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Secretory clusterin (sCLU), an anti-apoptotic protein, is overexpressed in many tumors and enhances
tumorigenesis and chemo-resistance. However, the regulation mechanism controlling the sCLU
maturation process or activity remains undetermined. In this study, we found PACAP as a negative
regulator of CLU. Overexpression of the PACAP gene in cervical cancer cell lines lacking PACAP
expression significantly inhibited cell growth and induced apoptosis. We further demonstrated that
interaction of PACAP with CLU significantly downregulated CLU expression and secretion, inhibited
the Akt–Raf–ERK pathway, and suppressed the growth of human tumor xenografts in nude mice.
This novel inhibitory function of PACAP may be applicable for developing novel molecular therapies
for tumors with increased sCLU expression.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Cancer is associated with the downregulation of tumor
suppressor genes and upregulation of oncogenes. Gene expression
can be regulated by genetic and epigenetic alterations; the former
involves alterations in the DNA sequence, while the latter does not.
DNA methylation is the most well-studied form of epigenetic alter-
ation that leads to silencing of tumor suppressor genes, such as Rb,
p16, MLH1, and BRCA1, resulting in the development and progres-
sion of cancer. Thus, the identification of abnormal gene methyla-
tion in cancer and characterizing the regulatory function of genes
has implications in anticancer therapy [1]. In previous studies,
hypermethylation of the PACAP gene was well established in cervi-
cal neoplasia [2], which suggests that epigenetic silencing by
hypermethylation of PACAP leads to the loss of gene function
and may play a critical role in human cervical tumorigenesis.
PACAP is a novel peptide first isolated from ovine hypothalamus
[3]. PACAP is a member of the vasoactive intestinal polypeptide
(VIP)-glucagon-growth hormone releasing factor-secretin
superfamily and has two amidated forms: PACAP-38 (38 amino
acids in length) and PACAP-27 (a shorter form of the peptide with
an 11 amino acid C-terminal cleavage) [4]. PACAP stimulates aden-
ylate cyclase and subsequently increases cAMP formation in rat
pituitary cells [3]. However, PACAP is also broadly expressed in
the central nervous system and neuronal elements in the majority
of peripheral organs.

In the human female genital tract, PACAP is located in nerve
fibers with innervated blood vessels and smooth muscle cells of
the internal cervical os [5,6]. PACAP and its receptor isoforms have
been observed in the rat uterus, suggesting that PACAP regulates
rat uterine function and physiology during the reproductive cycle
[7]. PACAP either stimulates or inhibits the proliferation of cancer
cells. In small lung cancer cells, prostate cancer cells, and neuro-
blastoma cells, PACAP stimulates cell proliferation [8–10]. In con-
trast, PACAP (6–38) inhibits breast cancer, lung cancer and
prostate cancer growth [11–13]. Despite extensive studies, the
molecular mechanism of tumor suppression by PACAP remains
poorly understood.

To explore the function of PACAP, we identified PACAP-interact-
ing proteins using the yeast two-hybrid system. We identified sev-
eral genes and further characterized clusterin (CLU). CLU (also
known as SGP2, ApoJ, CLI, or XIP8) is a ubiquitous secretory
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heterodimeric glycoprotein with many biological functions, includ-
ing lipid transportation, tissue remodeling, and regulation of
apoptosis [14]. CLU has been reported as an anti-apoptotic and
pro-apoptotic factor, and these ambiguous functions are caused
by two different CLU isoforms, namely, sCLU and nCLU in various
cell types [15–18]. sCLU is a general pro-survival factor in most
cells after stress and is overexpressed in various human cancers
such as prostate [19,20], breast [21], lung [22], renal [23], ovarian
[24], colon [25], and cervical cancer [26,27]. In breast cancer, sCLU
expression level is associated with large tumor size, and estrogen
and progesterone receptor negative status, as well as with progres-
sion from primary carcinoma to metastatic carcinoma in lymph
nodes [21]. In renal cell carcinoma, the expression level of sCLU
was significantly correlated with pathological stage and the inci-
dence of tumor recurrence [23]. In cervical cancer, CLU expression
is significantly correlated with the paclitaxel IC50, suggesting that
CLU may antagonize the antitumor activity of paclitaxel [26]. Many
previous reports have reported on the mechanisms of CLU in regu-
lating cell survival and proliferation. However, the regulation
mechanism controlling the sCLU maturation process or activity
remains unclear. In this study, we examined the pro-apoptotic
effect of PACAP in cervical cancer cells and propose that PACAP
interferes with CLU-mediated cancer cell survival.
2. Materials and methods

2.1. Cell lines, mice, and transient transfection

Human cervical cancer cell lines were purchased from the
American Type Culture Collection (ATCC; Manassas, VA) and main-
tained in recommended medium supplemented with 10% fetal
bovine serum (JBI, Seoul, Korea) and 1% penicillin/streptomycin
in a humidified 5% CO2 incubator at 37 �C. Immune-deficient
BALB/c nude mice were purchased from Orient Bio (Gyeonggi,
Korea). Transient transfection was performed using the FuGENE
HD transfection reagent (Promega, Madison, WI) according to the
manufacturer’s instructions.

2.2. Vector constructs

The construct pcDNA3-PACAP was obtained from Genomictree
Inc. (Daejeon, Korea). CLU expression vector (pcDNA3.1-CLU) was
obtained from the pIRES-CLU (full-length human clusterin) vector
construct (provided by Dr. Saverio Bettuzzi, University of Parma,
Italy). pIRES-CLU was digested with BamHI and NotI, and then
inserted into pcDNA3.1. For yeast two-hybrid screening, PACAP
was amplified by polymerase chain reaction (PCR) and inserted
between the EcoRI and XhoI restriction sites of the pGilda vector.
The primers used for amplification were forward, 50-ATTAGAAT
TCGGAATGACCATCTGTAGC-30 and reverse, 50-TAATCTCGAGTCG
CTACAAATAAGCTAT-30. For the b-galactosidase assay, CLU was
inserted between the BamHI and NotI, restriction sites of the
pGilda vector, and PCR-amplified PACAP was inserted into the
pB42AD vector.

2.3. TUNEL assay

HeLa and HT-3 cells were seeded into four-well chamber slides
and transiently transfected with pcDNA3-PACAP. After 48 h of trans-
fection, TdT-mediated dUTP nick end labeling (TUNEL) assay was
performed using the In Situ Cell Death Detection Kit (Roche Applied
Science, Basel, Switzerland) in accordance with the manufacturer’s
instructions. Briefly, cells were washed with phosphate-buffered
saline (PBS) and fixed in 4% paraformaldehyde (pH 7.4) for 1 h at
room temperature followed by incubation in permeabilization
solution (0.1% Triton X-100 and 0.1% sodium citrate) for 2 min on
ice. The cells were then washed twice with PBS, and 50 ll of TUNEL
reaction mixture was added to each sample and incubated in the
dark in a humidified chamber for 60 min at 37 �C. The cells were
washed three times with PBS and analyzed with a fluorescence
microscope.

2.4. Cell growth assay

Transiently transfected HeLa and HT-3 cells grown in 24-well
plates were trypsinized and harvested at 1-day intervals for 3 days.
Cells were counted with a hemocytometer, and each experiment
was repeated three times in triplicate wells.

2.5. CCK-8 cell proliferation assay

Cell proliferation was determined using Cell Counting Kit-8
(CCK-8) (Dojindo Laboratories, Kumamoto, Japan) according to
manufacturer’s instructions. Briefly, cells were seeded in a 96-well
plate and transfected with PACAP, and absorbance at 450 nm was
read on sequential days using microplate reader.

2.6. Protein extraction and Western blot analysis

Whole-cell lysates were prepared using RIPA buffer [50 mM
Tris–Cl (pH 7.5). 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycho-
late, 0.1% sodium dodecyl sulfate (SDS), 5 mM phen-
ylmethanesulfonyl fluoride (PMSF)]. Conditioned medium was
collected and separated from cell debris by centrifugation. Medium
(1 ml) was concentrated by trichloroacetic acid (TCA) precipitation.
The precipitate was dissolved in 100 ll of SDS sample buffer and
10 ll was loaded per well. Proteins (20–40 lg) were separated
on an 8–12% SDS–polyacrylamide gel and transferred to a nitrocel-
lulose membrane. The membrane was incubated with the appro-
priate primary antibody and horseradish peroxidase-conjugated
secondary antibody. Antibodies against PACAP (sc-25439), CLU
(sc-6419), Bax (sc-493), pERK (sc-7383), ERK (sc-94), GSK-3b (sc-
8257), p-Raf (sc-12358) and GAPDH (sc-25778) were purchased
from Santa Cruz Biotechnology. Antibodies against Akt (#4691)
pAkt (#4060), pGSK-3b (#9331), pElk-1 (#9181) and cleaved PARP
(#9541) were purchased from Cell signaling. Protein bands were
visualized by enhanced chemiluminescence (ECL Western blotting
detection regent; Bio-Rad) and quantified using the Image J pro-
gram (NIH).

2.7. Yeast two-hybrid screening and b-galactosidase assay

Yeast two-hybrid screening was performed using the Match-
maker LexA two-hybrid system (Clontech, Mountain View, CA)
according to the manufacturer’s instructions. Briefly, PACAP cDNA
was cloned into the pGilda bait vector as described above and
human ovary cDNA library-cloned pB42AD prey vector. Bait and
prey vectors were co-transformed in the EGY48 yeast strain using
the lithium acetate method, and positive clones were selected on
synthetic dropout medium lacking leucine, tryptophan, histidine,
and uracil. Positive clones were further confirmed using the
b-galactosidase assay with 5-bromo-4-chloro-3-indolyl-D-galacto-
pyranoside (X-gal).

2.8. Co-immunoprecipitation (Co-IP)

Cells were lysed in NP-40 lysis buffer (20 mM Tris–HCl pH8.0,
150 mM NaCl, 1% Non-ident P-40, 1 mM PMSF) for 30 min on ice.
Lysates were centrifuged at 13,000 rpm for 10 min at 4 �C, and
the protein concentration was measured using the Bradford assay.
Each cell lysate (1.5 mg) was incubated with Flag monoclonal
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Fig. 1. PACAP inhibits cell growth and induces apoptosis in cervical cancer cells. (A) Cervical cancer cells, HeLa and HT-3, were plated in 24-well plates and transiently
transfected with pcDNA3-PACAP. Cell numbers were counted at the indicated times. Error bars represent means ± S.D. ⁄P < 0.05, ⁄⁄P < 0.01, n.s. not significant, compared with
control. (B) Cells were transiently transfected with pcDNA3-PACAP and cell proliferation was measured by the CCK-8 assay. Error bars represent means ± S.D. ⁄P < 0.05,
⁄⁄P < 0.01, n.s. not significant, compared with control. (C) HeLa and HT-3 cells were transiently transfected with pcDNA3-PACAP and TUNEL assay was performed 48 h after
transfection. Images were captured on a fluorescence microscope. (D) Cells were transiently transfected with pcDNA3-PACAP, after which cells were harvested at 24-h
intervals. The levels of PACAP and cleaved PARP were determined using Western blot analysis.
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antibody (Sigma) for overnight at 4 �C. Following incubation, pro-
tein was immunoprecipitated using protein A/G agarose beads
(Santa cruz) for 3 h at 4 �C with gently rotation. The immunopre-
cipitates was washed three times with lysis buffer and boiled in
40 ll of 1� SDS sample buffer for 5 min at 95 �C. After centrifuga-
tion, the supernatant was analyzed by Western blot.

2.9. Immunofluorescence analysis

HeLa cells were seeded onto 18-mm gelatin-coated glass cover-
slips and incubated for 24 h. Cells were then fixed and permeabili-
zed with a methanol: acetone (1:1) mixture for 7 min at �20 �C.
After blocking with 5% bovine serum albumin (BSA) for 1 h at room
temperature, cells were incubated with anti-CLU or anti-PACAP
antibodies for overnight at 4 �C. Cells were then washed with PBS
and incubated with Alexa Fluor 488 goat anti-rabbit IgG (Green)
and Alexa Fluor 568 donkey anti-goat IgG (Red) (Invitrogen) in
darkness for 90 min at room temperature. Finally, cells were coun-
terstained with 1 lg/ml DAPI for 1 min. Fluorescence was detected
using confocal fluorescence microscopy.

2.10. Small interfering RNA transfection

The siRNA sequences used were as follows: PACAP siRNA, 50-CC
UAGGGAAGAGGUAUAAA30, control siRNA, 50-GGUGUGCUGUUUG-
GAGGUCTT-30. As a negative control, we used siRNA targeting
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green fluorescence protein (GFP). Transfections were performed
with Lipofectamine RNAiMAX Transfection Reagent (Life Technol-
ogies, Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions. The final oligonucleotide concentration was 30 nM.

2.11. s.c. tumor models

To establish tumors in mice, PACAP expressing pCDNA3 vector-
transfected 1 � 106 HeLa cells were injected s.c. in the middorsal
region of BALB/c nude mice (7–10 per group). Tumor size was eval-
uated using caliper measurements every 3 days. Mice were killed
on day 33, and tumors were excised.

2.12. Statistical analysis

Data are presented as the mean ± S.D. For the analysis of statis-
tical significance the student’s t test (two-tailed) was used. Statis-
tical significance representations: ⁄, P < 0.05; ⁄⁄, P < 0.01.
3. Results

3.1. PACAP induces apoptosis in human cervical cancer cells

To explore the role of PACAP in human cervical cancer cells,
PACAP overexpression was induced in HeLa and HT-3 cells. We
first performed the cell counting and CCK-8 assay and found that
overexpression of PACAP significantly reduced cell growth
(Fig. 1A and B). To confirm that the reduction in cell growth repre-
sented apoptosis, we performed TUNEL assays and examined the
morphology of nuclei in HeLa and HT-3 cells overexpressing con-
trol vector and full-length PACAP. PACAP-overexpressing cells
showed fragmented nuclei characteristic of apoptosis, whereas
control cells contained normal nuclei (Fig. 1C). To further examine
apoptosis, cleaved PARP as a marker of apoptosis was detected
using Western blot analysis. Full-length PACAP-overexpressing
cells showed increased levels of cleaved PARP protein in a
time-dependent manner (Fig. 1D). These results indicated that



Fig. 3. Mapping of the interaction regions between PACAP and CLU. (A) Left panel displays the schematic diagram of cDNA constructs for each CLU deletion mutant, full-
length CLU fusion proteins. Right panel exhibits the results of cell growth and b-galactosidase assays using yeast two-hybrid system. Positive interactions were revealed based
on cell growth on leucine-depleted plates (upper panel), as well as the formation of blue colonies on the plate containing X-gal (lower panel). (B) Left panel displays the
schematic diagram of cDNA constructs for each PACAP deletion mutant, full-length PACAP fusion proteins. Right panel shows the results of protein–protein interactions
determined in the two-hybrid system.
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overexpression of PACAP induced high levels of cell death in cervi-
cal cancer.

3.2. PACAP interacts and co-localizes with CLU

To further explore the function of PACAP, we screened the
PACAP-binding proteins using the yeast two-hybrid system. We
used pGilda-PACAP as bait to screen a human cDNA library. Based
on these results, CLU was identified as an interacting partner. To
confirm the interaction between PACAP and CLU, cell growth and
b-galactosidase assays were performed (Fig. 2A and B). To examine
the interaction between PACAP and CLU in human cells, HEK293
cells were cotransfected with Flag-CLU and/or pcDNA3-PACAP.
An immunoprecipitation assay on cotransfected cells revealed
strong interaction between PACAP and CLU (Fig. 2C). We next
explored the subcellular localization of PACAP and CLU using
immunocytochemistry analysis. Fig. 2D shows that both PACAP
and CLU co-localized mainly in the cytoplasm.

3.3. Interaction domain between PACAP and CLU

To investigate the PACAP specific binding domain of CLU, we
designed three CLU truncation fragments as shown in Fig. 3A. In
the yeast two-hybrid system, full-length human PACAP cDNA
and plasmid containing either full-length CLU cDNA (1–449) or
three deletion mutant fragments (34–449, 1–227, or 228–449)
were co-transformed into EGY48 yeast cells. Cells containing full-
length, the 34–449 fragment (nCLU), or the 228–449 fragment
(b-chain region) of CLU grew on the Ura, His, Trp, and Leu-deficient
plates. However, the 1–227 cDNA fragment containing cells did not
grow (right panel in Fig. 3A). To confirm these results, we
determined the binding activity of these constructs by measuring
the relative expression level of b-galactosidase. As shown in the
right panel in Fig. 3A, b-galactosidase assay results confirmed that
the mutant (1–227) could not bind to PACAP. These results sug-
gested that PACAP binds to the b-chain of CLU. Subsequently, to
determine the CLU binding domain of PACAP, we designed two
PACAP deletion mutants (Fig. 3B). As shown in the right panel in
Fig. 3B, full and 1–82 cDNA fragment containing cells grew on
Ura, His, Trp, and Leu-deficient plates and X-gal containing plates.
This result suggested that 1–82 region of PACAP that containing
signal sequence (1–24) and pro-peptide (25–79) may interact with
b-chain of CLU.

3.4. PACAP inhibits a/b CLU formation and secretion

To investigate the protein–protein interactions involved in the
maturation of CLU to produce secretory CLU by PACAP, we ana-
lyzed CLU expression in intracellular and extracellular, whole cell
lysate, and conditioned medium preparations from HeLa and HT-
3 cells transfected with PACAP or CLU using Western blot analysis.
Fig. 4A shows CLU expression in whole-cell lysate compared to the
control, and CLU transfected and PACAP-transfected cells. Precur-
sor CLU and a/b CLU was consistently expressed at high levels in
the control. CLU (psCLU and a/bCLU) levels were elevated in full-
length CLU-transfected cells. Transfection of PACAP effectively sup-
pressed both precursor CLU and a/b CLU protein level. In addition,
co-transfection with PACAP and CLU resulted in a reduction of CLU
expression compared with CLU-transfected cells. To confirm the
secretion of CLU, conditioned medium from HeLa and HT-3 cells
overexpressing PACAP and full-length CLU was TCA-precipitated.
Fig. 4B shows a protein band of 40kDa that corresponded to mature
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sCLU present in the conditioned media. Transfection of full-length
CLU increased the secretion of mature sCLU. However, overexpres-
sion of PACAP significantly blocked sCLU secretion. These results
suggested that formation of sCLU, the anti-apoptotic isoform of
CLU, was inhibited by PACAP, and that the expression level in the
intracellular and extracellular space was downregulated.

3.5. PACAP inhibits the Akt/Raf/Erk pathway

To explore the mechanism of growth inhibition and apoptosis
induction by PACAP, we focused on the Akt pathway. Previous
reports suggested that overproduction of sCLU results in Akt phos-
phorylation [28]. HeLa cells were transfected with PACAP for 24 or
48 h, and alterations in phosphorylated Akt were determined using
Western blotting. As shown in Fig. 5, PACAP-overexpressing HeLa
cells showed significantly reduced phosphorylation of Akt com-
pared with control HeLa cells, which suggested that one of the
major survival pathways activated by sCLU was suppressed by
PACAP. We then analyzed the activation of Akt target proteins,
which is affected by the overexpression of PACAP. As a result, the
level of phosphorylated GSK-3b, Raf and ERK was markedly dimin-
ished in HeLa cells overexpressing PACAP. In addition, the phos-
phorylated form of Elk-1, the target of ERK also dramatically
decreased. These data suggested that PACAP inhibits sCLU expres-
sion and secretion and inhibits HeLa cell growth by inhibiting the
Akt/Raf/Erk pathway. CLU has been known as inhibitor of apoptosis
by interfering with Bax pro-apoptotic activities. But PACAP did not
effect on Bax expression.

3.6. PACAP-inhibited Akt/Raf/ERK pathway is mediated by CLU
expression

To further confirm the inhibitory effect of PACAP on CLU expres-
sion and Akt/Raf/ERK pathway, we used RNA interference. As
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shown in Fig. 6A, siRNA markedly inhibited the expression of
PACAP protein. And the inhibitory effect of PACAP on CLU-induced
Akt and ERK activation was significantly restored by siRNA trans-
fection (Fig. 6). From these results, we can conclude that the over-
expression of PACAP causes inhibition of CLU expression, leading to
Akt/Raf/ERK pathway, a key process for anti-proliferative activity
and apoptosis.

3.7. PACAP inhibits tumor growth in nude mice

We next explored whether PACAP inhibits tumor growth
in vivo. Exponentially growing HeLa cervical cancer cells were tran-
siently transfected with the PACAP expression vector or control
vector and the cells were injected subcutaneously into immune-
deficient BALB/c nude mice. Animals (5–7 per group) were moni-
tored for tumor growth. Tumor growth and morphology were ana-
lyzed over 30 days. Fig. 7 shows that the tumor mass in mice
transfected with pCDNA3-PACAP was remarkably diminished com-
pared to tumors transfected with the control vector. Collectively,
these results demonstrated that PACAP can be a potent tumor sup-
pressor in this animal model.

4. Discussion

Tumorigenesis is associated with activated or silenced gene
expression, and gene expression is regulated by genetic or epige-
netic alterations. DNA methylation is one of the best-studied epige-
netic modifications that plays an important role in tumorigenesis.

Previous studies have reported that hypermethylation in the
PACAP promoter is associated with low PACAP expression in cervi-
cal cancer cells [2]. The present study demonstrated that PACAP
overexpression in cervical cancer cells significantly inhibited cell
growth and induced apoptosis. Therefore, attenuation of PACAP
expression may play important roles in the regulation of the cervi-
cal cancer development and progression. In this study, we
observed a novel function of PACAP as a negative regulator of sCLU,
an anti-apoptotic protein.

To further explore the function of PACAP, we screened PACAP-
binding proteins and identified CLU, an enigmatic glycoprotein
present in most human tissues and fluids [14]. The CLU gene gener-
ates at least two protein isoforms through alternative splicing: a
secreted form (sCLU) and nuclear form (nCLU). The main product
of CLU is an unglycosylated holoprotein (precursor secretory CLU,
psCLU) with a predicted molecular mass of 60kDa. This psCLU is fur-
ther glycosylated and proteolytically cleaved into a and b subunits
held together by disulfide bonds. Mature CLU is secreted outside of
the cells as a 76–80-kDa protein (sCLU) [29,30]. In contrast, nCLU
lacks the leader peptide, which is an endoplasmic reticulum-target-
ing sequence. Thus, nCLU avoids cleavage and glycosylation and is
detected as a 49-kDa precursor nCLU protein (pnCLU) in the cyto-
plasm. In response to stress [ionizing radiation, (TGF-b)], pnCLU is
activated and translocated into the nucleus as a 55-kDa protein
(nCLU) [15,16,31].

Previous studies have shown that overexpression of sCLU in
cancer cells caused resistance to and protection against chemo-
therapeutic agents such as cisplatin, doxorubicin, etoposide, and
camptothecin [32–34]. In addition, sCLU promotes hepatocellular
carcinoma metastasis by enhancing cell motility and inducing
the epithelial–mesenchymal transition process [35]. Niu et al.
showed that sCLU silencing significantly inhibited tumor growth,
motility, and invasion in breast cancer [36]. sCLU has chaperone-
like activity in cytoprotection, scavenging denatured proteins and
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Fig. 7. Overexpression of PACAP suppresses tumor growth in vivo. HeLa cells were
transiently transfected with the control vector and PACAP expressing vector and
incubated for 24 h. Each of the 1 � 106 cells were inoculated by subcutaneous
injection. (A) Image of tumor size at the time of dissection. (B) Tumor growth curve.
Error bars represent means ± S.D. ⁄⁄P < 0.01, compared with control.
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cellular debris from outside the cells following specific stress-
induced injury such as heat shock [37,38]. Our findings demon-
strate that overexpression of PACAP inhibits tumor cell growth
and induces apoptotic cell death (Fig. 1). Our yeast-two-hybrid
assays and immunoprecipitation assay demonstrated that PACAP
protein binds to CLU (Fig. 2). Overexpression of PACAP simulta-
neously inhibited the expression of precursor CLU and sCLU, as
well as the secretion of sCLU out of the cell (Fig. 4). We speculate
that PACAP overexpression affects various synthetic processes of
CLU, which decreases sCLU precursor expression. In addition, a
decrease in a/b CLU level and sCLU secretion suggests that the
interaction of PACAP with CLU can inhibit the maturation of CLU
to sCLU by blocking the cleavage of CLU to a and b. Our in vivo
experiments also demonstrated that the overexpression of PACAP
suppresses tumor growth in nude mice (Fig. 7). Thus, PACAP may
be a target for gene therapy in sCLU-upregulated carcinomas by
inhibiting sCLU expression and secretion, ultimately causing
cancer cell death.

Recent studies have reported that the prostate cancer cell line
MLL is protected from tumor necrosis factor-a (TNFa)-induced
apoptosis by overexpressing sCLU, which is mediated in part by
activation of the PI3K/Akt pathway. Overexpression of sCLU
increased phosphorylation of Akt, activated Akt-induced phos-
phorylation of Bad, and decreased cytochrome c release from mito-
chondria, thus inhibiting TNFa-induced apoptosis. However, after
inhibition of the PI3K/Akt pathway in sCLU inducible cells, approx-
imately 40% of cells survived, indicating that another pathway may
be involved in the survival effect of sCLU [28]. Zhong et al. [39] also
demonstrated that once sCLU was overexpressed, Akt inhibition
did not induce cell death, even in the presence of docetaxel. Akt
plays important roles in mediating signals for cell growth, cell sur-
vival, cell-cycle progression, and differentiation. Akt has numerous
downstream substrates, including Bad, pro-caspase-9, I-kB kinase,
CREB, GSK-3, and Raf, which drive tumor progression [40]. Akt can
directly phosphorylate Raf on S259, S364 on Raf-1, and S428 on B-
Raf. Phosphorylated S259 by Akt can be inactivated by binding of
the 14-3-3 protein [41]. However, inactivation of Raf by Akt may
depend on the cell type and the stage of differentiation [42,43].
In addition, active Raf triggers the sequential activation of MEK
and ERK. The CLU promoter contains three potential early growth
response-1 (Egr-1) binding sites, and ERK transactivates the
Egr-1 transcription factor required for sCLU expression [44]. We
hypothesize that the interaction of PACAP with CLU inhibits the
Akt activation function of sCLU and blocks the Akt pathway.
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Consequently, we demonstrated that the Akt/Raf/ERK pathway was
significantly inhibited in HeLa cells overexpressing PACAP (Fig. 5).
We also observed decreased expression of sCLU in PACAP over-
expressing cells were recovered by PACAP-siRNA. As expected,
Akt and ERK phosphorylation was also increased by knockdown
of PACAP (Fig. 6). Based on these results, the inhibited Akt/Raf/
ERK pathway may be mediated by CLU in PACAP-overexpressing
cells and it can be decreased cervical cancer cell growth.

Zhang et al. [34] reported that the a-chain of CLU interacts with
Bax and that overexpression of the a-chain (but not the b-chain) of
CLU suppresses Bax-induced apoptosis. Notably, we found that
PACAP strongly interacted with the b-chain of CLU based on the
yeast two-hybrid assay (Fig. 3). In addition, overexpression of
PACAP showed no effect on Bax activity (Fig. 5). These results sug-
gest that apoptotic cervical cancer cell death by PACAP does not
occur through the Bax-mediated mitochondrial apoptotic pathway.

sCLU is a general anti-apoptotic factor in most cells, and recent
clinical data suggest that aggressive tumors have elevated levels of
sCLU with reduced nCLU expression. The ratio of sCLU to nCLU
expression is a major determinant of cancer aggressiveness [45].
Currently, silencing sCLU expression using antisense oligonucleo-
tides (ASO) or short-interfering double-stranded RNA has been
developed and approved for clinical trials [46,47]. But there is no
cellular molecules which can regulate CLU expression and the
molecular mechanisms that control sCLU expression remain unde-
fined. We propose PACAP as a first negative regulator of CLU. Since
PACAP directly binds to CLU and interferes with CLU, it acts selec-
tively in the specific inhibition of sCLU formation and secretion.
Therefore, PACAP may have greater inhibitory effects on tumor
cells expressing sCLU compared with normal cells. In conclusion,
PACAP is an adenylate cyclase-stimulating protein that also blocks
the cellular signaling cascades involved in tumor growth. This
newly discovered mechanism can be used for the development of
effective cancer therapies using PACAP.
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