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SUMMARY

Chemical perturbation screens offer the possibility
to identify actionable sets of cancer-specific vulner-
abilities. However, most inhibitors of kinases or
other cancer targets result in polypharmacological
effects, which complicate the identification of target
dependencies directly from the drug-response
phenotypes. In this study, we developed a chemical
systems biology approach that integrates compre-
hensive drug sensitivity and selectivity profiling to
provide functional insights into both single and
multi-target oncogenic signal addictions. When
applied to 21 breast cancer cell lines, perturbed
with 40 kinase inhibitors, the subtype-specific addic-
tion patterns clustered in agreement with patient-
derived subtypes, while showing considerable
variability between the heterogeneous breast can-
cers. Experimental validation of the top predictions
revealed a number of co-dependencies between
kinase targets that led to unexpected synergistic
combinations between their inhibitors, such as dasa-
tinib and axitinib in the triple-negative basal-like
HCC1937 cell line.

INTRODUCTION

Successful examples of molecularly targeted anticancer drug

treatments exist only for a few cancer types that are driven by

druggable oncoproteins (Huang et al., 2014). Cancer sequencing

efforts have revealed that individual driver mutations may target

multiple signaling pathways, and each cancer patient may

exhibit a unique combination of mutations that are sufficient to

perturb these pathways (Vandin et al., 2012). This extensive

mutational heterogeneity poses increasing challenges for the

current target-based drug development and repurposing ap-

proaches that try to connect recurrent genomic alterations to ac-

quired cellular vulnerabilities (Garraway and Lander, 2013).

Importantly, evenwhen the critical driver genes can be identified,

these often turn out to be clinically not actionable (i.e. there is no

targeting drug available for clinical use) or pharmacologically

‘‘undruggable’’ (i.e. it is impossible to develop a drug against
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the gene product or its variant). Furthermore, genes that are

not altered at the sequence level may also play an essential

role in the disease progression, hence providing additional ther-

apeutic opportunities (Pe’er and Hacohen, 2011). For instance,

cancer sequencing studies have not found frequent mutations

in protein kinases, despite the known addiction of many cancer

cells to kinase signaling (Torkamani et al., 2009; Tyner et al.,

2013). Therefore, complementary strategies are needed to

pinpoint the functional consequences of perturbations, which

may help to prioritize the most potent and clinically actionable

drugs and their target combinations for each individual patient.

Pharmacological perturbation screens using broadly targeted

chemical libraries of bioactive small molecules enable system-

atic and direct phenotypic assays for functional investigation of

the druggable vulnerabilities in individual cancer cell types or pa-

tient-derived samples (Heiser et al., 2012; Pemovska et al., 2013,

2015). However, most chemical inhibitors of kinases and other

common cancer targets are relatively non-specific, leading to a

number of ‘‘off-target’’ effects that may either cause adverse

side effects or improve the therapeutic response (Xie et al.,

2012). Such polypharmacological effects complicate the identi-

fication of signal addictions directly from the drug-response phe-

notypes. Furthermore, the exponentially increasing number of

possible drug-target combinations is beyond the experimental

and financial capacity of even automated high-throughput

screening technologies, and translates into a need for integrated

experimental-computational approaches that enable deconvo-

luting the underlying signaling cascades behind individual

drug-response profiles. Network-based strategies can naturally

take into account the complex interactions between drugs and

their cellular targets, and so-called network pharmacology ap-

proaches are increasingly being developed for many applica-

tions (Hopkins, 2008; Tang and Aittokallio, 2014; Zhao and Iyen-

gar, 2012). However, systematic approaches that make use of

comprehensive drug response profiling to reveal druggable de-

pendencies in individual cancer samples have remained rare (Ty-

ner et al., 2013).

In the present work we developed and tested a network phar-

macology approach, which integrates cell-based drug sensitivity

profiling with biochemical target selectivity information for sys-

tematic identification of druggable molecular vulnerabilities in

given cancer cells. This approach enables the identification of

both individual kinase target addictions (i.e. essential kinase sig-

nals) and combinatorial co-dependencies between kinase pairs

and synthetic lethal type interactions (i.e. co-essential kinase
sevier Ltd All rights reserved
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Figure 1. Schematic Illustration of the

Single and Combinatorial Kinase Inhibition

Sensitivity Score

(A) Left: Single kinase inhibition sensitivity score

(KISS) ranks each kinase (k) in the context of a

given drug-target network based on the average

drug response (DR) over the subset of its potent

inhibitors (n). Single KISS enables one to prioritize

pharmacologically actionable kinase signal ad-

dictions in individual cancer cell samples for

experimental validation. Right: The KISS concept

was extended to ranking kinase pairs (ka, kb) based

on their average combinatorial effect over the

subset of inhibitors targeting both of the kinases

(m). Combinatorial KISS enables one to identify a

synthetic lethal type of target pairs, whichmay lead

to synergistic drug combinations between their

inhibitors (see B for the rationale of the filtering

step). Experimental testing of the combinatorial

KISS predictions was carried out here by simulta-

neous siRNA-based silencing of the highly ranked

kinase pairs and by combinations of drugs that

show most potency as inhibitors of ka and kb.

(B) Relationships between the single and combi-

natorial KISS defined using set-theoretic opera-

tions among the set of inhibitors. Using this nota-

tion, the cardinality of the set A is n and the

cardinality of the intersection between A and B is

m. The complement score (cs) of ka or kb is defined

as the average response over the inhibitors that

belong to the difference between sets A and B or B

and A, respectively (the shaded portions).
signals). The integrated approachmakes use of the polypharma-

cological effects of compounds in terms of utilizing both their

unique and shared on- and off-targets in the deconvolution of

the underlying kinase signaling pathways. As a proof-of-principle

case study, we used triple-negative breast cancer (TNBC), a

highly aggressive and heterogeneous class of breast cancer,

with currently no targeted treatments available, mainly due to

the lack of known single drivers (Grigoriadis et al., 2012). There-

fore, TNBC serves as a highly challenging disease model to

identify druggable molecular addictions and combinatorial

co-dependencies in a cell type-specific manner. Although we

focused here on breast cancer cell lines and kinase inhibitors,

the experimental-computational approach is also widely appli-
Chemistry & Biology 22, 1144–1155, August 20, 2015
cable to other target families and cancer

types, as well as to patient-derived cell

samples in clinical applications.

RESULTS

Kinase Inhibition Sensitivity Score
for Predicting Single and
Combinatorial Molecular
Addictions
We implemented an experimental-com-

putational target deconvolution ap-

proach, dubbed the kinase inhibition

sensitivity score (KISS), which maps ki-

nase inhibitor sensitivity and selectivity
profiles onto a drug-target network (Figure 1A). Our computa-

tional algorithm ranks the individual kinases according to their

likelihood of being essential for the growth of a particular cancer

cell (Pemovska et al., 2013; Yadav et al., 2014). The basic

assumption behind the KISS addiction scoring model is that

the increased sensitivity of a cancer cell to a given drug com-

pound implies that its molecular targets are jointly and/or individ-

ually essential for the survival of the cancer cell, whereas drug

treatment insensitivity implies that the particular cell is not ad-

dicted to the targets of the particular compound.

Formally, KISS for a given kinase target is calculated as the

averagedrug responseover the subset of its potent inhibitors (Fig-

ure 1A, left). We extended this concept also to kinase target pairs,
ª2015 Elsevier Ltd All rights reserved 1145
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Figure 2. KISS and Quantitative Drug-

Target Mappings Improve the Identification

of Known Breast Cancer Drivers

(A) Systematic evaluation of cancer addiction

identification approaches, each based on a com-

bination of a deconvolution method, a type of

drug-target mapping, and a drug-response metric

as input.

(B) Drug sensitivity score (DSS, Table S1) is based

on the integration of the area under the dose-

response curve (Yadav et al., 2014), and combines

several response parameters such as relative half-

maximal inhibitory concentration (IC50).

(C) The number of inhibitors that target a given

number of kinases among the tested drug collec-

tion of 40 inhibitors and 205 kinase targets.

Dissociation constant (Kd) values (Davis et al.,

2011) were used to define here the quantitative

drug-target (qDT) mappings according to expert

filtering (Table S3). The solid curve corresponds to

a power function.

(D) Ordering of the 31 tested combinations ac-

cording to the median rank of known drivers used

as positive controls. Color coding of the KISS-

based combinations corresponds to the different

types of drug-target mappings (see A). NA marks

those combinations in which the driver was absent

in the particular type of drug-target interaction

data. Red font indicates combinations based on

DSS. Table S4 gives the full results from each

combination.
by means of combinatorial KISS, which enables the prediction of

such kinase pairs whose simultaneous inhibition leads to

increasedcell death (Figure1A, right). To focuson the synthetic le-

thal type interactions,we retainedonly those target pairs forwhich

the combinatorial effect wasmarkedly higher than that originating

fromthe inhibitors targetingonly oneof thekinases (Figure1B; see

also Experimental Procedures). It was hypothesized that tracing

back the inhibitors behind such co-essential target pairs could

lead to unbiased prediction of synergistic drug combinations.

KISS Enabled the Prediction of Context-Specific Drivers
in Heterogeneous Breast Cancer Cells
In this proof-of-principle study, we examined the sensitivity of

21 breast cancer cell lines to a panel of anticancer com-
1146 Chemistry & Biology 22, 1144–1155, August 20, 2015 ª2015 Elsevier Ltd All rights rese
pounds using the drug sensitivity and

resistance testing platform (Pemovska

et al., 2013) (Table S1). Specifically, 15

of the cell lines represented TNBC sub-

types, three were ER and PR positive,

two were Her2 positive, and one was

Her2, ER, and PR positive (Table S2).

To evaluate the relative performance of

KISS across these breast cancer cell

lines, we ranked the kinase targets

based on a representative set of

computational target deconvolution

methods (Figure 2A): Tyner’s score (Ty-

ner et al., 2013), Fisher’s test (Wei

et al., 2012), and Spearman’s correla-
tion (Tran et al., 2014) (see Experimental Procedures). Drug

response was quantified either as half-maximal inhibitory con-

centration (IC50) or by using the drug sensitivity score (DSS)

(Yadav et al., 2014) (Figure 2B). Quantitative drug-target selec-

tivity profiles were available from a biochemical assay (Davis

et al., 2011) for 40 kinase inhibitors in our compound collec-

tion (Table S3), whose target distribution followed the power

function (Figure 2C). We also tested whether targets extracted

from public drug databases (KEGG, Therapeutic Target Data-

base, and DrugBank) could improve the identification of kinase

addictions (Figure 2A). Each of these combinations of a target

deconvolution method, a drug-target mapping, and a drug

response metric gave rise to a separate ranking of kinase tar-

gets (Table S4).
rved
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Figure 3. KISS-Based Clustering Reveals TNBC Subgroups in Agreement with Patient-Based Subtypes

(A) Unsupervised cluster solutions based on KISS (left) and DSS (right) were compared with the five subgroups established in TNBC patient tumors based on their

transcriptomic profiling: basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M), and mesenchymal stem-like (MSL). For each of these

patient-derived subgroups, a set of representative TNBC cell lines was previously determined (Lehmann et al., 2011). The cell lines overlapping with our cell line

collection were used here in the cluster evaluation (Table S2 provides the characterization of all cell lines). The luminal androgen receptor (LAR) subgroup was

excluded due to the lack of androgen receptor antagonists in our kinase inhibitor panel. See also Figure S1 for KISS-based clustering of all tested cell lines.

(B) Adjusted R and index for the quantitative assessment of agreement between the KISS- and DSS-based cluster solutions with the patient-derived TNBC

subtypes.
The systematic evaluations demonstrated the improved ability

of the KISS-based combinations to predict known kinase drivers

of breast cancer cell lines (ERBB2 in BT474 and SKBR3, BRAF in

DU4475 aswell as PIK3CA/PI3Ka inMCF7 and T47D; Figure 2D).

Strikingly, all of the top four rankings of these positive controls

were based on KISS and DSS, and 11 out of 12 top rankings

were based on the DSS, indicating that the DSS metric provides

an improved means beyond the standard IC50 to elucidate can-

cer cell addictions. As was expected, the differential version of

DSS improved the prediction results when the aim was to find

selective addictions that are specific to a given cancer cell. How-

ever, merging unary drug-target interactions with quantitative

target selectivity profiles did not lead to improvements in the pre-

dictive accuracy, suggesting that taking into account negative

drug-target interactions has an important role in the driver pre-

dictions. The KISS version that utilizes differential DSS and

quantitative drug-target profiles turned out to be the overall

best combination across all the tested cell lines and their known

drivers (Figure 2D). This version was therefore used in the further

evaluations and applications of the KISS approach.

KISS-Based Cancer Cell Clustering Closely Resembled
Patient-Derived TNBC Subtypes
Unsupervised clustering of the breast cancer cell lines based on

their KISS profiles revealed three major clusters with distinct

kinase signal addictions (Figure 3A). To test whether the KISS-

based functional clustering could identify breast cancer sub-

types similar to those observed in patient tumors, we compared

the clusters derived from the KISS profiles with the classification

obtained using genome-wide molecular profiles from 587 TNBC

cases (Lehmann et al., 2011). It was found that the KISS-based

clustering agreed better with the patient-derived TNBC sub-

types, compared with that using the drug response profile alone

(Figure 3B).
Chemistry & Biology 22, 1144–
Notably, the KISS profiles of MDA-MB-436 and DU-4475 did

not cluster together with any other TNBC cell lines (Figure 3A).

This is because the experimentally validated top kinase predic-

tions in MDA-MD-436, including GLK/MAP4K3, KHS/MAP4K5,

TYK1/LTK, RON, MET, and IRAK4 (Figure 4), were distinct

from the set of significant addiction scores in the other mesen-

chymal-like cell lines (p < 0.05, permutation-based test). Simi-

larly, DU-4475, which represents the immunomodulatory sub-

type (Lehmann et al., 2011), did not cluster together with the

other basal-like cell lines due to its validated addictions to

RAF family and SRMS kinases (Figure 4). It also had common

predicted drivers with mesenchymal-like CAL51 and Hs578T

cell lines, including CAMKs, GRKs, and PKNs, which had very

low KISS values in all the basal-like cell lines (Table S4; Fig-

ure S1). These results indicate that the KISS profiles provide

additional information beyond the established breast cancer

cell types.

Predicted Kinase Addiction Patterns Showed Variability
between and within Established Cell Types
In addition to the known oncogenic drivers, the KISS-based

rankings suggested novel cell line-specific druggable addic-

tions. To experimentally test a set of novel addiction predictions,

we initially focused on the HDQP1 cell line, which was predicted

to be strongly addicted to CSK, BMX, HCK, and IRAK and to

ephrin receptor tyrosine kinases (Figure 4; Table S4). Since its

addiction profiles partially overlapped with those of CAL51 and

Hs578T, we tested a selection of top addiction predictions in

these three TNBC cell lines using both siRNA-based kinase

knockdowns and an independent set of compounds that inhibit

the predicted kinases but were not used in the model construc-

tion or KISS predictions (Figure 4). In general, we were able to

confirm a number of the predicted hits by an independent com-

pound and/or siRNA validation assays (Figure 4; Table S5).
1155, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 1147



Figure 4. Unique and Shared Kinase Addiction Patterns among the Heterogeneous Breast Cancer Cell Lines

The kinase addiction network was constructed among the statistically significant KISS values in separate cell lines (p < 0.06, permutation test). The node color

represents the type of experimental evaluation performed for the particular kinase prediction in a given cell line. The edge color represents the result of the

validation experiment(s) utilizing either independent drugs (i.e. targeted kinase inhibitors not among the FIMM compound panel) and/or siRNA-based kinase

knockdown (i.e. silencing of the predicted kinase target using three siRNAs per kinase in three replicates). Kinases that are known to be drivers of the cell lines are

marked with a red node border and a green kinase label. The independent siRNA and drug validations were considered positive if the average siRNA inhibition

from the two most effective siRNA sequences was above 35% and the drug sensitivity score was above 7, respectively. Table S5 gives the full validation data.
Taking CAL51 as an example TNBC cell line, our experimental

validations confirmed the importance of multiple AMP-activated

protein kinase-related kinases, such as ARK5 (NUAK1), SNARK

(NUAK2), andMARK3 (Figure 4; Table S5). In addition, CAMK2A,

PKN1, RIOK2, PRP4, and SRPK3were experimentally confirmed

by growth inhibition following their knockdown by siRNAs. Both

the siRNA and compound perturbation results supported the es-

sentiality of ARK5, SNARK, and MST1, as well as dasatinib tar-

gets EPHA5, EPHB4, HCK, and TXK. Notably, many of the

KISS-predicted addictions have been previously implicated in

cancers (Table S5). The number of kinase predictions confirmed

either in our validation experiments or in other studies provides

proof-of-concept support for the approach and its applicability

to finding novel cancer cell-specific kinase addictions.

Predicted Kinases and Their Interaction Partners
Formed Cell Type-Specific Signal Addiction Networks
The top KISS predictions turned out to form well-connected

signaling networks consisting of both physical and functional in-
1148 Chemistry & Biology 22, 1144–1155, August 20, 2015 ª2015 El
teractions, suggesting that the individually most essential kinase

targets play a role in shared biological processes. Focusing

again on CAL51, we took a closer look at the interaction partners

in the CAL51-centered network (Figure 5). The network analysis

revealed that the KISS-predicted kinases formed a connected

subnetwork with SYK as its main hub (Figure 5A; Table S6).

SYK has been shown to regulate proliferation as a tumor sup-

pressor, and inhibits breast cancer cell growth (Moroni et al.,

2004; Sung et al., 2009). Furthermore, its early loss during pro-

gression of the disease was linked to poor prognosis andmetas-

tasis (Blancato et al., 2014; Toyama et al., 2003). Interestingly

CAL51, a metastatic breast cancer cell line, had the lowest

expression of SYK among all the tested cell lines (Barretina

et al., 2012), raising the possibility that the observed growth inhi-

bition upon targeting some of its interaction partners might be

mediated by its reactivation. Importantly, siRNA knockdown of

a number of significant kinase addiction predictions in the

SYK-interactome showed marked growth inhibition (Figure 5B).

The CAL51 addiction network was also highly enriched in several
sevier Ltd All rights reserved
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Figure 5. Integrative Network Analysis

among the Strongest Kinase Addiction Pre-

dictions in CAL51

(A) The signal addiction network based on inter-

actome analysis of the top predictions in CAL51 is

highly connected with SYK as its most promiscu-

ous hub. The high-confidence physical in-

teractions occurring in breast neoplasm were ex-

tracted from the HIPPIE database for significant

kinase addictions (p < 0.06). The GeneMania

database was used to map the genetic in-

teractions between the top predictions as well as

pathway interactions involving the proteins in the

network.

(B) Top kinase predictions validated by siRNA

knockdown. Only hits with at least 35% average

inhibition over the three replicates of the top two

siRNA sequences are shown here, together with

their error bars (SEM). Red bars represent the

siRNA results in the CAL51 cell line, whereas green

bars represent negative control cell lines, in which

the KISS addiction prediction was insignificant

(HDQP1 and HCC1937).

(C) Selected gene ontology biological processes

that were highly enriched in the CAL51 signal

addiction network (p < 0.005). The number of

genes associated with a given GO term in the

CAL51 network is marked beside the bars.

See Figure S2 for other cell line-specific networks

and Table S6 for details of the interactions.
cancer-related gene ontology (GO) processes (Figure 5C; Table

S6). An enrichment of several immune function and inflamma-

tion-related processes was also seen in the MDA-MB-436 and

HDQP1 TNBC addiction networks (Figure S4). Notably, the toll-

like receptor signaling pathway was among those enriched,

consistent with previous studies showing the importance of

this signaling pathway in breast tumor cell invasion, survival,

and metastasis (Gonzalez-Reyes et al., 2010; Merrell et al.,

2006; Yang et al., 2010).

KISS-Predicted Kinase Addictions Showed Consistency
between Two Independent Compound Collections
We also evaluated the consistency of the kinase addiction

scoring using a distinct panel of 295 kinase inhibitors from Glax-

oSmithKline (GSK) (Knapp et al., 2013), which contains 87

shared kinase targets with our collection of 40 compounds (Fig-

ure 6A). Rankings of the shared kinases according to their KISS
Chemistry & Biology 22, 1144–1155, August 20, 2015 ª
values, which were calculated based on

drug responses in the two compound

panels, revealed a significant association

when applied to HER2-positive and ER-

negative cell lines (Figure 6B; p < 0.05,

Fisher’s exact test) and an overlapping

set of top functional addictions (Table

S7). The significant overlap in the KISS

profiles between these two distinct sets

of kinase inhibitors is especially striking

given the differences in their target selec-

tivity profiling: the Institute for Molecular

Medicine Finland (FIMM) compound tar-
gets were extracted from the competition binding assays (Davis

et al., 2011), whereby dissociation constant (Kd) levels were esti-

mated based on serial dilutions of a test compound across

several concentrations, whereas the target annotations for the

GSK compoundswere extracted from two-dose testing in kinase

assays (Knapp et al., 2013). This indicates that the kinase addic-

tion predictions were not merely due to the compounds covered

by our kinase inhibitor panel, but consistent addiction scores

were obtained also when using an independent set of drug

probes targeting the overlapping portion of the kinase space.

Combinatorial KISS Revealed Synergistic Drug
Interactions and Co-essential Kinase Pairs
Sincemost cancer cells are dependent onmultiple driver signals,

we extended the KISS approach to also elucidate combinatorial

molecular addictions, so-called druggable co-dependencies, in

each cancer cell type individually. To predict synthetic lethal
2015 Elsevier Ltd All rights reserved 1149
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Figure 6. Comparison of the Top-Ranked Kinase Addictions be-

tween Two Independent Compound Collections

(A) Overlap of the kinase inhibitors and their kinase targets between the GSK

and FIMM compound sets.

(B) Correlation of the KISS-based kinase rankings in two representative cell

lines. KISS values were calculated for the 87 common kinase targets in the two

non-overlapping drug sets (FIMM and GSK drug collections, Table S7). The

resulting rankings revealed a common set of top signal addictions and were

significantly correlated (p < 0.05, Fisher’s exact test). Red and green lines

indicate the average KISS level in the FIMM and GSK rankings, respectively,

which were used as cut-off values in the contingency tables of the Fisher exact

test for the association between the two rankings.
type interactions between kinase pairs, whose simultaneous in-

hibition leads to increased cancer cell death compared with the

inhibition of each kinase individually, we first calculated the

combinatorial KISS for all kinase target pairs in a given cell

line, and then compared the predicted combination effect with

those effects originating from inhibiting the single kinases alone

(Figure 1A, right). We focused on those kinase pairs for which the

combinatorial KISS was positive and exceeded the complement

scores (here T = 4; see Figure 1B); these pairs were then ranked

by the magnitude of their combinatorial KISS (Figure 7; Table

S8). For the proof-of-concept validations, we chose the

HCC1937 TNBC cell line, since it does not harbor any strong sin-

gle driver addictions, thereby being a good model system for

testing novel combinatorial treatment alternatives.

We hypothesized that the compounds which are the strongest

non-common inhibitors of each individual kinase in the highly

ranked kinase pairs should show a degree of synergism. To

test this hypothesis, we paired the most potent inhibitors of the

single kinases (Figure 7); these compound pairs were experi-

mentally tested for their combined efficacy in the selected cell

line in increasing inhibitor concentrations. Since some of the ki-

nases were targeted by only a single compound, which some-

times was shared among several selected kinase targets, there

were a number of kinase pairs (and thus compound pairs) with

the same combinatorial KISS value, originating from their com-

mon inhibitors (the colored panels in Figure 7). Notably, however,

we confirmed experimentally that at least one compound pair in

each such combinatorial KISS class resulted in a synergistic

phenotype (the pairs in boldface in Figure 7). For each of these
1150 Chemistry & Biology 22, 1144–1155, August 20, 2015 ª2015 El
synergistic combinations of nintedanib with enzastaurin, bosuti-

nib with pazopanib or foretinib, and dasatinib with axitinib, the

observed joint growth inhibition was markedly greater than the

expected effect based on the Bliss independence model (Fig-

ures 8A and 8B), and greater than the combination effect

observed in the self-crosses of these single agents (Table S9).

We further tested the predicted co-essential kinase pairs that

led to synergistic compound combinations using siRNA-medi-

ated target knockdown. We discovered that the majority of the

selected kinase pairs (9 of 11 validated pairs, Figure 7) showed

a co-essential phenotype, defined as higher combinatorial

growth inhibition effect than that caused by each individual ki-

nase when silenced alone. Strikingly, in seven out of these nine

pairs, the combinatorial silencing effect was higher than 2-fold

their expected effect (Figure 8C; Table S10). In particular, the ki-

nase pairs predicted to underlie the synergistic compound ef-

fects (EPHB6 with AURKC, GCK with TAOK3 or CDK7, and

GSK3b with PCTK1) were also shown to be co-essential. Taken

together, these results suggest that the combinatorial KISS

approach can identify unexpected synergistic interactions be-

tween compounds, which are often due to synthetic lethal type

interactions between the kinase targets of the individual inhibi-

tors that target distinct pathways (Table S11). This model hence

explains the synergistic inhibition effect via a specific co-depen-

dency pattern, in which the cancer cell is addicted to a number of

kinase signals, each of which needs to be inhibited for maximal

cancer cell killing.

DISCUSSION

We recently demonstrated how comprehensive testing of drug

sensitivities in cells from leukemia patients may lead to unpre-

dictable, clinically significant drug-repositioning opportunities,

as well as to hypotheses about potential kinase-driven signaling

networks to which the patient-derived cells may be addicted

(Pemovska et al., 2013, 2015; Yadav et al., 2014). Once carefully

tested, such network-based approaches could facilitate clinical

decision making by means of mapping the key oncogenic sig-

nals underlying both the initial treatment sensitivity and acquired

resistance during the disease evolution.

In the present study, we developed and tested a systematic

chemical systems biology tool to explore druggable cancer ad-

dictions, both single kinase targets and their synthetic lethal

type combinations, through integrating functional perturbation

profiles from cell-based drug sensitivity assays and drug-target

information from biochemical target selectivity assays. In an

application to 40 kinase inhibitors, which span the target network

among 205 kinases, we demonstrated how this integrated

approach enabled us to classify selective kinase addiction pat-

terns across heterogeneous TNBC cell lines in agreement with

their clinical subtypes while showing considerable variability be-

tween the heterogeneous breast cancer cells, hence pinpointing

putative mechanisms of drug sensitivity and resistance in a

context-specific manner. Using known oncogenic drivers, such

as ERBB2/HER2, BRAF, and PIK3CA, we showed that our ki-

nase addiction score improves the ranking of the molecular ad-

dictions in a subset of breast cancers known to be driven by

these kinases. Our unsupervised approach not only identified

known breast cancer drivers in a totally unbiased manner, but
sevier Ltd All rights reserved



Figure 7. Combinatorial KISS Results in the

HCC-1937 Cell Line

The combinatorial KISS was calculated for a

particular kinase pair (k1, k2) by averaging the drug

response (DSS) over their common inhibitors that

target both k1 and k2 (see Figure 1). The different

background color panels indicate the sets of

kinases (and compound pairs), which were indis-

tinguishable by the current compound-target

mappings. Boldface font indicates those com-

pound and kinase pairs for which we have exper-

imental support from compound and/or siRNA

testing for being either synergistic or co-essential,

respectively, and an asterisk indicates that the ki-

nase pairs that were not experimentally tested in

the present study.
also predicted a number of novel druggable addictions,

including SNARK, ARK5, CAMK2A, SRMS, and PKN1. Experi-

mental validations using both compound and siRNA combina-

tions demonstrated that the model also successfully predicted

a number of co-essential kinase pairs and synergistic kinase in-

hibitor combinations in the basal-like HCC1937 TNBC cell line,

such as dasatinib with axitinib, enzastaurin with nintedanib, as

well as bosutinib with pazopanib or foretinib, in which the com-

bined inhibition power could not be explained by the efficacy

of the two single compounds when used alone. Even though

several of these compounds are currently not yet approved, their

overlapping polypharmacology helped the network model to

identify unexpected synergistic combinations regardless of their

approval status (Table S1). Although we sometimes observed

synergies at rather high concentrations, which may not be clini-

cally feasible, the current proof-of-concept results could be

further improved with an increasing knowledge of the drug-

target selectivity. The present study focused on kinase inhibitors,

due to their importance in anticancer drug development (Apsel

et al., 2008; Fedorov et al., 2010) and the availability of compre-

hensive target selectivity profiles (Davis et al., 2011), but the

chemical systems biology approach is applicable to any sets

of compounds with known and partly overlapping target profiles.

Perhaps the biggest limitation of any target deconvolution

method comes from the lack of comprehensive and accurate

target annotations for many targeted compounds. Conse-

quently, multiple kinases tended to obtain the same KISS value

(e.g. all those targets having the same set of inhibitors in a given

cell line). Experimental testing of these predictions is essential to

discriminate the potential false positives. Similarly, since the joint

inhibition of kinase pairs by the same set of drugs results in equal

scoring from the combinatorial KISS, the compound combina-

tion rankings may also have ties (i.e. multiple kinase pairs ex-

plaining the efficacy of their common set of inhibitors). In our

experimental validations, we were able to confirm one synergis-

tic compound pair in each of the combinatorial KISS classes

(Figure 7; Figures 8A and 8B). However, it is likely that an
Chemistry & Biology 22, 1144–1155, August 20, 2015
increased number of kinase inhibitors

with overlapping target spaces will lead

to more high-resolution predictions in

the future. Furthermore, experimental is-

sues may lead to some false-negative
findings, i.e. lowly ranked kinases that are important for the can-

cer cell survival, for instance, due to the relatively short assess-

ment time of drug sensitivity (in this case, 3 days), which may be

insufficient to affect the viability readout. In addition, an efflux

transporter effect may mask sensitivity to a kinase inhibitor,

and thereby the addiction to the kinase function could remain un-

detected in compound phenotypic testing. However, our siRNA

knockdown validation experiments gave complementary sup-

port for the essentiality of the predicted kinases. As a future

development, it might be useful to combine the chemical and

RNAi-based perturbation experiments with genomic analyses

to provide improved identification of molecular addictions and

co-dependencies, along the lines suggested in recent integrative

studies (Gatza et al., 2014; Sundaramurthy et al., 2014; Vizea-

coumar et al., 2013).

In summary, our integrated phenotype-based strategy pro-

vides complementary information compared with cancer

sequencing efforts, which have their limitations in translating

the genomic aberration into clinically actionable therapeutic

strategies. For instance, even when causal aberrations can be

identified, these are often pharmaceutically non-targetable,

and even if druggable genetic alterations can be found, targeting

them in the clinic often proves ineffective because of redundant

activated driver signals or adaptive compensatory signaling.

Compared with the genomic-based approaches (Aksoy et al.,

2014; Tan et al., 2012), our functional approach does not require

any background knowledge of the genetic alterations or other

molecular biomarkers to elucidate potential therapeutic strate-

gies. This may make it more straightforward to translate the

most actionable predictions into a clinical setup, based solely

on the ex vivo response of patient cells to a collection of drugs

with known target annotations. The synergistic effects of drug

combinations predicted by the combinatorial KISS suggest

that this approach can identify new unexpected treatment stra-

tegies that modulate multiple, redundant, or compensatory

signaling pathways. Finally, our results warrant the development

of improved inhibitors with higher dual potency and selectivity
ª2015 Elsevier Ltd All rights reserved 1151
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Figure 8. Combinatorial KISS Predicts

Synergistic Compound Combinations and

Co-essential Kinase Pairs

(A) Dose-response curves for the synergistic inhibi-

tor effects on cell viability in HCC1937. Each com-

bination was tested in two to four replicates. Points

and error bars represent the mean and its SE,

respectively, and the solid curve is the logistic

function fit. The expected combinatorial effects were

calculated based on the Bliss independence model

(Bliss, 1956).

(B) Examples of the full dose-response matrices

showing the effects of the synergistic compound

combinations on the cell viability (left) and their Bliss

excess scores (right).

(C) Effects of single and combinatorial siRNA

knockdowns of the top kinase pairs on HCC-1937

cell viability. Three siRNAs per gene were tested

both in a 3 3 3 matrix format (combination effects)

and alone (single effects) in three replicates. Bars

and error bars represent percent inhibition and SE

after single and combinatorial siRNA knockdown of

the selected pairs. For scoring of co-essentiality, the

maximum single effect was used as the baseline

comparison level for the combination effect.

Tables S8, S9, S10, and S11 provide the full data.
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toward the top target pairs, which could further improve the

treatment efficacy as shown earlier (Dar et al., 2012).We envision

that iterative experimental drug sensitivity testing followed by

combinatorial KISS analyses and chemical optimization could

offer a powerful means for phenotype-driven development of

new, highly disease subtype-selective drug leads.

SIGNIFICANCE

This proof-of-principle study demonstrates how integration

of kinase inhibitor perturbation screens with computational

target deconvolution approaches offers possibilities to

elucidate both mono- and multi-targeted molecular addic-

tions in individual cancer cells. As broad-scale drug sensi-

tivity testing is becoming a commonly used approach to

functionally profile both cancer cell lines and patient-

derived cancer cells, our integrated platform can greatly

benefit many chemical, biological, and clinical applications.

Integration of comprehensive chemical screening and target

selectivity profiling provides improved understanding of the

biological mechanisms behind drug sensitivity and resis-

tance in individual cancer types and patients. Experimen-

tally, our approach enables computational prediction of

synergistic target and drug pairs, which may help to priori-

tize and speed up the experimental testing of the massive

number of potential combinations. Personalized medicine

programs should also benefit from the systematic mapping

of oncogenic driver signals and pharmaceutically actionable

molecular addictions during cancer progression and

relapse, as well as from the possibility to predict next-line,

combination therapeutic opportunities that are tailored for

the individual, relapsed patient.

EXPERIMENTAL PROCEDURES

Cell Line Material

The characteristics of the breast cancer cell lines, including their vendors and

culturing conditions, are detailed in Table S2.

Drug Sensitivity Screening

The sensitivity of the 21 breast cancer cell lines to 239 anticancer compounds

was tested using the DSRT platform (Pemovska et al., 2013). Each compound

was tested in five concentrations, across a 10,000-fold range, allowing for the

establishment of dose-response curves and their subsequent quantification

by IC50 and the DSS (Yadav et al., 2014). The DSS values of the compounds

and their clinical status are provided in Table S1. Differential DSS and IC50

values were calculated using either the mean over all cell lines or the

MCF10A cell line as a control. The same protocol was used for testing the

GSK compounds in the MDA-MD-453 and SKBR3 cell lines. An independent

set of drugs used in validations of the KISS predictions was tested in selected

cell lines using eight concentrations over a 10,000-fold range (see Independent

Drug and siRNA Testing). The predicted drug synergies were tested in an 83 8

dose-matrix format (see Combinatorial Drug Synergy Testing).

Drug-Target Mappings

As a source of quantitative drug-target data, we used the biochemical compe-

tition binding study performed by Davis et al. (2011), where the Kd values for

205 non-mutated kinases were available for 40 inhibitors from our FIMM

drug collection. Drug targets were defined using drug-specific Kd thresholds

(50-fold from the strongest target of a given inhibitor or below 100 nM, which-

ever threshold came first), followed by an expert manual curation, resulting in a

quantitative drug-target dataset (qDT, Table S3).
Chemistry & Biology 22, 1144–
As a source of non-quantitative, unary drug-target data (uDT), we combined

kinases listed as targets in KEGG (http://www.genome.jp/kegg), the Therapeu-

tic Target Database (http://bidd.nus.edu.sg/group/cjttd), and DrugBank

(http://www.drugbank.ca). This resulted in 296 kinase targets for 142 drugs

in our FIMM drug collection (Table S3). Such unary target selectivity data

specify which kinases have been reported as targets of a given drug, but lack

the information about those not being reported as a target or not being tested.

For the GSK compounds, we used the kinase activity assay from Knapp

et al. (2013), available in ChEMBL (https://www.ebi.ac.uk/chembl/), where

the kinases were subdivided into five categories (from 0, inactive to 4, very

active), based on the inhibition of their activity at 1 and 0.1 mM concentrations

of a particular compound, according to pre-defined thresholds. Kinases clas-

sified into categories 3 and 4 were considered to be targets of the GSK com-

pounds. Kinases belonging to category 2 were considered to be targets only if

the compound had no targets in higher categories.

Kinase Addiction Predictions

To make a systematic comparison of the KISS approach with previous

methods, we ranked the kinase targets using the drug response profiles in

each cell line based on Tyner’s score (Tyner et al., 2013), Fisher’s test (Wei

et al., 2012), and Spearman’s correlation (Tran et al., 2014). In the Tyner score

method, kinases from the quantitative drug-target data for each drug were

subdivided into five tiers depending on the magnitude of their Kd or IC50 value

(Tyner et al., 2013). Each kinase was then assigned a cumulative score, result-

ing from addition of points (its effective inhibitors) and subtraction of points (its

ineffective inhibitors).

In the Fisher test method, a p value for each kinase was calculated based on

the number of its active inhibitors, active non-inhibitors, inactive inhibitors, and

inactive non-inhibitors (Wei et al., 2012). The active drugs were defined to be

among the top 20% of the most effective drugs in a given cell line. In the

Spearman correlation method, the kinases were ranked based on the correla-

tion between drug response and the kinase selectivity profile in each cell line

separately. The Fisher test and Spearman correlation-based methods were

tested with quantitative drug-target data (qDT) and two types of drug response

data (IC50 or DSS). In addition, we tested both non-differential and differential

versions of IC50 and DSS (see the explanation in Drug Sensitivity Screening).

Altogether we examined 31 technically possible combinations of the deconvo-

lution method, drug response data, and drug-target data, each resulting in a

separate ranking of kinase targets (Table S4).

Comparison of the Kinase Addiction Predictions

To evaluate the kinase target rankings resulting from the different approaches,

we extracted the ranks of known kinase drivers (ERBB2/HER2, BRAF, and

PIK3CA/PI3Ka) in seven of the cell lines as positive controls, and calculated

their median rank across these cell lines. The mutations of PIK3CA and

BRAF in breast cancer cells were extracted from the COSMIC database (as

of June 2012; http://cancer.sanger.ac.uk/). Only cell lines harboring amutation

that had an impact on the protein function were used in the evaluation. The

functional impact was assessed using the IntOGen database (as of March

2013; http://beta.intogen.org/web/cell-lines).

Statistical Significance of a KISS Value

To assess the statistical significance of an observed KISS value, we deter-

mined the empirical p values using permutations tests. More specifically, a

vector consisting of numbers of inhibitors per kinase was used to randomly

select a given number of inhibitors for each kinase, whose drug response

values in a given cell line were then averaged. In other words, the links in the

drug-target network were randomly re-ordered while preserving the overall

distribution of the number of inhibitors per kinase. The permutation procedure

was repeated, simulating at least 10,000 random KISS values in a given cell

line. The empirical p value was defined by the percentage of the permuted

KISS values above or equal to the observed one (Table S4).

Construction of Addiction Networks

The CAL51 addiction network was constructed using the high-confidence inter-

actions, both physical and associations, in breast neoplasm for the topKISSpre-

dictions from the HIPPIE database (http://cbdm.mdc-berlin.de/tools/hippie),

where only the interactors connected with at least three input proteins were
1155, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 1153
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retained. The resulting network was further populated using pathway and ge-

netic links extracted from GeneMania (http://www.genemania.org). For visual-

ization purposes, genetic interactions with less than two proteins from the top

KISS predictions were filtered out. The network was visualized using Cyto-

scape v.3.0.1. Enrichment of GO biological processes was analyzed using

ClueGo v.2.8 (Bindea et al., 2009), with the minimum number and percentage

of genes per term being set to 4 and 2, respectively, and the Benjamini Hoch-

berg method applied as the p value correction method (Table S6).

Independent Drug and siRNA Testing

The top single KISS predictions were tested in selected cell lines using both

siRNA knockdowns and an independent set of kinase inhibitors. The predic-

tions fromMDA-MD-436 and DU4475 cell lines were tested using independent

drugs only, whereas the predictions from HDQP1, Hs578T, and CAL51 were

tested using drugs and/or siRNAs, depending on the kinase target. As addi-

tional drugswechose those that had the lowestKd values for the kinase inques-

tion (Davis et al., 2011), but were not previously tested in the FIMM drug set

used to generate the KISS predictions. These independent drugswere ordered

fromMedChemexpress and tested in the same way as described above (Drug

Sensitivity Screening). siRNA validations were performed using three siRNA

sequences per kinase individually at a concentration of 10 nM and tested in

three replicates in the cell lines predicted to be positive and negative for each

kinase addiction. The siRNAs for the kinases as well as for the positive and

negative controls were ordered from Ambion and tested using the same proto-

col as described below (siRNA Combination Testing) with 750 cells per well for

all cell lines, except for HCC1937 and BT549 whereby 500 cells per well were

used. The number of cells for platingwas determined based on the transfection

optimization experiments. Fluorescence values were converted to percent in-

hibition using positive and negative controls. The average siRNA knockdown

was calculated for each sequence based on the three replicates, and the two

highestmeanswere further averaged to result in the final siRNA inhibition score.

Kinases whose final siRNA inhibition score was R35% were considered as

positively validated. For the independent drug tests, we considered DSS R7

as an indication of a positive validation (Table S5).

Combinatorial KISS Predictions

The combinatorial KISS score was calculated for all kinase pairs that had com-

mon inhibitor(s) as well as individual inhibitors among the 40 kinase inhibitors in

common between our FIMMdrug collection and the selectivity profiling assays

(Davis et al., 2011). Kinase pairs that had no common inhibitors or no single ki-

nase inhibitors in our compound collection were excluded from the combina-

torial analysis. Next, to focus on synthetic lethal type of kinase pairs, termed

co-essential, we excluded all those pairs for which the difference between

the combinatorial KISS and the complement scores was below a selected

cut-off value (here T = 4, see Figure 1). The remaining kinase pairs were ranked

by the magnitude of their combinatorial KISS and mapped back to drug pairs

by selecting the strongest inhibitors of kinases 1 and 2 alone, excluding their

common inhibitors, using the lowest Kd values (Davis et al., 2011) (Table S8).

The top co-essential kinase pairs predicted by the combinatorial KISS, as

well as the corresponding drug pairs of their individual inhibitors, were exper-

imentally tested in HCC1937 cells as described below.

Combinatorial Drug Synergy Testing

To test the combinatorial KISS predictions, the top-ranked drug combinations

in the HCC1937 cell line were tested in an 8 3 8 dose-matrix format covering

seven increasing concentrations of each drug, along with all their pairwise

combinations, as well as the negative control (0.1% DMSO, top left corner

of the 8 3 8 matrix) and the cell-killing positive control (100 mM benzethonium

chloride, bottom right corner of the matrix). Drugs were transferred in clear-

bottom black 384 well plates (Corning) using an Echo 550 Liquid Handler

(Labcyte) as per thematrix design. Liquid handling was performed using aMul-

tiDrop Combi dispenser (Thermo Scientific). 5 ml of culture medium was

dispensed in each well of pre-drugged plates to dissolve the drugs, and main-

tained in the orbital shaker for about 1 hr. Next, 20 ml of cell suspension (1,000

cells per 20 ml) was added to the drugged plates. After 72 hr of incubation at

37�C in 5%CO2 in a humidified incubator, the cell viability wasmeasured using

CellTiter-Blue (Promega). 3 ml of CellTiter-Blue reagent was added to the

plates, which were then incubated for 2 hr at 37�C. Fluorescence intensity
1154 Chemistry & Biology 22, 1144–1155, August 20, 2015 ª2015 El
(595 nm) was measured using a PheraStar FS plate reader (BMG Labtech).

The raw intensity values were converted to percent inhibition using the plate

average of positive and negative controls. Next, to reduce the dispensing-

related experimental variation from well to well, each row and column from

the 83 8matrices was fitted in GraphPad Prism software using logistic model,

and the two fitted values per well were then averaged. The expected combina-

tion effects were calculated on the basis of the Bliss independence model

(Bliss, 1956) (Table S9).

siRNA Combination Testing

The top co-essential kinase pairs predicted by the combinatorial KISS in

HCC1937 cells were tested in an siRNA combination assay. Three siRNAs

per kinase were purchased from Qiagen and tested in 43 4 matrices, in which

the top left corner was occupied by a control, and the remaining wells in the

first row and column by single siRNAs (at 8 nM) of the first and second kinase,

respectively. All the pairwise combinations were tested in the remaining nine

wells using 8 nM of each siRNA. SiRNAs were transferred to clear-bottom

384 well plates with the Echo 550 Liquid Handler. 5 ml of Opti-MEM (Life Tech-

nologies) containing 50 nl of Lipofectamine RNAiMAX Transfection Reagent

(Life Technologies) was added to each well of pre-siRNA-coated plates using

an MultiDrop Combi nl dispenser (Thermo Scientific) and incubated at room

temperature for 20 min on an orbital shaker. 20 ml of cell suspension (500 cells

per 20 ml) were seeded on the siRNA plate and the plates were maintained at

37�C, in the presence of 5% CO2 in a humidified incubator for 96 hr. CellTiter-

Glo (Promega) reagent was then used to assess the viability of cells after siRNA

treatments. Z prime scores were calculated for each plate, and these remained

above 0.5, assuring good resolution. The fluorescence measurements were

converted to percent inhibition using the mean fluorescence of 16 positive

and 24 negative controls. The single siRNA knockdown effects were normal-

ized by taking the average of the inhibition values of single kinase knockdown

and those double kinase knockdown that included this kinase with lower inhi-

bition values, to make the single and double kinase knockdown results com-

parable. Maximum single siRNA knockdown effect was considered to be the

expected combinatorial effect in the absence of established synergy scoring

(see also Table S10).
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