, A). A generalization of the Drazin inverse which is defined whenever 0 is not an accumulation
point of the spectrum of A was studied by Koliha in [16]. The continuity of the conventional and the generalized Drazin
inverse for bounded linear operator was studied by Rakočević and by Koliha et al. in [20] and [17], respectively.

The Drazin inverse finds its applications in a number of areas such that differential and difference equations, Markov
chains and control theory [1,2].

If A and B are two Drazin invertible operators such that AB = B A = 0 then (A + B)D = AD + B D . This result was
originally proved by Drazin [11] in the contexts of associative rings and semigroups. Hartwig, Wang and Wei [14] gave an
expression for (A + B)D , for complex square matrices, when only the one side condition AB = 0 is required and this result
was extended for operators by Djordjević and Wei in [10]. Expressions of the Drazin inverse of the sum of two matrices
under the weaker conditions AD B = AB D = 0 and (I − B B D)AB(I − A AD) = 0 were given in [4], and it was extended for
elements in a Banach algebra in [6]. Further, an expression for (a + b)D , where a and b are elements in a Banach algebra,
was given in [8] under conditions a = abπ , bπbaπ = bπ , bπaπba = bπaπab, where we denote aπ = 1 − aaD for any element
a in the Banach algebra.

In this paper we concentrate on the Drazin inverse for bounded operators and continue the investigation of additive
perturbations for the Drazin inverse mentioned in the preceding paragraph.
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A related topic is to obtain representations of the Drazin inverse of M = ( A B
C D

)
. Meyer and Rose [19] gave a representation

for the Drazin inverse of a 2 × 2 block triangular matrix in terms of the individual blocks. Djordjević and Stanimirović [9]
considered the extension of Meyer and Rose result to the setting of triangular operator matrices. Several authors have
considered the problem for 2 × 2 block matrices, with square diagonal blocks, under certain conditions on the individual
terms [5,9,13,18]. We apply our main results to obtain representations for the Drazin inverse of block operator matrices
which are extensions of some results given in [7,9,13].

Let B(X ) denote the Banach algebra of all bounded operators on the complex Banach space X . An operator A ∈ B(X ) is
said to be Drazin invertible if there exists an operator AD ∈ B(X ) such that

A AD = AD A,
(

AD)2
A = AD , Ak+1 AD = Ak for some integer k � 0,

in which case it is unique and it is called the Drazin inverse of A. The smallest integer k � 0 in the latter identity is called
the index ind(A) of A. If we define A0 = I , then the previous conditions hold with k = 0 if and only if A is invertible. We
note that if A is nilpotent, then it is Drazin invertible, AD = 0, and ind(A) = r, where r is the power of nilpotency of A.

We write σ(A), ρ(A) and r(A) for the spectrum, the resolvent set and the spectral radius of A, respectively. For λ ∈ ρ(A)

we denote the resolvent (λI − A)−1 by R(λ, A). If 0 is an isolated point of σ(A), then the spectral projection of A associated
with {0} is defined by

Aπ = 1

2π i

∫
γ

R(λ, A)dλ,

where γ is a small circle surrounding 0 and separating 0 from σ(A) \ {0}. If A is Drazin invertible then Aπ = I − A AD .
We recall that A is Drazin invertible and ind(A) = r � 1 if and only if α(A) = δ(A) = r where α(A) and δ(A) denote the

ascent and the descent of A, respectively. In this case X = R(Ar)⊕ N (Ar), R(λ, A) has a pole of order r at λ = 0 and it can
be expressed by [3]

R(λ, A) =
r∑

n=1

An−1 Aπ

λn
−

∞∑
n=0

λn(
AD)n+1

(1.1)

in the region 0 < |λ| < (r(AD))−1.
The proof of the following lemma can be found in [12, Theorem 11.1.2].

Lemma 1.1. Let A ∈ B(X , Y) and B ∈ B(Y, X ). If there exists the Drazin inverse of B A, then there exists the Drazin inverse of AB,
ind(AB) � ind(B A) + 1 and

(AB)D = A
(
(B A)D)2

B = A
(
(B A)2)D

B.

The outline of this paper is as follows. Let F , G ∈ B(X ) two Drazin invertible operators on a Banach space. We first give
a representation for the resolvent of an operator matrix in the form M = ( F I

G F G

)
, under conditions G2 F = G F 2 = 0, and then

we use this result to derive a formulae for (F + G)D in Section 2. Several special cases are analyzed in Section 3. Finally,
applications of our results will be presented for operator matrices under some conditions in Section 4.

2. Drazin inverse of the sum of two operators

We first prove a result which gives a representation for the resolvent of a type of operator matrices.

Lemma 2.1. Let F , G ∈ B(X ) be Drazin invertibles such that G2 F = G F 2 = 0, and G F is Drazin invertible. Let M be the operator
defined on the Banach space X × X by the operator matrix M = ( F I

G F G

)
. Then the resolvent of M has the representation

R(λ, M) =
(

λ2 R(λ, F )R(λ2, G F ) λ2 R(λ, F )R(λ2, G F )R(λ, G)

R(λ2, G F )G F λ2 R(λ2, G F )R(λ, G)

)
(2.1)

in the region 0 < |λ| < min{(r(G D))−1, (r(F D))−1, (r((G F )D))−2}.

Proof. Let S(λ) = λ − G − G F R(λ, F ) and let ρ(S) denote the set of all λ ∈ C such that S(λ)−1 is a bounded linear operator
in X . By [15, Proposition H], we have ρ(M) ∩ ρ(F ) = ρ(F ) ∩ ρ(S) and for any λ in this set

R(λ, M) =
(

R(λ, F )(I + S(λ)−1G F R(λ, F )) R(λ, F )S(λ)−1

−1 −1

)
. (2.2)
S(λ) G F R(λ, F ) S(λ)
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Let us introduce the punctured neighborhood of 0, Γ = {λ ∈ C: 0 < |λ| < δ} where δ = min{(r(G D))−1, (r(F D))−1,

(r((G F )D))−2}. Now, let Z(λ) = λ2 R(λ2, G F )R(λ, G). We claim that S(λ)−1 = Z(λ) for any λ ∈ Γ . Indeed, first since G is
Drazin invertible and G2 F = 0, thus G D G F = 0 also holds, we get

R(λ, G)G F =
(

t∑
n=1

Gn−1Gπ

λn
−

∞∑
n=0

λn(
G D)n+1

)
G F = 1

λ
G F , t = ind(G),

in the region 0 < |λ| < (r(G D))−1. Analogously, since G F 2 = 0, we obtain G F R(λ, F ) = 1
λ

G F in the region 0 < |λ| <

(r(F D))−1. Hence, for any λ ∈ Γ ,

Z(λ)S(λ) = λ2 R
(
λ2, G F

) − R
(
λ2, G F

)
G F = I.

On the other hand, since G F is Drazin invertible, by noting that G(G F )D = 0, we can see that G R(λ2, G F ) = 1
λ2 G in the

region 0 < |λ| < (r((G F )D ))−2. Further,

S(λ)Z(λ) =
(

λ − 1

λ
G F − G

)
λ2 R

(
λ2, G F

)
R(λ, G) = λR(λ, G) − G R(λ, G) = I,

for any λ ∈ Γ .
By using that S(λ)−1 = λ2 R(λ2, G F )R(λ, G) and R(λ, G)G F = λ−1G F = G F R(λ, F ) we obtain

R(λ, F )
(

I + S(λ)−1G F R(λ, F )
) = R(λ, F )

(
I + R

(
λ2, G F

)
G F

) = λ2 R(λ, F )R
(
λ2, G F

)
.

Therefore, we get (2.1) for any λ ∈ Γ , which give us the desired result. �
Previous to the main result we give the following lemma. For any integer k, we denote by �k/2� the integer part of k/2.

Lemma 2.2. Let F , G ∈ B(X ) as in Lemma 2.1. Let s = ind(F ), t = ind(G) and r = ind(G F ). For any 0 � k, by denoting k′ =
�(k − 1)/2� and α = 0 if k is even and α = 1 otherwise, we have

(i) If Bk+2 is the coefficient at λ−k−2 of R(λ, F )R(λ2, G F ), then

Bk+2 = −F k X − (
F D)α

U (G F )k′+1 + Zk, (2.3)

where

X =
�s/2�∑
j=1

F 2 j−1 F π
(
(G F )D) j

, U =
r−1∑
j=0

(
F D)2 j+1

(G F ) j(G F )π , (2.4)

Z0 = 0, Zk =
k′∑

j=0

F π F k−1−2 j(G F ) j(G F )π , k � 1. (2.5)

(ii) If Γk+2 is the coefficient at λ−k−2 of R(λ2, G F )R(λ, G), then

Γk+2 = −Y Gk − (G F )k′+1 V
(
G D)α + Tk, (2.6)

where

Y =
�t/2�∑
j=1

(
(G F )D) j

G2 j−1Gπ , V =
r−1∑
j=0

(G F )π (G F ) j(G D)2 j+1
, (2.7)

T0 = 0, Tk =
k′∑

j=0

(G F )π (G F ) j Gk−1−2 j Gπ , k � 1. (2.8)

Proof. We consider the Laurent series

R(λ, F ) =
s∑

n=1

F n−1 F π

λn
−

∞∑
n=0

λn(
F D)n+1

and

R
(
λ2, G F

) =
r∑ (G F )n−1(G F )π

λ2n
−

∞∑
λ2n(

(G F )D)n+1
n=1 n=0
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in a punctured neighborhood of 0. Hence, the coefficient at λ−k−2 of R(λ, F )R(λ2, G F ) is given by

Bk+2 = −Xk − Uk + Zk,

where

Xk =
�(s−k)/2�∑

j=1

F π F 2 j+k−1((G F )D) j = F k X,

Uk =
r−1∑

j=k′+1

(
F D)2 j−k+1

(G F ) j(G F )π = (
F D)α

U (G F )k′+1,

Zk =
k′∑

j=0

F π F k−1−2 j(G F ) j(G F )π , k � 1, Z0 = 0,

with X , U are defined as in (2.4) and α = 0 if k is even, otherwise α = 1. This completes the proof of (i). Analogously, it is
proved (ii). �

Now, we are in position to state the main result.

Theorem 2.3. Let F , G ∈ B(X ) be Drazin invertibles such that G2 F = G F 2 = 0, and let G F be Drazin invertible. Then F + G is Drazin
invertible and

(F + G)D = U Gπ + F π V + X(I + Y G)Gπ + F π (I + F X)Y + F U V + U V G

+
2r+t−2∑

k=0

(
F D)k+1

Γk+2G +
2r+s−2∑

k=0

F Bk+2
(
G D)k+1

, (2.9)

where X, Y , U , V , Bk+2 and Γk+2 are defined as in Lemma 2.2, Eqs. (2.3)–(2.8). Moreover, ind(F + G) � 2r + s + t − 1.

Proof. Define the operators A = ( F I ) : X ⊕ X → X and B = ( I
G

) : X → X ⊕ X . We note that F + G = AB and B A = ( F I
G F G

)
.

If B A is Drazin invertible, then we can apply Lemma 1.1 to obtain

(F + G)D = (AB)D = A
(
(B A)D)2

B. (2.10)

Next we will obtain an operator matrix representation of (B A)D . First, we can apply Lemma 2.1 to get

R(λ, B A) =
(

λ2 R(λ, F )R(λ2, G F ) λ2 R(λ, F )R(λ2, G F )R(λ, G)

R(λ2, G F )G F λ2 R(λ2, G F )R(λ, G)

)
, (2.11)

in a punctured neighborhood of 0. Hence, it follows that B A has a pole at λ = 0 of order at most ν = 2r + s + t − 2 (where
r, s and t are defined as in Lemma 2.2) and, consequently, B A is Drazin invertible and R(λ, B A) has the Laurent series

R(λ, B A) =
ν∑

n=1

λ−n(B A)n−1(B A)π −
∞∑

n=0

λn(
(B A)D)n+1

(2.12)

in a punctured neighborhood of 0. We also note that ind(F + G) � ind(B A) + 1 � 2r + s + t − 1.
Now, in view of (2.11) and (2.12), comparing the coefficients at λ0 and using Lemma 2.2,

(B A)D =
(

X + U −W

(G F )D G F Y + V

)
, (2.13)

where W is the coefficient at λ−2 of R(λ, F )R(λ2, G F )R(λ, G). Further, from (2.10) and (2.13), by noting that X2 = XU =
U X = 0, U 2 = F D U , Y 2 = Y V = V Y = 0, V 2 = V G D , and G F U = G F X = Y G F = V G F = 0, it follows that

(F + G)D = ( F I )

(
F D U − W (G F )D G F −(X + U )W − W (Y + V )

0 V G D − G F (G F )D W

)(
I
G

)
= U + V − F W (G F )D G F (I + Y G) − (I + F X)G F (G F )D W G − F (U W + W V )G. (2.14)

Now, since G F R(λ, F ) = λ−1G F and R(λ, G)G = λR(λ, G) − I , it follows that

G F R(λ, F )R
(
λ2, G F

)
R(λ, G)G = G F

(
R
(
λ2, G F

)
R(λ, G) − λ−1 R

(
λ2, G F

))
.

Hence, using that −Y − V is the coefficient at λ−2 of R(λ2, G F )R(λ, G), we get

G F (G F )π W G = −G F V , (G F )D G F W G = −Y . (2.15)
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Analogously, we can see that

F W (G F )D G F = −X . (2.16)

On the other hand,

F F D R(λ, F )R
(
λ2, G F

)
R(λ, G)G = −

( ∞∑
n=0

λn(
F D)n+1

)
R
(
λ2, G F

)
R(λ, G)G.

Therefore,

F F D W G = −
2r+t−2∑

k=0

(
F D)k+1

Γk+2G,

where Γk+2 is defined as in (2.6). Using the above expression and (2.15)

F U W G = F F D(
I − G F (G F )D)

W G + F
r−1∑
j=1

(
F D)2 j+1

(G F ) j(G F )π W G

= −
2r+t−2∑

k=0

(
F D)k+1

Γk+2G + F F D Y + F
(

F D − U
)

V . (2.17)

Analogously,

F W V G = −
2r+s−2∑

k=0

F Bk+2
(
G D)k+1 + XGG D + U

(
G D − V

)
G. (2.18)

By substituting the expressions (2.15)–(2.18) in (2.14) we conclude the result of this theorem. �
3. Special cases

In this section we assume that F and G verify the conditions of Theorem 2.3 and we analyze some special cases of the
above mentioned result.

The second part of the following corollary is an extension to the infinite dimensional case of [7, Lemma 2.1].

Corollary 3.1. If G is nilpotent, then

(F + G)D = U + X(I + Y G) + F π (I + F X)Y +
2r+t−2∑

k=0

(
F D)k+1(

Tk − Y Gk)G, (3.1)

where X, U are as in (2.4), Y as in (2.7) and Tk as in (2.8).
In the case G2 = 0, then

(F + G)D = U + X + F π (I + F X)(G F )D G + F D U G. (3.2)

Proof. If G is nilpotent then V = 0 and if G2 = 0, we also have Y = (G F )D G and Y Gk = 0 for all k � 1. So, the results follow
from (2.9). �
Corollary 3.2. If F and G are nilpotent, then

(F + G)D = X(I + Y G) + (I + F X)Y ,

where X is defined as in (2.4) and Y is defined as in (2.7).
In the case G2 = 0, then

(F + G)D = X + (I + F X)(G F )D G. (3.3)

Moreover, if F 2 = G2 = 0, then

(F + G)D = F (G F )D + (G F )D G.

Proof. Since F and G are nilpotent then U = V = 0. In the case G2 = 0, we also have Y = (G F )D G and Y G = 0. Further if
F 2 = 0 then we get X = F (G F )D and F X = 0. Therefore, the results follow from (2.9). �
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Corollary 3.3. If G F is nilpotent, then

(F + G)D = U Gπ + F π V + F U V + U V G +
2r+t−2∑

k=0

(
F D)k+1(

Tk − (G F )k′+1 V
(
G D)α)

G

+
2r+s−2∑

k=0

F
(

Zk − (
F D)α

U (G F )k′+1)(G D)k+1
,

where U is defined as in (2.4), V as in (2.7), Zk as in (2.5), Tk as in (2.8), α and k′ as in the premises of Lemma 2.2.

Proof. It follows from Theorem 2.3 by noting that X = Y = 0. �
Corollary 3.4. If ind(G F ) = 1, then

(F + G)D = X(I + Y G)Gπ + F π (I + F X)Y +
t−1∑
k=0

(
F D)k+1(

(G F )π Gπ − Y G
)
Gk

+
s−1∑
k=0

F k(F π (G F )π − F X
)(

G D)k+1
,

where X is defined as in (2.4) and Y is defined as in (2.7).

Proof. Since ind(G F ) = 1 then (G F )D = (G F )� and (G F )(G F )π = 0. In this case, U defined as in (2.4) and V as in (2.7)
simplify to U = F D(G F )π and V = (G F )π G D . On the other hand, by computing Bk+2 and Γk+2 as in (2.3) and (2.6),
respectively, we get

Bk+2 =
{−X − F D(G F )π , k = 0,

F k−1(F π (G F )π − F X), k � 1,
Γk+2 =

{−Y − (G F )π G D , k = 0,

((G F )π Gπ − Y G)Gk−1, k � 1.

Finally, substituting the above relations in (2.9) we obtain the result. �
Applying Corollary 3.3 or Corollary 3.4 to the case G F = 0, we obtain the representation given in [14] for matrices and

in [10] for bounded operators.

Corollary 3.5. If G F = 0, then

(F + G)D =
t−1∑
k=0

(
F D)k+1

GkGπ +
s−1∑
k=0

F π F k(G D)k+1
.

Proof. Since G F = 0 we have X = Y = 0, U = F D , V = G D , and Tk = Gk−1Gπ , Zk = F π F k−1, for k � 1. �
4. Application to bounded operator matrices

Let Y , Z be two Banach spaces, X = Y × Z and let M = ( A B
C D

)
be a bounded linear operator matrix on X . We illustrate

an application of our results to derive representations for M D under some conditions.
The following result due to Djordjević and Stanimirović [9] is an extension to the setting of triangular operator matrices

of a well-known result of Meyer and Rose [19] concerning the Drazin inverse of a 2 × 2 block upper triangular matrix.

Lemma 4.1. Let M = ( A 0
C D

)
an operator matrix. If ind(A) = r and ind(D) = s, then M is Drazin invertible, max{r, s} � ind(M) � r + s

and

M D =
(

AD 0

N D D

)
,

where

N = (
D D)2

(
r−1∑
i=0

(
D D)i

C Ai

)
Aπ + Dπ

(
s−1∑
i=0

Di C
(

AD)i

)(
AD)2 − D D C AD . (4.1)

If M is Drazin invertible and 0 /∈ accσ(A) ∪ accσ(D), then A and D also are Drazin invertibles.
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Some results have been provided for the general case under certain conditions. The case BC = 0, DC = 0, and B D = 0
has been considered in [9] and the case BC = 0, DC = 0 (or B D = 0), and D nilpotent in [13]. We focus our attention in the
generalization of the mentioned results.

Theorem 4.2. Let A ∈ B(Y), D ∈ B(Z) be Drazin invertibles and BC be Drazin invertible, and let ν1 = ind(A), ν2 = ind(BC),
ν3 = ind(D). If BC A = 0, B D = 0, and BC nilpotent then

M D =
(

Γ ADΓ B

Σ D D + (N Γ + D DΣ)B

)
,

where N as in formula (4.1), and for k � 1, Nk = ∑k−1
i=0 (D D)k−1−i N (AD)i and

Γ =
ν2−1∑
j=0

(
AD)2 j+1

(BC) j, Σ =
ν2−1∑
j=0

N2 j+1(BC) j . (4.2)

Proof. We consider the splitting M = F + G where F = ( A 0
C D

)
and G = ( 0 B

0 0

)
. We note that G2 = 0 and, using that B D = 0

and BC A = 0, we obtain G F 2 = 0. Moreover, since BC nilpotent it follows that G F is nilpotent, and thus, (G F )D = 0. So,
applying the second part of Corollary 3.1, we have that

(F + G)D = U + F D U G, U =
ν2−1∑
j=0

(
F D)2 j+1

(G F ) j .

By using Lemma 4.1, we get

(
F D)k =

(
(AD)k 0

Nk (D D)k

)
, k � 1,

where Nk as in the statement of this theorem. Further, with Γ and Σ as in (4.2), the final result is obtained using the
following expressions

U =
(

Γ 0

Σ D D

)
, F D U G =

(
0 ADΓ B

0 N1Γ B + D DΣ B

)
. �

The following result is a straightforward application of the above theorem.

Corollary 4.3. Let A ∈ B(Y), D ∈ B(Z) be Drazin invertibles. If BC = 0 and B D = 0 then

M D =
(

AD (AD)2 B

N1 D D + N2 B

)
,

where Ni , i = 1,2, as in Theorem 4.2.

Theorem 4.4. Let A ∈ B(Y), D ∈ B(Z) be Drazin invertibles and BC be Drazin invertible, and let ν1 = ind(A), ν2 = ind(BC), and
ν3 = ind(D). If BC A = 0, DC = 0, and B D = 0, then

M D =
(

AΨ Ψ B

CΨ D D + C(ADΨ + (AΨ − AD)(BC)D)B

)
,

where

Ψ =
ν2−1∑
j=0

(
AD)2 j+2

(BC) j(BC)π +
�ν1/2�∑

j=0

Aπ A2 j((BC)D) j+1
. (4.3)

Proof. We consider the splitting M = F + G where F = ( A 0
C D

)
and G = ( 0 B

0 0

)
. We note that G2 = 0 and, using that B D = 0

and BC A = 0, we obtain G F 2 = 0. Applying the second part of Corollary 3.1, we have that (F + G)D is given by expres-
sion (3.2). Now, we will derive matrix representations for the terms in the mentioned formulae. From Lemma 4.1 it follows
that F and G F are Drazin invertibles, and

F D =
(

AD 0

C(AD)2 D D

)
, F π =

(
Aπ 0

−C AD Dπ

)
, max{ν1, ν3} � ind(F ) � ν1 + ν3,

(G F )D =
(

(BC)D 0
)

, (G F )π =
(

(BC)π 0
)

, ind(G F ) = ν2.

0 0 0 I
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On the other hand, we have

F k =
(

Ak 0

C Ak−1 Dk

)
,

(
F D)k =

(
(AD)k 0

C(AD)k+1 (D D)k

)
, k � 1.

By denoting Ψ1 = ∑ν2−1
j=0 (AD)2 j+2(BC) j(BC)π and Ψ2 = ∑�ν1/2�

j=0 Aπ A2 j((BC)D) j+1, we obtain

U =
ν2−1∑
j=0

(
F D)2 j+1

(G F ) j(G F )π =
(

AΨ1 0

CΨ1 D D

)

and

X =
�(ν1+ν3)/2�∑

j=1

F π F 2 j−1((G F )D) j =
(

AΨ2 0

CΨ2 0

)
.

Further, we get

F D U G =
(

0 Ψ1 B

0 C ADΨ1 B

)

and

F π (G F )D G + F X(G F )D G =
(

0 Aπ (BC)D B

0 −C AD(BC)D B

)
+

(
0 A2Ψ2(BC)D B

0 C AΨ2(BC)D B

)
.

Finally, substituting the preceding representations in (3.2) and by denoting Ψ = Ψ1 + Ψ2, we get the result. �
We remark that from Theorem 4.4 we derive a representation for a 2 × 2 operator matrix M under conditions BC A = 0

and D = 0, which is an extension of the result given in [7] for block matrices.

Theorem 4.5. Let A, BC be Drazin invertibles and let ν1 = ind(A) and ν2 = ind(BC). If BC A = 0, DC = 0, and D nilpotent with
index of nilpotency ν3 . Then

M D =
(

AΨ (AΨ − AD)ΦD + Ψ BCΦ + Ω

CΨ C((Ψ − (AD)2)ΦD + (AΨ − AD)Φ + ADΩ)

)
,

where ν = 2ν2 + ν3 − 1, Ψ is defined as in (4.3) and

Φ =
�ν3/2�∑

j=0

(
(BC)D) j+1

B D2 j, Ω =
ν∑

k=1

(
AD)k+1

(
k′∑

j=0

(BC)π (BC) j B Dk−2 j−1 − ΦDk+1

)
, (4.4)

where k′ = �k − 1/2�.

Proof. We consider the splitting M = F + G with F = ( A 0
C 0

)
and G = ( 0 B

0 D

)
. Since D is nilpotent it follows that G is nilpotent

and, thus, G D = 0. We observe that ν3 � ind(G) � ν3 + 1. From Lemma 4.1 it follows that F , G F are Drazin invertibles and,
using DC = 0, we get

F D =
(

AD 0

C(AD)2 0

)
, F π =

(
Aπ 0

−C AD I

)
, (G F )D =

(
(BC)D 0

0 0

)
, (G F )π =

(
(BC)π 0

0 I

)
.

On the other hand,

F k =
(

Ak 0

C Ak−1 0

)
, Gk =

(
0 B Dk−1

0 Dk

)
, k � 1.

Now, using BC A = 0 and DC = 0 we obtain that G2 F = 0 and G F 2 = 0. So we can apply Corollary 3.1 to conclude that
(F + G)D is given by expression (3.1). In the sequel we derive the matrix representations of the terms in the mentioned
formulae. We consider Ψ defined as in (4.3) and Φ as in the statement of this theorem. We compute

U + X =
(

AΨ 0

CΨ 0

)
, Y =

(
0 Φ

0 0

)
, XY G =

(
0 AΨ ΦD

0 CΨ ΦD

)
.
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Further, we have

F π (I + F X)Y =
(

0 Ψ BCΦ

0 C(AΨ − AD)Φ

)
,

(
F D)k+1

Y Gk+1 =
(

0 (AD)k+1ΦDk+1

0 C(AD)k+2ΦDk+1

)
, k � 0,

(
F D)k+1

TkG =
(

0 (AD)k+1Ωk

0 C(AD)k+2Ωk

)
, k � 1,

where Ωk = ∑k′
j=0 (BC)π (BC) j B Dk−2 j−1. Consequently, by substituting the above expressions in (3.1), the explicit formula

for M D is obtained. �
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