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The main purpose of this article is to establish nearly optimal results concerning
the rate of almost everywhere convergence of the Gauss�Weierstrass, Abel�Poisson,
and Bochner�Riesz means of the one-dimensional Fourier integral. A typical result
for these means is the following: If the function f belongs to the Besov space Bs

p, p ,
1<p<�, 0<s<1, then Tmt

f(x)& f (x)=ox(ts) a.e. as t � 0+. � 1999 Academic

Press

Let m # L�(0, +�) and denote by mt , t>0, the function mt(u)=m(tu),
u>0; define operators Tmt

(t>0) on L2(Rn) via their Fourier transform

(Tmt
f@ )(!)=mt( |!| ) f� (!).

Note that the Abel�Poisson means [Pt] are defined by m(u)=e&u, the
Gauss�Weierstrass means [Wt] by m(u)=e&u 2

(note that with the nor-
malization of the kernel the family [Wt] does not form a one-parameter
semi-group in t>0), the Bochner�Riesz means by m(u)=(1&u2):

+ . These
means are very important in the problems of harmonic analysis, partial
differential equations, theory of probability, etc.��convergence a.e. of the
Poisson and the Gauss�Weierstrass means is one of the basic facts of harmonic
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analysis. We mention that the important problem of a.e. convergence of the
Bochner�Riesz means is only partially solved when n�2, see [4].

Consider the following problem: Under which smoothness conditions (in
the Lp-norm) on f does Tmt

f converge a.e. towards f with a prescribed rate
w(t) of convergence?

In this paper we will discuss the one-dimensional case n=1 and in
particular are interested in results of the following type:

Tmt
f (x)& f (x)=ox(w(t)) a.e. when t � 0+. (1)

In a sequel to this paper we discuss the sharpness of the results obtained
here.

1. POTENTIAL SPACES

The problem about the a.e. convergence rate of Tmt
f was first

investigated by Carbery [2] in the case that the function f belongs to some
potential space over the n-dimensional Euclidean space Rn. To describe
Carbery's and related results, following [6] (see also [7]), we first define
a fractional integral of order :, 0<:�1, of m # L�(0, �) by

I :
|(m) (u)=1�1(:) |

|

u
(v&u):&1 m(v) dv,

when 0<u<|, and I :
|(m) (u)=0 when u�|. If 0<:<1 and I 1&:

| (m) is
locally absolutely continuous for every |>0, we define the fractional
derivative m(:) by

m(:)(u)= lim
| � �

&
d

du
I 1&:

| m(u).

Moreover, by induction on the integer part [:] of :, we define for arbitrary
0<:=[:]+$

m(:)(u)=\ d
du+

[:]

m ($)(u),

provided m($), ..., m(:&1) are locally absolutely continuous. Notice that for
m with compact support in R+

m(:)@({)=(&i{): m̂({),
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where (&i{): is defined by the principal branch. As in Carbery [2] we
introduce the global Bessel potential space L2

: as the completion of the
C�-functions with compact support in (0; +�) with respect to the norm

&m&L
2
:
={|

+�

0 } u:+1 \ d
du+

:

\m(u)
u +}

2 du
u =

1�2

.

Theorem A (see [2]). If :>n(1�p&1�2)+1�2 when 1<p�2, or
:>n(1�2&1�p)+1�p when 2�p<�, then

&sup
t>0

t&s | Tmt
f | &Lp(R n)�c: &| } |&s m( } )&L

2
:
&Dsf &Lp (R n) ,

where Ds is explained by (Dsf@(!)=|!| s f� (!), ! # Rn. Furthermore, if n=1 or
n=2, the result can be improved to :>max[1�2, n(1�2&1�p)] provided
2�p<�.

In the case of the real line, Theorem A immediately implies the following
result.

Corollary 1.1. Let 1<p<� and +(u)=(m(u)&1) u&s satisfy
+ # L2

: with :>max[1�p, 1�2]. Then for all functions f with &Dsf &p<�
there holds

Tmt
f (x)& f (x)=Ox(ts), t � 0+ (2)

a.e. on R.

The following result closely related to Theorem A is contained in Dappa
and Trebels [7].

Theorem B (see [7]). Let m be a measurable bounded function on
(0, +�) which vanishes at infinity and which satisfies for *>n |1�p&1�2|
+1�2

B*(m)#\|
�

0
|u*m(*)(u)| 2 du

u +
1�2

+|
�

0
u*&1 |m(*)(u)| du<�. (3)

Define the maximal operator T*m on L2(Rn) by

T*m f (x)=sup
t>0

|Tmt
f (x)|.

Then T*m is of strong type ( p, p), 1<p<�, with operator norm &T*m&p � p

�CB*(m); also T*m is of weak type (1, 1).
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Here and in the following we denote generic constants that are independ-
ent of the functions (and sequences) by C.

Remark 1.1. (a) Corollary 1.1 remains valid if there the hypothesis
+ # L2

: is replaced by B1(+)<� since

m(t|!| ) f� (!)& f� (!)=
m(t |!| )&1

(t |!| )s (t |!| )s f� (!)=+(t |!| ) tsDsf@(!),

so

|Tmt
f (x)& f (x)| t&s�T+*(Dsf ) (x).

(b) The difference in the conditions of Theorems A and B may be
illustrated at the example of the Abel�Poisson means [Pt]: Theorem A gives
boundedness of the maximal function generated by +(u)=(e&u&1) u&s on
L p(R), 1<p<�, only for 0<s<1, whereas Theorem B (with *=1) yields
boundedness for 0<s�1. Thus Theorem B leads to the following result.

Corollary 1.2. Let f # L p(R), 1<p<�, satisfy & f ( } +h)& f ( } )&p=
O( |h| ). Then

Pt f (x)& f (x)=Ox(t), t � 0+,

a.e. on R.

For the proof we have only to note that by [1, p. 386] the hypothesis
implies f to be locally absolutely continuous with f $ # L p(R), thus Hf, Hf $
# L p(R) since the Hilbert transform H is continuous on L p(R), 1<p<�,
and that the symbol of Hd�dx is |!|. Now the argument in (a) leads to the
assertion.

(c) Theorem A is generalized in Seeger [10].

Working on L2(Rn), Mu� ller and Wang [8] have weakened the global
conditions (3) to local ones. To become more precise introduce the
localized Riemann�Liouville spaces RL(2, :) (see [3]) by

RL(2, :)=[m # L�(0, �): &m&RL(2, :)=sup
t>0

&(/mt)
(:)&2],

with / # C �
0 (0, �) being an arbitrary non-negative and non-trivial bump

function.
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Theorem C (see [8]). Assume m is a continuous function on R+ and
m # RL(2, :) for some :>1�2. Let , be a non-decreasing function on [0, �)
satisfying the condition

1�,(2t)�*,(t) for some *�1;

set &=log2 *, where * is smallest possible to satisfy the preceding condition.
Set

�(t)=,(1)+\|
t+1

1

,2(u)
u

du+
1�2

,

L2
�={ f # L2(Rn): |

Rn
| f� (!)|2 |�( |!| )|2 d!<�= .

If

&(/(1&mt)) (:)&2=O(t;) as t � 0+, ;>&,

then, for every f # L2
� , there holds

Tmt
f (x)& f (x)=o \ 1

,(1�t)+ a.e. as t � 0+.

Theorem C applied to the general Riesz means recovers the following
result of Chen [5] which we only state for the real line (n=1).

Theorem D (see [5]). Let

L2
s (R)={ f # L2(R): \|R

| f� (!)|2 (1+|!| 2)s ds+
1�2

<�=
be the classical Bessel potential space. Let +(!)=(1&|!| #):

+ , #>0, 0<:�1.
Then, for every f # L2

s (R),

T+t
f (x)& f (x)={ox(ts),

Ox(ts),
0<s<#,
s=#,

t � 0+,

holds almost everywhere in R.

One can characterize (see, e.g., [13, p. 139]) the space L2
s (R) in terms of

moduli of continuity |( f, t)2 , where

|( f, t)p= sup
|h|<t

& f ( } +h)& f ( } )&Lp (R) .
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Proposition. Let 0<s<1. Then the function f # L2(R) belongs to L2
s(R)

if and only if

|
�

0 \|( f, t)2

ts +
2 dt

t
<�.

The combination of Theorem D with the proposition gives a statement
of the type: There is a certain rate of a.e. pointwise convergence of the
general Riesz means (namely ox(ts)) if |( f, t)2 , the L2-modulus of continuity
of f, tends sufficiently fast to 0 when t � 0+. In the following we want to replace

(i) f # L2
s (R) by the condition that f # H |

p , where |=|(t) is a given
modulus of continuity and

H |
p =[ f # L p(R): |( f, t)p�C|(t)];

(ii) the rate ts of convergence by some increasing function w(t)
which is only admitted when essentially ��

k=1 (|(%k)�w(%k)) p<� for
certain %k � 0;

(iii) the general Riesz means by a class of approximation processes.

Concerning the methods of proof we give a contribution to a program-
matic remark by Shapiro [11, p. 120]: ``Another interesting area for study
is how far pointwise (rather than norm) approximation theorems can be
inferred from the Fourier transform of the kernel.'' We mention [14],
where first results for moduli of smoothness of higher order in Rn are out-
lined at the example of the Abel�Cartwright means.

Concerning the modulus of continuity |(t) we distinguish the two cases:
|(t)�t A �, t � 0+ and |(t)=t. As Remark 1.1(b) already indicates, the
condition |( f, t)�Ct actually is a potential type condition we deal with
first. Recall that in this case f, f $ # L p provided 1<p<� so that, by the
Hardy�Littlewood theorem (see, e.g., [13, p. 5]),

| f (x+h)& f (x)|= } |
x+h

x
f $ }�|h| } |h|&1 |

x+h

x
| f $| }�|h| M( f $) (x)

a.e. on R. Then, if K # L1(R) with �R K=1 and �R |hK(h)| dh<�, we
obtain, using the notation Kt(h)=t&1K(h�t),

|Kt V f (x)& f (x)|�|
R

| f (x+h)& f (x)| |Kt(h)| dh

�tM( f $)(x) |
R

|h�t| |Kt(h)| dh=C(x) t |
R

|hK(h)| dh,
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thus an a.e. convergence rate Ox(t). In the case p=1 we have | f (x+h)& f (x)|
�|h| M(df ) (x) (observe that now f is at least of bounded variation and
that in this situation a Hardy�Littlewood theorem also holds��see, e.g,
[11, p. 39, Theorem 17]). Hence, also in the case p=1 there holds the a.e.
convergence rate Ox(t).

Let us give a supplementary result for the Abel�Poisson means in the
case p=1. Clearly its kernel p(h)=c(1+h2)&1 does not satisfy all of the
preceding conditions. Also, on account of the unboundedness of the Hilbert
transform on L1(R), one cannot expect an a.e. convergence rate Ox(t) for
these means. But

|Pt f (x)& f (x)|�\||h|�t
+|

|h|�t+ | f (x+h)& f (x)| pt (h) dh=Ox(t |log t| )

a.e. on R, where for the estimate of the first integral the pointwise Lipschitz
condition, for the estimate of the second the boundedness of | f (x+h)&
f (x)|��R |df |�C is used.

An analogous argument gives the estimate &Pt f &f &L1(R)=O(t |log t| ).
So the Abel�Poisson means and the Gauss�Weierstrass means have the
same order of pointwise and norm estimates for elements from H|

p , |(t)=t.

2. HO� LDER SPACES

From now on we consider functions f # H |
p with |(t)�t A �, t � 0+.

Usually the degree of approximation improves with the smoothness of the
function. But there may be a critical convergence rate which cannot be
improved even by (``non-trivial'') C�-functions. This is described by the
idea of saturation (see [1, p. 434]).

Definition. The strong approximation process [Tt]t>0 on the Banach
space X possesses the saturation property if there exists a positive function
.(t) a 0, t � 0+, such that every f # X for which

&Tt f &f &X=o(.(t)), t � 0+,

is an invariant element of [Tt] t>0 , i.e., Tt f =f for all t>0, and there
exists at least one noninvariant element g # X with &Ttg& g&X=O(.(t)).
In this event, [Tt]t>0 is said to be saturated in X with order O(.(t)).

Since it may happen that the smoothness of f is not reflected in the rate
of convergence we have to distinguish between approximation processes
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with saturation order worse than O(t) and those which admit (for smooth
functions) at least O(t) as degree of convergence.

2.1. Convolution Means with Well-Decreasing Kernels

Theorem 2.1. Let K # L1(R), satisfy the following properties.

(a) |
R

K(x) dx=1.

(b) The radial majorant K� (x)#sup | y|�|x| |K( y)| belongs to L(R).

(c) |
R

|xK(x)| dx<�.

Let |(t) be a modulus of continuity such that |(t)�t A �, t � 0+. Define $k

in the following way

$0=1, $k+1=min {$: max \ |($)
|($k)

;
$|($k)
$k|($)+=

1
2= , k=0, 1, ... . (4)

Let w(t) be a nondecreasing function such that |(t)�w(t) is nondecreasing
and

:
�

k=1
\|($k)

w($k)+
p

<�. (5)

Then, for every function f # H |
p (R), 1<p<�, there holds

Kt V f (x)& f (x)=ox(w(t)) a.e. when t � 0+. (1)

Remark 2.1.1. If one defines a sequence [$k] via |($k)=2&k, then this
choice is more restrictive than that in Theorem 2.1 as may be seen at the
example of |(t)=t log 1�t.

Proof. Recall that Kt(x)=(1�t) K(x�t), hence Kt # L(R) uniformly in
t>0. The hypotheses (a) and (b) guarantee convergence a.e. of Kt V f (x)
to f (x) when t � 0+ (see, e.g., [13, p. 62]), in particular, | f (x)& g(x)|�
T*m( f &g) (x) a.e.

The argument which gives the asserted rate of convergence is based on
the following lemma of Oskolkov [9].

Lemma E (see [9]). Let |($) be a modulus of continuity with the
property that |($)�$ A �, $ � 0+, and define [$k] by (4).
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Then there holds 2$k+1�$k , k=0, 1, ... and for any k=0, 1, ... either

2|($k+1)=|($k) (6)

or

|($k)
$k

=
|($k+1)
2$k+1

. (7)

Also, with some A>0

A&1|($)� :
�

k=0

|($k) min \1,
$

$k+�A|($), 0�$�1.

Denote by

f$(x)=
1
$ |

x+$

x
f (t) dt

the Steklov means of f. The following two estimates are easily verified:

& f& f$&p�|( f, $)p�C|($), (8)

&( f$)$&p�
|( f, $)p

$
�C

|($)
$

. (9)

Now, if we define

8k(x)={ f$k
(x),

f$k+1
(x),

if (6) holds,
otherwise,

we have

& f&8k&p�C|($k+1) (10)

and

&(8k)$&p�C
|($k)

$k
. (11)

211RATE OF ALMOST EVERYWHERE CONVERGENCE



Further, for $k+1<t�$k , there follows

|Kt V f (x)& f (x)|

�|Kt V ( f &8k) (x)|+|
R

|8k(x+h)&8k(x)| |Kt(h)| dh

+| f (x)&8k(x)|

�2T*m( f &8k) (x)+|
R } |

x+h

x
8$k( y) dy } |Kt(h)| dh=: I+II.

Now

II�|
R } |h|&1 |

x+h

x
|8$k( y)| dy } |h| |Kt(h)| dh

�M(8$k)(x) t |
R

( |h|�t) |Kt(h)| dh

=tM(8$k) (x) |
R

|h| |K(h)| dh,

where M denotes the Hardy�Littlewood maximal function. Hence (see [13,
p. 62])

|Kt V f (x)&f (x)|�C(T*m( f &8k)(x)+tM(8$k)(x))

�C \M( f &8k)(x)
w($k+1)

+
M(8$k)(x) $k

w($k) + w(t)

�C \sup
k�0

M( f &8k) (x)
w($k+1)

+sup
k�0

M(8$k)(x) $k

w($k) + w(t).

Thus we only need to estimate the terms in brackets, i.e., to find conditions
on w that guarantee the finiteness a.e. for all functions f # H |

p (R).
Oskolkov [9] was the first to give conditions with this property; these

were rewritten in appropriate form by Soljanik [12]. By (10) we have

"sup
k�0

M( f &8k) ( } )
w($k+1) "

p

p
� :

k�0

&M( f &8k)& p
p

w p($k+1)

�Cp :
k�0

& f&8k & p
p

w p($k+1)
�Cp :

k�0
\|($k+1)

w($k+1)+
p

,
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and by (11)

"sup
k�0

M(8$k)( } ) $k

w($k) "
p

p
� :

k�0

&M(8$k)& p
p $ p

k

w p($k)

�Cp :
k�0

&8$k & p
p $ p

k

w p($k)
�Cp :

k�0
\|($k)

w($k)+
p

.

Thus, by hypothesis, we obtain that

\sup
k�0

M( f &8k)(x)
w($k+1)

+sup
k�0

M(8$k)(x) $k

w($k) + # L p(R)

and hence finiteness a.e. But this proves Theorem 2.1 since to every w(t)
satisfying (5) it is possible to find w~ (t)=o(w(t)) which also satisfies (5).

For applications, first consider the kernel K# given by its Fourier trans-
form K� #( |!| )=m( |!| ), m(u)=e&# #

, which generates the Abel�Cartwright
means [W #

t ]. By [15], the kernel K# has at least a decrease of
C |x|&2&(#&1)�2 at infinity, so for #>1 these means satisfy the conditions of
Theorem 2.1.

Next discuss the general Riesz means [R:, #
t ], generated by m(u)=

(1&u#):
+ , #>0, :>0, with K:, # as associated kernel. By [15] the follow-

ing estimate holds for large |x|: K:, #(x)�C( |x|&1&#+|x|&1&:). Thus, for
#, :>1, the hypotheses of Theorem 2.1 are satisfied.

Summarizing, we have established the following

Corollary 2.1.1. Let |(t) be a modulus of continuity with |(t)�t A �,
t � 0+; let the sequence [$k] be defined by (4) and w(t) be a nondecreasing
function which satisfies (5) and has the property that |(t)�w(t) is nondecreas-
ing. Then for every f # H |

p (R), 1<p<�, the estimate (1) is true for the
general Riesz means [R:, #

t ] with parameters :>1, #>1, and for the Abel�
Cartwright means [W #

t ] of order #>1. In particular, (1) is valid for the
Gauss�Weierstrass means.

Remark 2.1.2. Though the Abel�Poisson means [Pt] (i.e., [W #
t ] with

#=1) are not admitted in Corollary 2.1.1, we can derive an analogous
result.

Corollary 2.1.2 (see [12]). Assume that the hypotheses of Corollary
2.1.1 hold. Then for f # H |

p (R), 1<p<�,

Pt f (x)& f (x)=ox(w(t)) a.e.
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Proof. First assume f to be real-valued. Since the Hilbert transforma-
tion is continuous on L p(R), 1<p<�, we have F :=f +iHf # H |

p (R).
Define a kernel K by its Fourier transform K� (!)=4(!) e&! where the
C�-function 4(!)=1, !�0 and =0 for !�&1. Since the (distributional)
Fourier transform of F vanishes on the negative half-line one has Pt F(x)=
Kt V F(x) a.e. But K # S, the set of rapidly decreasing, smooth functions,
certainly satisfies the hypotheses of Theorem 2.1. Thus, with w(t) as in
Theorem 2.1,

PtF(x)&F(x)=ox(w(t)) a.e.

Obviously, this also holds for the real part giving the assertion for real-
valued functions. The case of complex-valued f follows by applying this
procedure separately to the real part of f and to its imaginary part.

2.2. Convolution Means with Slowly Decreasing Kernels and Good Approxima-
tion Behavior

Theorem 2.2. Let m # L�(0, �) be such a function that for some
smooth cut-off function �, �(u)=1 for u�1�2 and =0 for u�3�4 the func-
tion (m�)7 satisfies the conditions of the previous theorem and the Fourier
transform of the function m(1&�) has a summable radial majorant. Let |(t)
be a modulus of continuity and define %k such that |(%k)=2&k. Let w(t) be
a nondecreasing function with the properties that |(t)�w(t) is nondecreasing
and

:
�

k=1
\|(%k)

w(%k)+
p

<�. (12)

Then, for every function f # H |
p (R), 1<p<�, the estimate (1) is true, i.e.,

Tmt
f (x)& f (x)=ox(w(t)) a.e. when t � 0+. (1)

It will become clear from the proof that Theorem 2.2 remains valid, if the
function � is replaced by an arbitrary C �

0 -bump-function which is equal to
1 on some neighborhood of the origin.

Proof. We represent

Tmt
f &f =T (mt&1) �t

f +T(mt&1)(1&�t ) f (13)

and first consider the contribution given by the multiplier (m&1)(1&�).
By the choice of � we have

supp(m&1)(1&�)/[!: |!|�1�2].
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Introduce / # C �
0 such that /(!)=1 for |!|�1�2 and /(!)=0 for |!|�1.

Then, using the properties of the well-known de la Valle� e Poussin sums,

&T(1&/t)
f &p=& f&T/t

f &p�cp(/) |( f, t)p , 0<t<1. (14)

Now assume %k+1<t�%k . Since

supp(mt&1)(1&�t)/{!: |!|�
1

2%k= ,

1&/2%k
(!)=1 for |!|�

1
2%k

,

we have

T(mt&1)(1&�t ) f =T(mt&1)(1&�t)(1&/2%k
) f =T(mt&1)(1&�t)

(T1&/2%k
f ).

This implies the key relation

|T(mt&1)(1&�t ) f (x)|�C sup
k�0

T*(m&1)(1&�)(T1&/2%k
f )(x)

w(%k+1 )
w(t), t>0,

(15)

for almost all x # R. But

T(mt&1)(1&�t)
f =Tmt (1&�t ) f +T�t

f &f,

so

T*(m&1) 1&�) f�T*m(1&�) f+T*� f+| f |.

Now T*m(1&�) : L p � L p is a bounded maximal operator since it is
generated via convolution by a kernel which by hypothesis has a summable
radial majorant. By the same argument, T*� : L p � L p is bounded since �
is a smooth function with compact support. So we may conclude that
&T*(m&1) (1&�)&p � p<� and, therefore,

"sup
k�0

T*(m&1)(1&�)(T1&/2%k
f )

w(%k+1) "
p

p
�C :

k�0

&T*(m&1)(1&�)(T1&/2%k
f )& p

p

w(%k+1) p

�C &T*(m&1) (1&�)& p
p � p :

k�0

&T1&/2%k
f &p

w(%k+1) p .
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The estimate (14) gives &T1&/2%k
f &p�C|(%k)�C|(%k+1), thus

"sup
k�0

T*(m&1)(1&�)(T1&/2%k
f )

w(%k+1) "
p

p
�Cp(m, �) :

�

k=1
\|(%k)

w(%k)+
p

,

which is finite by the assumption (12) of the theorem.
Moreover, since |(t)�w(t) is increasing and $k�%k , $k given by (4), the

hypothesis (12) implies (5) and, therefore, the first term of the right side in
the decomposition (13) can be estimated by Theorem 2.1 which completes
the proof of Theorem 2.2.

Note that the multiplier of the general Riesz means [R:, #
t ], namely

(1&|!| #):
+ , satisfies the conditions of Theorem 2.2 with #>1, :>0. In

particular we obtain the following estimates for the Bochner�Riesz means
[R:, 2

t ] of order :>0.

Corollary 2.2.1. Let |(t) t&s, s>0, be an increasing function satisfying

|
1

0
(t&s|(t)) p dt

t
<�

for some p, 1<p<�. Then, for every f # H |
p and for almost all x # R,

R:, 2
t f (x)& f (x)=ox(ts), t � 0+.

Corollary 2.2.2. If |(t)=t*, 0<*�1, then for every f # H |
p (R) and

for any =>0

R:, 2
t f (x)& f (x)=ox \t* \log

1
t+

1�p+=

+ , t � 0+,

a.e. on R.

Corollary 2.2.3. If |(t)=(log 1�t)&*, *>0, then for every f # H |
p (R)

and for any =>0

R:, 2
t f (x)& f (x)=ox \\log

1
t+

&*

\log log
1
t+

1�p+=

+ , t � 0+,

a.e. on R.

2.3. Fourier Multiplier Means with Saturation Order Worse than or Equal
to O(t)

Theorem 2.3. Let � be the cut-off function from Theorem 2.2; let m(u)
be such a function that the Fourier transform of (1&�)m has a summable
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radial majorant. Let |(t) be a modulus of continuity and define %k such that
|(%k)=2&k. Also, for every j=0, 1, ..., set

Aj #2& j &m$(2& j } )/[1�2; 2]( } )&�+&(1&m(2& j } ))/[1�2; 2]( } )&� .

Then, for every nondecreasing function w(t) with |(t)�w(t) nondecreasing
and

:
�

j=1

Aj \ :
�

k=1
\ |(%k)

w(2& j%k+
p

+
1�p

<� (16)

and for every function f # H |
p (R), 1<p<�, the estimate (1) holds.

Proof. We start with the decomposition (13). To estimate its first term
T(mt&1)�t

f we make use of the idea of ``changing variables'' which has been
used by Mu� ller and Wang [8].

Set +#(m&1)� and remember that +=0 for |!|�3�4 and +(!)=
m(!)&1 for |!|�1�2. Choose h # C �

0 such that supp(h)/[1�2; 2] and

:
�

j=0

h(2 jt)=1 for |t|<1.

Without loss of generality we may assume %0=1 and then obtain

sup
0<t<1

|T+t
f |

w(t)
� :

�

j=0

sup
0<t<1

|T+tht2 j f |

w(t)
= :

�

j=0

sup
0<{�2j

|Th{ +{2&j f |

w({2& j)

� :
�

j=0

sup
k�0

sup
%k+1<{�%k

|Th{+{2&j f |

w({2& j)
+ :

�

j=0

sup
1<{�2 j

|Th{ +{2&j f |

w(2& j )
. (17)

We begin to discuss the critical first sum on the right side of (17). It is clear
that %k+1<{�%k implies supp(h{)/[(2%k)&1, 2(%k+1)&1]. Now choose a
non-decreasing function / # C� such that /(!)=1 for |!|�1�2 and /(!)=0
for |!|�1�4; set /k(!)=/(%k !). Hence /k(!)=1 for |!|�(2%k)&1 and
/k(!)=0 for |!|�(4%k)&1.

Then we have /k h{ #h{ for %k+1<{�%k and thus

" :
�

j=0

sup
k�0

sup%k+1<{�%k
|Th{+{2&j f |

w(2& j%k+1) "p

� :
�

j=0
"sup

k�0

T*h+2&j (T/k
f )

w(2& j%k+1) "p
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� :
�

j=0
\ :

�

k=0
\

&T*h+2&j (T/k
f )&p

w(2& j%k+1) +
p

+
1�p

� :
�

j=0

&T*h+2&j &p � p \ :
�

k=0
\

&T/k
f &p

w(2& j %k+1)+
p

+
1�p

�C :
�

j=0

&T*h+2&j &p � p \ :
�

k=0
\ |(%k)

w(2& j%k+1)+
p

+
1�p

since &T/k
f &p=&T1&/k

f &f &p�C/|( f, %k)p and the symbol of the involved
approximate identity, namely (1&/k), is a smooth function with compact
support. Thus the first series on the right hand side of (17) is finite almost
everywhere provided that &T*h+2&j &p � p�CA j . The same holds true for the
second series on the right side of (17), since certainly

1
w(2& j)

�C \ :
�

k=0
\ |(%k)

w(2& j%k+1)+
p

+
1�p

uniformly in j.
Thus there remains to estimate &T*h+2&j &p � p . Note that �2& j (x)=1 for

0�|x|�2 j&1, j�2, and, therefore, +2& j h=(m2& j&1) �2& j h=(m2& j&1)h,
j�2, thus

T*+2& jh f=T*(m2&j&1)h f, j�2.

For the estimation of &T*h(1&m2& j )& p
p � p we use the Dappa�Trebels estimate

(3). Choose in (3) as differentiation order *=1 and exchange the function
m by (1&m2& j)h. Then supp((1&m2& j ) h)/[1�2; 2] and, therefore,

|
�

0
u|m$(u)|2 du�|

2

1�2
u |m$(2& ju) 2& j |2 du &h&2

�

+|
2

1�2
u |1&m(2& ju)|2 du &h$&2

�

�C(2& j)2 &m$(2& j } ) /[1�2; 2] &2
�

+C &(1&m(2& j } )) /[1�2; 2] &2
��CA2

j .

Further,

|
�

0
|m$(u)| du�|

2

1�2
|m$(2& ju) 2& jh(u)| du+ |

2

1�2
|(1&m(2& ju)) h$(u)| du

�C &h&� 2& j &m$(2& j } ) /[1�2; 2] &�

+C &h$&� &(1&m(2& j } )) /[1�2; 2] &��CAj .
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Thus the condition (3) from Theorem B, namely B1((1&m2& j)h)�CAj is
satisfied and Theorem B gives the required estimate. Theorem 2.3 is hence
established.

Remark 2.3.1. If one takes m(u)=e&u#
one can easily calculate Aj�

C#2& j#. Hence, for the Abel�Cartwright means the condition (16) specializes
to

:
�

j=2

2& j# \ :
�

k=0

(2&k�w(2& j%k)) p+
1�p

<�. (18)

For the general Riesz means [R:, #
t ], generated by m(u)=(1&u#):

+ , one
can show the same estimate Aj�C2& j# provided 0<#�1, :>0.

Remark 2.3.2. If we choose w(t)=ts, 0<s<# in (18), then

:
�

j=2

2& j# \ :
�

k=0
\ |(%k)

(2& j%k)s+
p

+
1�p

�Cp, s \ :
�

k=0

|(%k) p %&sp
k +

1�p

�Cp, s \|
1

0 \
|(t)

ts +
p dt

t +
1�p

.

So the left hand side of the condition (16) for w(t)=ts in fact is the semi-
norm of a function f in the Besov space Bs

p, p (see [16]) which illuminates
the nature of (16). In particular, Corollary 2.2.1 is also true for the
Abel�Cartwright means and the general Riesz means with parameter #�1.

We formulate some special cases for the Abel�Cartwright means [W #
t ]

in the case 0<#<1.

Corollary 2.3.1. If |(t)=t*, 0<*�1, then, for every f # H |
p (R),

1<p<�, and for any =>0, there holds a.e. on R

ox(t*(log(1�t))1�p+=), 0<*<#,

W #
t f (x)&f (x)={ox(t#(log(1�t))1+1�p+=), *=#,

Ox(t#), *>#, t � 0+.

Indeed, if we choose w(t)=t*(log(1�t))$ with $ to be specified later, the
left hand side of (18) can be rewritten as
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:
�

j=2

2& j# \ :
�

k=0
\ 2&k

(2& j2&k�*)*( j+k�*)$+
p

+
1�p

� :
�

j=2

2& j (#&*) \ :
�

k=0

( j+k�*)&$p+
1�p

.

The double series converges if *<#, $>1�p or *=#, $>1+1�p.
The last claim of Corollary 2.3.1 does not follow from Theorem 2.3 since

(18) cannot be verified. Intuitively it is clear that one cannot expect a better
convergence rate than O(t#) since the optimal norm-approximation order
of the Abel�Cartwright means [W #

t ] is O(t#) (see [1, p. 466]). Now
observe that f # H t*

p (R) implies D#f # Lp(R), #<*, which follows, e.g., from
[1, Theorem 12.3.11] (or see [16]). Then it is easy to check that m(u)=
(1&e&u#

) u&# satisfies (3) and hence, by Remark 1.1(a), the assertion.
By an argument, similar to that showing the first two assertions of

Corollary 2.3.1, we obtain

Corollary 2.3.2. If |(t)=(log(1�t))&*, *>0, then for every f # H |
p (R)

and for any =>0

W #
t f (x)& f (x)=ox \\log

1
t+

&*

(log log(1�t))1�p+=+ , t � 0+,

a.e. on R.

Finally let us indicate the L1-case. As the maximal function arises from
a convolution with a kernel which has a summable radial majorant it is of
weak type (1,1). Therefore, instead of the norm estimates in the proofs of
Theorem 2.1 and Theorem 2.2 we can apply the weak type estimates. So
Theorems 2.1 and 2.2 are still true also for p=1. The difference between the
case p=1 and the case p>1 is only that the constant ox on the right hand
side of (1) as a function of x may be chosen as an L p-function for p>1,
but for p=1 only as a function from weak L1.

Moreover, by the Dappa�Trebels Theorem B we have (1,1) weak type
estimates for the corresponding maximal operators; in particular, we can
estimate the Lebesgue measure of

E: #{x # R: :
�

j=2

sup
k�0

T*h+2&j(T/k
f )

w(2& j%k+1)
>:= .

To this end, choose cj>0 such that

:
�

j=2

1
cj

=1. (19)
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Then

|E: |� :
�

j=2
}{x: sup

k�0

T*h+2& j (T/k
f )

w(2& j%k+1)
>

:
c j=}

� :
�

j=2

:
�

k=0 }{x:
T*h+2&j(T/k

f )

w(2& j%k+1)
>

:
cj =}

�
C
:

:
�

j=2

cj &T*h+2&j &L � L1, �
:
�

k=0

|(%k)
w(2& j%k+1)

.

Thus, Theorem 2.3 remains true also for the case p=1 when we replace
(16) by the condition (for the definition of B*(m) see (3))

:
�

j=1

cjB*((1&m2& j ) h)) :
�

k=0

|(%k)
w(2& j%k+1)

<�, some *>1, (20)

which of course is more restrictive than (18). If we consider the Abel�
Cartwright means [W #

t ], for which m(t)=e&t #
, #>0, and take *=2, then

B2( } )�C2& j#. With cj=Cj2 we thus obtain

Corollary 2.3.3. If |(t)=t*, 0<*<#<1, then, for every f # H |
1 (R)

and for any =>0, there holds

W #
t f (x)& f (x)=ox(t*(log(1�t))1+=), t � 0+,

a.e. on R.
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