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A b s t r a c t - - B y  equivariance under the action of a group of invertible linear transformations on 
a Euclidean space, we describe symmetries of mappings. Based on known results on existence of 
solutions for iterative differential equations, in this paper, we discuss the special class of solutions 
which possess equivariance on It. Existence, uniqueness, and smooth dependence are given by using 
fixed-point theorems and by virtue of properties of finitely generated Lie groups. © 2004 Elsevier 
Ltd. All rights reserved. 

K e y w o r d s - - I t e r a t i v e  differential equation, Equivariance, Finitely generated, Lie group, Fixed- 
point theorem. 

1. I N T R O D U C T I O N  

Among functional differential equations [1] there is an important class involving iteration. In 
particular, Cooke [2] points out that it is highly desirable to establish the existence and stability 
of periodic solutions for the equation 

x ' ( t )  + ax( t  - h(t, x ( t ) ) )  = F( t ) ,  V t  e R .  

In [3], Stephan obtains existence of periodic solutions for the equation 

x ' ( t )  + ax( t  - r + #h( t ,  x ( t ) ) )  = F( t ) ,  V t  • It .  

Eder [4] discusses a special iterative differential equation 

x'(t) -- 

for all t • R and proves that every solution either vanishes identically or is strictly monotonic. 
The existence of solutions for the equation 

x'(t) = f (x(x( t ) ) )  
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is given in [5] when f E C 1 (R) and generalized without smoothness of f in [6]. Recently, a more 
general form 

m 

5'(t) = a;(t)zJ (t) + F(t) 
j = l  

is considered and existence, uniqueness, and C 1 dependence of its smooth solutions are obtained 
in [7,8]. Besides, a result of analytic solutions for the equation x'(t) = xm( t )  is given in [9]. The 
general form of iterative differential equations can be written as 

x'(t) = a (x~l (t), xn~ (t), . . . ,  x~k (t)),  (1) 

where x°( t )  = t, x l ( t )  = x( t ) ,  xk( t )  = x ( x k - l ( t ) ) ,  k = 2, 3 . . . . .  As mentioned in [2,3,10], it is 
related to infection models and also to motions of charged particles with retarded interaction. 
Further investigations are of practical interest (see, e.g., [2,4-7,9,11]). 

Equivariance is used to describe symmetries of mappings (seen in [12,13]). Let ~ be a Banach 
space and F be a Lie group of linear transformations on ~. A mapping x : ~ -+ ~ is said to be 
F-equivariant if 

x(.yt) = .~z(t), v t  • ~, v.~ e r.  

Sometimes the restriction of such a mapping x on a subset of ~ is considered to be of F-equi- 
variance. It  is an interesting problem to find solutions of equivariance for (1). 

In this paper, we study solutions of equivariance for equation (1), where t E I := [-r/,r/], 
r />  0, G maps I k, the product of k intervals of the same I, to R continuously, x is the unknown 
mapping, and all njs  (j = 1, 2 , . . . ,  k) are positive integers. We consider the action of groups 
of invertible linear transformations on R and prove existence and uniqueness of its solutions of 
equivariance by using fixed-point theorems, where difficulties from compactness are overcome 
by virtue of properties of finitely generated Lie groups. C 1 dependence on given functions is 
discussed further. Two concrete equations with nonlinear iterates, one of which is considered 
in [5] and the other is not, are given under the action of the group Z2. However, we also remark 

that it is not easy to obtain a solution of equivariance even if an equation only with linear iterates 

as discussed in [4] is considered. 

2. MAIN RESULTS 

Obviously, invertible linear transformations of R take the form t --~ vt, where 0 ~ V E R. 

Without loss of generality, we assume that any Lie group acting linearly on R can be identified 

with a subgroup of GL(R), the multiplicative topological group of nonzero reals, which we can 

identify with R0 --- R \ {0}. Let V C R0 be a set of generators for a subgroup F ~ GL(R) and 

write F -- (V). F is referred as to be finitely generated if V has finite elements. Moreover, we 

say F is topologically finitely generated if it is the closure in GL(R) of a finitely generated group. 

V is minimal of F if no proper subset generates F. Clearly, Z2 is the finitely generated subgroups 

and all odd functions, being symmetric to the origin, are Z2-equivariant. 

Consider the action of a topologically finitely generated Lie group F on R. Suppose that 

(A1) G ( 0 , 0 , . . . , 0 )  = 0 and 
k 

tG(tl,t2,...,tk)-G(sl,s2,...,sk)l<_~-~C~lt~-s~], Yti, s~eI, i = 1 , 2 , . . . , k ,  
i=1 

for some constants Ci >_ O, i = 1, 2 , . . . ,  k, which do not all vanish but satisfy 
k 

< 1; (2) 
i=1 

(A2) G(VQ,Vt2,. . . ,~/tk) = G ( t l , t 2 , . . . , t k )  for all V e F and for all t~ E I with vti E I,  
i =  l , 2 , . . . , k .  

The following result gives existence for solutions of equivariance. 
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THEOREM 1. Suppose that F is a topologically finitely generated Lie group acting on R and 
that Hypotheses (A1) and (A2) hold. Then equation (1) has a solution x of F-equivariance on I 

k w h i c h  s a t i s ~ e s  x ( 0 )  = x ' (0)  = 0, I~(t) - ~ ( s ) l  < It - sl, and  I~'(t) - z ' ( s ) f  < E ~ = I  C~lt - sl, for 
all t, s • I. 

In Theorem 1, Condition (A2) requires an invariant proper ty  of the multivariable function G 
with respect to the action of the group F. Many functions have such a property. A function 
G(t l ,  t 2 , . . . ,  tk) is invariant with respect to Z2 when G is an even function in each variable. For 
example, G(tl, t2, t3) = t 2 + t24 + t36 and G(tl, t~) = cos tl  + sin 2 t2. 

The next one concerns uniqueness and C 1 dependence. 

THEOREM 2. I f  all conditions in Theorem 1 hold and 

k 

('q + 1) ~ n~C~ < 1 (3) 
i = l  

additionally, then the solution obtained in Theorem 1 for equation (1) is unique. Moreover, this 
solution is C 1 smoothly dependent on the given C. 

3.  C O M P A C T N E S S  O F  S P A C E S  F O R  S O L U T I O N S  

Let CI(I)  denote the set of all continuously differentiable functions on the interval I .  Define 
Ux]] = maxxei{Ix(t)]} and Iix]]] = ][x]] + I]x'l], where x e Cl(I) .  Then C1(/ )  is a Banach space 
with the norm I1' I]1- Take notations 

XI(I ;Ko,  K1) := {x e C 1 ( I ) :  x(0) = x'(O) = 0, Ix(t) - x(s)l <_ K o l t -  sl, 

Ix'(t) - x ' ( s ) l  ___ K i l t  - sl,  v t ,  s e z } ,  

Xrl(I) := {x E C I ( I ) :  x(Tt) = ~/x(t), V7 C F, Vt with 9't c I } ,  

and X~(I; K0, K1) := XI ( I ;  K0, K1) N X~(I). 

LEMMA 1. Suppose that F is topologically finitely generated. Then XI~(I ) is a convex dosed 
s u b s e t  o f  C l ( I )  in *he t o p o l o g y  o f  n o , m  II" [11. 

PROOF. For each 7 C F, define 

XI~(I) := {x e C 1 ( I ) :  x( ' / t)  = 7x(t), Vt  • I n ' / - l I } .  (4) 

We claim tha t  

(i) X~ 1 (I)  is convex and closed; 

(ii) XTl_l(I ) = XTl(I); 
(iii) X~I(I) N Z~l(I) C X~l~(I); 

(iv) X~([) = Ak=l X~ (I),  where V = {71,72, . . . ,  7k} is a finite set of (topological) generator 
of F. 

I t  suffices to prove these results for F to be finitely generated, since we can then pass to the clo- 
sure of any such group by continuity of x. For this purpose, we suppose tha t  F = ('/1, " /2, . . . ,  7k). 

For (i), we can prove that  P¢~l(I) is a closed linear subspace indeed. Let x ,y  • Xl~(I) and 
a, b • R and consider z = ax + by. Obviously, z • C1(I) .  Further,  for all t • I M ' / - 1 I ,  we get 
x(Tt) = 7x(t)  and y(Tt) = 7y(t). So z(Tt ) = 7z(t),  i.e., z • X I ( I ) .  Of course, X~I(I) is convex. 
Closure is also clear. Thus, (i) is proved. Claim (ii) is shown through the change of variables 
s = 7t  since ' / #  0. 

For (iii), it suffices to give its proof when I'/ef < 1. Otherwise, we can work with X~l_17_~ (I) 
instead because of (ii). If  x • p(1 (I)  M X~ 1 (I),  then 

x(Tt) = 7x(t),  Vt • I n 7 - 1 I  (5) 
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and 
• (~ t )  = ~ ( t ) ,  v t  e I n ~-~S. (6) 

For s e I n  ( '~ff)- l(Z), we get 
s E I and (Ta)s E I.  (7) 

There is no loss of generality in assuming that  let < 1 because 17a I N 1 and F is Abelian. Put  
t -- as. We get from (7) that  t, at, s, as  E I. Then (5) and (6) imply that  x (7as  ) = 7x(t) = 
7x(as)  = "yax(s), which means that  x e X~( I ) .  

To prove (iv), note that X~(I) = ~7er 2d4(I) follows directly from the definitions of X~(I) 
and A'~ (I). By (ii) and (iii), it is equal to f~Tev 2:'1(I), proving (iv). Since the set of generators Y 
is finite, (i) and (iv) imply that  Xr 1 (I) is closed and convex. This completes the proof. | 

LEMMA 2. Subset 2d C C1(I) is sequentially compact if and only if2{ is uniformly bounded and 
the set X'  consisting of derivatives of functions in X is equicontinuous. 

This is a version of Ascoli-Arzela's lemma for C 1 functions. Its proof can be found in [14]. 

LEMMA 3. If  F C GL(R)  is topologically finitely generated, then XI(I;  Ko,K~) is a compact 
convex subset of C I (I). 

PROOF. Consider 2d~(I;Ko,K1) in the topology induced by I1' I]1. It is easy to check that  
A'I(I; Ko, K1) is a convex closed subset of C1(I). For all x • XI( I ;  K0, K1), we have 

I1~111 = Ifxll + I1='11 -< w + K0, 

i.e., XI(I; Ko, K1) is uniformly bounded. Moreover, the set of derivatives of all elements for 
2d1(I; K0, K1) is equieontinuous since I x ' ( t ) -  x'(s)l _< Kil t -  sl. By Lemma 2, XI( I ;  K0, Kt )  is a 
compact convex subset of CI(I) .  However, Lemma I tells tha t  Xrl(I) is a convex closed subset, so 
Xrl(I; Ko, K1), being an intersection of two convex dosed subsets, is also a convex closed subset 
of XI(I; Ko, K1). Hence, X~(I; Ko, K1) is compact. | 

4 .  P R O O F S  O F  T H E O R E M S  

P r o o f s  o f  T h e o r e m  1 

Define a mapping T : X~(I; 1 k ' E i = I  C i )  --4 CI(I )  by 

' ( ' /  ( T x ) ( t ) = /  a(Xnl(~),xn2(~),. . . ,xnk(~))d~, X e X  1 I;1, E C i  . (8) 
i=l  

We claim that  T maps A'rl(I; 1 k , ~ i=1  Ci) into itself. Actually, 

IxJ(t) - zJ(s)l <_ l t -  sl, t, s e I, j e N ,  (9) 

k since Ix ( t ) -  x(s)[ < I t -  s I for x e Xrl(I; 1, Y~=I C~). Moreover, 

(Tx)(0) = 0, 

(Tx)'(0) = C (x ~1 (0), ~n~ (0 ) , . . . ,  ~ ( 0 ) )  = 0. 

By Hypothesis (A1) and (9), we see 

t d~ I(Tx)(t) - (Tx)(s)] = C (xnl((),xn2((), . . .  ,x~k(()) 

i t d~ 
_ Ia  (x" l (~ ) , . . . ,  x~ (~ ) )  - a (x~(0) ,  . . . ,  x ~  (0))1 

k t d~ k l f t  d~ (10) 

i=i i=I 

k 

_< ~Zc~It-si _< It- ~l, 
i=I 
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for all t, s E I .  Similarly, 

I(Tx)'(t) - (Tx) '(s)l  = IV ( x ~ ( t ) , . . . ,  x ~ ( t ) )  - e (x ~ ( s ) , . . . ,  x '~ (s))l 
k 

i=1 (11) 
k 

< ~ C d t -  sl, V t, s e I. 
i ~ l  

Furthermore, by (A2), we have 

fo (Tx)(Tt) = G(x '~(~) ,x~(~) , . . .  ,x'~k(()) d~ 

/o' = 7  a ( ~ ( ~ ) , ~ ( ~ ) , . . . , ~ ( 7 ~ ) )  e~ (12) 

/o' = 7 o (x ~ ( ~ ) ,  x ~ ( ~ )  . . . .  , ~ ( ~ ) )  d~ 

= 7(T~)( t ) ,  

for all 7 E F and t E I with 7t ~ I .  Thus, relations (10)-(12) imply tha t  (Tx)(t) E X~(I; 1, 
k ~-]~=1 C~) and so our claim is proved. 
For x, y E X~(I;  1, k ~ i = l  Ci), we can prove by induction tha t  

IIx n - PII -< ~llx - yll. (13) 

Thus, 
l a (x '~ (t), x '~ ( t ) , . . . ,  ~n~ (t)) - G (p~ (t), p ~  ( t ) , . . . ,  p ~  (t))l 

< _ E G ] x ' ~ ( t ) - y n ~ ( t ) l  <_ n iG  ]Ix-yOI (14) 
i= I  \ i = l  / 

<_ n iG  II x -y i I1 ,  y t  E I. 
\ i = l  ] 

I t  follows tha t  

IITx - TyH1 = ItTx - Tyll + II(Tx)' - (Ty)'ll 

f0 ~ d~ 
----max {G(xnl( ( ) , . . . , xnk(( ) )  _G(yn~(~) . . . .  , ynk (())} 

x E I  

+ m ~ l G ( x n l ( t ) , . . . , x  ~( t ) )  - a ( p ~ ( t ) , . . . , p ~ ( t ) ) l  (15) 

_< ( n + l )  n~c~ I I x - y l l l ,  
\ i = l  ] 

implying tha t  T is a continuous mapping. Since Xrl(I; 1 k , ~i=1 Ci) is a compact  convex subset 
of Cl(I)  by Lemma 3, by Schauder's fixed-point theorem, there is a mapping z(t) in 2~( I ;  1, 

k ~ = 1  Ci) such tha t  

4 t )  = O (z ~,(~), ~ , ( ~ ) , . . . ,  ~ ( ~ ) )  d~. 

By differentiating both sides of the above equality, we can check tha t  z is the desired solution 
of (1). This completes the proof. | 

Remark tha t  the class X~ (I; 1, k C ~i=1 i) confines Lipschitzian constants of those functions axe 
not greater than 1, so as to guarantee iteration of x(t) is meaningful. 
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P r o o f  of  T h e o r e m  2 

By (15) and (3), the mapping T, defined in (8), is a contraction on the closed subset 2d1~(I; 1, 
k ~ i=1  C~) of CI(I). Thus, T has a unique fixed point and equation (1) has a unique solution in 

Xl~ ( i ;  1, k C 
For arbitrarily given functions G1 and G2 both satisfying (A1) and (A2), by the uniqueness 

just proved, there exist uniquely functions Xm and x2 of F-equivariance such tha t  

Observe tha t  

Then, 

x~(t) = G~(x] ' ( t ) , x '~ ( t ) , . . . , x~( t ) ) ,  i = 1,2. 

ICx (x~ ~ (t) . . . . .  ~ (t)) - G2 (x~ 1 ( t ) , . . . ,  z~ ~ (t))l 
_< la~ (~p  ( t ) , . . . ,  x~ ( t ) )  - c~ (xp  ( t ) , . . . ,  x p  (t))l 

~ k  n l  n k  +lG2(z~(t) , . . . ,xt  ( t ))-G2(z2 ( t ) , . . . , z  2 ( t ) ) l  

< Ilal - G~I[ + ~ c ~  Ilxl - x21I. 
\ i = 1  / 

(16) 

f0 t @ I Ix~ -  z211~ = {G, (x~(~) , .  • • ,z?~(~)) - G~ (x;~(~) . . . .  , z;~(~))} 
1 

~ t d~ 
= {G1 ( x p  (~) , . . . ,  z p  (~)) - G~ (x~ 1 (~ ) , . . . ,  x~k (~))} 

n k  n k  + l l a l ¢ ? l ( t ) , . . . , ~ l  ( t ) ) - a = ( x ~ l ( t ) , . . . , x 2  (t))ll 

< (rl + l) { llat - G21' + (~=~l n~CO l¢l - X2'll } 

since Itl _< rl and Itxl - x211 <- IlXl - -  X2i[1- Consequently, by (3), 

- k I l a ~  - a ~ l l .  
1 - ( r l + l )  E n i C i  

i=1 

This proves the C 1 dependence of solutions on the given function G, which ends the proof. | 

5. E X A M P L E S  A N D  R E M A R K S  

Consider the iterative differential equation 

1 x'(t) = ~ (x2(t)) 2 , t e I = [-1,1] ,  (17) 

a special case of Peck~n's consideration [5]. Clearly G(t) = (1/10)t 2 satisfies (A2), tha t  is, 
G(Tt ) = G(t), for all 3' E Z2 and for all t e I with 7t e I .  Moreover, 

[ G ( t ) -  a(s)l : l i t 2 _  s21 <<_ 11t_s l ,  

implying tha t  (A~) is fulfilled with C = 1/5 and ~ = 1. By Theorem 1, equation (17) has a 
Z2-equivariant solution x, which satisfies x(0) = x'(0) = 0, Ix(t) - x(s)l <_ It - sl, and Ix'(t) - 
z ' (s) l  < (1/5)1t - sl, for all t, s E I.  Notice that  (rl + 1)nC = 4/5 < 1. By Theorem 2, such a 
solution x is unique in @ ( I ;  1, 1/5) and C 1 smoothly dependent on G. 
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Another iterative differential equation 

Xl(t)---~ ~3 (X2(t))2 -}- ~7 (x4(t))4 ' 1~ C I =  [-1,  1], (18) 

is not of Feckgn's form [5]. Observe that the function G(t l ,  t2) = (1/T3)t~+(1/a7)t~ satisfies (A2), 
i.e., G(Tt l ,  7t2) = G( t l ,  &),  for all 7 E Z2 and for all ti E I with 7ti E [, i = 1, 2. Moreover, 

= + IG(t l , t2)  

_< }--~ ]& - sll + It2 - s2[, 

that is, (A1) is fulfilled with C1 = 2/73, C2 = 4/37, and r /=  1 since 

k 
366 

: 270--T < 1. i=1 
By Theorem 1, equation (18) has a Z2-equivariant solution x, which satisfies x(0) = x'(0) = 0, 
Ix(t) - x(s)[ < It - ~1, and Iz'(t) - z'(s)] _< (366/2701)1t - sl for all t , s  c £. Because (r/+ 
1) k ~~.i=1 7ziCi -~ 2632/2701 < 1, by Theorem 2, this solution x is unique in Xr~(I; 1,366/2701) 
and C 1 smoothly dependent on G. 

As a remark, Eder's equation x p = x(x( t ) )  as discussed in [4] does not satisfy Assumption (A2), 
although its right-hand side is in the form of linear iteration. Consistent with our theorems, 
G(t)  = t for this equation. Obviously, G(Tt ) = 7t = t, for all t C I with vt C I if and only if 
7 = 1. That is, except the trivial one consisting of only the unity, no subgroups can fit for the 
equation with (A2). More generally, solutions of equivariance for the equation x' = xn(t)  are still 
a problem. 

With a slight modification, consider the equation x' = (x~(t))  m, where n is the index of 
iteration and m is the degree of power. Then the corresponding flmction G(t)  = t m satisfies (A2) 
with a subgroup (y} if ~'~ = 1. This reduces to a discussion on roots of unity in the complex 
field C and suggests a further investigation of equation (1) in C in the future. 
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