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1. Introduction

We study the following initial-boundary value problem:

ut − �ut − �u − upux1 = |u|2mu, x ∈ Ω, t > 0, (1)

u(x,0) = u0(x), x ∈ Ω, (2)

u(x, t) = 0, x ∈ ∂Ω, t � 0. (3)

Here Ω ∈ R
n is a bounded domain with sufficiently smooth boundary ∂Ω , p � 1 is a given integer and m � 1 is a given

number. Eq. (1) with m = 1, p = 2 models nonstationary processes in semiconductors in the presence of a nonlinear force
and a constant homogeneous external electric field.

Nonlinear pseudoparabolic equations of the form

ut − �ut − ν�u = f (x, u,∇u), ν > 0, (4)

appear in the study of various problems of hydrodynamics, thermodynamics and filtration theory (see [2,4,14]). The linear
version of (4) was first studied by S.L. Sobolev [14] in 1954. Thus the equation of the form (4) is also called a Sobolev type
equation. S.A. Galpern [6] studied the Cauchy problem for the equation of the form

Mut + Lu = f , (5)

where M and L are linear elliptic operators. R.E. Showalter [11] investigated a linear pseudoparabolic equation (5), where M
and L are second order elliptic operators. In this paper and in [13] existence, uniqueness and regularity of a weak solution of
the initial-boundary value problem for (5) is established. Actually [13] is the first paper called (5) pseudoparabolic equation.

The first paper on nonlinear pseudoparabolic equation is the paper [12], where it is established existence and uniqueness
of a weak solution of the initial value problem for the differential operator equation of the form

M(t)ut + L(t)u = F (t, u). (6)

E-mail address: muge-meyvaci@hotmail.com.
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.11.016

https://core.ac.uk/display/82034473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:muge-meyvaci@hotmail.com
http://dx.doi.org/10.1016/j.jmaa.2008.11.016


630 M. Meyvaci / J. Math. Anal. Appl. 352 (2009) 629–633
A systematic study of global existence and uniqueness of the Cauchy problem for the nonlinear differential operator equa-
tions covering a wide class of nonlinear pseudoparabolic equations was done in the paper of Showalter and Ting [13] and
in the book of Gajewski, Gröger and Zacharias [5].

One of the important representatives of (4) is the Benjamin–Bona–Mahony–Bürgers (BBMB) equation

ut − νuxx − uxxt − ux + uux = 0. (7)

Amick, Bona and Schonbeck [1] studied the asymptotic behavior of solutions in L2(R) and L∞(R) of the Cauchy problem for
this equation. The results obtained here were developed [17] for equations of the form

ut − νuxx − uxxt − ux + umux = 0,

where m � 0. Karch [8] investigated asymptotic behavior of solutions of the Cauchy problem for the multidimensional
BBMB equation, that is Eq. (4) when f has the form f = (�b,∇u) + ∇ · �F (u). Wang and Yang [16] proved existence of
a finite dimensional global attractor of the semigroup generated by the periodic initial-boundary value problem for the
one dimensional BBMB equation. Çelebi, Kalantarov and Polat [3] studied the problem of existence of a global attractor
and the exponential attractor of the semigroup generated by the periodic initial-boundary value problem for Eq. (4) with
f = (�b,∇u) + ∇ · �F (u) + h(x). Stanislavova, Stefanov and Wang [15] studied the problem of existence of a global attractor
for multidimensional BBMB equation in H1(R3).

The first result on blow up of solutions for nonlinear pseudoparabolic equation was obtained Levine [10]. Levine studied
the Cauchy problem for the following nonlinear differential operator equation

P ut + Au = F (u),

where P , A are linear positive operators and F (u) is a potential operator in a Hilbert space H. This result gives sufficient
conditions of the blow up of solutions to the Cauchy problem and initial-boundary value problems for equations of the form

ut − �u − �ut = f (u),

where f satisfies

f (s)s − k

s∫
0

f (τ )dτ � 0, k > 2. (8)

The concavity method invented by Levine in [10] was generalized in Kalantarov and Ladyzhenskaya [7]. The result obtained
in [7] can be applied to pseudoparabolic equations of the form

ut − �u − �ut + b(x, t, u,∇u) = f (u),

where f satisfies (8) and b has a linear growth with respect to u and ∇u.
Korpusov and Sveshnikov [9] established sufficient conditions for global nonexistence of solutions of initial-boundary

problem for the following Benjamin–Bona–Mahony–Bürgers equation

ut − �ut − �u − uux1 − u3 = 0.

In what follows we are using the following notations:

‖v‖ := ‖v‖L2(Ω), (u, v) :=
∫
Ω

uv dx, ‖v‖p := ‖v‖Lp(Ω).

We will need the standard Cauchy and Young inequalities.
For each a,b, ε > 0, and q = p/(p − 1), 1 < p < ∞ the following inequality holds true

ab � ε

2
a2 + 1

2ε
b2, ab � ε

p
ap + 1

qε1/(p−1)
bq. (9)

We will use also the following proposition established in [7].

Lemma 1.1. Suppose that a positive, twice differentiable function Ψ (t) satisfies the inequality

Ψ ′′(t)Ψ (t) − (1 + α)
[
Ψ ′(t)

]2 � −2M1Ψ
′(t)Ψ (t) − M2

[
Ψ (t)

]2
, for all t > 0,

Ψ (0) > 0, Ψ ′(0) > −γ2α
−1Ψ (0) and M1 + M2 > 0, (10)

where α > 0, M1, M2 � 0, M1 + M2 > 0. Then Ψ (t) tends to infinity as

t → t1 � t2 = 1

2
√

M2
1 + αM2

ln
γ1Ψ (0) + αΨ ′(0)

γ2Ψ (0) + αΨ ′(0)
.

Here γ1 = −M1 +
√

M2
1 + αM2 and γ2 = −M1 −

√
M2

1 + αM2 .
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2. Blow up of solutions

Theorem 2.1. Suppose that 1 < p < m, and the initial function u0 satisfies the following condition:

‖u0‖2(m+1)
2(m+1) > ‖∇u0‖2 +

[
‖u0‖2 + ‖∇u0‖2 + (m − p)2(m+1)/(m−p)|Ω|

(p + 1)(2m + 1)

]

×
√

8(p + 1)

m(6p + 5) − 1

[√
2(p + 1) + √

m(m + 1)(6p + 5) + 2p + 1 − m
]
.

Then the solution of the problem (1)–(3) blows up in a finite time.

Proof. Multiplying Eq. (1) by u and integrating over Ω we get

1

2

d

dt

[‖u‖2 + ‖∇u‖2] = −‖∇u‖2 + ‖u‖2(m+1)
2(m+1). (11)

Next we multiply (1) by ut and integrate over Ω:

‖ut‖2 + ‖∇ut‖2 = 1

2(m + 1)

d

dt
‖u‖2(m+1)

2(m+1) − 1

2

d

dt
‖∇u‖2 − 1

p + 1

(
up+1, utx1

)
. (12)

Assume that p < m, and consider the following function

Ψ (t) := ∥∥u(t)
∥∥2 + ∥∥∇u(t)

∥∥2 + C0,

where C0 is a nonnegative parameter to be chosen below. It is clear that

Ψ ′(t) = 2(u, ut) + (∇u,∇ut).

Due to the Cauchy–Schwarz inequality we have
[
Ψ ′(t)

]2 = 4
[
(u, ut) + (∇u,∇ut)

]2 � 4
(‖u‖2 + ‖∇u‖2)(‖ut‖2 + ‖∇ut‖2).

Hence

[
Ψ ′(t)

]2 � 4Ψ (t)
(‖ut‖2 + ‖∇ut‖2). (13)

By using the Cauchy–Schwarz inequality and the Young inequality we obtain:
∣∣∣∣ d

dt
‖∇u‖2

∣∣∣∣ � 1

ε0
‖∇u‖2 + ε0‖∇ut‖2, (14)

∣∣(up+1, utx1

)∣∣ � 1

2ε1
‖u‖2(p+1)

2(p+1) + ε1

2
‖∇ut‖2, (15)

‖u‖2(p+1)

2(p+1) � p + 1

m + 1
ε

(m+1)/(p+1)

2 ‖u‖2(m+1)
2(m+1) + m − p

m + 1
ε

(m+1)/(p−m)

2 |Ω|. (16)

Here ε0, ε1 and ε2 are positive parameters. By using (11) we obtain from (12):

‖∇ut‖2 + ‖ut‖2 = 1

4(m + 1)
Ψ ′′(t) − m

2(m + 1)

d

dt
‖∇u‖2 − 1

p + 1

(
up+1, utx1

)
.

Employing (14) and (15) we obtain

‖∇ut‖2 + ‖ut‖2 � 1

4(m + 1)
Ψ ′′(t) + m

2ε0(m + 1)
‖∇u‖2 + 1

2ε1(p + 1)
‖u‖2(p+1)

2(p+1)

+
[

mε0

2(m + 1)
+ ε1

2(p + 1)

]
‖∇ut‖2. (17)

Next we use the estimate (16) for ‖u‖2(p+1)

2(p+1) in (17) and obtain

‖∇ut‖2 + ‖ut‖2 � 1

4(m + 1)
Ψ ′′(t) + m

2ε0(m + 1)
‖∇u‖2 + ε

(m+1)/(p+1)

2

2ε1(m + 1)
‖u‖2(m+1)

2(m+1) + C1

+
[

mε0 + ε1
]
‖∇ut‖2 (18)
2(m + 1) 2(p + 1)
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where C1 = (m−p)|Ω|
2ε1(p+1)(m+1)ε

(m+1)/(m−p)
2

. It follows from (11) that

ε
(m+1)/(p+1)

2

2ε1(m + 1)
‖u‖2(m+1)

2(m+1) = ε
(m+1)/(p+1)

2

4(m + 1)ε1
Ψ ′(t) + ε

(m+1)/(p+1)

2

2ε1(m + 1)
‖∇u‖2.

Thus (18) implies

‖∇ut‖2 + ‖ut‖2 � 1

4(m + 1)
Ψ ′′(t) +

[
m

2ε0(m + 1)
+ ε

(m+1)/(p+1)

2

2ε1(m + 1)

]
‖∇u‖2 +

[
mε0

2(m + 1)
+ ε1

2(p + 1)

]
‖∇ut‖2

+ ε
(m+1)/(p+1)

2

4(m + 1)ε1
Ψ ′(t) + C1. (19)

By using (13) and the inequality ‖∇u(t)‖2 � Ψ (t) − C0 we obtain from (19) the estimate

1

4Ψ (t)

[
Ψ ′(t)

]2
(

1 − mε0

2(m + 1)
− ε1

2(p + 1)

)
� 1

4(m + 1)
Ψ ′′(t) + ε

(m+1)/(p+1)

2

4(m + 1)ε1
Ψ ′(t)

[
m

2ε0(m + 1)
+ ε

(m+1)/(p+1)

2

2ε1(m + 1)

]
Ψ (t)

+ C1 − C0

[
m

2ε0(m + 1)
+ ε

(m+1)/(p+1)

2

2ε1(m + 1)

]
.

We choose in the last inequality C0 = (m−p)2(2m−p+1)/(m−p)|Ω|
(p+1)(4m+1)

, ε0 = 1
2 , ε1 = 1

4 , ε2 = 2−(p+1)/(m+1) . Multiplication of both sides
of the obtained inequality by 4(m + 1)Ψ (t) gives

Ψ (t)Ψ ′′(t) −
(

1 + m(6p + 5) − 1

8(p + 1)

)[
Ψ ′(t)

]2 � −2Ψ (t)Ψ ′(t) − 4(m + 1)Ψ 2(t).

So the inequality (10) is satisfied with α = m(6p+5)−1
8(p+1)

> 0, M1 = 1 and M2 = 4(m + 1). Thus we can apply Lemma 1.1 and
get the desired result. �
Theorem 2.2. Suppose that p = m, m � 1, and the initial function u0 satisfies the following condition:

‖u0‖2(m+1)
2(m+1)

>

(
1 + 1

m2

)
‖u0‖2 +

(
2 + 1

m2

)
‖∇u0‖2.

Then the solution of the problem (1)–(3) blows up in a finite time.

Proof. Under the transformation u(t) = e−t v(t) Eq. (1) takes the form

vt − �vt − v − e−mt vm vx1 = e−2mt |v|2m v. (20)

Multiplying (20) by v and vt , and integrating over Ω we obtain

1

2

d

dt

[‖v‖2 + ‖∇v‖2] = ‖v‖2 + e−2mt‖v‖2m+2
2m+2, (21)

‖vt‖2 + ‖∇vt‖2 = 1

2

d

dt
‖v‖2 + e−2mt

2(m + 1)

d

dt
‖v‖2(m+1)

2(m+1) − e−mt

m + 1

(
vm+1, vtx1

)
. (22)

Now we are going to prove the blow up theorem by using the function

Φ(t) := ‖v‖2 + ‖∇v‖2.

Similar to (13), (14) and (15) we have

[
Φ ′(t)

]2 � 4Φ(t)
(‖vt‖2 + ‖∇vt‖2), (23)∣∣∣∣ d

dt

∥∥v(t)
∥∥2

∣∣∣∣ � ‖vt‖2 + ‖v‖2, (24)

and

∣∣(vm+1, vtx1

)∣∣ � 1

2ε(t)
‖v‖2(m+1)

2(m+1)
+ ε(t)

2
‖∇vt‖2

. (25)

Here ε(t), t � 0 is a positive continuous function. Employing (21) and (22) we obtain

‖vt‖2 + ‖∇vt‖2 = m
Φ ′(t) + 1

Φ ′′(t) − m ‖v‖2 + m d ‖v‖2 − e−mt (
vm+1, vtx1

)
. (26)
2(m + 1) 4(m + 1) m + 1 2(m + 1) dt m + 1
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By using (24) and (25) we obtain

‖vt‖2 + ‖∇vt‖2 � 1

2(m + 1)

[
mΦ ′(t) + 1

2
Φ ′′(t) + m‖vt‖2 + ε(t)e−mt‖∇vt‖2 + e−mtε−1(t)‖v‖2m+2

2m+2

]
. (27)

We use the inequality e−2mt‖v‖2m+2
2m+2 � 1

2 Φ ′(t), take ε(t) = memt in (27), and obtain

m + 2

2(m + 1)

(‖vt‖2 + ‖∇vt‖2) � 2m2 + 1

4m(m + 1)
Φ ′(t) + 1

4(m + 1)
Φ ′′(t). (28)

By using (23) in (28) we get

m + 2

2(m + 1)

1

4Φ(t)

[
Φ ′(t)

]2 � 2m2 + 1

4m(m + 1)
Φ ′(t) + 1

4(m + 1)
Φ ′′(t).

We multiply both sides of the obtained inequality by 4(m + 1)Φ(t)

Φ ′′(t)Φ(t) −
(

1 + m

2

)[
Φ ′(t)

]2 � −2m2 + 1

m
Φ ′(t)Φ(t).

Thus the inequality (10) is satisfied for α = m/2, M1 = (2m2 + 1)/(2m), and the conclusion follows from Lemma 1.1. �
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