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Abstract

We consider a generalization of Heilbronn’s triangle problem by asking, given any integers n ≥ k, for
the supremum ∆k(n) of the minimum area determined by the convex hull of some k of n points in the
unit square [0, 1]

2, where the supremum is taken over all distributions of n points in [0, 1]
2. Improving

the lower bound ∆k(n) = Ω(1/n(k−1)/(k−2)) from [C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann,
An algorithm for Heilbronn’s problem, SIAM Journal on Computing 30 (2000) 383–390] and from [W.M.
Schmidt, On a problem of Heilbronn, Journal of the London Mathematical Society (2) 4 (1972) 545–550]
for k = 4, we show that ∆k(n) = Ω((log n)1/(k−2)/n(k−1)/(k−2)) for fixed integers k ≥ 3 as asked for in
[C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem, SIAM Journal
on Computing 30 (2000) 383–390]. Moreover, we provide a deterministic polynomial time algorithm which
finds n points in [0, 1]

2, which achieve this lower bound on ∆k(n).
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of Heilbronn asks for a distribution of n points in the unit square [0, 1]
2 (or unit

ball) such that the minimum area of a triangle determined by three of these n points achieves
its largest value. Let ∆3(n) denote the supremum of the minimum area of a triangle among n
points, where the supremum is taken over all distributions of n points in [0, 1]

2. For primes n
the points 1/n · (i mod n, i2 mod n), i = 0, . . . , n − 1, yield ∆3(n) = Ω(1/n2). While for

I A preliminary version of a part of this paper appeared as an extended abstract in Proceedings ‘16th Annual ACM-
SIAM Symposium on Discrete Algorithms SODA’2005, ACM and SIAM, 241–250.
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some time this lower bound on ∆3(n) was believed to be also the upper bound, Komlós, Pintz
and Szemerédi [12] showed that ∆3(n) = Ω(log n/n2), see [5] for a deterministic polynomial
time algorithm achieving this lower bound on ∆3(n). Upper bounds on ∆3(n) were given by
Roth [16–20] and Schmidt [21] and, improving these earlier results, the currently best upper

bound ∆3(n) = O(2c
√

log n/n8/7), where c > 0 is a constant, is due to Komlós, Pintz and
Szemerédi [11]. Recently, Jiang, Li and Vitany [10] showed with methods from Kolmogorov
complexity theory that if n points are distributed uniformly at random and independently of each
other in the unit square [0, 1]

2, then the expected value of the minimum area of a triangle formed
by some three of these n random points is equal to Θ(1/n3).

Variants of Heilbronn’s triangle problem in higher dimensions were investigated by
Barequet [2,3], who considered the minimum volumes of simplices among n points in the d-
dimensional unit cube [0, 1]

d , see also [14,15] and Brass [6].
Given a fixed integer k ≥ 3, a generalization of Heilbronn’s triangle problem to k points, see

Schmidt [21], asks to maximize the minimum area of the convex hull of any k distinct points in
a distribution of n points in the unit square [0, 1]

2. In particular, let ∆k(n) be the supremum of
the minimum area of the convex hull determined by some k of n points, where the supremum is
taken over all distributions of n points in the unit square [0, 1]

2.
Some years ago, for k = 4, Schmidt [21] proved the lower bound ∆4(n) = Ω(1/n3/2). In [5]

a deterministic polynomial time algorithm was given which, given a fixed integer k ≥ 3, finds
for any integer n ≥ k a configuration of n points in [0, 1]

2, which achieves the lower bound
∆k(n) = Ω(1/n(k−1)/(k−2)).

A closely related problem has been considered by Chazelle [7] in connection with lower
bounds on the query complexity of range searching problems. In [7] he proved that for any fixed
dimension d ≥ 2 and all integers k, n ≥ 3 with log n ≤ k ≤ n it is ∆k(n) = Θ(k/n). An
improvement of the range of k might also improve his lower bound on the query complexity.
Here we give an easier proof of Chazelle’s bounds on ∆k(n) for log n ≤ k ≤ n.

In [13] the lower bound of Schmidt [21] for the case k = 4 has been improved to ∆4(n) =

Ω((log n)1/2/n3/2). Here we extend this result to arbitrary fixed integers k ≥ 3, and improve the
lower bounds from [5] by a factor of Θ((log n)1/(k−2)), as asked for in [5,21]:

Theorem 1.1. Let k ≥ 3 be a fixed integer. For integers n ≥ k it is

∆k(n) = Ω

(
(log n)1/(k−2)

n(k−1)/(k−2)

)
. (1)

Moreover, one can find deterministically in time O(n2k−2+δ) for any δ > 0 some n points in the
unit square [0, 1]

2 such that the minimum area of the convex hull determined by some k of these
n points is Ω((log n)1/(k−2)/n(k−1)/(k−2)).

Concerning upper bounds, so far for fixed integers k ≥ 3, only the bound ∆k(n) = O(1/n) is
known, compare [21], which follows easily by the pigeonhole principle by partitioning the unit
square [0, 1]

2 into (n − 1)/(k − 1) squares of side-lengths
√

(k − 1)/(n − 1) = Θ(1/
√

n) each.
To prove the lower bound (1) in Theorem 1.1, in Section 2 we use probabilistic and non-

discrete arguments. These arguments motivate, how we can design a deterministic algorithm for
finding n points in [0, 1]

2, which achieve the lower bound (1), and help to understand thoroughly
the algorithmic part of Theorem 1.1, which is presented in Section 3.
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2. A lower bound on ∆k(n)

For distinct points P, Q ∈ [0, 1]
2 let P Q denote the line through P and Q and let [P, Q]

denote the segment between P and Q including the endpoints. Let dist(P, Q) := ((px − qx )
2
+

(py − qy)
2)1/2 be the Euclidean distance between the points P = (px , py) and Q = (qx , qy).

For points P1, . . . , Pl ∈ [0, 1]
2 their convex hull is the set of all points P1 +

∑l
i=2 λi · (Pi − P1)

with λ2, . . . , λl ≥ 0 and
∑l

i=2 λi = 1. For points P1, . . . , Pl ∈ [0, 1]
2 let area(P1, . . . , Pl)

denote the area of the convex hull of the points P1, . . . , Pl . A strip centered at the line P Q of
width w is the set of all points in R2 such that their Euclidean distances from the line P Q are at
most w/2.

First we observe the following simple facts.

Lemma 2.1. Let P1, . . . , Pl ∈ [0, 1]
2 be points. Then, it is area(P1, . . . , Pl) ≥

area(P1, . . . , Pl−1).

Proof. This follows by monotonicity, as the convex hull of P1, . . . , Pl−1 is contained in the
convex hull of P1, . . . , Pl . �

Lemma 2.2. Let P1, . . . , Pl ∈ [0, 1]
2, l ≥ 3, be points. If area(P1, . . . , Pl) ≤ A, then for any

distinct points Pi , Pj any point Pk , k = 1, . . . , l, is contained in a strip centered at the line Pi Pj
of width 4 · A/dist(Pi , Pj ).

Proof. Otherwise, by Lemma 2.1 it is area(P1, . . . , Pl) ≥ area(Pi , Pj , Pk) > (1/2·dist(Pi , Pj )·

(2 · A))/dist(Pi , Pj ) = A, which contradicts the assumption area(P1, . . . , Pl) ≤ A. �

We define a lexicographic order ≤lex on the unit square [0, 1]
2: for points P = (px , py) ∈

[0, 1]
2 and Q = (qx , qy) ∈ [0, 1]

2 let

P ≤lex Q :⇐⇒ (px < qx ) or (px = qx and py < qy).

Lemma 2.3. Let P, R ∈ [0, 1]
2 be distinct points with P ≤lex R. Then, all points Q ∈ [0, 1]

2,
such that P ≤lex Q ≤lex R and area(P, Q, R) ≤ A, are contained in a parallelogram of area
4 · A.

Proof. Given the distinct points P, R ∈ [0, 1]
2 with P ≤lex R, by Lemma 2.2 all points Q

with area(P, Q, R) ≤ A must be contained in a strip, which is centered at the line P R of
width 4 · A/dist(P, R). The condition P ≤lex Q ≤lex R defines a parallelogram with base-length
dist(P, R) and height 4 · A/dist(P, R), hence the area of this parallelogram is 4 · A. �

In the following we prove the lower bound (1) in Theorem 1.1.

Proof. Let k ≥ 3 be a fixed integer and let n ≥ k be an arbitrary integer. For some constant
β > 0, which will be specified later, we select uniformly at random and independently of each
other N := n1+β points P1, . . . , PN ∈ [0, 1]

2 in [0, 1]
2.

First, for fixed integers i1, . . . , ik with 1 ≤ i1 < · · · < ik ≤ N we give an upper
bound on the probability Prob(area(Pi1 , . . . , Pik ) ≤ A), where A > 0 is some number. By
possibly renumbering the points, we may assume that Pi1 ≤lex · · · ≤lex Pik . By Lemma 2.1,
area(Pi1 , . . . , Pik ) ≤ A implies area(Pi1 , Pi j , Pik ) ≤ A for j = 2, . . . , k − 1. The points
Pi1 and Pik with Pi1 ≤lex Pik may be anywhere in [0, 1]

2. Given the points Pi1 and Pik , by
Lemma 2.3 and our assumptions, i.e., Pi1 ≤lex · · · ≤lex Pik and area(Pi1 , Pi j , Pik ) ≤ A, all points
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Pi j , j = 2, . . . , k − 1, are contained in a parallelogram of area 4 · A, which happens with
probability at most (4 · A)k−2, hence

Prob(area(Pi1 , . . . , Pik ) ≤ A) ≤ (4 · A)k−2. (2)

For convenience we use in our arguments hypergraphs.

Definition 2.4. Let G = (V, E) be a k-uniform hypergraph, i.e., |E | = k for each edge E ∈ E .
An unordered pair {E, E ′

} of distinct edges E, E ′
∈ E is called a 2-cycle if |E ∩ E ′

| ≥ 2. A
2-cycle {E, E ′

} in G is called (2, j)-cycle if |E ∩ E ′
| = j , j = 2, . . . , k − 1. The hypergraph

G is called linear if it does not contain any 2-cycles. The independence number α(G) of G is the
largest size of a subset I ⊆ V which contains no edges from E .

Set D0 := N−γ for some constant γ with 0 < γ < 1, which will be fixed later. For a
number A > 0 we form a random hypergraph G = G(D0, A) = (V, E2 ∪ Ek) with vertex-set
V = {1, . . . , N }, where vertex i ∈ V corresponds to the random point Pi ∈ [0, 1]

2, and with 2-
and k-element edges. Let {i1, i2} ∈ E2 be a 2-element edge if and only if dist(Pi1 , Pi2) ≤ D0.
Moreover, let {i1, . . . , ik} ∈ Ek be a k-element edge if and only if area(Pi1 , . . . , Pik ) ≤ A and

{i1, . . . , ik} does not contain any 2-element edges from E2. Since there are
(

N
k

)
choices for k out

of N vertices, by (2), for some constant ck > 0 the expected number E[|Ek |] of k-element edges
in this random hypergraph G can be bounded from above as follows:

E[|Ek |] ≤

(
N

k

)
· 4k−2

· Ak−2
≤ ck · Ak−2

· N k . (3)

We want to find in the random hypergraph G = (V, E2 ∪ Ek) a large independent set I ⊆ V . An
independent set I yields a set P(I ) = {Pi | i ∈ I } ⊆ {P1, . . . , PN } of points in [0, 1]

2 of the
same size |I | such that for every choice of k distinct points from P(I ) the area of their convex
hull is bigger than A.

Remark. With (3) already the lower bound ∆k(n) = Ω(k/n) for log n ≤ k ≤ n due to
Chazelle [7], which has been mentioned in the introduction, follows and yields a slightly different
proof of his lower bound. Namely, from (3) it follows that there exist 2 · N points in [0, 1]

2 such

that in the arising hypergraph G = (V, Ek) we have |Ek | ≤

(
2N
k

)
· 4k−2

· Ak−2. Then, it is

|Ek | ≤ N , if(
2 · N

k

)
· 4k−2

· Ak−2
≤ N

⇐H

(
2 · e · N

k

)k

· 4k−2
· Ak−2

≤ N as
(

M

k

)
≤ (e · M/k)k

⇐⇒ A ≤
k

2
k−2

4 · (2 · e)
k

k−2

·
k

N
·

1

N
1

k−2

⇐H A ≤
1

90
·

k

N
·

1

N
1

k−2

as
k

2
k−2

4 · (2 · e)
k

k−2

> 1/90. (4)

For k ≥ log N , we have N 1/(k−2)
≤ 8 for each integer N ≥ 8. Then, the choice A :=

(1/720) · k/N satisfies (4) for every integer k ≥ log N . By removing from each edge E ∈ Ek one
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vertex we obtain a subset of at least N points in [0, 1]
2 such that the area of the convex hull of

each k points is at least A, i.e., for k ≥ log N it is ∆k(N ) = Ω(k/N ). Concerning upper bounds
on ∆k(N ), given any N points in [0, 1]

2, we partition [0, 1]
2 into (N − 1)/(k − 1) squares each

of side-lengths
√

(k − 1)/(N − 1). Then, one of these little squares contains k of the N points,
and the area of the convex hull of these k points certainly is at most (k − 1)/(N − 1) = O(k/N ),
i.e., these arguments show:

Theorem 2.5. For integers k, n with 3 ≤ k ≤ n it is

∆k(n) = Ω
(

k

n
·

1

n
1

k−2

)
and ∆k(n) = O

(
k

n

)
.

In particular, for log n ≤ k ≤ n it is

∆k(n) = Θ
(

k

n

)
.

To prove the existence of a large independent set in G, we use the following result of Ajtai,
Komlós, Pintz, Spencer and Szemerédi [1], see also [4,8,9].

Theorem 2.6. Let k ≥ 3 be a fixed integer. Let G = (V, E) be a k-uniform, linear hypergraph
with average degree tk−1

:= k · |E |/|V |. Then for some constant Ck > 0, the independence
number α(G) of G satisfies

α(G) ≥ Ck ·
|V |

t
· (log t)

1
k−1 . (5)

We estimate in the random hypergraph G the expected numbers E[|E2|] and E[|Ek |] of 2- and
k-element edges, respectively, and E[s2, j (G)] of (2, j)-cycles arising from the k-element edges
from Ek , and we show that the numbers E[|E2|] and E[s2, j (G)], j = 2, . . . , k − 1, are small
compared to the number |V | = N of vertices in G. Then, by deleting some vertices from V we
show the existence of a certain induced, linear k-uniform subhypergraph G∗

= (V ∗, E∗

k ) of the
non-uniform hypergraph G = (V, E2 ∪ Ek), to which we apply Theorem 2.6.

2.1. Upper bounds on the numbers of (2, j)-cycles

In the following we use the condition that each k-element edge E ∈ Ek in the random
hypergraph G = (V, E2 ∪ Ek) does not contain any 2-element edges E ∈ E2, i.e., each two
distinct random points Pi and Pj , 1 ≤ i < j ≤ N , which are vertices of an edge E ′

∈ Ek ,
have Euclidean distance bigger than D0. We show next upper bounds on the expected numbers
E[s2, j (G)] of (2, j)-cycles, j = 2, . . . , k − 1, in G.

Lemma 2.7. For j = 2, . . . , k − 1, there exist constants c2, j > 0 such that for D2
0 ≥ 2 · A it is

E[s2, j (G)] ≤ c2, j · A2k− j−2
· N 2k− j

· (log N )3. (6)

Proof. We prove an upper bound on the probability that (2k − j) points, which are chosen
uniformly at random and independently of each other in the unit square [0, 1]

2, form two sets of
k points, where the area of the convex hull of each is at most A, conditioned on the event that
any two distinct of these (2k − j) points have Euclidean distance bigger than D0 = N−γ , γ > 0.
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Fig. 1. Two sets of k points in [0, 1]
2, which have j points in common, and their extremal points P ′, P ′′ and Q′, Q′′.

There are
(

N
2k− j

)
choices to select (2k − j) out of N points. Given these (2k − j) points, there

are
(

2k− j
j

)
possibilities to choose j points, say P1, . . . , Pj , which both k-gons have in common,

and
(

2k−2 j
k− j

)
/2 possibilities to extend P1, . . . , Pj to two sets of k points. Let the two sets of k

points be given by P1, . . . , Pk and P1, . . . , Pj , Q j+1, . . . , Qk with area(P1, . . . , Pk) ≤ A and
area(P1, . . . , Pj , Q j+1, . . . , Qk) ≤ A, where after renumbering P1 ≤lex . . . ≤lex Pj .

The point P1 is somewhere in [0, 1]
2. Given P1 ∈ [0, 1]

2, with P1 ≤lex Pj we have

Prob(r ≤ dist(P1, Pj ) ≤ r + dr) ≤ π · rdr. (7)

Given the points P1 and Pj with dist(P1, Pj ) = r , by using P1 ≤lex · · · ≤lex Pj and by Lemma 2.3
all points P2, . . . , Pj−1 are contained in a parallelogram of area 4 · A, which happens with
probability

Prob(area(P1, . . . , Pj ) ≤ A | P1, Pj ) ≤ (4 · A) j−2. (8)

Given P1, . . . , Pj ∈ [0, 1]
2 with P1 ≤lex . . . ≤lex Pj and dist(P1, Pj ) = r , with

area(P1, . . . , Pk) ≤ A and area(P1, . . . , Pj , Q j+1, . . . , Qk) ≤ A and by Lemma 2.2 all points
Pj+1, . . . , Pk, Q j+1, . . . , Qk are contained in a strip S centered at the line P1 Pj of width
w = 4 · A/r . Let S∗

:= S ∩ [0, 1]
2 and observe that the area of S∗ is at most 4 ·

√
2 · A/r .

For the convex hulls of P1, . . . , Pk and P1, . . . , Pj , Q j+1, . . . , Qk denote their
(lexicographically) extremal points by P ′, P ′′ and Q′, Q′, respectively, that is, P ′, P ′′

∈

{P1, . . . , Pk} and Q′, Q′′
∈ {P1, . . . , Pj , Q j+1, . . . , Qk} and, say P ′

≤lex P ′′ and Q′
≤lex Q′′,

and P ′
≤lex P1, . . . , Pk ≤lex P ′′ as well as Q′

≤lex P1, . . . , Pj , Q j+1, . . . , Qk ≤lex Q′′, see
Fig. 1.

Given the points P1 ≤lex . . . ≤lex Pj with dist(P1, Pj ) = r , for the convex hulls of P1, . . . , Pk
and P1, . . . , Pj , Q j+1, . . . , Qk we distinguish three cases each:

(i) both points, P1 and Pj , are extremal, or
(ii) exactly one point, P1 or Pj , is extremal, or

(iii) none of the points P1, Pj is extremal.

Given the points P1, . . . , Pj ∈ [0, 1]
2 with P1 ≤lex . . . ≤lex Pj , first we consider the convex

hull of P1, . . . , Pk .
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Fig. 2. The circle with radius s intersects the boundaries of the strip S in four points.

In case (i), the points P1 and Pj are extremal for the convex hull of P1, . . . , Pk , hence
P1 ≤lex Pj+1, . . . , Pk ≤lex Pj . By Lemma 2.3 all points Pj+1, . . . , Pk are contained in a
parallelogram of area 4 · A, hence

Prob(area(P1, . . . , Pk) ≤ A | P1, . . . , Pj and case (i)) ≤ (4 · A)k− j . (9)

In case (ii), exactly one of the points P1 or Pj is extremal for the convex hull of P1, . . . , Pk .
By Lemma 2.2, the second extremal point, P ′ or P ′′, is contained in the set S∗, which happens
with probability at most 4 ·

√
2 · A/r . Given both extremal points P ′ and P ′′, by Lemma 2.3

all points Pj+1, . . . , Pk 6= P ′, P ′′ are contained in a parallelogram of area 4 · A, which happens
with probability at most (4 · A)k− j−1, hence

Prob(area(P1, . . . , Pk) ≤ A | P1, . . . , Pj and case (ii))

≤
4 ·

√
2 · A

r
· (4 · A)k− j−1

= (4 · A)k− j
·

√
2

r
. (10)

Next we consider case (iii), where neither point P1 nor point Pj is extremal for the convex hull
of P1, . . . , Pk . By Lemma 2.2, since area(P1, . . . , Pk) ≤ A, both extremal points P ′ and P ′′, say
P ′

≤lex P1 ≤lex Pj ≤lex P ′′, must lie in the strip S centered at the line P1 Pj of width 4· A/r . Since
P ′

≤lex P1, the probability that dist(P1, P ′) ∈ [s, s + ds] is given by one-half of the difference of
the areas of the balls with center P1 and with radii (s + ds) and s, respectively, intersected with
the strip S. Since we condition on the event that any two distinct points have Euclidean distance
bigger than D0, we have r, s > D0. The circle with center P1 and radius s > D0 intersects
both boundaries of the strip S of width 4 · A/r in four points R ≤lex R′ and R′′

≤lex R′′′, where
R, R′′

≤lex P1, compare Fig. 2. To see this, we have to show that s > 2 · A/r . Since r, s > D0 it
suffices to observe that D0 ≥ 2 · A/D0, which holds by assumption.

Let δ(s) be the angle between the lines P1 R and P1 R′′. Then one-half of the difference of the
areas of the balls with center P1 and with radii (s + ds) and s, respectively, intersected with the
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strip S is at most

≤
δ(s)

2 · π
· 2 · π · sds ≤ 4 · sin(δ(s)/2) · sds ≤ 4 ·

2 · A

r · s
· sds =

8 · A

r
ds,

where we used the inequality δ/2 ≤ sin δ for δ ≤ 1, since by assumption we have sin(δ(s)/2) =

2 · A/(r · s) < 2 · A/D2
0 ≤ 1, and we infer by assuming that P ′

≤lex P1 that

Prob(P ′
∈ S and dist(P1, P ′) ∈ [s, s + ds] | P1) ≤

8 · A

r
ds. (11)

Given the extremal point P ′ with dist(P1, P ′) = s, the second extremal point P ′′ is contained in
a strip centered at the line P1 P ′ of width 4 · A/s, which happens with probability at most

4 ·
√

2 · A/s. (12)

Given both points P ′ and P ′′, by Lemma 2.3 all points Pj+1, . . . , Pk 6= P ′, P ′′ are contained in
a parallelogram of area 4 · A, which happens with probability at most

(4 · A)k− j−2. (13)

With (11)–(13) and s > D0 = N−γ for a constant γ > 0, we obtain

Prob(area(P1, . . . , Pk) ≤ A | P1, . . . , Pj and case (iii))

≤ (4 · A)k− j−2
·

∫ √
2

D0

4 ·
√

2 · A

s
·

8 · A

r
ds

= (4 · A)k− j
·

2 ·
√

2
r

∫ √
2

D0

ds

s

= 2 ·
√

2 · (4 · A)k− j
·

ln
√

2 + γ · ln N

r
. (14)

Summarizing (9), (10) and (14), we infer:

Prob(area(P1, . . . , Pk) ≤ A | P1, . . . , Pj )

≤ (4 · A)k− j
·

(
1 +

√
2

r
+

√
2 ·

ln 2 + 2 · γ · ln N

r

)

≤ (4 · A)k− j
·

(
2 ·

√
2

r
+

√
2 · ln 2

r
+

4 ·
√

2 · γ · ln N

r

)
as r ≤

√
2

≤ (4 · A)k− j
·

(
10 · ln N

r

)
since 0 < γ < 1. (15)

For the probability Prob(area(P1, . . . , Pj , Q j+1, . . . , Qk) ≤ A | P1, . . . , Pj ), the same upper
bound as in (15) holds. Hence, for j = 2, . . . , k−1, with (7), (8) and (15) we obtain for constants
c∗

2, j > 0:

Prob(P1, . . . , Pk andP1, . . . , Pj , Q j+1, . . . , Qk yield a (2, j)-cycle)

≤

∫ √
2

D0

(4 · A) j−2
·

(
(4 · A)k− j

·

(
10 · ln N

r

))2

· π · rdr
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= 100 · π · 42k− j−2
· A2k− j−2

· (ln N )2
·

∫ √
2

D0

dr

r

= 100 · π · 42k− j−2
· A2k− j−2

· (ln N )2
· (ln

√
2 − ln D0)

≤ c∗

2, j · A2k− j−2
· (log N )3 as D0 = N−γ , γ > 0 a constant. (16)

Thus, for some constants c∗

2, j , c2, j > 0, j = 2, . . . , k − 1, we obtain with (16) for the expected
numbers E[s2, j (G)] of (2, j)-cycles in G:

E[s2, j (G)] ≤

(
N

2k − j

)
·

(
2k − j

j

)
·

(
2k − 2 j

k − j

)
· c∗

2, j · A2k− j−2
· (log N )3

≤ c2, j · A2k− j−2
· N 2k− j

· (log N )3,

which finishes the proof. �

2.2. Choosing a subhypergraph

Concerning edges E ∈ E2, for two points P, Q, which are chosen uniformly at random and
independently of each other in [0, 1]

2, we have

Prob(dist(P, Q) ≤ D0) ≤ π · D2
0,

since the point P can be anywhere in [0, 1]
2 and, if dist(P, Q) ≤ D0, the point Q is contained

in the ball with center P and radius D0. Thus, the expected number E[|E2|] of unordered pairs
of distinct points with Euclidean distance at most D0 among the N random points P1, . . . , PN ∈

[0, 1]
2 satisfies with D0 = N−γ for some constant c2 > 0:

E[|E2|] ≤

(
N

2

)
· π · D2

0 ≤ c2 · N 2−2γ . (17)

By Markov’s inequality, i.e., Prob(X > k · E[X ]) < 1/k for every non-negative random
variable X and any number k ≥ 1, by using the estimates (3), (6) and (17) there exist N points
P1, . . . , PN ∈ [0, 1]

2 such that for D2
0 ≥ 2 · A the resulting hypergraph G = (V, E2 ∪Ek) satisfies

for j = 2, . . . , k − 1:

|V | = N (18)

|Ek | ≤ k · ck · Ak−2
· N k (19)

s2, j (G) ≤ k · c2, j · A2k− j−2
· N 2k− j

· (log N )3 (20)

|E2| ≤ k · c2 · N 2−2γ . (21)

By (18) and (19), the average degree tk−1 for the k-element edges of G fulfills

tk−1
=

k · |Ek |

|V |
≤

k2
· ck · Ak−2

· N k

N
= k2

· ck · Ak−2
· N k−1

=: tk−1
0 .

For a suitable constant c > 0, which will be fixed later, we set

A := c ·
(log n)1/(k−2)

n(k−1)/(k−2)
. (22)

We show next that the numbers |E2| and s2, j (G) of 2-element edges and (2, j)-cycles in G,
j = 2, . . . , k − 1, in G, respectively, are very small compared to the number |V | of vertices.
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Lemma 2.8. For every fixed γ > 1/2 it is

|E2| = o(|V |). (23)

Proof. By (18) and (21) we infer

|E2| = o(|V |)

⇐H N 2−2γ
= o(N )

⇐⇒ N 1−2γ
= o(1),

which holds for fixed γ > 1/2. �

Lemma 2.9. For D2
0 ≥ 2 · A and for j = 2, . . . , k − 1, and every fixed β with 0 < β <

(k − j)/((k − 2) · (2k − j − 1)) it is

s2, j (G) = o(|V |). (24)

Proof. By (18), (20) and (22) and N = n1+β with fixed β > 0 we obtain for j = 2, . . . , k − 1:

s2, j (G) = o(|V |)

⇐H A2k− j−2
· N 2k− j

· (log N )3
= o(N )

⇐⇒ A2k− j−2
· N 2k− j−1

· (log N )3
= o(1)

⇐⇒ (log n)3+
2k− j−2

k−2 · n(1+β)(2k− j−1)−
(k−1)(2k− j−2)

k−2 = o(1)

⇐⇒ (1 + β) · (2k − j − 1) <
(k − 1) · (2k − j − 2)

k − 2
,

which holds for β < (k − j)/((k − 2) · (2k − j − 1)). �

We fix β := 1/k2 and γ := k/(2 · (k − 1)). Then all assumptions in Lemmas 2.8 and 2.9
are fulfilled. Also the assumption D2

0 ≥ 2 · A in Lemma 2.7 is satisfied, namely, by choice of
β, γ > 0 with D0 = N−γ and N = n1+β and (22) we have

D2
0 ≥ 2 · A

⇐⇒ N−2γ
≥ 2 · c ·

(log n)
1

k−2

n
k−1
k−2

⇐⇒ n
k−1
k−2 −2(1+β)γ

≥ 2 · c · (log n)
1

k−2

⇐⇒ n
2

k(k−1)(k−2) ≥ 2 · c · (log n)
1

k−2 .

We delete from the hypergraph G = (V, E2 ∪Ek) one vertex from each 2-element edge E ∈ E2
and from each (2, j)-cycle, j = 2, . . . , k − 1. Let V ∗

⊆ V be the set of all remaining vertices,
where |V ∗

| = (1−o(1))·N ≥ N/2 by Lemmas 2.8 and 2.9. The resulting induced subhypergraph
G∗

= (V ∗, E∗

k ) of G is k-uniform and does not contain any 2-cycles anymore, i.e., is linear, and
by (19) satisfies |V ∗

| ≥ N/2 and |E∗

k | ≤ k · ck · Ak−2
· N k , hence G∗

= (V ∗, E∗

k ) has average
degree

tk−1
= k · |E∗

k |/|V ∗
| ≤ 2 · k2

· ck · Ak−2
· N k−1

=: tk−1
1 . (25)
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With (25) and A = c · (log n)1/(k−2)/n(k−1)/(k−2) from (22), and N = n1+β for β = 1/k2,
and by Theorem 2.6 the independence number α(G∗) of G∗ satisfies for some sufficiently small
constant c > 0 in (22) for some constants Ck, C ′

k > 0:

α(G) ≥ α(G∗) ≥ Ck ·
|V ∗

|

t
· (log t)

1
k−1 ≥ Ck ·

|V ∗
|

t1
· (log t1)

1
k−1

≥
Ck · N/2

(2 · k2 · ck · Ak−2)
1

k−1 · N
·

(
log((2 · k2

· ck · Ak−2)
1

k−1 · N )
) 1

k−1

≥
Ck · n

2 · (2 · k2 · ck)
1

k−1 · c
k−2
k−1 · (log n)

1
k−1

·

(
C ′

k +
(k − 2) · log c

k − 1
+

log n

k2

) 1
k−1

≥ n.

The vertices of an independent set I of size |I | = n yield a set P(I ) ⊂ [0, 1]
2 of n points among

the N points P1, . . . , PN ∈ [0, 1]
2 such that the area of the convex hull of any k distinct points

from P(I ) is Ω((log n)1/(k−2)/n(k−1)/(k−2)). �

3. A deterministic algorithm

Here we prove the algorithmic part of Theorem 1.1. To provide a deterministic polynomial
time algorithm, which for fixed integer k ≥ 3 and any integers n ≥ k finds n points in [0, 1]

2 that
achieve the lower bound ∆k(n) = Ω((log n)1/(k−2)/n(k−1)/(k−2)), we discretize the unit square
[0, 1]

2 by considering the standard T ×T -grid, where T = n1+β for some constant β > 0, which
will be specified later. With this discretization we have to take care of collinear triples of grid-
points in the T × T -grid, as the area of the convex hull of k collinear grid-points is equal to zero.

To some extent, we proceed as in Section 2, but with some crucial differences due to the
occurring collinear triples of grid-points.

Proof. For some number A ≥ 1, which will be specified later, we form a hypergraph G =

G(A) = (V, E0
3 ∪ Ek), which contains 3-element and k-element edges. The vertex-set V consists

of the T 2 grid-points from the T × T -grid. The edge-sets E0
3 and Ek are defined as follows.

For distinct grid-points P, Q, R ∈ V in the T × T -grid let {P, Q, R} ∈ E0
3 if and only if

the grid-points P, Q, R are collinear. Moreover, for distinct grid-points P1, . . . , Pk ∈ V in the
T × T -grid let {P1, . . . , Pk} ∈ Ek if and only if area(P1, . . . , Pk) ≤ A and no three of the grid-
points P1, . . . , Pk are collinear. Notice, that for k = 3 there are two types of 3-element edges
in the hypergraph G, namely those edges describing collinear triples of points and those edges
describing triples of points, which form triangles of area at most A. We are looking for a large
independent set in this hypergraph G = (V, E0

3 ∪ Ek). An independent set I ⊆ V corresponds to
|I | many grid-points in the T × T -grid, such that the area of the convex hull of each k of these
|I | points is bigger than A.

We use the following algorithmic version of Theorem 2.6 of Bertram–Kretzberg and this
author [4], compare also Fundia [9].

Theorem 3.1. Let k ≥ 3 be a fixed integer. Let G = (V, E) be a k-uniform linear hypergraph
with average degree tk−1

:= k · |E |/|V |. Then one can find for any δ > 0 in time O(|V | + |E | +

|V |
3/t3−δ) an independent set I ⊆ V with

|I | = Ω
(

|V |

t
· (log t)1/(k−1)

)
.
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The difficulty in our arguments is to find a suitable induced subhypergraph of G = (V, E0
3 ∪Ek)

to which Theorem 3.1 may be applied, and yields a solution with the desired quality. To do so,
first we give upper bounds on the numbers |E0

3 | and |Ek | of 3- and k-element edges, respectively,
and the numbers of 2-cycles arising from the k-element edges E ∈ Ek in the hypergraph G. Then
in a certain induced subhypergraph G∗ of G we delete some vertices to destroy all 3-element
edges from E0

3 and all 2-cycles. The resulting induced subhypergraph G∗∗ is k-uniform and linear,
and then we may apply to G∗∗ the algorithm from Theorem 3.1.

For integers h and s let gcd(h, s) ≥ 1 denote the greatest common divisor of h and s. For
distinct grid-points P = (px , py) and Q = (qx , qy) there are exactly gcd(qx − px , qy − py) − 1
grid-points on the segment [P, Q] excluding P and Q.

We use a lexicographic order ≤lex on the T × T -grid: for grid-points P = (px , py) and
Q = (qx , qy) let

P ≤lex Q :⇐⇒ (px < qx ) or (px = qx and py < qy).

Lemma 3.2. The number |E0
3 | of 3-element edges in the hypergraph G = (V, E0

3 ∪ Ek) satisfies
for some constant c3 > 0:

|E0
3 | ≤ c3 · T 4

· log T . (26)

We remark that in [5] an upper bound of O(T 4+ε), for any ε > 0, on the number of collinear
triples of grid-points in the T × T -grid has been proved.

Proof. For distinct grid-points P, Q, R ∈ V we have {P, Q, R} ∈ E0
3 if and only if P, Q, R are

collinear. Let P ≤lex Q ≤lex R with P = (px , py) and R = (rx , ry). If px = rx or py = ry , the
number of unordered collinear triples P, Q, R of grid-points is less than T 4, since there are 2 · T

horizontal or vertical lines and on each of these lines we can choose
(

T
3

)
unordered triples of

grid-points, which yield 2 · T ·

(
T
3

)
< T 4 unordered collinear triples in the T × T -grid.

Let h, s 6= 0. A grid-point P may be chosen in at most T 2 ways. Given P , any other grid-point
R with P ≤lex R in the T ×T -grid is determined by a pair (s, h) of integers with s := rx − px > 0
and h := ry − py . Without loss of generality let 1 ≤ h, s ≤ T , as those pairs (s, h) of integers
with 1 ≤ s ≤ T and −T ≤ h ≤ −1 are taken into account by an additional constant factor of 2.

Having fixed the grid-points P and R, on the segment [P, R] there are less than gcd(h, s) grid-
points Q excluding P and R, hence with P ≤lex Q ≤lex R there are less than gcd(h, s) choices
for the grid-point Q. Thus, the number of unordered collinear triples in the T ×T -grid is bounded
from above as follows:

|E0
3 | ≤ T 4

+ 2 · T 2
·

T∑
s=1

T∑
h=1

gcd(h, s).

Each divisor d ∈ {1, . . . , T } divides at most T/d integers from the set {1, . . . , T }, hence, with∑T
d=1 1/d ≤ 1 +

∫ T
1 (1/x)dx ≤ 1 + ln T , we infer for a constant c3 > 0:

|E0
3 | ≤ T 4

+ 2 · T 2
·

T∑
s=1

T∑
h=1

gcd(h, s) ≤ T 4
+ 2 · T 2

·

T∑
d=1

d ·

(
T

d

)2

≤ c3 · T 4
· log T,

as was claimed. �
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The next result from [5] is the discrete analogue of Lemmas 2.2 and 2.3 for the T × T -grid.

Lemma 3.3. For distinct grid-points P = (px , py) and R = (rx , ry) with P ≤lex R from the
T × T -grid, where s := rx − px ≥ 0 and h := ry − py , the following hold:

(a) There are at most 4 · A grid-points Q in the T × T -grid such that
(i) P ≤lex Q ≤lex R, and

(ii) P, Q, R are not collinear, and area(P, Q, R) ≤ A.
(b) The number of grid-points Q in the T × T -grid which fulfills only (ii) from (a) is at most

12 · A · T/s for s > 0, and at most 12 · A · T/|h| for |h| > s.

Lemma 3.4. For fixed integers k ≥ 3, the number |Ek | of unordered k-tuples P1, . . . , Pk of
distinct grid-points in the T × T -grid with area (P1, . . . , Pk) ≤ A, where no three of P1, . . . , Pk
are collinear, satisfies for some constant ck > 0:

|Ek | ≤ ck · Ak−2
· T 4. (27)

Proof. Let P1, . . . , Pk be distinct grid-points, no three on a line, in the T × T -grid with
area(P1, . . . , Pk) ≤ A. We may assume after renumbering that P1 ≤lex . . . ≤lex Pk . For P1 =

(p1,x , p1,y) and Pk = (pk,x , pk,y) let s := pk,x − p1,x ≥ 0 and h := pk,y − p1,y . If s = 0, then
for k ≥ 3 the grid-points P1, . . . , Pk are collinear, hence we have s > 0.

There are T 2 choices for the grid-point P1. Given P1, any other grid-point Pk with P1 ≤lex Pk
is determined by a pair (s, h) of integers with 1 ≤ s ≤ T and −T ≤ h ≤ T . With
area(P1, . . . , Pk) ≤ A, by Lemma 2.1 it is area(P1, Pj , Pk) ≤ A for j = 2, . . . , k − 1. Then,
given the grid-points P1 and Pk , since P1 ≤lex Pj ≤lex Pk , j = 2, . . . , k − 1, and no three of the
grid-points P1, . . . , Pk are collinear, by Lemma 3.3(a) there are at most 4 · A choices for each
grid-point Pj , hence (4 · A)k−2 choices for the grid-points P2, . . . , Pk−1 altogether, thus for a
constant ck > 0:

|Ek | ≤ T 2
·

T∑
s=1

T∑
h=−T

(4 · A)k−2
≤ ck · Ak−2

· T 4,

as desired. �

By (27) we infer that the average degree tk−1 of the hypergraph G = (V, E0
3 ∪ Ek) for the

k-element edges E ∈ Ek satisfies

tk−1
=

k · |Ek |

|V |
≤

k · ck · Ak−2
· T 4

T 2 = k · ck · Ak−2
· T 2

=: tk−1
0 . (28)

3.1. Upper bounds on the number of (2, j)-cycles

Let s2, j (G) denote the number of (2, j)-cycles, j = 2, . . . , k − 1, which arise from the k-
element edges E ∈ Ek in the hypergraph G = (V, E0

3 ∪ Ek).

Lemma 3.5. Let k ≥ 3 be a fixed integer. For j = 2, . . . , k − 1, there exist constants c2, j > 0
such that the numbers s2, j (G) of (2, j)-cycles in the hypergraph G = (V, E0

3 ∪ Ek) fulfill

s2, j (G) ≤ c2, j · A2k− j−2
· T 4

· (log T )3. (29)
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Proof. For j = 2, . . . , k − 1, let us denote the grid-points corresponding to the vertices of
two distinct k-element edges E, E ′

∈ Ek , which yield a (2, j)-cycle in G, i.e., |E ∩ E ′
| = j ,

by P1, . . . , Pk and P1, . . . , Pj , Q j+1, . . . , Qk , where P1 ≤lex . . . ≤lex Pj and no three points of
P1, . . . , Pk and of P1, . . . , Pj , Q j+1, . . . , Qk are collinear. By assumption we have

area(P1, . . . , Pk) ≤ A and area(P1, . . . , Pj , Q j+1, . . . , Qk) ≤ A. (30)

There are T 2 choices for the grid-point P1. Given P1 = (p1,x , p1,y), any other grid-point
Pj = (p j,x , p j,y) with P1 ≤lex Pj is determined by a pair (s, h) 6= (0, 0) of integers with
s = p j,x − p1,x ≥ 0 and h = p j,y − p1,y . By symmetry we may assume that s > 0 and
0 ≤ h ≤ s ≤ T , otherwise we interchange the role of h and s. This is taken into account
by the additional constant factor c′

= 2. Given P1 and Pj , by Lemma 2.1 and (30) we have
area (P1, Pi , Pj ) ≤ A for i = 2, . . . , j − 1 and since P1 ≤lex Pi ≤lex Pj , where P1, Pi , Pj are
not on a line, by Lemma 3.3(a) there are at most 4 · A choices for each grid-point Pi , hence there
are at most (4 · A) j−2 choices for the grid-points P2, . . . , Pj−1. Thus, for fixed h, s the number
of choices for the grid-points P1, . . . Pj is at most

c′
· (4 · A) j−2

· T 2. (31)

As in the arguments in Section 2, for the convex hulls of the points P1, . . . , Pk
and P1, . . . , Pj , Q j+1, . . . , Qk we denote their (lexicographically) extremal points by
P ′, P ′′

∈ {P1, . . . , Pk} and Q′, Q′′
∈ {P1, . . . , Pj , Q j+1, . . . , Qk}, respectively,

i.e., if say P ′
≤lex P ′′ and Q′

≤lex Q′′, then we have P ′
≤lex P1, . . . , Pk ≤lex P ′′ and

Q′
≤lex P1, . . . , Pj , Q j+1, . . . , Qk ≤lex Q′′, compare Fig. 1.
Given the points P1 ≤lex . . . ≤lex Pj , there are three possibilities for each of the convex hulls

of P1, . . . , Pk and P1, . . . , Pj , Q j+1, . . . , Qk :

(i) both points, P1 and Pj , are extremal, or
(ii) exactly one point, P1 or Pj , is extremal, or

(iii) none of the points P1, Pj is extremal.

We consider the convex hull of P1, . . . , Pk as the considerations for the convex hull of
P1, . . . , Pj , Q j+1, . . . , Qk are similar.

In case (i) the grid-points P1 and Pj are extremal for the convex hull of P1, . . . , Pk , hence
we have P1 ≤lex Pj+1, . . . , Pk ≤lex Pj . By (30) and Lemma 3.3(a), since area(P1, Pl , Pj ) ≤ A,
l = j + 1, . . . , k, and no three of P1, . . . , Pk are collinear, there are at most 4 · A choices for
each grid-point Pl , hence in case (i), given P1, . . . , Pj , the number of choices for the grid-points
Pj+1, . . . , Pk is at most

(4 · A)k− j . (32)

In case (ii) exactly one of the grid-points P1 or Pj is extremal for the convex hull of
P1, . . . , Pk . By Lemma 3.3(b) there are at most 12 · A · T/s choices for the second extremal grid-
point P ′ or P ′′. Having fixed this second extremal grid-point, for each grid-point Pj+1, . . . , Pk 6=

P ′, P ′′ there are by Lemma 3.3(a) at most 4 · A choices, hence in case (ii), given P1, . . . , Pj , the
number of choices for the grid-points Pj+1, . . . , Pk is at most

(4 · A)k− j−1
·

12 · A · T

s
= (4 · A)k− j

·
3 · T

s
. (33)

In case (iii) none of the grid-points P1, Pj is extremal for the convex hull of P1, . . . , Pk .
Given the grid-points P1, . . . , Pj , by (30) and Lemma 2.2 all grid-points Pj+1, . . . , Pk and
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Fig. 3. The parallelograms P−i ,Pi , i = 1, 2, . . . , are copies of P0.

Q j+1, . . . , Qk are contained in a strip S centered at the line P1 Pj of width 4 · A/
√

h2 + s2.
Consider the parallelogram P0 = {(px , py) ∈ S | p1,x ≤ px ≤ p j,x } within the strip S of width
4 · A/

√
h2 + s2, where P1 = (p1,x , p1,y) and Pj = (p j,x , p j,y) and s = p j,x − p1,x ≥ 0. By

Lemma 3.3(a) this parallelogram P0 contains at most 4 · A grid-points P , such that P1, Pj , P are
not collinear. We divide the strip S within the T × T -grid into congruent parallelograms P0,Pg ,
g = −l, −l + 1, . . . , m with 1 ≤ l, m ≤ bT/sc + 2, each of side-lengths 4 · A/s and

√
h2 + s2

and area 4 · A, where all parallelograms P−g , g ≥ 1, are on the left of the parallelogram P0, and
all parallelograms Ph , h ≥ 1, are on the right of P0, i.e., P−g := {(px , py) ∈ S | p1,x − g · s ≤

px ≤ p1,x − (g − 1) · s} and Ph := {(px , py) ∈ S | p j,x + (h − 1) · s ≤ px ≤ p j,x + h · s},
compare Fig. 3. Each grid-point P = (px , py) ∈ P−g ∪ Pg , g ≥ 1, satisfies |px − p1,x | ≥ g · s
or |px − p j,x | ≥ g · s. By Lemma 3.3(a) each parallelogram P−g or Pg , g ≥ 1, contains at most
4 · A grid-points P , such that P1, Pj , P are not collinear. Each for the convex hull of P1, . . . , Pk
extremal grid-point is contained in a parallelogram P−g or Pg , since by our assumption neither
P1 ∈ P0 nor Pj ∈ P0 are extremal. If P ′

∈ P−g ∪ Pg or P ′′
∈ P−g ∪ Pg , g ≥ 1, then by

Lemma 3.3(b) there are at most 12·A·T/(g·s) choices for the second extremal grid-point. Having
chosen both extremal grid-points P ′ and P ′′, for the other grid-points Pj+1, . . . , Pk 6= P ′, P ′′,
by (30) and Lemma 3.3(a) there are at most (4 · A)k− j−2 choices.

Hence, with
∑l

i=1 1/ i ≤ 1 + ln l we obtain in case (iii), given P1, . . . , Pj , the following
upper bound on the number of choices for Pj+1, . . . , Pk :

2 · (4 · A)k− j−2
·

bT/sc+2∑
g=1

4 · A ·
12 · A · T

g · s
= (4 · A)k− j

·
6 · T

s
·

bT/sc+2∑
g=1

1
g

≤ (4 · A)k− j
·

12 · T

s
· ln T . (34)

By (32)–(34) using s ≤ T , altogether the number of choices for the grid-points Pj+1, . . . , Pk
is at most

(4 · A)k− j
·

(
1 +

3 · T

s
+

12 · T · ln T

s

)
≤ (4 · A)k− j

·
16 · T · ln T

s
. (35)

Given the grid-points P1, . . . , Pj , the same upper bound (35) holds for the number of choices
of the grid-points Q j+1, . . . , Qk . With (31) and (35), for j = 2, . . . , k − 1, we obtain for some
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constants c′, c2, j > 0:

s2, j (G) ≤ c′
· (4 · A) j−2

· T 2
·

T∑
s=1

s∑
h=0

(
(4 · A)k− j

·
16 · T · ln T

s

)2

≤ c′
· 42k− j+2

· A2k− j−2
· T 4

· (ln T )2
·

T∑
s=1

s∑
h=0

1

s2

≤ c2, j · A2k− j−2
· T 4

· (log T )3, (36)

which finishes the proof of the lemma. �

3.2. Selecting a subhypergraph

For a suitable constant c > 0 we set

A :=
c · T 2

· (log n)1/(k−2)

n(k−1)/(k−2)
. (37)

Towards our estimate of the running times we observe that A ≥ 1 for n large enough. For the
moment we use a probabilistic argument, which will be derandomized shortly. With probability
p := T ε/t0, thus p = O(T ε/(A(k−2)/(k−1)

· T 2/(k−1))) = o(1) by (28), where ε > 0 is a
small constant, we pick uniformly at random and independently of each other vertices from
the vertex-set V . Let V ∗

⊆ V be the resulting random subset of the picked vertices and let
G∗

= (V ∗, E0∗

3 ∪ E∗

k ) with E0∗

3 := E0
3 ∩ [V ∗

]
3 and E∗

k := Ek ∩ [V ∗
]
k be the resulting random

induced subhypergraph of G. Let E[|V ∗
|], E[|E0∗

3 |], E[|E∗

k |], E[s2, j (G∗)] denote the expected
numbers of vertices, 3-element edges, k-element edges, and (2, j)-cycles arising from the k-
element edges E ∈ E∗

k , respectively, in G∗
= (V ∗, E0∗

3 ∪ E∗

k ). By (26), (27) and (29) we infer for
j = 2, . . . , k − 1 and constants c′

1, c′

3, c′

k, c′

2, j > 0:

E[|V ∗
|] = p · T 2

≥ c′

1 · T 2
· T ε/(A

k−2
k−1 · T

2
k−1 ) = c′

1 · T
2k−4
k−1 +ε/A

k−2
k−1 (38)

E[|E0∗

3 |] = p3
· |E0

3 | ≤ c′

3 · (T 4
· log T ) · T 3ε/(A

k−2
k−1 · T

2
k−1 )3

≤ c′

3 · T
4k−10
k−1 +3ε

· log T/A
3k−6
k−1 (39)

E[|E∗

k |] = pk
· |Ek | ≤ c′

k · (Ak−2
· T 4) · T kε/(A

k−2
k−1 · T

2
k−1 )k

≤ c′

k · T
2k−4
k−1 +kε/A

k−2
k−1 (40)

E[s2, j (G∗)] = p2k− j
· s2, j (G)

≤ c′

2, j · (A2k− j−2
· T 4

· (log T )3) · T (2k− j)ε/(A
k−2
k−1 · T

2
k−1 )2k− j

≤ c′

2, j · T
2 j−4
k−1 +(2k− j)ε

· (log T )3/A
j−2
k−1 . (41)

By Chernoff’s inequality, for n binomially distributed random variables X i , i = 1, . . . , n,
with values in {0, 1} and with sum X := X1 + · · · + Xn having expected value E[X ], it is
Prob(E[X ] − X ≥ u) ≤ e−u2/n . With this, (38)–(41), and Markov’s inequality we infer that
there exists an induced subhypergraph G∗

= (V ∗, E0∗

3 ∪ E∗

k ) of G such that
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|V ∗
| ≥ (c′

1/2) · T
2k−4
k−1 +ε/A

k−2
k−1 (42)

|E0∗

3 | ≤ (k + 1) · c′

3 · T
4k−10
k−1 +3ε

· log T/A
3k−6
k−1 (43)

|E∗

k | ≤ (k + 1) · c′

k · T
2k−4
k−1 +kε/A

k−2
k−1 (44)

s2, j (G∗) ≤ (k + 1) · c′

2, j · T
2 j−4
k−1 +(2k− j)ε

· (log T )3/A
j−2
k−1 . (45)

This probabilistic argument can be turned into a deterministic polynomial time algorithm
by using the method of conditional probabilities. Namely, for j = 2, . . . , k − 1, let C j be the
(multi-)set of all (2k − j)-element subsets E ∪ E ′ of V such that the pair {E, E ′

} of k-element
edges E, E ′

∈ Ek yields a (2, j)-cycle in G, i.e., |E ∩ E ′
| = j . We enumerate the vertices

of the T × T -grid as P1, . . . , PT 2 . To each vertex Pi we associate a parameter pi ∈ [0, 1],
i = 1, . . . , T 2, and we define a potential function F(p1, . . . , pT 2) by

F(p1, . . . , pT 2) := 2p·T 2/2
·

T 2∏
i=1

(
1 −

pi

2

)
+

∑
{i, j,k}∈E0

3

pi · p j · pk

(k + 1) · c′

3 · T
4k−10
k−1 +3ε

· log T/A
3k−6
k−1

+

∑
{i1,...,ik }∈Ek

k∏
l=1

pil

(k + 1) · c′

k · T
2k−4
k−1 +kε/A

k−2
k−1

+

k−1∑
j=2

∑
{i1,...,i2k− j }∈C j

2k− j∏
l=1

pil

(k + 1) · c′

2, j · T
2 j−4
k−1 +(2k− j)ε

· (log T )3/A
j−2
k−1

.

We initialize p1 := · · · := pT 2 := p := T ε/t0. Using 1 − x ≤ e−x , with (39)–(41) we infer
F(p, . . . , p) < (2/e)pT 2/2

+ k/(k + 1). Hence, in the beginning we have F(p, . . . , p) < 1, if
p · T 2

≥ 7 · ln(k + 1). This is fulfilled since p = T ε/t0 ≥ (T ε
· n)/T 2 by (28) and (37), and

ε < 1, and T = n1+β with β > 0. Using the linearity of F(p1, . . . , pT 2) in each pi , we minimize
F(p1, . . . , pT 2) step by step by fixing one after the other pi := 0 or pi := 1 for i = 1, . . . , T 2.
Finally, we obtain F(p1, . . . , pT 2) ≤ F(p, . . . , p) < 1. With V ∗

= {Pi ∈ V | pi = 1}

this yields an induced subhypergraph G∗
= (V ∗, E0∗

3 ∪ E∗

k ) of G with E0∗

3 := E0
3 ∩ [V ∗

]
3 and

E∗

k := Ek ∩ [V ∗
]
k .

We now have |V ∗
| ≥ p · T 2/2, as otherwise F(p1, . . . , pT 2) ≥ 2pT 2/2

·
∏T 2

i=1(1 − pi/2) >

2pT 2/2
· (1/2)pT 2/2

= 1, which is a contradiction. Moreover, it is |E0∗

3 | ≤ (k + 1) · c′

3 ·

T (4k−10)/(k−1)+3ε
· log T/A(3k−6)/(k−1), else we have F(p1, . . . , pn) > 1, a contradiction.

Similarly we infer |E∗

k | ≤ (k + 1) · c′

k · T (2k−4)/(k−1)+kε/A(k−2)/(k−1) and s2, j (G∗) ≤ (k +

1) · c′

2, j · T (2 j−4)/(k−1)+(2k− j)ε
· (log T )3/A( j−2)/(k−1).

Hence the induced subhypergraph G∗
= (V ∗, E0∗

3 ∪ E∗

k ) satisfies (42)–(45). When fixing
pi := 0 or pi := 1, i = 1, . . . , T 2, during the algorithm, we consider only those edges and
2-cycles, which are incident to vertex Pi , hence for fixed k ≥ 3 the running time is linear in
(|V | + |E0

3 | + |Ek | +
∑k−1

j=2 |C j |). By (26), (27), (29) and (37), and since T = n1+β with β > 0,
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the time for this derandomization is

O

((
|V | + |E0

3 | + |Ek | +

k−1∑
j=2

|C j |

))
= O(|C2|) = O(A2k−4

· T 4
· (log T )3)

= O

(
T 4k−4

· (log n)5

n2k−2

)
= O

(
n2k−2+4β(k−1)

· (log n)5
)

. (46)

We show next that, for a certain choice of the parameters β, ε > 0, the numbers |E0∗

3 | and
s2, j (G∗) of 3-element edges and of (2, j)-cycles, j = 2, . . . , k − 1, in G∗, respectively, are small
in comparison to the number |V ∗

| of vertices in G∗.

Lemma 3.6. For every fixed ε with 0 < ε < β/(1 + β) it is

|E0∗

3 | = o(|V ∗
|). (47)

Proof. By (37), (42) and (43), and using T = n1+β for fixed β, ε > 0, we have

|E0∗

3 | = o(|V ∗
|)

⇐H T
4k−10
k−1 +3ε

· log T/A
3k−6
k−1 = o(T

2k−4
k−1 +ε/A

k−2
k−1 )

⇐⇒ T
2k−6
k−1 +2ε

· log T/A
2k−4
k−1 = o(1)

⇐⇒ n2−(1+β)(2−2ε)
· (log n)

k−3
k−1 = o(1)

⇐⇒ (1 + β) · (2 − 2 · ε) > 2,

which holds for fixed ε < β/(1 + β). �

Lemma 3.7. For every fixed ε with 0 < ε <
k− j

(2k− j−1)(k−2)(1+β)
, j = 2, . . . , k − 1, it is

s2, j (G∗) = o(|V ∗
|). (48)

Proof. For j = 2, . . . , k − 1, by (37), (42) and (45), and using T = n1+β for fixed β, ε > 0, we
infer

s2, j (G∗) = o(|V ∗
|)

⇐H T
2 j−4
k−1 +(2k− j)ε

· (log T )3/A
j−2
k−1 = o(T

2k−4
k−1 +ε/A

k−2
k−1 )

⇐⇒ A
k− j
k−1 · (log T )3/T

2k−2 j
k−1 −(2k− j−1)ε

= o(1)

⇐⇒ n(1+β)(2k− j−1)ε−
k− j
k−2 · (log n)

3+
k− j

(k−1)(k−2) = o(1)

⇐⇒ (1 + β) · (2 · k − j − 1) · ε <
k − j

k − 2
,

which holds for fixed ε <
k− j

(k−2)(2k− j−1)(1+β)
. �

To satisfy p = T ε/t0 ≤ 1, with (28) we need T ε/((k ·ck)
1/(k−1)

· A(k−2)/(k−1)
·T 2/(k−1)) ≤ 1.

This holds with (37) for 0 < ε ≤ 2 − 1/(1 + β). For ε := 1/(C · (1 + β)) for fixed C ≥ k2 and
β := 1/(C − 1) this and the assumptions in Lemmas 3.6 and 3.7 are fulfilled.
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From each 3-element edge E ∈ E0∗

3 , and each (2, j)-cycle in G∗ we delete one vertex in time

O

(
|V ∗

| +

k−1∑
j=2

s2, j (G∗)

)
= O(|V ∗

|). (49)

By Lemmas 3.6 and 3.7 the resulting induced subhypergraph G∗∗
= (V ∗∗, E∗∗

k ) of G∗ with
E∗∗

k := E∗

k ∩ [V ∗∗
]
k satisfies |V ∗∗

| = (1 − o(1)) · |V ∗
| ≥ |V ∗

|/2 and does not contain any
3-element edges from E0∗

3 or (2, j)-cycles arising from E∗∗

k , i.e., G∗∗ is a linear, k-uniform
hypergraph. By (42) we have |V ∗∗

| ≥ (c′

1/4) · T (2k−4)/(k−1)+ε/A(k−2)/(k−1), and using |E∗∗

k | ≤

|E∗

k |, by (44) the average degree tk−1 of the k-uniform subhypergraph G∗∗
= (V ∗∗, E∗∗

k ) of G
satisfies

tk−1
=

k · |E∗∗

k |

|V ∗∗|
≤

k · (k + 1) · c′

k · T
2k−4
k−1 +kε/A

k−2
k−1

(c′

1/4) · T
2k−4
k−1 +ε/A

k−2
k−1

=
4 · k · (k + 1) · c′

k

c′

1
· T (k−1)ε

=: tk−1
1 . (50)

Since G∗∗ is linear, the assumptions in Theorem 3.1 are fulfilled, and, using (37), (50), and
T = n1+β and ε = 1/(k2

· (1 + β)) we find for any δ > 0 in time

O

(
|E∗∗

k | +
|V ∗∗

|
3

t3−δ
1

)
= O

(
T

2k−4
k−1 +kε

A
k−2
k−1

+
T

6k−12
k−1 +εδ

A
3k−6
k−1

)

= O

(
n3

· T εδ

(log n)
3

k−1

)
= O

(
n3+δ/k2

(log n)
3

k−1

)
(51)

an independent set I of size

|I | = Ω
(

|V ∗∗
|

t
· (log t)

1
(k−1)

)
= Ω

(
|V ∗∗

|

t1
· (log t1)

1
(k−1)

)
= Ω

(
T

2k−4
k−1 +ε/A

k−2
k−1

T ε
· (log T ε)

1
(k−1)

)
= Ω

(
n

(log n)
1

k−1

· (log T )
1

(k−1)

)
= Ω(n) since T = n1+β and β, ε > 0 are constants.

By choosing the constant c > 0 in (37) sufficiently small, we obtain an independent set of size
n, which yields a desired set of n points in [0, 1]

2 such that, after rescaling, the area of the
convex hull of any k distinct of these n points is at least Ω((log n)1/(k−2)/n(k−1)/(k−2)). Adding
the running times in (46), (49) and (51) we get for β = 1/(C − 1) and δ < 1 the time bound
O(n2k−2+(4(k−1))/(C−1)

· (log n)5). Thus, we may achieve the time bound O(n2k−2+δ′

) for any
fixed δ′ > 0 by choosing ε := 1/(C · (1 + β)) and β := 1/(C − 1), where C ≥ k2 is a constant
with C > 1 + (4k − 4)/δ′. �
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