
Physics Letters B 680 (2009) 480–484

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Pseudo scalar contributions to light-by-light correction of muon g − 2 in AdS/QCD

Deog Ki Hong a, Doyoun Kim b,∗
a Department of Physics, Pusan National University, Busan 609-735, Republic of Korea
b FPRD and Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 June 2009
Received in revised form 10 September
2009
Accepted 11 September 2009
Available online 18 September 2009
Editor: T. Yanagida

We have performed a holographic calculation of the hadronic contributions to the anomalous magnetic
moment of the muon, using the gauge/gravity duality. As a gravity dual model of QCD with three light
flavors, we study a U(3)L × U(3)R flavor gauge theory in the five-dimensional AdS background with a
hard-wall cutoff. The anomalous (electromagnetic) form factors for the pseudo scalars, π0, η and η′, are
obtained from the 5D Chern–Simons term of the gravity dual, which correctly reproduce the asymptotic
behavior of the form factor, dictated by QCD. We find the total light-by-light contributions of pseudo
scalars to the muon anomalous magnetic moment, aPS

μ = 10.7 × 10−10, which is consistent with previous
estimates, based on other approaches.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

One of most stringent tests of the standard model (SM) is pro-
vided by the measurement of the muon anomalous magnetic mo-
ment, aμ , whose current precision is better than parts per million
(ppm). Recent measurement of the (g − 2) value of the muon [1],
performed at the Brookhaven National Laboratory (BNL),

aμ = 11659208.0(5.4)(3.3) × 10−10, (1)

deviates by 2.2–2.7σ above the current SM estimate, based on
e+e− hadronic cross sections. An improved muon (g − 2) exper-
iment has been proposed to achieve a precision of 0.1 ppm [2].
The discrepancy between the SM estimate and the experimental
value, if persists, might hint a new physics beyond the standard
model.

While the electroweak corrections can be calculated very pre-
cisely [3], most uncertainties in the SM estimate of (g − 2) are
coming from the hadronic corrections, which are essentially non-
perturbative. The strong interaction contributions to the lepton
magnetic moment consist of three pieces, the hadronic vacuum
polarization, the higher-order hadronic vacuum-polarization effect,
and the hadronic light-by-light (LBL) scattering. The contribution of
the hadronic vacuum polarization is the leading O(α2) correction
of strong interactions to aμ and has been recently calculated in lat-
tice [4], but its present uncertainty is about 10 times larger than
that of the current experiment. Fortunately, however, one can by-
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pass the calculation of the hadronic-leading-order (HLO) correction
[5] and use the experimental result of e+e− → (hadrons) (Fig. 1),
which is related to the hadronic vacuum polarization by the uni-
tarity and analyticity of the diagrams. The higher-order hadronic
vacuum polarization effect can be calculated quite accurately, once
the hadronic vacuum polarization is obtained. It is found to be
δaμ = −101(6)×10−11 [6]. Finally the hadronic light-by-light scat-
tering correction (Fig. 2) is the next-to-leading O(α3) effect, but
it is expected to be sizable to the current experimental accuracy,
6.3 × 10−10. It is therefore absolutely needed to estimate its effect
accurately to assess the SM deviation of the muon (g − 2).

There have been several attempts to estimate the hadronic
light-by-light scattering corrections, based on hadronic models or
large Nc approximations [7,8]. For last two decades much im-
provement has been made in the LBL calculations despite a sign
confusion [9]. Currently the positive sign is widely quoted for the
pion-pole or pion-exchange contributions to the hadronic LBL cor-
rection [10,11], which is dominant in the large Nc limit. Recently,
however, a mistake related to the momentum conservation, which
has not been considered seriously before, has been pointed out
[12] in the treatment of the π0γ ∗γ ∗ form factor and is corrected
properly [13].

The loop calculation of the LBL correction is logarithmically
divergent in a hadronic model, where a constant vertex is used
instead of full three-point form factors. This implies that the LBL
correction is sensitive to the choice of the regulator or the cut-
off Λ when we compare the model calculations with the data. In
a model where the vector meson dominance (VMD) is adapted,
however, the mass of vector meson naturally regulates the ultra-
violet (UV) divergences. Among some models that regularize the
hadronic uncertainty, the most popular ones are the meson dom-
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Fig. 1. HLO correction (bottom) essentially involves a dressed propagator of the pho-
ton, which is related to the process (top) of annihilation into hadrons by unitarity
and analyticity.

inance models like the VMD, the lowest meson dominance (LMD)
and the LMD+V and so on, which fit among others the coefficient
of QCD axial anomaly for the low energy on-shell photon [14–16].

In this work we study the hadronic LBL contributions in holo-
graphic models of QCD, which naturally incorporate the vector me-
son dominance. Holographic models have been proposed recently
for QCD [17,18], inspired by the gauge/gravity duality, found in the
string theory [19].

Several physical quantities of mesons and baryons such as their
masses, couplings, and decay constants are calculated in holo-
graphic models of QCD and found to be in a good agreement with
the experimental data [17,18,20,21]. Encouraged by the success of
holographic QCD, we attempt to calculate the hadronic LBL contri-
butions to the muon (g − 2). We consider in particular a hard-wall
model of AdS/QCD, defined in a slice of five-dimensional anti-de
Sitter (AdS) space–time, but our calculation can be easily applied
to other holographic models of QCD.

2. AdS/QCD and light-by-light scattering

Solving QCD is very difficult, partly because at low energy
hadrons, rather than quarks and gluons, are relevant degrees
of freedom. Holographic QCD is to describe QCD directly with
hadrons but in higher dimensions, prescribed by the gauge/gravity
duality. The extra dimension is related to the energy scale of QCD,
the boundary theory. In the gauge/gravity duality, the global sym-
metries associated with conserved currents of the boundary gauge
theory become the gauge symmetries in the bulk, while the gauge-
invariant boundary operators are mapped to bulk fields.

For a holographic model of QCD with three light flavors (up,
down, and strange quarks) we consider a 5D U (3)L × U (3)R gauge
theory in a slice of 5D AdS space–time, whose metric is given as,
taking the AdS radius R = 1,

ds2 = 1

z2

(
dxμ dxμ − dz2), ε � z � zm, (2)

where the ultraviolet (UV) regulator ε → 0 and an infrared (IR)
brane is introduced at zm to implement the confinement of QCD
[18]. The model, known as AdS/QCD, is described by an action

S =
∫

d5x
√

g Tr

{
|D X |2 + 3|X |2 − 1

4g2
5

(
F 2

L + F 2
R

)}
+ SY + SCS, (3)
where F is the field strength tensor of bulk gauge fields, A, dual
of the QCD flavor currents, and the 5D gauge coupling, g2

5 =
12π2/Nc (Nc is the number of colors). The bulk scalar X , which
is bi-fundamental under the gauge group, is dual to the chiral-
symmetry-breaking order parameter, q̄LqR at the boundary, and
its 5D mass, m2 = 
(
 − 4), is related to the scaling dimension
(
 = 3) of the boundary dual operator. The covariant derivative
is defined by DM X = ∂M X − i ALM X + i X ARM , where AL(R) de-
notes the U(3)L(R) gauge fields. To correctly reproduce QCD flavor
anomalies, one has to introduce a Chern–Simons term [22],1 given
as

SCS = Nc

24π2

∫ [
ω5(AL) − ω5(AR)

]
, (4)

where dω5(A) = Tr F 3. Finally, for the anomalous U(1)A we intro-
duce the bulk singlet Y , dual to G2

μν (GG̃) of gluon fields [24],
described by

SY =
∫

d5x
√

g

[
1

2
|DY |2 − κ

2

(
Y N f det(X) + h.c.

)]
, (5)

where the singlet Y has no mass term, since it is the dual of di-
mension 4 operators, and κ is a parameter to be fixed to give a
correct mixing between η and η′ . The bulk fields A, X and Y , that
we introduced, are related to towers of (axial) vector mesons [18]
and (pseudo) scalar mesons [25], respectively, upon Kaluza–Klein
reduction. There are also higher-dimensional operators like F 4 or
F 2|X |2 in the bulk action, but they are suppressed at low energy.
(One could also introduce additional bulk fields to describe higher-
spin states, but they are irrelevant to our discussion.)

According to the gauge/gravity duality, the classical bulk action
becomes the generating functional for the one-particle irreducible
(1PI) functions of the boundary gauge theory, once the source is
identified as the bulk fields at the UV boundary. Therefore the
hadronic LBL diagram, which is a four-point correlation function
of the electromagnetic currents of quarks, can be easily calcu-
lated in holographic models of QCD, following the gauge/gravity
correspondence. Since the quartic coupling for the bulk vectorial
U(1)Q em gauge fields, V Q em (Q em = 1

2 1 + I3), dual to the electro-
magnetic current of quarks, are absent in the bulk action (3), there
are no 1PI four-point correlators for the electromagnetic currents.
Therefore in AdS/QCD, where F 4 terms are suppressed, the LBL dia-
gram is just given as a sum of 1PI three-point functions, connected
by intermediate states (Fig. 2). The 1PI three-point functions con-
sist of three different types; the vector–vector–scalar correlators,
the vector–vector–pseudo scalar correlators, and the vector–vector–
axial vector correlators. Among them the vector–vector–scalar cor-
relators are suppressed since they come from the higher-order
terms like F 2|X |2, while the vector–vector–pseudo scalar (axial
vector) correlators are not suppressed as they are given by the bulk
Chern–Simons (CS) term, Eq. (4).

Once the LBL diagram is calculated, it is straightforward to eval-
uate the LBL corrections to the muon (g − 2). Our calculation is
similar to that of Nyffeler [13] (see also [15]), where the pion con-
tribution to the LBL correction was calculated most consistently.
The only difference is that the full off-shell anomalous form-factors
for pseudo scalars are derived from AdS/QCD rather than con-
structed to satisfy the QCD constraints. As we will see later, our

1 The Chern–Simons term is gauge-invariant up to a total divergent term. Its
gauge-variation therefore gives a UV term, corresponding to the QCD flavor anomaly,
and also an IR term [23]. Since the IR term corresponds to gauge anomaly, one
should add a (non-local) counter term at the IR brane or bulk fermions as in [20]
to cancel the gauge anomaly. However, such additional terms do not affect our cal-
culations.
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Fig. 2. Light-by-light correction (top) is supposed to be dominated by the diagrams, mediated by the pseudo scalar mesons (bottom).
form-factor derived from AdS/QCD does satisfy the asymptotic be-
havior for large and equal space-like photon momenta, obtained
from perturbative QCD (pQCD), and also other asymptotic behavior
derived from the operator-product expansion (OPE).

3. π0, η and η′ form factor calculation in AdS/QCD

We consider the anomalous pion form-factor first. Since the pi-
ons are decoupled from the strangeness flavor, we need to consider
up and down flavors only, assuming equal mass. The vacuum so-
lution of the bulk scalar field X is then written as 〈X〉 = 1

2 (mq z +
σ z3)12×2, where mq and σ correspond to the current quark mass
and 〈q̄LqR〉, respectively. To analyze the correlation functions, we
introduce the vector and axial-vector gauge fields V = (AL + AR)/2
and A = (AL − AR)/2 and write X = 〈X〉exp(2iπ âtâ), where â = S
denotes the abelian part, while â = a (= 1,2,3) are the SU(2) in-
dices. (The generators t S = 12×2/2 and ta = σ a/2, σ a denoting
Pauli matrices.) Since the abelian component π S is a part of η,
it will be neglected for the discussion of the pion form-factor.

In the axial gauge, V 5 = 0 = A5, the equations of motion for the
transversal gauge fields are given as[
∂z

(
1

z
∂z V â

μ(q, z)

)
+ q2

z
V â

μ(q, z)

]
⊥

= 0, (6)

[
∂z

(
1

z
∂z Aâ

μ

)
+ q2

z
Aâ

μ − g2
5 v2

z3
Aâ

μ

]
⊥

= 0, (7)

where v(z) = mq z +σ z3 and V â
μ(q, z) = V â

μ(q)V (q, z) and Aâ
μ(q, z)

= Aâ
μ(q)A(q, z) are the 4D Fourier-transform of vector and ax-

ial vector gauge fields, respectively. The normalizable solutions to
Eqs. (6) and (7) will correspond to the vector and axial vector
mesons, respectively, satisfying the boundary conditions V (q, ε) =
∂z V (q, z)|zm = 0 (same for the axial vectors). The boundary condi-
tions for the source fields (the non-normalizable modes) are on the
other hand given as V (q, ε) = 1 and ∂z V (q, z)|zm = 0 and same for
A(q, z). The pion fields come from both πa and the longitudinal
components of the axial gauge fields, Aa

μ‖ = ∂μφa , which are re-
lated by equations of motion as, subjecting to boundary conditions
φa(q, ε) = ∂zφ

a(q, z)|zm = 0 = πa(q, ε),
∂z

(
1

z
∂zφ

a
)

+ g2
5 v2

z3

(
πa − φa) = 0, (8)

−q2∂zφ
a + g2

5 v2

z2
∂zπ

a = 0. (9)

We can easily read off the anomalous pion form-factor from the
gravity dual, by taking the functional derivation of the bulk Chern–
Simons action, Eq. (4), with the source field at the UV boundary,
V Q em(q, ε). For arbitrary external photon momenta Q 1 and Q 2, the
pion momentum being Q 1 + Q 2, the form factor is found to be

Fπγ ∗γ ∗
(

Q 2
1 , Q 2

2

) = Nc

12π2

[
ψ(zm) J (Q 1, zm) J (Q 2, zm)

−
∫

dz ∂zψ(z) J (Q 1, z) J(Q 2, z)

]
, (10)

where ψ(z), the wavefunction difference between φa and πa , is
the wavefunction of non-normalizable pion mode with boundary
conditions, ψ(ε) = 1 and ∂zψ(z)|zm = 0 and J (Q , z) is the Wick-
rotated expression of the solution V (q, z) defined below Eq. (7).
The anomalous pion form-factor is shown in Fig. 3 for various
kinematic regions. As argued in [26], we find the pion form factor
in AdS/QCD is in good agreement with the Brodsky–Lepage behav-
ior, as shown in Fig. 3, and also with the asymptotic behavior of
pQCD for large space-like momenta of two photon legs, shown in
the right panel of Fig. 3. We also note that our pion form-factor
gives approximately the same magnetic susceptibility of quark con-
densate, obtained by OPE [27].

To calculate the anomalous form-factors for η, η′ , we need to
consider the three-flavor case (N f = 3) and introduce the term,
needed for the U(1)A anomaly, included in the bulk action of
flavor-singlet Y field, SY , as η and η′ have mixing. The bulk gauge
fields are now generalized to U(3)L × U(3)R and 〈X〉 = 1

2 (Mz +
Σz3) with

M =
(mq 0 0

0 mq 0
0 0 ms

)
and Σ = σ × 13×3, (11)

satisfying similar equations to Eqs. (6) and (7) except that now
v(z)/2 is replaced by the three-flavor vacuum solution 〈X〉.
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Fig. 3. The anomalous pion form-factors Fπγ ∗γ ∗ (Q ,0) from AdS/QCD (solid) and VMD model (dashed) are presented in the left panel. The right panel displays both
Fπγ ∗γ ∗ (Q ,0) (lower two) and Fπγ ∗γ ∗ (Q , Q ) (upper two) for both models. Notice that Fπγ ∗γ ∗ (Q , Q ) grows as ∼ 1/Q 2 asymptotically.
Fig. 4. The set of (m, κ) which gives the canonical four-dimensional kinetic term of
the η and η′ fields. Several masses are found for each κ as a tower of the bound
state of IG ( J PC) = 0+(0−+), but only ground states are shown here.

By solving the equations of motion for the pseudo scalars in
the axial gauge, which are the phase fluctuations of bulk scalars,
X and Y , and the longitudinal components of the axial gauge
fields, the wavefunctions of η and η′ , that give the canonical ki-
netic terms for η and η′ , can be found for an appropriate choice
of (mη, κ) (Fig. 4) [24]. Once the correct wavefunctions are found,
not only the amplitude for η, η′ → γ γ processes, but the whole
momentum structure of the form factors can be surveyed through
the same method used above to deduce the anomalous pion form-
factor. Namely, the form factors are given similarly to Eq. (10) ex-
cept that the non-normalizable pion wavefunction ψ(z) is replaced
by those non-normalizable wavefunctions of η, η′ with different
overall coefficients. As shown in Fig. 5, their profiles are quite sim-
ilar to those of pions. (Note also the anomalous form factors are
correctly normalized to be consistent with the QCD anomalies.)
Combining all these, we can now calculate the pseudo scalar con-
tributions to the LBL corrections for the muon (g − 2), following
the recent work by Jegerlehner and Nyffeler [8].

4. Results and discussion

Numerical calculations in Table 1 has been performed with
Mathematica 6.0, using the adaptive Monte Carlo scheme. To uti-
lize the method used in Refs. [8,13] for our calculation of meson
exchange contributions, we have decomposed the source field of
the vector gauge fields as follows [28]:

J (−i Q , z) = V (q, z) =
∑
ρ

−g5 fρψρ(z)

q2 − m2
ρ + iε

, (12)
Fig. 5. Pseudo scalar form factors FPSγ ∗γ ∗ (Q ,0) from the AdS/QCD are plotted. Q is
a Euclidean momentum. Note that for Q = 0 their offset values are well matched
to the experiments [29].

Table 1
Muon g − 2 results from the AdS/QCD. (10−10 factor should be multiplied to each
number for aμ .)

Vector modes aπ0

μ aη
μ aη′

μ aPS
μ

4 7.5 2.1 1.0 10.6
6 7.1 2.5 0.9 10.5
8 6.9 2.7 1.1 10.7

where ψρ(z) are the normalizable modes, corresponding to the
(excited) rho mesons, with the boundary condition ψρ(ε) = 0 and
∂zψρ(z)|zm = 0 and fρ are their decay constants. Similarly we have
expanded the bulk axial gauge fields A(q, z) for U(3) in terms of
normalizable modes, which contain π0, η, η′ and a1(1230), and
towers of excited axial vector mesons. For our calculations we have
set the parameters by zm = 1/0.323, mq = 0.00222, ms = 0.04,
σ = 0.3333 and κ = 35 where the energy scale is in GeV units.
We truncate for each photon-line the number of vector mesons
in Eq. (12) up to 4, 6, and 8 for our calculations. Beyond 8th
modes, the form factor changes very little, as shown in Fig. 6.
We have shown our results in Table 1, which are close to the re-
cently revised value, aPS

μ = 9.9 × 10−10 in the LMD+V model by
Nyffeler [13], which correctly took into account of momentum con-
servation.

To conclude, we have calculated the pseudo scalar contributions
to the LBL corrections to the muon (g − 2) in an AdS/QCD model
with three light flavors. Our holographic estimate gives results con-
sistent with the recent estimate [13], based LMD+V model. Our
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Fig. 6. Decomposing the source terms of vector gauge fields into the normalizable
modes affects Fπγ ∗γ ∗ (Q ,0) very little. The form-factor from VMD curve is dashed;
yellow curve for 20 modes, blue for 60, and red for 150, respectively. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

approach has a few parameters, which are highly constrained by
low energy data of QCD, and is based on a principle, known as
gauge/gravity duality, which is conjectured to hold in the large
Nc and large ’t Hooft coupling (λ) limit. Our result is therefore
subject to 1/Nc and 1/λ corrections, which are believed to be at
most 30%.

The holographic models of QCD generically show that the LBL
diagram is given by a sum of 1PI three-point functions, connected
by intermediate states of pseudo scalars and axial vectors. For the
LBL corrections, we have considered light pseudo scalars (π0, η,
and η′) only, since the axial vector meson, a1(1230), and its ex-
cited states are expected to be less important than light pseudo
scalars. (A related work is in progress.) Finally we have calculated
the full off-shell anomalous form-factors of light pseudo scalars
and found that they show the correct asymptotic behavior at large
photon virtuality, given by pQCD.
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