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Abstract—By equivariance under the action of a group of invertible linear transformations on
a Euclidean space, we describe symmetries of mappings. Based on known results on existence of
solutions for iterative differential equations, in this paper, we discuss the special class of solutions
which possess equivariance on R. Existence, uniqueness, and smooth dependence are given by using
fixed-point theorems and by virtue of properties of finitely generated Lie groups. © 2004 Elsevier
Ltd. All rights reserved.
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1. INTRODUCTION

Among functional differential equations [1] there is an important class involving iteration. In
particular, Cooke [2] points out that it is highly desirable to establish the existence and stability
of periodic solutions for the equation

Z'(t) + az(t — h(t,z(t))) = F (1), VteR.
In (3], Stephan obtains existence of periodic solutions for the equation
z'(t) + az(t — r + ph(t,z2(t))) = F(1), vt e R.
Eder [4] discusses a special iterative differential equation

z'(t) = z(=(t)),

for all ¢ € R and proves that every solution either vanishes identically or is strictly monotonic.
The existence of solutions for the equation

z'(t) = f(z(x(£))
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is given in [5] when f € C!'(R) and generalized without smoothness of f in [6]. Recently, a more
general form

z(t) =) a;(t)a’ (t) + F(t)
i=1

is considered and existence, uniqueness, and C! dependence of its smooth solutions are obtained
in [7,8]. Besides, a result of analytic sclutions for the equation z'(t) = z™(t) is given in [9]. The
general form of iterative differential equations can be written as

z'(t) = G(z™ (1), 2™ (t),..., 2™ (t}), n

where z0(t) = t, z1(t) = z(t), z*(t) = z(z*"1(t)), k = 2,3,.... As mentioned in [2,3,10], it is
related to infection models and also to motions of charged particles with retarded interaction.
Further investigations are of practical interest (see, e.g., {2,4-7,9,11]).

Equivariance is used to describe symmetries of mappings (seen in {12,13]). Let © be a Banach
space and I" be a Lie group of linear transformations on ). A mapping = :  — § is said to be
I'-equivariant if

z(vyt) = yz(t), Vtef, Vvyel.
Sometimes the restriction of such a mapping = on a subset of Q is considered to be of I-equi-
variance. It is an interesting problem to find solutions of equivariance for (1).

In this paper, we study solutions of equivariance for equation (1), where t € I := [—n,7],
n > 0, G maps I*, the product of k intervals of the same I, to R continuously,  is the unknown
mapping, and all n;s (§j = 1,2,...,k) are positive integers. We consider the action of groups
of invertible linear transformations on R and prove existence and uniqueness of its solutions of
equivariance by using fixed-point theorems, where difficulties from compactness are overcome
by virtue of properties of finitely generated Lie groups. C! dependence on given functions is
discussed further. T'wo concrete equations with nonlinear iterates, one of which is considered
in [5] and the other is not, are given under the action of the group Z,. However, we also remark
that it is not easy to obtain a solution of equivariance even if an equation only with linear iterates
as discussed in [4] is considered.

2. MAIN RESULTS

Obviously, invertible linear transformations of R take the form ¢ — ~+t, where 0 # v € R.
Without loss of generality, we assume that any Lie group acting linearly on R can be identified
with a subgroup of GL(R), the multiplicative topological group of nonzero reals, which we can
identify with Rog = R\ {0}. Let V C Rq be a set of generators for a subgroup I' < GL(R) and
write I' = (V). T is referred as to be finitely generated if V' has finite elements. Moreover, we
say I is topologically finitely generated if it is the closure in GL(R) of a finitely generated group.
V is minimal of T if no proper subset generates I". Clearly, Z, is the finitely generated subgroups
and all odd functions, being symmetric to the origin, are Zs-equivariant.

Consider the action of a topologically finitely generated Lie group I' on R. Suppose that

(A1) G(0,0,...,0) =0 and
{G(tl,tg,...,tk)—G(sl,sz,...,sk)igi@]ti-—sﬂ, Vi,ssel, i=1,2,...,k,
i=1
for some constants C; > 0, s = 1,2,...,k, which do not all vanish but satisfy
nici < 2)
i=1
(A2) G(yt1,Yta, .., vtk) = G(t1,t2,...,tx) for all ¥ € T and for all ¢; € I with ~t; € I,

i=1,2,...,k

The following result gives existence for solutions of equivariance.
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THEOREM 1. Suppose that I' is a topologically finitely generated Lie group acting on R and
that Hypotheses (A;) and (As) hold. Then equation (1) has a solution x of T-equivariance on I
which satisfies (0) = z'(0) = 0, |z(t) — z(s)] < |t — 3|, and |Z'(t) — z'(s)] < Ele Cilt — s, for
allt,sel.

In Theorem 1, Condition (As) requires an invariant property of the multivariable function G
with respect to the action of the group I Mauny functions have such a property. A function
G(ti,ta,...,tg) is invariant with respect to Zs when G is an even function in each variable. For
example, G(t1,ts,t3) = t2 4t +t§ and G(t;,t) = cost; + sin’t,.

The next one concerns uniqueness and C! dependence.

THEOREM 2. If all conditions in Theorem 1 hold and

k
(n+1)> nCi<1 (3)

i=1

additionally, then the solution obtained in Theorem 1 for equation (1) is unique. Moreover, this
solution is C' smoothly dependent on the given G.

3. COMPACTNESS OF SPACES FOR SOLUTIONS

Let CY(I) denote the set of all continuously differentiable functions on the interval I. Define
llz]| = maxqer{|z(t)|} and |z||; = ||z|| + ||z’||, where z € C1(I). Then C'(I) is a Banach space
with the norm | - ||;. Take notations

XYI; Ko, K1) = {z € C*(I) : 2(0) = 2'(0) = 0, |z(t) — z(s)| < Kot — s},
|z’ (t) — 2'(s)] < Kilt — s|, Vt,sel},
XE(I) = {z € C*'(I) : z(yt) = y=(t), Vy €T, Yt with vt € I},

and X% (I; Ko, K1) = X'(I; Ko, K1) N X2 (1).

LEMMA 1. Suppose that I' is topologically finitely generated. Then X}(I) is a convex closed
subset of C1(I) in the topology of norm || - [|1.

Proor. For each v € I, define
Xi(]) = {z € CY(I) : z(t) = yz(t), Vt e Iny~'I}. (4)

We claim that

(i) X3(I) is convex and closed;

(i) X1, (D) = X}(1)

(i) (D) N XL(T) © XL, (T);

(iv) X2 = ﬂle XJ.(I), where V = {v1,72,..., 7} is a finite set of (topological) generator

of I.

It suffices to prove these results for I" to be finitely generated, since we can then pass to the clo-
sure of any such group by continuity of . For this purpose, we suppose that ' = (1,72, ..., 7k)-

For (i), we can prove that X3(I) is a closed linear subspace indeed. Let z,y € X1(I) and
a,b € R and consider z = az + by. Obviously, z € C*(I). Further, for all t € I N~y~1I, we get
x(vt) = vz(t) and y(yt) = yy(t). So z(vt) = vz(t), i.e., z € X1(I). Of course, XH(I) is convex.
Closure is also clear. Thus, (i) is proved. Claim (ii) is shown through the change of variables
s = <yt since y # 0.

For (iii), it suffices to give its proof when |yo| < 1. Otherwise, we can work with X;—17—1(I)
instead because of (ii). If z € X}(I) N X}(I), then

z(yt) = vz(t), VteIny I (5)
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and
z(ot) = ox(t), VtelIno . (6)
For s € I N (yo)~Y(I), we get
se€el and (yo)sel. (7N
There is no loss of generality in assuming that |o} < 1 because |yo| <1 and T is Abelian. Put
t = os. We get from (7) that t,0t,s,0s € I. Then (5) and (6) imply that z(yos) = yz(t) =
vz(0's) = yoz(s), which means that = € X1, (I).
To prove (iv), note that Ap(I) = (), X7 (I) follows directly from the definitions of X} (I)
and X} (I). By (ii) and (iii), it is equal to N, ev &5 (), proving (iv). Since the set of generators V
is finite, (i) and (iv) imply that X}(I) is closed and convex. This completes the proof. |

LEMMA 2. Subset X C C*(I) is sequentially compact if and only if X is uniformly bounded and
the set X' consisting of derivatives of functions in X is equicontinuous.

This is a version of Ascoli-Arzela’s lemma for C! functions. Its proof can be found in [14].
LeEmMA 3. If T' ¢ GL(R) is topologically finitely generated, then XX(I; Ko, K1) is a compact
convex subset of C1(I).

PrOOF. Consider X3(I; Ko, K1) in the topology induced by | - |1. It is easy to check that
XY(I; Ky, K1) is a convex closed subset of CY(I). For all z € X1(I; Ky, K1), we have

lzll = =l + 2’| <7+ Ko,
ie., X'(I; Ko, K1) is uniformly bounded. Moreover, the set of derivatives of all elements for
X(I; Ko, K1) is equicontinuous since |z’(t) —z/(s)| < Ki|t —s|. By Lemma 2, X!(I; Ko, K1) isa
compact convex subset of C1(I). However, Lemma, 1 tells that X}(I) is a convex closed subset, so
XL(I; Ko, K1), being an intersection of two convex closed subsets, is also a convex closed subset

of X1(I; Ko, K1). Hence, XX(I; Ko, K1) is compact. 1
4. PROOFS OF THEOREMS

Proofs of Theorem 1

Define a mapping T : X2(I;1, 30, Ci) — CY(I) by

¢ k
(Tz)(t) =/ G (2™ (£),z™2(8), ..., 2™ (8)) d¢, xze Xt (I; 1,20,-) . (8)
0 i=1
We claim that T maps X3(7; 1, Ele C;) into itself. Actually,
|2(t) —27(s)| < |t—sl, t,sel, jEN, 9)
since |z(t) — z(s)| < |t — s| for z € XE(I;1, Zi;l C;). Moreover,
(Tz)(0) =0,

(T'z)'(0) = G ("™ (0),2™2(0),...,z™*(0)) = 0.
By Hypothesis (A;) and (9), we see

(@2)0 - @2)(s)| = | [ G (©.2™©),... =™ () dg]

<

At |G (3:"1 (,»;-‘)7 s,z (5)) - G(z:m (0)’ e x (O))l df‘
£ t
<26 [ e

k
<> Clt—si<[t—sl,

=1

t k (10)
[ -l <3
s =1
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for all ¢, s € I. Similarly,
I(Tz)'(t) = (Tz) ()| = |G (2™ (t), ..., 2"*(t)) = G (z™(5),..,2"*(5))]

k
< Y Cula™(0) - ") (11)

k
<M Gijt-sl, Vtsel
i=1
Furthermore, by (Az), we have
¥t
(Tz)(vt) = ; G (2™ (£),2™(£), ..., 2™ (£)) d¢

=7 [ G am. ), am () dr )

z'y/o G (z™ (1), 2™ (7), ..., 2™ (7)) dr
= y(Tz)(t),

for all v € T and t € I with vt € I. Thus, relations (10)-(12) imply that (T'z)(¢) € X2(I;1,
Ele C;) and so our claim is proved.
For z,y € X (I;1, Z:;l C;), we can prove by induction that

2" ~y"™|| < nllz -yl (13)

Thus,
|G (=™ (), 2™ (L), ..., 2™ (1) = G y™ (&), y™ (), ..y™ (D)

k k
<3G ) — ()] < (Z nici) Iz -yl
i=1 i=1
< (im@) lz = yll1, Vte L

i=1

(14)

It follows that
ITe - Tyl = [T — Ty] + |(T) — (Tv)'
= max| [ (GG ©, 2O -G, @) de
Fmax|G (@0, (1) ~ C WP (D), Y™ (D) (13

k
<(n+1) (Z "iCi) llz =y,

implying that T is a continuous mapping. Since X21(I;1, ZLI C;) is a compact convex subset
of C*(I) by Lemma 3, by Schauder’s fixed-point theorem, there is a mapping z(t) in X2(I;1,
Zle C;) such that

o(t) = fo G (E), 25 (8), .., 2™ (£)) dE.

By differentiating both sides of the above equality, we can check that z is the desired solution
of (1). This completes the proof. 1

Remark that the class A2(I;1, Y+, C;) confines Lipschitzian constants of those functions are
not greater than 1, so as to guarantee iteration of z(t) is meaningful.
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Proof of Theorem 2

By (15) and (3), the mapping 7, defined in (8), is a contraction on the closed subset X}(I;1,
Ele C;) of C*(I). Thus, T has a unique fixed point and equation (1) has a unique solution in
k
X (11,3, C)
Yor arbitrarily given functions G; and Gz both satisfying (A;) and (As), by the uniqueness
just proved, there exist uniquely functions z; and x5 of I'-equivariance such that

zi(t) = G; (27 (t), 212 (), ..., 2T+ (1)), i=1,2. (16)
Observe that
|G (27 (8), .. 20 (1) — G2 (337 (2), . .., 25% (1))

<Gy (' (B), -y 27 (1) — G (27 (8); - -, 1% (1))
+1Ga (27" (8), - -, 274 () — G2 (25" (1), - .., 25" (1))

k
< |Gy - Gal + (Z nC> 1 =z

=1
Then,
21 — z2fl1 = / {G1 (@1 (€), .., 27*(8)) — Ga (222 (§), - - -, 23*(€))
[ @G en a0 dsH
+ |G (27 (@), - -, 215 (t)) — G2 (25" (t), .. ., z5* ()]
k
<(n+1) {||G1 — Gafl + (Z "iCz) I — leh}
=1
since [t] <7 and ||lz1 ~ z2|| < ||z1 — z2)l1. Consequently, by (3),
o = w2l € —— 61— Gall.
1—-(n+1) gnicl

This proves the C! dependence of solutions on the given function G, which ends the proof. 1

5. EXAMPLES AND REMARKS
Consider the iterative differential equation
#(0)= 5 (@0)°,  tel=[-11], (17)

a special case of Feckin’s consideration [5]. Clearly G(t) = (1/10)t? satisfies (Aj), that is,
G(vt) = G(t), for all v € Z3 and for all t € I with vt € I. Moreover,

C() ~ Glo)l = 5 |2~ 2| < 5o~

implying that (A;) is fulfilled with C = 1/5 and = 1. By Theorem 1, equation (17) has a
Zs-equivariant solution z, which satisfies z(0) = z'(0) = 0, |=(t) — z(s)] £ |t — s|, and |z’(¢) —
z'(s)} < (1/5)|t — s], for all t,s € I. Notice that (n + 1)nC = 4/5 < 1. By Theorem 2, such a
solution z is unique in AXE(I;1,1/5) and C* smoothly dependent on G.
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Another iterative differential equation

2'(t) = 713 (z Z(t))2 + % (z4(t))4, tel=[-1,1], (18)

is not of Feckin’s form [5]. Observe that the function G(t1,t) = (1/73)¢5+(1/37)t5 satisfies (Az),
i.e., G(vt1,vt2) = G(t1,t2), for all v € Zs and for all #; € I with v¢; € I, i = 1, 2. Moreover,

’G(tlth) - G(Sla 32)] ‘713 (tl ) + 3 37 (t2 )

——Itl—51|+37| 82!,
that is, (A1) is fulfilled with &4 = 2/73, Cy = 4/37, and n = 1 since
366
”Z =701 ©

By Theorem 1, equation (18) has a Zj-equivariant solution z, which satisfies 2(0) = 2’(0) = 0,
[z(t) — z(s)| < |t — s, and |2/(t) — 2'(s)| < (366/2701)[t — s| for all ¢t,s € I. Because (n +
1) zi-c:l n;C; = 2632/2701 < 1, by Theorem 2, this solution z is unique in X}(I;1,366/2701)
and C! smoothly dependent on G.

As a remark, Eder’s equation z' = z(z(t)) as discussed in [4] does not satisfy Assumption (As),
although its right-hand side is in the form of linear iteration. Consistent with our theorems,
G(t) = t for this equation. Obviously, G(yt) = vt = ¢, for all t € I with vt € I if and only if
~ = 1. That is, except the trivial one consisting of only the unity, no subgroups can fit for the
equation with (As). More generally, solutions of equivariance for the equation ' = z"(¢) are still
a problem.

With a slight modification, consider the equation z’ = (2"(¢))™, where n is the index of
iteration and m is the degree of power. Then the corresponding function G(t) = t™ satisfies (Az)
with a subgroup (y) if ¥™ = 1. This reduces to a discussion on roots of unity in the complex
field C and suggests a further investigation of equation (1) in C in the future.
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