ScienceDirect

Distributions of points in the unit square and large k-gons ${ }^{\text {x }}$

Hanno Lefmann
Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany

Available online 5 March 2008

Abstract

We consider a generalization of Heilbronn's triangle problem by asking, given any integers $n \geq k$, for the supremum $\Delta_{k}(n)$ of the minimum area determined by the convex hull of some k of n points in the unit square $[0,1]^{2}$, where the supremum is taken over all distributions of n points in $[0,1]^{2}$. Improving the lower bound $\Delta_{k}(n)=\Omega\left(1 / n^{(k-1) /(k-2)}\right)$ from [C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn's problem, SIAM Journal on Computing 30 (2000) 383-390] and from [W.M. Schmidt, On a problem of Heilbronn, Journal of the London Mathematical Society (2) 4 (1972) 545-550] for $k=4$, we show that $\Delta_{k}(n)=\Omega\left((\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}\right)$ for fixed integers $k \geq 3$ as asked for in [C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn's problem, SIAM Journal on Computing 30 (2000) 383-390]. Moreover, we provide a deterministic polynomial time algorithm which finds n points in $[0,1]^{2}$, which achieve this lower bound on $\Delta_{k}(n)$.

(c) 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of Heilbronn asks for a distribution of n points in the unit square $[0,1]^{2}$ (or unit ball) such that the minimum area of a triangle determined by three of these n points achieves its largest value. Let $\Delta_{3}(n)$ denote the supremum of the minimum area of a triangle among n points, where the supremum is taken over all distributions of n points in $[0,1]^{2}$. For primes n the points $1 / n \cdot\left(i \bmod n, i^{2} \bmod n\right), i=0, \ldots, n-1$, yield $\Delta_{3}(n)=\Omega\left(1 / n^{2}\right)$. While for

[^0]some time this lower bound on $\Delta_{3}(n)$ was believed to be also the upper bound, Komlós, Pintz and Szemerédi [12] showed that $\Delta_{3}(n)=\Omega\left(\log n / n^{2}\right)$, see [5] for a deterministic polynomial time algorithm achieving this lower bound on $\Delta_{3}(n)$. Upper bounds on $\Delta_{3}(n)$ were given by Roth [16-20] and Schmidt [21] and, improving these earlier results, the currently best upper bound $\Delta_{3}(n)=O\left(2^{c \sqrt{\log n}} / n^{8 / 7}\right)$, where $c>0$ is a constant, is due to Komlós, Pintz and Szemerédi [11]. Recently, Jiang, Li and Vitany [10] showed with methods from Kolmogorov complexity theory that if n points are distributed uniformly at random and independently of each other in the unit square $[0,1]^{2}$, then the expected value of the minimum area of a triangle formed by some three of these n random points is equal to $\Theta\left(1 / n^{3}\right)$.

Variants of Heilbronn's triangle problem in higher dimensions were investigated by Barequet $[2,3]$, who considered the minimum volumes of simplices among n points in the d dimensional unit cube $[0,1]^{d}$, see also $[14,15]$ and Brass [6].

Given a fixed integer $k \geq 3$, a generalization of Heilbronn's triangle problem to k points, see Schmidt [21], asks to maximize the minimum area of the convex hull of any k distinct points in a distribution of n points in the unit square $[0,1]^{2}$. In particular, let $\Delta_{k}(n)$ be the supremum of the minimum area of the convex hull determined by some k of n points, where the supremum is taken over all distributions of n points in the unit square $[0,1]^{2}$.

Some years ago, for $k=4$, Schmidt [21] proved the lower bound $\Delta_{4}(n)=\Omega\left(1 / n^{3 / 2}\right)$. In [5] a deterministic polynomial time algorithm was given which, given a fixed integer $k \geq 3$, finds for any integer $n \geq k$ a configuration of n points in $[0,1]^{2}$, which achieves the lower bound $\Delta_{k}(n)=\Omega\left(1 / n^{(k-1) /(k-2)}\right)$.

A closely related problem has been considered by Chazelle [7] in connection with lower bounds on the query complexity of range searching problems. In [7] he proved that for any fixed dimension $d \geq 2$ and all integers $k, n \geq 3$ with $\log n \leq k \leq n$ it is $\Delta_{k}(n)=\Theta(k / n)$. An improvement of the range of k might also improve his lower bound on the query complexity. Here we give an easier proof of Chazelle's bounds on $\Delta_{k}(n)$ for $\log n \leq k \leq n$.

In [13] the lower bound of Schmidt [21] for the case $k=4$ has been improved to $\Delta_{4}(n)=$ $\Omega\left((\log n)^{1 / 2} / n^{3 / 2}\right)$. Here we extend this result to arbitrary fixed integers $k \geq 3$, and improve the lower bounds from [5] by a factor of $\Theta\left((\log n)^{1 /(k-2)}\right)$, as asked for in [5,21]:

Theorem 1.1. Let $k \geq 3$ be a fixed integer. For integers $n \geq k$ it is

$$
\begin{equation*}
\Delta_{k}(n)=\Omega\left(\frac{(\log n)^{1 /(k-2)}}{n^{(k-1) /(k-2)}}\right) \tag{1}
\end{equation*}
$$

Moreover, one can find deterministically in time $O\left(n^{2 k-2+\delta}\right)$ for any $\delta>0$ some n points in the unit square $[0,1]^{2}$ such that the minimum area of the convex hull determined by some k of these n points is $\Omega\left((\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}\right)$.

Concerning upper bounds, so far for fixed integers $k \geq 3$, only the bound $\Delta_{k}(n)=O(1 / n)$ is known, compare [21], which follows easily by the pigeonhole principle by partitioning the unit square $[0,1]^{2}$ into $(n-1) /(k-1)$ squares of side-lengths $\sqrt{(k-1) /(n-1)}=\Theta(1 / \sqrt{n})$ each.

To prove the lower bound (1) in Theorem 1.1, in Section 2 we use probabilistic and nondiscrete arguments. These arguments motivate, how we can design a deterministic algorithm for finding n points in $[0,1]^{2}$, which achieve the lower bound (1), and help to understand thoroughly the algorithmic part of Theorem 1.1, which is presented in Section 3.

2. A lower bound on $\Delta_{k}(n)$

For distinct points $P, Q \in[0,1]^{2}$ let $P Q$ denote the line through P and Q and let $[P, Q]$ denote the segment between P and Q including the endpoints. Let $\operatorname{dist}(P, Q):=\left(\left(p_{x}-q_{x}\right)^{2}+\right.$ $\left.\left(p_{y}-q_{y}\right)^{2}\right)^{1 / 2}$ be the Euclidean distance between the points $P=\left(p_{x}, p_{y}\right)$ and $Q=\left(q_{x}, q_{y}\right)$. For points $P_{1}, \ldots, P_{l} \in[0,1]^{2}$ their convex hull is the set of all points $P_{1}+\sum_{i=2}^{l} \lambda_{i} \cdot\left(P_{i}-P_{1}\right)$ with $\lambda_{2}, \ldots, \lambda_{l} \geq 0$ and $\sum_{i=2}^{l} \lambda_{i}=1$. For points $P_{1}, \ldots, P_{l} \in[0,1]^{2}$ let area $\left(P_{1}, \ldots, P_{l}\right)$ denote the area of the convex hull of the points P_{1}, \ldots, P_{l}. A strip centered at the line $P Q$ of width w is the set of all points in \mathbb{R}^{2} such that their Euclidean distances from the line $P Q$ are at most $w / 2$.

First we observe the following simple facts.
Lemma 2.1. Let $P_{1}, \ldots, P_{l} \in[0,1]^{2}$ be points. Then, it is area $\left(P_{1}, \ldots, P_{l}\right) \geq$ $\operatorname{area}\left(P_{1}, \ldots, P_{l-1}\right)$.

Proof. This follows by monotonicity, as the convex hull of P_{1}, \ldots, P_{l-1} is contained in the convex hull of P_{1}, \ldots, P_{l}.

Lemma 2.2. Let $P_{1}, \ldots, P_{l} \in[0,1]^{2}, l \geq 3$, be points. If $\operatorname{area}\left(P_{1}, \ldots, P_{l}\right) \leq A$, then for any distinct points P_{i}, P_{j} any point $P_{k}, k=1, \ldots, l$, is contained in a strip centered at the line $P_{i} P_{j}$ of width $4 \cdot A / \operatorname{dist}\left(P_{i}, P_{j}\right)$.

Proof. Otherwise, by Lemma 2.1 it is area $\left(P_{1}, \ldots, P_{l}\right) \geq \operatorname{area}\left(P_{i}, P_{j}, P_{k}\right)>\left(1 / 2 \cdot \operatorname{dist}\left(P_{i}, P_{j}\right)\right.$. $(2 \cdot A)) / \operatorname{dist}\left(P_{i}, P_{j}\right)=A$, which contradicts the assumption area $\left(P_{1}, \ldots, P_{l}\right) \leq A$.

We define a lexicographic order $\leq_{\text {lex }}$ on the unit square $[0,1]^{2}$: for points $P=\left(p_{x}, p_{y}\right) \in$ $[0,1]^{2}$ and $Q=\left(q_{x}, q_{y}\right) \in[0,1]^{2}$ let

$$
P \leq_{\operatorname{lex}} Q: \Longleftrightarrow\left(p_{x}<q_{x}\right) \text { or }\left(p_{x}=q_{x} \text { and } p_{y}<q_{y}\right) .
$$

Lemma 2.3. Let $P, R \in[0,1]^{2}$ be distinct points with $P \leq_{\operatorname{lex}} R$. Then, all points $Q \in[0,1]^{2}$, such that $P \leq_{\text {lex }} Q \leq_{\operatorname{lex}} R$ and area $(P, Q, R) \leq A$, are contained in a parallelogram of area 4. A.

Proof. Given the distinct points $P, R \in[0,1]^{2}$ with $P \leq_{\text {lex }} R$, by Lemma 2.2 all points Q with $\operatorname{area}(P, Q, R) \leq A$ must be contained in a strip, which is centered at the line $P R$ of width $4 \cdot A / \operatorname{dist}(P, R)$. The condition $P \leq_{\text {lex }} Q \leq_{\text {lex }} R$ defines a parallelogram with base-length $\operatorname{dist}(P, R)$ and height $4 \cdot A / \operatorname{dist}(P, R)$, hence the area of this parallelogram is $4 \cdot A$.

In the following we prove the lower bound (1) in Theorem 1.1.
Proof. Let $k \geq 3$ be a fixed integer and let $n \geq k$ be an arbitrary integer. For some constant $\beta>0$, which will be specified later, we select uniformly at random and independently of each other $N:=n^{1+\beta}$ points $P_{1}, \ldots, P_{N} \in[0,1]^{2}$ in $[0,1]^{2}$.

First, for fixed integers i_{1}, \ldots, i_{k} with $1 \leq i_{1}<\cdots<i_{k} \leq N$ we give an upper bound on the probability $\operatorname{Prob}\left(\operatorname{area}\left(P_{i_{1}}, \ldots, P_{i_{k}}\right) \leq A\right)$, where $A>0$ is some number. By possibly renumbering the points, we may assume that $P_{i_{1}} \leq_{\text {lex }} \cdots \leq_{\text {lex }} P_{i_{k}}$. By Lemma 2.1, $\operatorname{area}\left(P_{i_{1}}, \ldots, P_{i_{k}}\right) \leq A$ implies area $\left(P_{i_{1}}, P_{i_{j}}, P_{i_{k}}\right) \leq A$ for $j=2, \ldots, k-1$. The points $P_{i_{1}}$ and $P_{i_{k}}$ with $P_{i_{1}} \leq_{\text {lex }} P_{i_{k}}$ may be anywhere in $[0,1]^{2}$. Given the points $P_{i_{1}}$ and $P_{i_{k}}$, by Lemma 2.3 and our assumptions, i.e., $P_{i_{1}} \leq_{\text {lex }} \cdots \leq_{\text {lex }} P_{i_{k}}$ and area $\left(P_{i_{1}}, P_{i_{j}}, P_{i_{k}}\right) \leq A$, all points
$P_{i_{j}}, j=2, \ldots, k-1$, are contained in a parallelogram of area $4 \cdot A$, which happens with probability at most $(4 \cdot A)^{k-2}$, hence

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{area}\left(P_{i_{1}}, \ldots, P_{i_{k}}\right) \leq A\right) \leq(4 \cdot A)^{k-2} \tag{2}
\end{equation*}
$$

For convenience we use in our arguments hypergraphs.
Definition 2.4. Let $\mathcal{G}=(V, \mathcal{E})$ be a k-uniform hypergraph, i.e., $|E|=k$ for each edge $E \in \mathcal{E}$. An unordered pair $\left\{E, E^{\prime}\right\}$ of distinct edges $E, E^{\prime} \in \mathcal{E}$ is called a 2-cycle if $\left|E \cap E^{\prime}\right| \geq 2$. A 2-cycle $\left\{E, E^{\prime}\right\}$ in \mathcal{G} is called $(2, j)$-cycle if $\left|E \cap E^{\prime}\right|=j, j=2, \ldots, k-1$. The hypergraph \mathcal{G} is called linear if it does not contain any 2-cycles. The independence number $\alpha(\mathcal{G})$ of \mathcal{G} is the largest size of a subset $I \subseteq V$ which contains no edges from \mathcal{E}.

Set $D_{0}:=N^{-\gamma}$ for some constant γ with $0<\gamma<1$, which will be fixed later. For a number $A>0$ we form a random hypergraph $\mathcal{G}=\mathcal{G}\left(D_{0}, A\right)=\left(V, \mathcal{E}_{2} \cup \mathcal{E}_{k}\right)$ with vertex-set $V=\{1, \ldots, N\}$, where vertex $i \in V$ corresponds to the random point $P_{i} \in[0,1]^{2}$, and with 2and k-element edges. Let $\left\{i_{1}, i_{2}\right\} \in \mathcal{\mathcal { E } _ { 2 }}$ be a 2 -element edge if and only if $\operatorname{dist}\left(P_{i_{1}}, P_{i_{2}}\right) \leq D_{0}$. Moreover, let $\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{E}_{k}$ be a k-element edge if and only if $\operatorname{area}\left(P_{i_{1}}, \ldots, P_{i_{k}}\right) \leq A$ and $\left\{i_{1}, \ldots, i_{k}\right\}$ does not contain any 2-element edges from \mathcal{E}_{2}. Since there are $\binom{N}{k}$ choices for k out of N vertices, by (2), for some constant $c_{k}>0$ the expected number $E\left[\left|\mathcal{E}_{k}\right|\right]$ of k-element edges in this random hypergraph \mathcal{G} can be bounded from above as follows:

$$
\begin{equation*}
E\left[\left|\mathcal{E}_{k}\right|\right] \leq\binom{ N}{k} \cdot 4^{k-2} \cdot A^{k-2} \leq c_{k} \cdot A^{k-2} \cdot N^{k} \tag{3}
\end{equation*}
$$

We want to find in the random hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \mathcal{E}_{k}\right)$ a large independent set $I \subseteq V$. An independent set I yields a set $P(I)=\left\{P_{i} \mid i \in I\right\} \subseteq\left\{P_{1}, \ldots, P_{N}\right\}$ of points in $[0,1]^{2}$ of the same size $|I|$ such that for every choice of k distinct points from $P(I)$ the area of their convex hull is bigger than A.

Remark. With (3) already the lower bound $\Delta_{k}(n)=\Omega(k / n)$ for $\log n \leq k \leq n$ due to Chazelle [7], which has been mentioned in the introduction, follows and yields a slightly different proof of his lower bound. Namely, from (3) it follows that there exist $2 \cdot N$ points in $[0,1]^{2}$ such that in the arising hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{k}\right)$ we have $\left|\mathcal{E}_{k}\right| \leq\binom{ 2 N}{k} \cdot 4^{k-2} \cdot A^{k-2}$. Then, it is $\left|\mathcal{E}_{k}\right| \leq N$, if

$$
\begin{align*}
& \binom{2 \cdot N}{k} \cdot 4^{k-2} \cdot A^{k-2} \leq N \\
& \Longleftarrow\left(\frac{2 \cdot e \cdot N}{k}\right)^{k} \cdot 4^{k-2} \cdot A^{k-2} \leq N \quad \text { as }\binom{M}{k} \leq(e \cdot M / k)^{k} \\
& \Longleftrightarrow A \leq \frac{k^{\frac{2}{k-2}}}{4 \cdot(2 \cdot e)^{\frac{k}{k-2}}} \cdot \frac{k}{N} \cdot \frac{1}{N^{\frac{1}{k-2}}} \\
& \Longleftarrow A \leq \frac{1}{90} \cdot \frac{k}{N} \cdot \frac{1}{N^{\frac{1}{k-2}}} \text { as } \frac{k^{\frac{2}{k-2}}}{4 \cdot(2 \cdot e)^{\frac{k}{k-2}}}>1 / 90 \tag{4}
\end{align*}
$$

For $k \geq \log N$, we have $N^{1 /(k-2)} \leq 8$ for each integer $N \geq 8$. Then, the choice $A:=$ $(1 / 720) \cdot k / N$ satisfies (4) for every integer $k \geq \log N$. By removing from each edge $E \in \mathcal{E}_{k}$ one
vertex we obtain a subset of at least N points in $[0,1]^{2}$ such that the area of the convex hull of each k points is at least A, i.e., for $k \geq \log N$ it is $\Delta_{k}(N)=\Omega(k / N)$. Concerning upper bounds on $\Delta_{k}(N)$, given any N points in $[0,1]^{2}$, we partition $[0,1]^{2}$ into $(N-1) /(k-1)$ squares each of side-lengths $\sqrt{(k-1) /(N-1)}$. Then, one of these little squares contains k of the N points, and the area of the convex hull of these k points certainly is at most $(k-1) /(N-1)=O(k / N)$, i.e., these arguments show:

Theorem 2.5. For integers k, n with $3 \leq k \leq n$ it is

$$
\Delta_{k}(n)=\Omega\left(\frac{k}{n} \cdot \frac{1}{n^{\frac{1}{k-2}}}\right) \quad \text { and } \quad \Delta_{k}(n)=O\left(\frac{k}{n}\right) .
$$

In particular, for $\log n \leq k \leq n$ it is

$$
\Delta_{k}(n)=\Theta\left(\frac{k}{n}\right)
$$

To prove the existence of a large independent set in \mathcal{G}, we use the following result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], see also [4,8,9].

Theorem 2.6. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=(V, \mathcal{E})$ be a k-uniform, linear hypergraph with average degree $t^{k-1}:=k \cdot|\mathcal{E}| /|V|$. Then for some constant $C_{k}>0$, the independence number $\alpha(\mathcal{G})$ of \mathcal{G} satisfies

$$
\begin{equation*}
\alpha(\mathcal{G}) \geq C_{k} \cdot \frac{|V|}{t} \cdot(\log t)^{\frac{1}{k-1}} . \tag{5}
\end{equation*}
$$

We estimate in the random hypergraph \mathcal{G} the expected numbers $E\left[\left|\mathcal{E}_{2}\right|\right]$ and $E\left[\left|\mathcal{E}_{k}\right|\right]$ of 2- and k-element edges, respectively, and $E\left[s_{2, j}(\mathcal{G})\right]$ of $(2, j)$-cycles arising from the k-element edges from \mathcal{E}_{k}, and we show that the numbers $E\left[\left|\mathcal{E}_{2}\right|\right]$ and $E\left[s_{2, j}(\mathcal{G})\right], j=2, \ldots, k-1$, are small compared to the number $|V|=N$ of vertices in \mathcal{G}. Then, by deleting some vertices from V we show the existence of a certain induced, linear k-uniform subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{k}^{*}\right)$ of the non-uniform hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \mathcal{E}_{k}\right)$, to which we apply Theorem 2.6.

2.1. Upper bounds on the numbers of $(2, j)$-cycles

In the following we use the condition that each k-element edge $E \in \mathcal{E}_{k}$ in the random hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \mathcal{E}_{k}\right)$ does not contain any 2 -element edges $E \in \mathcal{E}_{2}$, i.e., each two distinct random points P_{i} and $P_{j}, 1 \leq i<j \leq N$, which are vertices of an edge $E^{\prime} \in \mathcal{E}_{k}$, have Euclidean distance bigger than D_{0}. We show next upper bounds on the expected numbers $E\left[s_{2, j}(\mathcal{G})\right]$ of $(2, j)$-cycles, $j=2, \ldots, k-1$, in \mathcal{G}.

Lemma 2.7. For $j=2, \ldots, k-1$, there exist constants $c_{2, j}>0$ such that for $D_{0}^{2} \geq 2 \cdot A$ it is

$$
\begin{equation*}
E\left[s_{2, j}(\mathcal{G})\right] \leq c_{2, j} \cdot A^{2 k-j-2} \cdot N^{2 k-j} \cdot(\log N)^{3} . \tag{6}
\end{equation*}
$$

Proof. We prove an upper bound on the probability that $(2 k-j)$ points, which are chosen uniformly at random and independently of each other in the unit square $[0,1]^{2}$, form two sets of k points, where the area of the convex hull of each is at most A, conditioned on the event that any two distinct of these $(2 k-j)$ points have Euclidean distance bigger than $D_{0}=N^{-\gamma}, \gamma>0$.

Fig. 1. Two sets of k points in $[0,1]^{2}$, which have j points in common, and their extremal points $P^{\prime}, P^{\prime \prime}$ and $Q^{\prime}, Q^{\prime \prime}$.
There are $\binom{N}{2 k-j}$ choices to select $(2 k-j)$ out of N points. Given these $(2 k-j)$ points, there are $\binom{2 k-j}{j}$ possibilities to choose j points, say P_{1}, \ldots, P_{j}, which both k-gons have in common, and $\binom{2 k-2 j}{k-j} / 2$ possibilities to extend P_{1}, \ldots, P_{j} to two sets of k points. Let the two sets of k points be given by P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$ with area $\left(P_{1}, \ldots, P_{k}\right) \leq A$ and $\operatorname{area}\left(P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right) \leq A$, where after renumbering $P_{1} \leq_{\text {lex }} \ldots \leq_{\text {lex }} P_{j}$.

The point P_{1} is somewhere in $[0,1]^{2}$. Given $P_{1} \in[0,1]^{2}$, with $P_{1} \leq_{\text {lex }} P_{j}$ we have

$$
\begin{equation*}
\operatorname{Prob}\left(r \leq \operatorname{dist}\left(P_{1}, P_{j}\right) \leq r+\mathrm{d} r\right) \leq \pi \cdot r \mathrm{~d} r . \tag{7}
\end{equation*}
$$

Given the points P_{1} and P_{j} with $\operatorname{dist}\left(P_{1}, P_{j}\right)=r$, by using $P_{1} \leq_{\text {lex }} \cdots \leq_{\text {lex }} P_{j}$ and by Lemma 2.3 all points P_{2}, \ldots, P_{j-1} are contained in a parallelogram of area $4 \cdot A$, which happens with probability

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{j}\right) \leq A \mid P_{1}, P_{j}\right) \leq(4 \cdot A)^{j-2} \tag{8}
\end{equation*}
$$

Given $P_{1}, \ldots, P_{j} \in[0,1]^{2}$ with $P_{1} \leq_{\text {lex }} \ldots \leq_{\text {lex }} P_{j}$ and $\operatorname{dist}\left(P_{1}, P_{j}\right)=r$, with $\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A$ and area $\left(P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right) \leq A$ and by Lemma 2.2 all points $P_{j+1}, \ldots, P_{k}, Q_{j+1}, \ldots, Q_{k}$ are contained in a strip S centered at the line $P_{1} P_{j}$ of width $w=4 \cdot A / r$. Let $S^{*}:=S \cap[0,1]^{2}$ and observe that the area of S^{*} is at most $4 \cdot \sqrt{2} \cdot A / r$.

For the convex hulls of P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$ denote their (lexicographically) extremal points by $P^{\prime}, P^{\prime \prime}$ and Q^{\prime}, Q^{\prime}, respectively, that is, $P^{\prime}, P^{\prime \prime} \in$ $\left\{P_{1}, \ldots, P_{k}\right\}$ and $Q^{\prime}, Q^{\prime \prime} \in\left\{P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right\}$ and, say $P^{\prime} \leq_{\text {lex }} P^{\prime \prime}$ and $Q^{\prime} \leq_{\text {lex }} Q^{\prime \prime}$, and $P^{\prime} \leq_{\text {lex }} P_{1}, \ldots, P_{k} \leq_{\text {lex }} P^{\prime \prime}$ as well as $Q^{\prime} \leq_{\text {lex }} P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k} \leq_{\text {lex }} Q^{\prime \prime}$, see Fig. 1.

Given the points $P_{1} \leq_{\text {lex }} \ldots \leq_{\text {lex }} P_{j}$ with $\operatorname{dist}\left(P_{1}, P_{j}\right)=r$, for the convex hulls of P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$ we distinguish three cases each:
(i) both points, P_{1} and P_{j}, are extremal, or
(ii) exactly one point, P_{1} or P_{j}, is extremal, or
(iii) none of the points P_{1}, P_{j} is extremal.

Given the points $P_{1}, \ldots, P_{j} \in[0,1]^{2}$ with $P_{1} \leq_{\text {lex }} \ldots \leq_{\text {lex }} P_{j}$, first we consider the convex hull of P_{1}, \ldots, P_{k}.

Fig. 2. The circle with radius s intersects the boundaries of the strip S in four points.

In case (i), the points P_{1} and P_{j} are extremal for the convex hull of P_{1}, \ldots, P_{k}, hence $P_{1} \leq$ lex $P_{j+1}, \ldots, P_{k} \leq$ lex P_{j}. By Lemma 2.3 all points P_{j+1}, \ldots, P_{k} are contained in a parallelogram of area $4 \cdot A$, hence

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A \mid P_{1}, \ldots, P_{j} \text { and case }(\mathrm{i})\right) \leq(4 \cdot A)^{k-j} \tag{9}
\end{equation*}
$$

In case (ii), exactly one of the points P_{1} or P_{j} is extremal for the convex hull of P_{1}, \ldots, P_{k}. By Lemma 2.2, the second extremal point, P^{\prime} or $P^{\prime \prime}$, is contained in the set S^{*}, which happens with probability at most $4 \cdot \sqrt{2} \cdot A / r$. Given both extremal points P^{\prime} and $P^{\prime \prime}$, by Lemma 2.3 all points $P_{j+1}, \ldots, P_{k} \neq P^{\prime}, P^{\prime \prime}$ are contained in a parallelogram of area $4 \cdot A$, which happens with probability at most $(4 \cdot A)^{k-j-1}$, hence

$$
\begin{align*}
& \operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A \mid P_{1}, \ldots, P_{j} \text { and case (ii) }\right) \\
& \quad \leq \frac{4 \cdot \sqrt{2} \cdot A}{r} \cdot(4 \cdot A)^{k-j-1}=(4 \cdot A)^{k-j} \cdot \frac{\sqrt{2}}{r} . \tag{10}
\end{align*}
$$

Next we consider case (iii), where neither point P_{1} nor point P_{j} is extremal for the convex hull of P_{1}, \ldots, P_{k}. By Lemma 2.2 , since area $\left(P_{1}, \ldots, P_{k}\right) \leq A$, both extremal points P^{\prime} and $P^{\prime \prime}$, say $P^{\prime} \leq_{\text {lex }} P_{1} \leq_{\text {lex }} P_{j} \leq_{\text {lex }} P^{\prime \prime}$, must lie in the strip S centered at the line $P_{1} P_{j}$ of width $4 \cdot A / r$. Since $P^{\prime} \leq$ lex P_{1}, the probability that $\operatorname{dist}\left(P_{1}, P^{\prime}\right) \in[s, s+\mathrm{d} s]$ is given by one-half of the difference of the areas of the balls with center P_{1} and with radii $(s+\mathrm{d} s)$ and s, respectively, intersected with the strip S. Since we condition on the event that any two distinct points have Euclidean distance bigger than D_{0}, we have $r, s>D_{0}$. The circle with center P_{1} and radius $s>D_{0}$ intersects both boundaries of the strip S of width $4 \cdot A / r$ in four points $R \leq_{\operatorname{lex}} R^{\prime}$ and $R^{\prime \prime} \leq_{\text {lex }} R^{\prime \prime \prime}$, where $R, R^{\prime \prime} \leq_{\text {lex }} P_{1}$, compare Fig. 2 . To see this, we have to show that $s>2 \cdot A / r$. Since $r, s>D_{0}$ it suffices to observe that $D_{0} \geq 2 \cdot A / D_{0}$, which holds by assumption.

Let $\delta(s)$ be the angle between the lines $P_{1} R$ and $P_{1} R^{\prime \prime}$. Then one-half of the difference of the areas of the balls with center P_{1} and with radii $(s+\mathrm{d} s)$ and s, respectively, intersected with the
strip S is at most

$$
\leq \frac{\delta(s)}{2 \cdot \pi} \cdot 2 \cdot \pi \cdot s \mathrm{~d} s \leq 4 \cdot \sin (\delta(s) / 2) \cdot s \mathrm{~d} s \leq 4 \cdot \frac{2 \cdot A}{r \cdot s} \cdot s \mathrm{~d} s=\frac{8 \cdot A}{r} \mathrm{~d} s
$$

where we used the inequality $\delta / 2 \leq \sin \delta$ for $\delta \leq 1$, since by assumption we have $\sin (\delta(s) / 2)=$ $2 \cdot A /(r \cdot s)<2 \cdot A / D_{0}^{2} \leq 1$, and we infer by assuming that $P^{\prime} \leq{ }_{\text {lex }} P_{1}$ that

$$
\begin{equation*}
\operatorname{Prob}\left(P^{\prime} \in S \text { and } \operatorname{dist}\left(P_{1}, P^{\prime}\right) \in[s, s+\mathrm{d} s] \mid P_{1}\right) \leq \frac{8 \cdot A}{r} \mathrm{~d} s \tag{11}
\end{equation*}
$$

Given the extremal point P^{\prime} with $\operatorname{dist}\left(P_{1}, P^{\prime}\right)=s$, the second extremal point $P^{\prime \prime}$ is contained in a strip centered at the line $P_{1} P^{\prime}$ of width $4 \cdot A / s$, which happens with probability at most

$$
\begin{equation*}
4 \cdot \sqrt{2} \cdot A / s \tag{12}
\end{equation*}
$$

Given both points P^{\prime} and $P^{\prime \prime}$, by Lemma 2.3 all points $P_{j+1}, \ldots, P_{k} \neq P^{\prime}, P^{\prime \prime}$ are contained in a parallelogram of area $4 \cdot A$, which happens with probability at most

$$
\begin{equation*}
(4 \cdot A)^{k-j-2} \tag{13}
\end{equation*}
$$

With (11)-(13) and $s>D_{0}=N^{-\gamma}$ for a constant $\gamma>0$, we obtain

$$
\begin{align*}
& \operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A \mid P_{1}, \ldots, P_{j}\right. \text { and case (iii)) } \\
& \quad \leq(4 \cdot A)^{k-j-2} \cdot \int_{D_{0}}^{\sqrt{2}} \frac{4 \cdot \sqrt{2} \cdot A}{s} \cdot \frac{8 \cdot A}{r} \mathrm{~d} s \\
& \quad=(4 \cdot A)^{k-j} \cdot \frac{2 \cdot \sqrt{2}}{r} \int_{D_{0}}^{\sqrt{2}} \frac{\mathrm{~d} s}{s} \\
& \quad=2 \cdot \sqrt{2} \cdot(4 \cdot A)^{k-j} \cdot \frac{\ln \sqrt{2}+\gamma \cdot \ln N}{r} \tag{14}
\end{align*}
$$

Summarizing (9), (10) and (14), we infer:

$$
\begin{align*}
& \operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A \mid P_{1}, \ldots, P_{j}\right) \\
& \quad \leq(4 \cdot A)^{k-j} \cdot\left(1+\frac{\sqrt{2}}{r}+\sqrt{2} \cdot \frac{\ln 2+2 \cdot \gamma \cdot \ln N}{r}\right) \\
& \leq(4 \cdot A)^{k-j} \cdot\left(\frac{2 \cdot \sqrt{2}}{r}+\frac{\sqrt{2} \cdot \ln 2}{r}+\frac{4 \cdot \sqrt{2} \cdot \gamma \cdot \ln N}{r}\right) \quad \text { as } r \leq \sqrt{2} \\
& \leq(4 \cdot A)^{k-j} \cdot\left(\frac{10 \cdot \ln N}{r}\right) \quad \text { since } 0<\gamma<1 . \tag{15}
\end{align*}
$$

For the probability $\operatorname{Prob}\left(\operatorname{area}\left(P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right) \leq A \mid P_{1}, \ldots, P_{j}\right)$, the same upper bound as in (15) holds. Hence, for $j=2, \ldots, k-1$, with (7), (8) and (15) we obtain for constants $c_{2, j}^{*}>0$:

$$
\begin{aligned}
& \operatorname{Prob}\left(P_{1}, \ldots, P_{k} \text { and } P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k} \text { yield a }(2, j) \text {-cycle }\right) \\
& \quad \leq \int_{D_{0}}^{\sqrt{2}}(4 \cdot A)^{j-2} \cdot\left((4 \cdot A)^{k-j} \cdot\left(\frac{10 \cdot \ln N}{r}\right)\right)^{2} \cdot \pi \cdot r \mathrm{~d} r
\end{aligned}
$$

$$
\begin{align*}
& =100 \cdot \pi \cdot 4^{2 k-j-2} \cdot A^{2 k-j-2} \cdot(\ln N)^{2} \cdot \int_{D_{0}}^{\sqrt{2}} \frac{\mathrm{~d} r}{r} \\
& =100 \cdot \pi \cdot 4^{2 k-j-2} \cdot A^{2 k-j-2} \cdot(\ln N)^{2} \cdot\left(\ln \sqrt{2}-\ln D_{0}\right) \\
& \leq c_{2, j}^{*} \cdot A^{2 k-j-2} \cdot(\log N)^{3} \quad \text { as } D_{0}=N^{-\gamma}, \gamma>0 \text { a constant. } \tag{16}
\end{align*}
$$

Thus, for some constants $c_{2, j}^{*}, c_{2, j}>0, j=2, \ldots, k-1$, we obtain with (16) for the expected numbers $E\left[s_{2, j}(\mathcal{G})\right]$ of $(2, j)$-cycles in \mathcal{G} :

$$
\begin{aligned}
E\left[s_{2, j}(\mathcal{G})\right] & \leq\binom{ N}{2 k-j} \cdot\binom{2 k-j}{j} \cdot\binom{2 k-2 j}{k-j} \cdot c_{2, j}^{*} \cdot A^{2 k-j-2} \cdot(\log N)^{3} \\
& \leq c_{2, j} \cdot A^{2 k-j-2} \cdot N^{2 k-j} \cdot(\log N)^{3},
\end{aligned}
$$

which finishes the proof.

2.2. Choosing a subhypergraph

Concerning edges $E \in \mathcal{E}_{2}$, for two points P, Q, which are chosen uniformly at random and independently of each other in $[0,1]^{2}$, we have

$$
\operatorname{Prob}\left(\operatorname{dist}(P, Q) \leq D_{0}\right) \leq \pi \cdot D_{0}^{2}
$$

since the point P can be anywhere in $[0,1]^{2}$ and, if $\operatorname{dist}(P, Q) \leq D_{0}$, the point Q is contained in the ball with center P and radius D_{0}. Thus, the expected number $E\left[\left|\mathcal{E}_{2}\right|\right]$ of unordered pairs of distinct points with Euclidean distance at most D_{0} among the N random points $P_{1}, \ldots, P_{N} \in$ $[0,1]^{2}$ satisfies with $D_{0}=N^{-\gamma}$ for some constant $c_{2}>0$:

$$
\begin{equation*}
E\left[\left|\mathcal{E}_{2}\right|\right] \leq\binom{ N}{2} \cdot \pi \cdot D_{0}^{2} \leq c_{2} \cdot N^{2-2 \gamma} \tag{17}
\end{equation*}
$$

By Markov's inequality, i.e., $\operatorname{Prob}(X>k \cdot E[X])<1 / k$ for every non-negative random variable X and any number $k \geq 1$, by using the estimates (3), (6) and (17) there exist N points $P_{1}, \ldots, P_{N} \in[0,1]^{2}$ such that for $D_{0}^{2} \geq 2 \cdot A$ the resulting hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \mathcal{E}_{k}\right)$ satisfies for $j=2, \ldots, k-1$:

$$
\begin{align*}
& |V|=N \tag{18}\\
& \left|\mathcal{E}_{k}\right| \leq k \cdot c_{k} \cdot A^{k-2} \cdot N^{k} \tag{19}\\
& s_{2, j}(\mathcal{G}) \leq k \cdot c_{2, j} \cdot A^{2 k-j-2} \cdot N^{2 k-j} \cdot(\log N)^{3} \tag{20}\\
& \left|\mathcal{E}_{2}\right| \leq k \cdot c_{2} \cdot N^{2-2 \gamma} \tag{21}
\end{align*}
$$

By (18) and (19), the average degree t^{k-1} for the k-element edges of \mathcal{G} fulfills

$$
t^{k-1}=\frac{k \cdot\left|\mathcal{E}_{k}\right|}{|V|} \leq \frac{k^{2} \cdot c_{k} \cdot A^{k-2} \cdot N^{k}}{N}=k^{2} \cdot c_{k} \cdot A^{k-2} \cdot N^{k-1}=: t_{0}^{k-1}
$$

For a suitable constant $c>0$, which will be fixed later, we set

$$
\begin{equation*}
A:=c \cdot \frac{(\log n)^{1 /(k-2)}}{n^{(k-1) /(k-2)}} \tag{22}
\end{equation*}
$$

We show next that the numbers $\left|\mathcal{E}_{2}\right|$ and $s_{2, j}(\mathcal{G})$ of 2-element edges and $(2, j)$-cycles in \mathcal{G}, $j=2, \ldots, k-1$, in \mathcal{G}, respectively, are very small compared to the number $|V|$ of vertices.

Lemma 2.8. For every fixed $\gamma>1 / 2$ it is

$$
\begin{equation*}
\left|\mathcal{E}_{2}\right|=o(|V|) . \tag{23}
\end{equation*}
$$

Proof. By (18) and (21) we infer

$$
\begin{aligned}
& \left|\mathcal{E}_{2}\right|=o(|V|) \\
& \Longleftarrow N^{2-2 \gamma}=o(N) \\
& \Longleftrightarrow N^{1-2 \gamma}=o(1),
\end{aligned}
$$

which holds for fixed $\gamma>1 / 2$.
Lemma 2.9. For $D_{0}^{2} \geq 2 \cdot A$ and for $j=2, \ldots, k-1$, and every fixed β with $0<\beta<$ $(k-j) /((k-2) \cdot(2 k-j-1))$ it is

$$
\begin{equation*}
s_{2, j}(\mathcal{G})=o(|V|) . \tag{24}
\end{equation*}
$$

Proof. By (18), (20) and (22) and $N=n^{1+\beta}$ with fixed $\beta>0$ we obtain for $j=2, \ldots, k-1$:

$$
\begin{aligned}
& s_{2, j}(\mathcal{G})=o(|V|) \\
& \Longleftrightarrow A^{2 k-j-2} \cdot N^{2 k-j} \cdot(\log N)^{3}=o(N) \\
& \Longleftrightarrow A^{2 k-j-2} \cdot N^{2 k-j-1} \cdot(\log N)^{3}=o(1) \\
& \Longleftrightarrow(\log n)^{3+\frac{2 k-j-2}{k-2} \cdot n^{(1+\beta)(2 k-j-1)-\frac{(k-1)(2 k-j-2)}{k-2}}=o(1)} \\
& \Longleftrightarrow(1+\beta) \cdot(2 k-j-1)<\frac{(k-1) \cdot(2 k-j-2)}{k-2},
\end{aligned}
$$

which holds for $\beta<(k-j) /((k-2) \cdot(2 k-j-1))$.
We fix $\beta:=1 / k^{2}$ and $\gamma:=k /(2 \cdot(k-1))$. Then all assumptions in Lemmas 2.8 and 2.9 are fulfilled. Also the assumption $D_{0}^{2} \geq 2 \cdot A$ in Lemma 2.7 is satisfied, namely, by choice of $\beta, \gamma>0$ with $D_{0}=N^{-\gamma}$ and $N=n^{1+\beta}$ and (22) we have

$$
\begin{aligned}
& D_{0}^{2} \geq 2 \cdot A \\
& \Longleftrightarrow N^{-2 \gamma} \geq 2 \cdot c \cdot \frac{(\log n)^{\frac{1}{k-2}}}{n^{\frac{k-1}{k-2}}} \\
& \Longleftrightarrow n^{\frac{k-1}{k-2}-2(1+\beta) \gamma} \geq 2 \cdot c \cdot(\log n)^{\frac{1}{k-2}} \\
& \Longleftrightarrow n^{\frac{2}{k(k-1)(k-2)}} \geq 2 \cdot c \cdot(\log n)^{\frac{1}{k-2}} .
\end{aligned}
$$

We delete from the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{2} \cup \mathcal{E}_{k}\right)$ one vertex from each 2-element edge $E \in \mathcal{E}_{2}$ and from each ($2, j$)-cycle, $j=2, \ldots, k-1$. Let $V^{*} \subseteq V$ be the set of all remaining vertices, where $\left|V^{*}\right|=(1-o(1)) \cdot N \geq N / 2$ by Lemmas 2.8 and 2.9. The resulting induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{k}^{*}\right)$ of \mathcal{G} is k-uniform and does not contain any 2 -cycles anymore, i.e., is linear, and by (19) satisfies $\left|V^{*}\right| \geq N / 2$ and $\left|\mathcal{E}_{k}^{*}\right| \leq k \cdot c_{k} \cdot A^{k-2} \cdot N^{k}$, hence $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{k}^{*}\right)$ has average degree

$$
\begin{equation*}
t^{k-1}=k \cdot\left|\mathcal{E}_{k}^{*}\right| /\left|V^{*}\right| \leq 2 \cdot k^{2} \cdot c_{k} \cdot A^{k-2} \cdot N^{k-1}=: t_{1}^{k-1} \tag{25}
\end{equation*}
$$

With (25) and $A=c \cdot(\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}$ from (22), and $N=n^{1+\beta}$ for $\beta=1 / k^{2}$, and by Theorem 2.6 the independence number $\alpha\left(\mathcal{G}^{*}\right)$ of \mathcal{G}^{*} satisfies for some sufficiently small constant $c>0$ in (22) for some constants $C_{k}, C_{k}^{\prime}>0$:

$$
\begin{aligned}
\alpha(\mathcal{G}) & \geq \alpha\left(\mathcal{G}^{*}\right) \geq C_{k} \cdot \frac{\left|V^{*}\right|}{t} \cdot(\log t)^{\frac{1}{k-1}} \geq C_{k} \cdot \frac{\left|V^{*}\right|}{t_{1}} \cdot\left(\log t_{1}\right)^{\frac{1}{k-1}} \\
& \geq \frac{C_{k} \cdot N / 2}{\left(2 \cdot k^{2} \cdot c_{k} \cdot A^{k-2}\right)^{\frac{1}{k-1}} \cdot N} \cdot\left(\log \left(\left(2 \cdot k^{2} \cdot c_{k} \cdot A^{k-2}\right)^{\frac{1}{k-1}} \cdot N\right)\right)^{\frac{1}{k-1}} \\
& \geq \frac{C_{k} \cdot n}{2 \cdot\left(2 \cdot k^{2} \cdot c_{k}\right)^{\frac{1}{k-1}} \cdot c^{\frac{k-2}{k-1}} \cdot(\log n)^{\frac{1}{k-1}}} \cdot\left(C_{k}^{\prime}+\frac{(k-2) \cdot \log c}{k-1}+\frac{\log n}{k^{2}}\right)^{\frac{1}{k-1}} \\
& \geq n .
\end{aligned}
$$

The vertices of an independent set I of size $|I|=n$ yield a set $P(I) \subset[0,1]^{2}$ of n points among the N points $P_{1}, \ldots, P_{N} \in[0,1]^{2}$ such that the area of the convex hull of any k distinct points from $P(I)$ is $\Omega\left((\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}\right)$.

3. A deterministic algorithm

Here we prove the algorithmic part of Theorem 1.1. To provide a deterministic polynomial time algorithm, which for fixed integer $k \geq 3$ and any integers $n \geq k$ finds n points in $[0,1]^{2}$ that achieve the lower bound $\Delta_{k}(n)=\Omega\left((\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}\right)$, we discretize the unit square $[0,1]^{2}$ by considering the standard $T \times T$-grid, where $T=n^{1+\beta}$ for some constant $\beta>0$, which will be specified later. With this discretization we have to take care of collinear triples of gridpoints in the $T \times T$-grid, as the area of the convex hull of k collinear grid-points is equal to zero.

To some extent, we proceed as in Section 2, but with some crucial differences due to the occurring collinear triples of grid-points.

Proof. For some number $A \geq 1$, which will be specified later, we form a hypergraph $\mathcal{G}=$ $\mathcal{G}(A)=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{k}\right)$, which contains 3 -element and k-element edges. The vertex-set V consists of the T^{2} grid-points from the $T \times T$-grid. The edge-sets \mathcal{E}_{3}^{0} and \mathcal{E}_{k} are defined as follows. For distinct grid-points $P, Q, R \in V$ in the $T \times T$-grid let $\{P, Q, R\} \in \mathcal{E}_{3}^{0}$ if and only if the grid-points P, Q, R are collinear. Moreover, for distinct grid-points $P_{1}, \ldots, P_{k} \in V$ in the $T \times T$-grid let $\left\{P_{1}, \ldots, P_{k}\right\} \in \mathcal{E}_{k}$ if and only if area $\left(P_{1}, \ldots, P_{k}\right) \leq A$ and no three of the gridpoints P_{1}, \ldots, P_{k} are collinear. Notice, that for $k=3$ there are two types of 3 -element edges in the hypergraph \mathcal{G}, namely those edges describing collinear triples of points and those edges describing triples of points, which form triangles of area at most A. We are looking for a large independent set in this hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{k}\right)$. An independent set $I \subseteq V$ corresponds to $|I|$ many grid-points in the $T \times T$-grid, such that the area of the convex hull of each k of these $|I|$ points is bigger than A.

We use the following algorithmic version of Theorem 2.6 of Bertram-Kretzberg and this author [4], compare also Fundia [9].

Theorem 3.1. Let $k \geq 3$ be a fixed integer. Let $\mathcal{G}=(V, \mathcal{E})$ be a k-uniform linear hypergraph with average degree $t^{k-1}:=k \cdot|\mathcal{E}| /|V|$. Then one can find for any $\delta>0$ in time $O(|V|+|\mathcal{E}|+$ $|V|^{3} / t^{3-\delta}$) an independent set $I \subseteq V$ with

$$
|I|=\Omega\left(\frac{|V|}{t} \cdot(\log t)^{1 /(k-1)}\right)
$$

The difficulty in our arguments is to find a suitable induced subhypergraph of $\mathcal{G}=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{k}\right)$ to which Theorem 3.1 may be applied, and yields a solution with the desired quality. To do so, first we give upper bounds on the numbers $\left|\mathcal{E}_{3}^{0}\right|$ and $\left|\mathcal{E}_{k}\right|$ of 3 - and k-element edges, respectively, and the numbers of 2-cycles arising from the k-element edges $E \in \mathcal{E}_{k}$ in the hypergraph \mathcal{G}. Then in a certain induced subhypergraph \mathcal{G}^{*} of \mathcal{G} we delete some vertices to destroy all 3-element edges from \mathcal{E}_{3}^{0} and all 2-cycles. The resulting induced subhypergraph $\mathcal{G}^{* *}$ is k-uniform and linear, and then we may apply to $\mathcal{G}^{* *}$ the algorithm from Theorem 3.1.

For integers h and s let $\operatorname{gcd}(h, s) \geq 1$ denote the greatest common divisor of h and s. For distinct grid-points $P=\left(p_{x}, p_{y}\right)$ and $Q=\left(q_{x}, q_{y}\right)$ there are exactly $\operatorname{gcd}\left(q_{x}-p_{x}, q_{y}-p_{y}\right)-1$ grid-points on the segment $[P, Q]$ excluding P and Q.

We use a lexicographic order $\leq_{\text {lex }}$ on the $T \times T$-grid: for grid-points $P=\left(p_{x}, p_{y}\right)$ and $Q=\left(q_{x}, q_{y}\right)$ let

$$
P \leq_{\text {lex }} Q: \Longleftrightarrow\left(p_{x}<q_{x}\right) \text { or }\left(p_{x}=q_{x} \text { and } p_{y}<q_{y}\right) .
$$

Lemma 3.2. The number $\left|\mathcal{E}_{3}^{0}\right|$ of 3-element edges in the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{k}\right)$ satisfies for some constant $c_{3}>0$:

$$
\begin{equation*}
\left|\mathcal{E}_{3}^{0}\right| \leq c_{3} \cdot T^{4} \cdot \log T \tag{26}
\end{equation*}
$$

We remark that in [5] an upper bound of $O\left(T^{4+\varepsilon}\right)$, for any $\varepsilon>0$, on the number of collinear triples of grid-points in the $T \times T$-grid has been proved.
Proof. For distinct grid-points $P, Q, R \in V$ we have $\{P, Q, R\} \in \mathcal{E}_{3}^{0}$ if and only if P, Q, R are collinear. Let $P \leq_{\text {lex }} Q \leq_{\text {lex }} R$ with $P=\left(p_{x}, p_{y}\right)$ and $R=\left(r_{x}, r_{y}\right)$. If $p_{x}=r_{x}$ or $p_{y}=r_{y}$, the number of unordered collinear triples P, Q, R of grid-points is less than T^{4}, since there are $2 \cdot T$ horizontal or vertical lines and on each of these lines we can choose $\binom{T}{3}$ unordered triples of grid-points, which yield $2 \cdot T \cdot\binom{T}{3}<T^{4}$ unordered collinear triples in the $T \times T$-grid.

Let $h, s \neq 0$. A grid-point P may be chosen in at most T^{2} ways. Given P, any other grid-point R with $P \leq_{\operatorname{lex}} R$ in the $T \times T$-grid is determined by a pair (s, h) of integers with $s:=r_{x}-p_{x}>0$ and $h:=r_{y}-p_{y}$. Without loss of generality let $1 \leq h, s \leq T$, as those pairs (s, h) of integers with $1 \leq s \leq T$ and $-T \leq h \leq-1$ are taken into account by an additional constant factor of 2 .

Having fixed the grid-points P and R, on the segment $[P, R]$ there are less than $\operatorname{gcd}(h, s)$ gridpoints Q excluding P and R, hence with $P \leq_{\text {lex }} Q \leq_{\text {lex }} R$ there are less than $\operatorname{gcd}(h, s)$ choices for the grid-point Q. Thus, the number of unordered collinear triples in the $T \times T$-grid is bounded from above as follows:

$$
\left|\mathcal{E}_{3}^{0}\right| \leq T^{4}+2 \cdot T^{2} \cdot \sum_{s=1}^{T} \sum_{h=1}^{T} \operatorname{gcd}(h, s)
$$

Each divisor $d \in\{1, \ldots, T\}$ divides at most T / d integers from the set $\{1, \ldots, T\}$, hence, with $\sum_{d=1}^{T} 1 / d \leq 1+\int_{1}^{T}(1 / x) \mathrm{d} x \leq 1+\ln T$, we infer for a constant $c_{3}>0$:

$$
\begin{aligned}
\left|\mathcal{E}_{3}^{0}\right| & \leq T^{4}+2 \cdot T^{2} \cdot \sum_{s=1}^{T} \sum_{h=1}^{T} \operatorname{gcd}(h, s) \leq T^{4}+2 \cdot T^{2} \cdot \sum_{d=1}^{T} d \cdot\left(\frac{T}{d}\right)^{2} \\
& \leq c_{3} \cdot T^{4} \cdot \log T
\end{aligned}
$$

as was claimed.

The next result from [5] is the discrete analogue of Lemmas 2.2 and 2.3 for the $T \times T$-grid.
Lemma 3.3. For distinct grid-points $P=\left(p_{x}, p_{y}\right)$ and $R=\left(r_{x}, r_{y}\right)$ with $P \leq_{\operatorname{lex}} R$ from the $T \times T$-grid, where $s:=r_{x}-p_{x} \geq 0$ and $h:=r_{y}-p_{y}$, the following hold:
(a) There are at most $4 \cdot A$ grid-points Q in the $T \times T$-grid such that
(i) $P \leq_{\operatorname{lex}} Q \leq_{\text {lex }} R$, and
(ii) P, Q, R are not collinear, and area $(P, Q, R) \leq A$.
(b) The number of grid-points Q in the $T \times T$-grid which fulfills only (ii) from (a) is at most $12 \cdot A \cdot T / s$ for $s>0$, and at most $12 \cdot A \cdot T /|h|$ for $|h|>s$.

Lemma 3.4. For fixed integers $k \geq 3$, the number $\left|\mathcal{E}_{k}\right|$ of unordered k-tuples P_{1}, \ldots, P_{k} of distinct grid-points in the $T \times T$-grid with area $\left(P_{1}, \ldots, P_{k}\right) \leq A$, where no three of P_{1}, \ldots, P_{k} are collinear, satisfies for some constant $c_{k}>0$:

$$
\begin{equation*}
\left|\mathcal{E}_{k}\right| \leq c_{k} \cdot A^{k-2} \cdot T^{4} \tag{27}
\end{equation*}
$$

Proof. Let P_{1}, \ldots, P_{k} be distinct grid-points, no three on a line, in the $T \times T$-grid with $\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A$. We may assume after renumbering that $P_{1} \leq_{\operatorname{lex}} \ldots \leq_{\operatorname{lex}} P_{k}$. For $P_{1}=$ $\left(p_{1, x}, p_{1, y}\right)$ and $P_{k}=\left(p_{k, x}, p_{k, y}\right)$ let $s:=p_{k, x}-p_{1, x} \geq 0$ and $h:=p_{k, y}-p_{1, y}$. If $s=0$, then for $k \geq 3$ the grid-points P_{1}, \ldots, P_{k} are collinear, hence we have $s>0$.

There are T^{2} choices for the grid-point P_{1}. Given P_{1}, any other grid-point P_{k} with $P_{1} \leq_{\operatorname{lex}} P_{k}$ is determined by a pair (s, h) of integers with $1 \leq s \leq T$ and $-T \leq h \leq T$. With $\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A$, by Lemma 2.1 it is area $\left(P_{1}, P_{j}, P_{k}\right) \leq A$ for $j=2, \ldots, k-1$. Then, given the grid-points P_{1} and P_{k}, since $P_{1} \leq_{\operatorname{lex}} P_{j} \leq \operatorname{lex} P_{k}, j=2, \ldots, k-1$, and no three of the grid-points P_{1}, \ldots, P_{k} are collinear, by Lemma 3.3(a) there are at most $4 \cdot A$ choices for each grid-point P_{j}, hence $(4 \cdot A)^{k-2}$ choices for the grid-points P_{2}, \ldots, P_{k-1} altogether, thus for a constant $c_{k}>0$:

$$
\left|\mathcal{E}_{k}\right| \leq T^{2} \cdot \sum_{s=1}^{T} \sum_{h=-T}^{T}(4 \cdot A)^{k-2} \leq c_{k} \cdot A^{k-2} \cdot T^{4}
$$

as desired.
By (27) we infer that the average degree t^{k-1} of the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{k}\right)$ for the k-element edges $E \in \mathcal{E}_{k}$ satisfies

$$
\begin{equation*}
t^{k-1}=\frac{k \cdot\left|\mathcal{E}_{k}\right|}{|V|} \leq \frac{k \cdot c_{k} \cdot A^{k-2} \cdot T^{4}}{T^{2}}=k \cdot c_{k} \cdot A^{k-2} \cdot T^{2}=: t_{0}^{k-1} \tag{28}
\end{equation*}
$$

3.1. Upper bounds on the number of $(2, j)$-cycles

Let $s_{2, j}(\mathcal{G})$ denote the number of $(2, j)$-cycles, $j=2, \ldots, k-1$, which arise from the k element edges $E \in \mathcal{E}_{k}$ in the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{k}\right)$.

Lemma 3.5. Let $k \geq 3$ be a fixed integer. For $j=2, \ldots, k-1$, there exist constants $c_{2, j}>0$ such that the numbers $s_{2, j}(\mathcal{G})$ of $(2, j)$-cycles in the hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3}^{0} \cup \mathcal{E}_{k}\right)$ fulfill

$$
\begin{equation*}
s_{2, j}(\mathcal{G}) \leq c_{2, j} \cdot A^{2 k-j-2} \cdot T^{4} \cdot(\log T)^{3} \tag{29}
\end{equation*}
$$

Proof. For $j=2, \ldots, k-1$, let us denote the grid-points corresponding to the vertices of two distinct k-element edges $E, E^{\prime} \in \mathcal{E}_{k}$, which yield a $(2, j)$-cycle in \mathcal{G}, i.e., $\left|E \cap E^{\prime}\right|=j$, by P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$, where $P_{1} \leq_{\text {lex }} \ldots \leq_{\text {lex }} P_{j}$ and no three points of P_{1}, \ldots, P_{k} and of $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$ are collinear. By assumption we have

$$
\begin{equation*}
\operatorname{area}\left(P_{1}, \ldots, P_{k}\right) \leq A \quad \text { and } \quad \operatorname{area}\left(P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right) \leq A \tag{30}
\end{equation*}
$$

There are T^{2} choices for the grid-point P_{1}. Given $P_{1}=\left(p_{1, x}, p_{1, y}\right)$, any other grid-point $P_{j}=\left(p_{j, x}, p_{j, y}\right)$ with $P_{1} \leq_{\text {lex }} P_{j}$ is determined by a pair $(s, h) \neq(0,0)$ of integers with $s=p_{j, x}-p_{1, x} \geq 0$ and $h=p_{j, y}-p_{1, y}$. By symmetry we may assume that $s>0$ and $0 \leq h \leq s \leq T$, otherwise we interchange the role of h and s. This is taken into account by the additional constant factor $c^{\prime}=2$. Given P_{1} and P_{j}, by Lemma 2.1 and (30) we have area $\left(P_{1}, P_{i}, P_{j}\right) \leq A$ for $i=2, \ldots, j-1$ and since $P_{1} \leq_{\text {lex }} P_{i} \leq_{\text {lex }} P_{j}$, where P_{1}, P_{i}, P_{j} are not on a line, by Lemma 3.3(a) there are at most $4 \cdot A$ choices for each grid-point P_{i}, hence there are at most $(4 \cdot A)^{j-2}$ choices for the grid-points P_{2}, \ldots, P_{j-1}. Thus, for fixed h, s the number of choices for the grid-points $P_{1}, \ldots P_{j}$ is at most

$$
\begin{equation*}
c^{\prime} \cdot(4 \cdot A)^{j-2} \cdot T^{2} \tag{31}
\end{equation*}
$$

As in the arguments in Section 2, for the convex hulls of the points P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$ we denote their (lexicographically) extremal points by $P^{\prime}, P^{\prime \prime} \in\left\{P_{1}, \ldots, P_{k}\right\}$ and $Q^{\prime}, Q^{\prime \prime} \in\left\{P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}\right\}$, respectively, i.e., if say $P^{\prime} \leq_{\text {lex }} P^{\prime \prime}$ and $Q^{\prime} \leq_{\text {lex }} Q^{\prime \prime}$, then we have $P^{\prime} \leq_{\text {lex }} P_{1}, \ldots, P_{k} \leq_{\text {lex }} P^{\prime \prime}$ and $Q^{\prime} \leq_{\text {lex }} P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k} \leq_{\text {lex }} Q^{\prime \prime}$, compare Fig. 1.

Given the points $P_{1} \leq_{\text {lex }} \ldots \leq_{\text {lex }} P_{j}$, there are three possibilities for each of the convex hulls of P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$:
(i) both points, P_{1} and P_{j}, are extremal, or
(ii) exactly one point, P_{1} or P_{j}, is extremal, or
(iii) none of the points P_{1}, P_{j} is extremal.

We consider the convex hull of P_{1}, \ldots, P_{k} as the considerations for the convex hull of $P_{1}, \ldots, P_{j}, Q_{j+1}, \ldots, Q_{k}$ are similar.

In case (i) the grid-points P_{1} and P_{j} are extremal for the convex hull of P_{1}, \ldots, P_{k}, hence we have $P_{1} \leq_{\text {lex }} P_{j+1}, \ldots, P_{k} \leq_{\text {lex }} P_{j}$. By (30) and Lemma 3.3(a), since area $\left(P_{1}, P_{l}, P_{j}\right) \leq A$, $l=j+1, \ldots, k$, and no three of P_{1}, \ldots, P_{k} are collinear, there are at most $4 \cdot A$ choices for each grid-point P_{l}, hence in case (i), given P_{1}, \ldots, P_{j}, the number of choices for the grid-points P_{j+1}, \ldots, P_{k} is at most

$$
\begin{equation*}
(4 \cdot A)^{k-j} \tag{32}
\end{equation*}
$$

In case (ii) exactly one of the grid-points P_{1} or P_{j} is extremal for the convex hull of P_{1}, \ldots, P_{k}. By Lemma 3.3(b) there are at most $12 \cdot A \cdot T / s$ choices for the second extremal gridpoint P^{\prime} or $P^{\prime \prime}$. Having fixed this second extremal grid-point, for each grid-point $P_{j+1}, \ldots, P_{k} \neq$ $P^{\prime}, P^{\prime \prime}$ there are by Lemma 3.3(a) at most $4 \cdot A$ choices, hence in case (ii), given P_{1}, \ldots, P_{j}, the number of choices for the grid-points P_{j+1}, \ldots, P_{k} is at most

$$
\begin{equation*}
(4 \cdot A)^{k-j-1} \cdot \frac{12 \cdot A \cdot T}{s}=(4 \cdot A)^{k-j} \cdot \frac{3 \cdot T}{s} . \tag{33}
\end{equation*}
$$

In case (iii) none of the grid-points P_{1}, P_{j} is extremal for the convex hull of P_{1}, \ldots, P_{k}. Given the grid-points P_{1}, \ldots, P_{j}, by (30) and Lemma 2.2 all grid-points P_{j+1}, \ldots, P_{k} and

Fig. 3. The parallelograms $\mathcal{P}_{-i}, \mathcal{P}_{i}, i=1,2, \ldots$, are copies of \mathcal{P}_{0}.
Q_{j+1}, \ldots, Q_{k} are contained in a strip S centered at the line $P_{1} P_{j}$ of width $4 \cdot A / \sqrt{h^{2}+s^{2}}$. Consider the parallelogram $\mathcal{P}_{0}=\left\{\left(p_{x}, p_{y}\right) \in S \mid p_{1, x} \leq p_{x} \leq p_{j, x}\right\}$ within the strip S of width $4 \cdot A / \sqrt{h^{2}+s^{2}}$, where $P_{1}=\left(p_{1, x}, p_{1, y}\right)$ and $P_{j}=\left(p_{j, x}, p_{j, y}\right)$ and $s=p_{j, x}-p_{1, x} \geq 0$. By Lemma 3.3(a) this parallelogram \mathcal{P}_{0} contains at most $4 \cdot A$ grid-points P, such that P_{1}, P_{j}, P are not collinear. We divide the strip S within the $T \times T$-grid into congruent parallelograms $\mathcal{P}_{0}, \mathcal{P}_{g}$, $g=-l,-l+1, \ldots, m$ with $1 \leq l, m \leq\lfloor T / s\rfloor+2$, each of side-lengths $4 \cdot A / s$ and $\sqrt{h^{2}+s^{2}}$ and area $4 \cdot A$, where all parallelograms $\mathcal{P}_{-g}, g \geq 1$, are on the left of the parallelogram \mathcal{P}_{0}, and all parallelograms $\mathcal{P}_{h}, h \geq 1$, are on the right of \mathcal{P}_{0}, i.e., $\mathcal{P}_{-g}:=\left\{\left(p_{x}, p_{y}\right) \in S \mid p_{1, x}-g \cdot s \leq\right.$ $\left.p_{x} \leq p_{1, x}-(g-1) \cdot s\right\}$ and $\mathcal{P}_{h}:=\left\{\left(p_{x}, p_{y}\right) \in S \mid p_{j, x}+(h-1) \cdot s \leq p_{x} \leq p_{j, x}+h \cdot s\right\}$, compare Fig. 3. Each grid-point $P=\left(p_{x}, p_{y}\right) \in \mathcal{P}_{-g} \cup \mathcal{P}_{g}, g \geq 1$, satisfies $\left|p_{x}-p_{1, x}\right| \geq g \cdot s$ or $\left|p_{x}-p_{j, x}\right| \geq g \cdot s$. By Lemma 3.3(a) each parallelogram \mathcal{P}_{-g} or $\mathcal{P}_{g}, g \geq 1$, contains at most $4 \cdot A$ grid-points P, such that P_{1}, P_{j}, P are not collinear. Each for the convex hull of P_{1}, \ldots, P_{k} extremal grid-point is contained in a parallelogram \mathcal{P}_{-g} or \mathcal{P}_{g}, since by our assumption neither $P_{1} \in \mathcal{P}_{0}$ nor $P_{j} \in \mathcal{P}_{0}$ are extremal. If $P^{\prime} \in \mathcal{P}_{-g} \cup \mathcal{P}_{g}$ or $P^{\prime \prime} \in \mathcal{P}_{-g} \cup \mathcal{P}_{g}, g \geq 1$, then by Lemma 3.3(b) there are at most $12 \cdot A \cdot T /(g \cdot s)$ choices for the second extremal grid-point. Having chosen both extremal grid-points P^{\prime} and $P^{\prime \prime}$, for the other grid-points $P_{j+1}, \ldots, P_{k} \neq P^{\prime}, P^{\prime \prime}$, by (30) and Lemma 3.3(a) there are at most ($4 \cdot A)^{k-j-2}$ choices.

Hence, with $\sum_{i=1}^{l} 1 / i \leq 1+\ln l$ we obtain in case (iii), given P_{1}, \ldots, P_{j}, the following upper bound on the number of choices for P_{j+1}, \ldots, P_{k} :

$$
\begin{align*}
2 \cdot(4 \cdot A)^{k-j-2} \cdot \sum_{g=1}^{\lfloor T / s\rfloor+2} 4 \cdot A \cdot \frac{12 \cdot A \cdot T}{g \cdot s} & =(4 \cdot A)^{k-j} \cdot \frac{6 \cdot T}{s} \cdot \sum_{g=1}^{\lfloor T / s\rfloor+2} \frac{1}{g} \\
& \leq(4 \cdot A)^{k-j} \cdot \frac{12 \cdot T}{s} \cdot \ln T \tag{34}
\end{align*}
$$

By (32)-(34) using $s \leq T$, altogether the number of choices for the grid-points P_{j+1}, \ldots, P_{k} is at most

$$
\begin{equation*}
(4 \cdot A)^{k-j} \cdot\left(1+\frac{3 \cdot T}{s}+\frac{12 \cdot T \cdot \ln T}{s}\right) \leq(4 \cdot A)^{k-j} \cdot \frac{16 \cdot T \cdot \ln T}{s} . \tag{35}
\end{equation*}
$$

Given the grid-points P_{1}, \ldots, P_{j}, the same upper bound (35) holds for the number of choices of the grid-points Q_{j+1}, \ldots, Q_{k}. With (31) and (35), for $j=2, \ldots, k-1$, we obtain for some
constants $c^{\prime}, c_{2, j}>0$:

$$
\begin{align*}
s_{2, j}(\mathcal{G}) & \leq c^{\prime} \cdot(4 \cdot A)^{j-2} \cdot T^{2} \cdot \sum_{s=1}^{T} \sum_{h=0}^{s}\left((4 \cdot A)^{k-j} \cdot \frac{16 \cdot T \cdot \ln T}{s}\right)^{2} \\
& \leq c^{\prime} \cdot 4^{2 k-j+2} \cdot A^{2 k-j-2} \cdot T^{4} \cdot(\ln T)^{2} \cdot \sum_{s=1}^{T} \sum_{h=0}^{s} \frac{1}{s^{2}} \\
& \leq c_{2, j} \cdot A^{2 k-j-2} \cdot T^{4} \cdot(\log T)^{3} \tag{36}
\end{align*}
$$

which finishes the proof of the lemma.

3.2. Selecting a subhypergraph

For a suitable constant $c>0$ we set

$$
\begin{equation*}
A:=\frac{c \cdot T^{2} \cdot(\log n)^{1 /(k-2)}}{n^{(k-1) /(k-2)}} \tag{37}
\end{equation*}
$$

Towards our estimate of the running times we observe that $A \geq 1$ for n large enough. For the moment we use a probabilistic argument, which will be derandomized shortly. With probability $p:=T^{\varepsilon} / t_{0}$, thus $p=O\left(T^{\varepsilon} /\left(A^{(k-2) /(k-1)} \cdot T^{2 /(k-1)}\right)\right)=o(1)$ by (28), where $\varepsilon>0$ is a small constant, we pick uniformly at random and independently of each other vertices from the vertex-set V. Let $V^{*} \subseteq V$ be the resulting random subset of the picked vertices and let $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{k}^{*}\right)$ with $\mathcal{E}_{3}^{0 *}:=\mathcal{E}_{3}^{0} \cap\left[V^{*}\right]^{3}$ and $\mathcal{E}_{k}^{*}:=\mathcal{E}_{k} \cap\left[V^{*}\right]^{k}$ be the resulting random induced subhypergraph of \mathcal{G}. Let $E\left[\left|V^{*}\right|\right], E\left[\left|\mathcal{E}_{3}^{0 *}\right|\right], E\left[\left|\mathcal{E}_{k}^{*}\right|\right], E\left[s_{2, j}\left(\mathcal{G}^{*}\right)\right]$ denote the expected numbers of vertices, 3 -element edges, k-element edges, and $(2, j)$-cycles arising from the k element edges $E \in \mathcal{E}_{k}^{*}$, respectively, in $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{k}^{*}\right)$. By (26), (27) and (29) we infer for $j=2, \ldots, k-1$ and constants $c_{1}^{\prime}, c_{3}^{\prime}, c_{k}^{\prime}, c_{2, j}^{\prime}>0$:

$$
\begin{align*}
& E\left[\left|V^{*}\right|\right]=p \cdot T^{2} \geq c_{1}^{\prime} \cdot T^{2} \cdot T^{\varepsilon} /\left(A^{\frac{k-2}{k-1}} \cdot T^{\frac{2}{k-1}}\right)=c_{1}^{\prime} \cdot T^{\frac{2 k-4}{k-1}+\varepsilon} / A^{\frac{k-2}{k-1}} \tag{38}\\
& E\left[\left|\mathcal{E}_{3}^{0 *}\right|\right]=p^{3} \cdot\left|\mathcal{E}_{3}^{0}\right| \leq c_{3}^{\prime} \cdot\left(T^{4} \cdot \log T\right) \cdot T^{3 \varepsilon} /\left(A^{\frac{k-2}{k-1}} \cdot T^{\frac{2}{k-1}}\right)^{3} \\
& \leq c_{3}^{\prime} \cdot T^{\frac{4 k-10}{k-1}+3 \varepsilon} \cdot \log T / A^{\frac{3 k-6}{k-1}} \tag{39}\\
& E\left[\left|\mathcal{E}_{k}^{*}\right|\right]=p^{k} \cdot\left|\mathcal{E}_{k}\right| \leq c_{k}^{\prime} \cdot\left(A^{k-2} \cdot T^{4}\right) \cdot T^{k \varepsilon} /\left(A^{\frac{k-2}{k-1}} \cdot T^{\frac{2}{k-1}}\right)^{k} \\
& \leq c_{k}^{\prime} \cdot T^{\frac{2 k-4}{k-1}+k \varepsilon} / A^{\frac{k-2}{k-1}} \tag{40}\\
& E\left[s_{2, j}\left(\mathcal{G}^{*}\right)\right]=p^{2 k-j} \cdot s_{2, j}(\mathcal{G}) \\
& \leq c_{2, j}^{\prime} \cdot\left(A^{2 k-j-2} \cdot T^{4} \cdot(\log T)^{3}\right) \cdot T^{(2 k-j) \varepsilon} /\left(A^{\frac{k-2}{k-1}} \cdot T^{\frac{2}{k-1}}\right)^{2 k-j} \\
& \leq c_{2, j}^{\prime} \cdot T^{\frac{2 j-4}{k-1}+(2 k-j) \varepsilon} \cdot(\log T)^{3} / A^{\frac{j-2}{k-1}} . \tag{41}
\end{align*}
$$

By Chernoff's inequality, for n binomially distributed random variables $X_{i}, i=1, \ldots, n$, with values in $\{0,1\}$ and with sum $X:=X_{1}+\cdots+X_{n}$ having expected value $E[X]$, it is $\operatorname{Prob}(E[X]-X \geq u) \leq \mathrm{e}^{-u^{2} / n}$. With this, (38)-(41), and Markov's inequality we infer that there exists an induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{k}^{*}\right)$ of \mathcal{G} such that

$$
\begin{align*}
& \left|V^{*}\right| \geq\left(c_{1}^{\prime} / 2\right) \cdot T^{\frac{2 k-4}{k-1}+\varepsilon} / A^{\frac{k-2}{k-1}} \tag{42}\\
& \left|\mathcal{E}_{3}^{0 *}\right| \leq(k+1) \cdot c_{3}^{\prime} \cdot T^{\frac{4 k-10}{k-1}+3 \varepsilon} \cdot \log T / A^{\frac{3 k-6}{k-1}} \tag{43}\\
& \left|\mathcal{E}_{k}^{*}\right| \leq(k+1) \cdot c_{k}^{\prime} \cdot T^{\frac{2 k-4}{k-1}+k \varepsilon} / A^{\frac{k-2}{k-1}} \tag{44}\\
& s_{2, j}\left(\mathcal{G}^{*}\right) \leq(k+1) \cdot c_{2, j}^{\prime} \cdot T^{\frac{2 j-4}{k-1}+(2 k-j) \varepsilon} \cdot(\log T)^{3} / A^{\frac{j-2}{k-1}} . \tag{45}
\end{align*}
$$

This probabilistic argument can be turned into a deterministic polynomial time algorithm by using the method of conditional probabilities. Namely, for $j=2, \ldots, k-1$, let \mathcal{C}_{j} be the (multi-)set of all $(2 k-j)$-element subsets $E \cup E^{\prime}$ of V such that the pair $\left\{E, E^{\prime}\right\}$ of k-element edges $E, E^{\prime} \in \mathcal{E}_{k}$ yields a $(2, j)$-cycle in \mathcal{G}, i.e., $\left|E \cap E^{\prime}\right|=j$. We enumerate the vertices of the $T \times T$-grid as $P_{1}, \ldots, P_{T^{2}}$. To each vertex P_{i} we associate a parameter $p_{i} \in[0,1]$, $i=1, \ldots, T^{2}$, and we define a potential function $F\left(p_{1}, \ldots, p_{T^{2}}\right)$ by

$$
\begin{aligned}
F\left(p_{1}, \ldots, p_{T^{2}}\right):= & 2^{p \cdot T^{2} / 2} \cdot \prod_{i=1}^{T^{2}}\left(1-\frac{p_{i}}{2}\right)+\frac{\sum_{\{i, j, k\} \in \mathcal{E}_{3}^{0}} p_{i} \cdot p_{j} \cdot p_{k}}{(k+1) \cdot c_{3}^{\prime} \cdot T^{\frac{4 k-10}{k-1}+3 \varepsilon} \cdot \log T / A^{\frac{3 k-6}{k-1}}} \\
& +\frac{\sum_{\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{E}_{k} l} \prod_{1=1}^{k} p_{i_{l}}}{(k+1) \cdot c_{k}^{\prime} \cdot T^{\frac{2 k-4}{k-1}+k \varepsilon} / A^{\frac{k-2}{k-1}}} \\
& +\sum_{j=2}^{k-1} \frac{\sum_{\left\{i_{1}, \ldots, i_{2 k-j}\right\} \in \mathcal{C}_{j}} \prod_{l=1}^{2 k-j} p_{i_{l}}}{(k+1) \cdot c_{2, j}^{\prime} \cdot T^{\frac{2 j-4}{k-1}+(2 k-j) \varepsilon} \cdot(\log T)^{3} / A^{\frac{j-2}{k-1}}}
\end{aligned}
$$

We initialize $p_{1}:=\cdots:=p_{T^{2}}:=p:=T^{\varepsilon} / t_{0}$. Using $1-x \leq \mathrm{e}^{-x}$, with (39)-(41) we infer $F(p, \ldots, p)<(2 / e)^{p T^{2} / 2}+k /(k+1)$. Hence, in the beginning we have $F(p, \ldots, p)<1$, if $p \cdot T^{2} \geq 7 \cdot \ln (k+1)$. This is fulfilled since $p=T^{\varepsilon} / t_{0} \geq\left(T^{\varepsilon} \cdot n\right) / T^{2}$ by (28) and (37), and $\varepsilon<1$, and $T=n^{1+\beta}$ with $\beta>0$. Using the linearity of $F\left(p_{1}, \ldots, p_{T^{2}}\right)$ in each p_{i}, we minimize $F\left(p_{1}, \ldots, p_{T^{2}}\right)$ step by step by fixing one after the other $p_{i}:=0$ or $p_{i}:=1$ for $i=1, \ldots, T^{2}$. Finally, we obtain $F\left(p_{1}, \ldots, p_{T^{2}}\right) \leq F(p, \ldots, p)<1$. With $V^{*}=\left\{P_{i} \in V \mid p_{i}=1\right\}$ this yields an induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{k}^{*}\right)$ of \mathcal{G} with $\mathcal{E}_{3}^{0 *}:=\mathcal{E}_{3}^{0} \cap\left[V^{*}\right]^{3}$ and $\mathcal{E}_{k}^{*}:=\mathcal{E}_{k} \cap\left[V^{*}\right]^{k}$.

We now have $\left|V^{*}\right| \geq p \cdot T^{2} / 2$, as otherwise $F\left(p_{1}, \ldots, p_{T^{2}}\right) \geq 2^{p T^{2} / 2} \cdot \prod_{i=1}^{T^{2}}\left(1-p_{i} / 2\right)>$ $2^{p T^{2} / 2} \cdot(1 / 2)^{p T^{2} / 2}=1$, which is a contradiction. Moreover, it is $\left|\mathcal{E}_{3}^{0 *}\right| \leq(k+1) \cdot c_{3}^{\prime}$. $T^{(4 k-10) /(k-1)+3 \varepsilon} \cdot \log T / A^{(3 k-6) /(k-1)}$, else we have $F\left(p_{1}, \ldots, p_{n}\right)>1$, a contradiction. Similarly we infer $\left|\mathcal{E}_{k}^{*}\right| \leq(k+1) \cdot c_{k}^{\prime} \cdot T^{(2 k-4) /(k-1)+k \varepsilon} / A^{(k-2) /(k-1)}$ and $s_{2, j}\left(\mathcal{G}^{*}\right) \leq(k+$ 1) $\cdot c_{2, j}^{\prime} \cdot T^{(2 j-4) /(k-1)+(2 k-j) \varepsilon} \cdot(\log T)^{3} / A^{(j-2) /(k-1)}$.

Hence the induced subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{0 *} \cup \mathcal{E}_{k}^{*}\right)$ satisfies (42)-(45). When fixing $p_{i}:=0$ or $p_{i}:=1, i=1, \ldots, T^{2}$, during the algorithm, we consider only those edges and 2-cycles, which are incident to vertex P_{i}, hence for fixed $k \geq 3$ the running time is linear in $\left(|V|+\left|\mathcal{E}_{3}^{0}\right|+\left|\mathcal{E}_{k}\right|+\sum_{j=2}^{k-1}\left|\mathcal{C}_{j}\right|\right)$. By (26), (27), (29) and (37), and since $T=n^{1+\beta}$ with $\beta>0$,
the time for this derandomization is

$$
\begin{align*}
& O\left(\left(|V|+\left|\mathcal{E}_{3}^{0}\right|+\left|\mathcal{E}_{k}\right|+\sum_{j=2}^{k-1}\left|\mathcal{C}_{j}\right|\right)\right)=O\left(\left|\mathcal{C}_{2}\right|\right)=O\left(A^{2 k-4} \cdot T^{4} \cdot(\log T)^{3}\right) \\
& \quad=O\left(\frac{T^{4 k-4} \cdot(\log n)^{5}}{n^{2 k-2}}\right)=O\left(n^{2 k-2+4 \beta(k-1)} \cdot(\log n)^{5}\right) \tag{46}
\end{align*}
$$

We show next that, for a certain choice of the parameters $\beta, \varepsilon>0$, the numbers $\left|\mathcal{E}_{3}^{0 *}\right|$ and $s_{2, j}\left(\mathcal{G}^{*}\right)$ of 3-element edges and of $(2, j)$-cycles, $j=2, \ldots, k-1$, in \mathcal{G}^{*}, respectively, are small in comparison to the number $\left|V^{*}\right|$ of vertices in \mathcal{G}^{*}.

Lemma 3.6. For every fixed ε with $0<\varepsilon<\beta /(1+\beta)$ it is

$$
\begin{equation*}
\left|\mathcal{E}_{3}^{0 *}\right|=o\left(\left|V^{*}\right|\right) \tag{47}
\end{equation*}
$$

Proof. By (37), (42) and (43), and using $T=n^{1+\beta}$ for fixed $\beta, \varepsilon>0$, we have

$$
\begin{aligned}
& \left|\mathcal{E}_{3}^{0 *}\right|=o\left(\left|V^{*}\right|\right) \\
& \Longleftrightarrow T^{\frac{4 k-10}{k-1}+3 \varepsilon} \cdot \log T / A^{\frac{3 k-6}{k-1}}=o\left(T^{\frac{2 k-4}{k-1}+\varepsilon} / A^{\frac{k-2}{k-1}}\right) \\
& \Longleftrightarrow T^{\frac{2 k-6}{k-1}+2 \varepsilon} \cdot \log T / A^{\frac{2 k-4}{k-1}}=o(1) \\
& \Longleftrightarrow n^{2-(1+\beta)(2-2 \varepsilon)} \cdot(\log n)^{\frac{k-3}{k-1}}=o(1) \\
& \Longleftrightarrow(1+\beta) \cdot(2-2 \cdot \varepsilon)>2,
\end{aligned}
$$

which holds for fixed $\varepsilon<\beta /(1+\beta)$.
Lemma 3.7. For every fixed ε with $0<\varepsilon<\frac{k-j}{(2 k-j-1)(k-2)(1+\beta)}, j=2, \ldots, k-1$, it is

$$
\begin{equation*}
s_{2, j}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) \tag{48}
\end{equation*}
$$

Proof. For $j=2, \ldots, k-1$, by (37), (42) and (45), and using $T=n^{1+\beta}$ for fixed $\beta, \varepsilon>0$, we infer

$$
\begin{aligned}
& s_{2, j}\left(\mathcal{G}^{*}\right)=o\left(\left|V^{*}\right|\right) \\
\Longleftrightarrow & T^{\frac{2 j-4}{k-1}+(2 k-j) \varepsilon} \cdot(\log T)^{3} / A^{\frac{j-2}{k-1}}=o\left(T^{\frac{2 k-4}{k-1}+\varepsilon} / A^{\frac{k-2}{k-1}}\right) \\
\Longleftrightarrow & A^{\frac{k-j}{k-1}} \cdot(\log T)^{3} / T^{\frac{2 k-2 j}{k-1}-(2 k-j-1) \varepsilon}=o(1) \\
\Longleftrightarrow & n^{(1+\beta)(2 k-j-1) \varepsilon-\frac{k-j}{k-2}} \cdot(\log n)^{3+\frac{k-j}{(k-1)(k-2)}}=o(1) \\
\Longleftrightarrow & (1+\beta) \cdot(2 \cdot k-j-1) \cdot \varepsilon<\frac{k-j}{k-2},
\end{aligned}
$$

which holds for fixed $\varepsilon<\frac{k-j}{(k-2)(2 k-j-1)(1+\beta)}$.
To satisfy $p=T^{\varepsilon} / t_{0} \leq 1$, with (28) we need $T^{\varepsilon} /\left(\left(k \cdot c_{k}\right)^{1 /(k-1)} \cdot A^{(k-2) /(k-1)} \cdot T^{2 /(k-1)}\right) \leq 1$. This holds with (37) for $0<\varepsilon \leq 2-1 /(1+\beta)$. For $\varepsilon:=1 /(C \cdot(1+\beta))$ for fixed $C \geq k^{2}$ and $\beta:=1 /(C-1)$ this and the assumptions in Lemmas 3.6 and 3.7 are fulfilled.

From each 3-element edge $E \in \mathcal{E}_{3}^{0 *}$, and each $(2, j)$-cycle in \mathcal{G}^{*} we delete one vertex in time

$$
\begin{equation*}
O\left(\left|V^{*}\right|+\sum_{j=2}^{k-1} s_{2, j}\left(\mathcal{G}^{*}\right)\right)=O\left(\left|V^{*}\right|\right) \tag{49}
\end{equation*}
$$

By Lemmas 3.6 and 3.7 the resulting induced subhypergraph $\mathcal{G}^{* *}=\left(V^{* *}, \mathcal{E}_{k}^{* *}\right)$ of \mathcal{G}^{*} with $\mathcal{E}_{k}^{* *}:=\mathcal{E}_{k}^{*} \cap\left[V^{* *}\right]^{k}$ satisfies $\left|V^{* *}\right|=(1-o(1)) \cdot\left|V^{*}\right| \geq\left|V^{*}\right| / 2$ and does not contain any 3-element edges from $\mathcal{E}_{3}^{0 *}$ or $(2, j)$-cycles arising from $\mathcal{E}_{k}^{* *}$, i.e., $\mathcal{G}^{* *}$ is a linear, k-uniform hypergraph. By (42) we have $\left|V^{* *}\right| \geq\left(c_{1}^{\prime} / 4\right) \cdot T^{(2 k-4) /(k-1)+\varepsilon} / A^{(k-2) /(k-1)}$, and using $\left|\mathcal{E}_{k}^{* *}\right| \leq$ $\left|\mathcal{E}_{k}^{*}\right|$, by (44) the average degree t^{k-1} of the k-uniform subhypergraph $\mathcal{G}^{* *}=\left(V^{* *}, \mathcal{E}_{k}^{* *}\right)$ of \mathcal{G} satisfies

$$
\begin{align*}
t^{k-1} & =\frac{k \cdot\left|\mathcal{E}_{k}^{* *}\right|}{\left|V^{* *}\right|} \leq \frac{k \cdot(k+1) \cdot c_{k}^{\prime} \cdot T^{\frac{2 k-4}{k-1}+k \varepsilon} / A^{\frac{k-2}{k-1}}}{\left(c_{1}^{\prime} / 4\right) \cdot T^{\frac{2 k-4}{k-1}+\varepsilon} / A^{\frac{k-2}{k-1}}} \\
& =\frac{4 \cdot k \cdot(k+1) \cdot c_{k}^{\prime}}{c_{1}^{\prime}} \cdot T^{(k-1) \varepsilon}=: t_{1}^{k-1} \tag{50}
\end{align*}
$$

Since $\mathcal{G}^{* *}$ is linear, the assumptions in Theorem 3.1 are fulfilled, and, using (37), (50), and $T=n^{1+\beta}$ and $\varepsilon=1 /\left(k^{2} \cdot(1+\beta)\right)$ we find for any $\delta>0$ in time

$$
\begin{align*}
O\left(\left|\mathcal{E}_{k}^{* *}\right|+\frac{\left|V^{* *}\right|^{3}}{t_{1}^{3-\delta}}\right) & =O\left(\frac{T^{\frac{2 k-4}{k-1}+k \varepsilon}}{A^{\frac{k-2}{k-1}}}+\frac{T^{\frac{6 k-12}{k-1}+\varepsilon \delta}}{A^{\frac{3 k-6}{k-1}}}\right) \\
& =O\left(\frac{n^{3} \cdot T^{\varepsilon \delta}}{(\log n)^{\frac{3}{k-1}}}\right)=O\left(\frac{n^{3+\delta / k^{2}}}{(\log n)^{\frac{3}{k-1}}}\right) \tag{51}
\end{align*}
$$

an independent set I of size

$$
\begin{aligned}
|I| & =\Omega\left(\frac{\left|V^{* *}\right|}{t} \cdot(\log t)^{\frac{1}{(k-1)}}\right)=\Omega\left(\frac{\left|V^{* *}\right|}{t_{1}} \cdot\left(\log t_{1}\right)^{\frac{1}{(k-1)}}\right) \\
& =\Omega\left(\frac{T^{\frac{2 k-4}{k-1}+\varepsilon} / A^{\frac{k-2}{k-1}}}{T^{\varepsilon}} \cdot\left(\log T^{\varepsilon}\right)^{\frac{1}{(k-1)}}\right)=\Omega\left(\frac{n}{(\log n)^{\frac{1}{k-1}}} \cdot(\log T)^{\frac{1}{(k-1)}}\right) \\
& =\Omega(n) \quad \text { since } T=n^{1+\beta} \text { and } \beta, \varepsilon>0 \text { are constants. }
\end{aligned}
$$

By choosing the constant $c>0$ in (37) sufficiently small, we obtain an independent set of size n, which yields a desired set of n points in $[0,1]^{2}$ such that, after rescaling, the area of the convex hull of any k distinct of these n points is at least $\Omega\left((\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}\right)$. Adding the running times in (46), (49) and (51) we get for $\beta=1 /(C-1)$ and $\delta<1$ the time bound $O\left(n^{2 k-2+(4(k-1)) /(C-1)} \cdot(\log n)^{5}\right)$. Thus, we may achieve the time bound $O\left(n^{2 k-2+\delta^{\prime}}\right)$ for any fixed $\delta^{\prime}>0$ by choosing $\varepsilon:=1 /(C \cdot(1+\beta))$ and $\beta:=1 /(C-1)$, where $C \geq k^{2}$ is a constant with $C>1+(4 k-4) / \delta^{\prime}$.

References

[1] M. Ajtai, J. Komlós, J. Pintz, J. Spencer, E. Szemerédi, Extremal uncrowded hypergraphs, Journal of Combinatorial Theory Series A 32 (1982) 321-335.
[2] G. Barequet, A lower bound for Heilbronn's triangle problem in dimensions, SIAM Journal on Discrete Mathematics 14 (2001) 230-236.
[3] G. Barequet, The on-line Heilbronn's triangle problem, Discrete Mathematics 283 (2004) 7-14.
[4] C. Bertram-Kretzberg, H. Lefmann, The algorithmic aspects of uncrowded hypergraphs, SIAM Journal on Computing 29 (1999) 201-230.
[5] C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn's problem, SIAM Journal on Computing 30 (2000) 383-390.
[6] P. Brass, An upper bound for the d-dimensional analogue of Heilbronn's triangle problem, SIAM Journal on Discrete Mathematics 19 (2005) 192-195.
[7] B. Chazelle, Lower bounds on the complexity of polytope range searching, Journal of the American Mathematical Society 2 (1989) 637-666.
[8] R.A. Duke, H. Lefmann, V. Rödl, On uncrowded hypergraphs, Random Structures and Algorithms 6 (1995) 209-212.
[9] A. Fundia, Derandomizing Chebychev's inequality to find independent sets in uncrowded hypergraphs, Random Structures and Algorithms 8 (1996) 131-147.
[10] T. Jiang, M. Li, P. Vitany, The average case area of Heilbronn-type triangles, Random Structures and Algorithms 20 (2002) 206-219.
[11] J. Komlós, J. Pintz, E. Szemerédi, On Heilbronn's triangle problem, Journal of the London Mathematical Society 24 (1981) 385-396.
[12] J. Komlós, J. Pintz, E. Szemerédi, A lower bound for Heilbronn's problem, Journal of the London Mathematical Society 25 (1982) 13-24.
[13] H. Lefmann, Distributions of points and large quadrangles (extended abstract), in: Proceedings 15th Annual International Symposium on Algorithms and Computation, ISAAC'2004, in: LNCS, vol. 3341, Springer, 2004, pp. 657-668.
[14] H. Lefmann, On Heilbronn's problem in higher dimension, Combinatorica 23 (2003) 669-680.
[15] H. Lefmann, N. Schmitt, A deterministic polynomial time algorithm for Heilbronn's problem in three dimensions, SIAM Journal on Computing 31 (2002) 1926-1947.
[16] K.F. Roth, On a problem of Heilbronn, Journal of the London Mathematical Society 26 (1951) 198-204.
[17] K.F. Roth, On a problem of Heilbronn, II, Proceedings of the London Mathematical Society 25 (3) (1972) 193-212.
[18] K.F. Roth, On a problem of Heilbronn, III, Proceedings of the London Mathematical Society 25 (3) (1972) 543-549.
[19] K.F. Roth, Estimation of the area of the smallest triangle obtained by selecting three out of n points in a disc of unit area, in: Proc. of Symposia in Pure Mathematics, vol. 24, AMS, Providence, 1973, pp. 251-262.
[20] K.F. Roth, Developments in Heilbronn's triangle problem, Advances in Mathematics 22 (1976) 364-385.
[21] W.M. Schmidt, On a problem of Heilbronn, Journal of the London Mathematical Society (2) 4 (1972) 545-550.

[^0]: ${ }^{4}$ A preliminary version of a part of this paper appeared as an extended abstract in Proceedings '16th Annual ACMSIAM Symposium on Discrete Algorithms SODA'2005, ACM and SIAM, 241-250.

 E-mail address: lefmann@informatik.tu-chemnitz.de.
 URL: http://www.tu-chemnitz.de/informatik/ThIS/.

