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Abstract

Difference calculus compatible with polynomials (i.e., such that the divided difference operator of first order applied to
any polynomial must yield a polynomial of lower degree) can only be made on special lattices well known in contemporary
g-calculus. Orthogonal polynomials satisfying difference relations on such lattices are presented. In particular, lattices which
are dense on intervals (|g| = 1) are considered.
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“Il n’est pas nécessaire d’espérer pour entreprendre, ni de réussir pour persévérer.”

( Begin, even without hope; Proceed, even without success.)
William of Orange (“William the Silent”), murdered in Delft in 1584 .

1. Introduction

Many works have been devoted to orthogonal polynomials satisfying remarkable differential or
difference relations.

For instance, the classical orthogonal polynomials are characterized by the existence of a differ-
ential relation of the form

W(x)p;(x) = wn(x)pn(x) + 19npn—l(x), (1)

* E-mail: magnus@anma.ucl.ac.be.
! The saying of William of Orange, the most remarkable statesman of the 16th century [3] (could be compared to N.
Mandela nowadays), applies quite well to scientific research (try to explain that to a contemporary state(?)sman).
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where W is a fixed polynomial of degree <2, w, is a polynomial of degree <1, and where ¥, is
constant (in x) (cf. [1, p. 8]).
This differential relation interacts most efficiently with the recurrence relation

an+1pn+l(x) = ()C - bn)pn(x) + anpn~1(x) (2)

in the production of various useful identities.
If we accept higher degree polynomials in (1):

W(x) p(x) = Qu(xX) pu(x) = @, On(x) pr1 (%), (3)

with W,Q, and ©,, polynomials of degrees <s+ 2, s + 1 and s=>0, we get the semi-classical
class, studied by Laguerre (the notations of (3) are (almost) Laguerre’s [19]), Hendriksen and van
Rossum [10], and Maroni [22] who coined this name. See also [4, 5] for determination of the
relevant measure.

If we try to extend (3) to a difference operator of first order, we expect to see the derivative
P, (x) replaced by some combination of p,(y(s)) and p,(¥(s + 1)), where y(s) and y(s + 1) are
two consecutive points on a lattice associated to the difference operator.

We will explore here the extension of the semi-classical property (3) to the remarkable difference
operators and the corresponding nonuniform lattices studied by many people recently [2, 6, 12, 12A,
16, 17, 21, 24, 25, 29, 30]. In particular, those lattices which happen to fill densely an interval will
be considered with special care.

2. The difference operator and the related lattices
We consider here a first-order difference operator involving the values of a function at two points.

For each x, let ¢,(x) and ¢@,(x) be these still unknown points. The first-order divided difference
operator at x is

J(@:(0) — f(e ()

4
@2(x) — @1(x) @

(Zf)x) =
If we impose the condition that & f is a polynomial of degree n — 1 if f has degree n, then ¢,(x)
and ¢,(x) must be the two roots in y of a quadratic equation

Ay* 4+ 2Bxy + Cx* + 2Dy + 2Ex + F = 0. (5)

(see [6, 12, 12A, 21]).

Indeed, applying & to f(x) =x? and f(x) = x* readily yields that ¢, + @, and @? + @02 + @3
must be polynomials of degrees 1 and 2, which implies (5). Conversely, if (5) holds, any symmetric
polynomial in ¢; and ¢, is a polynomial in x.

Let us figure the conic (5) and one of its parametric representations {x(s), y(s)} such that y(s) and
y(s+1) appear naturally as the two ordinates associated to the abscissa x = x(s): one starts from some
point {x; = x(s,), ¥1 = ¥(s;)} on the conic, and one looks for the points {x; =x(s; +k — 1), yx =
ysi+k—Dh k=1,2,....
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Fig. 1. x- and y-lattices.

To achieve this, let us consider the familiar parametric representations in the two following cases:

(1) The conic (5) has a center B>—AC # 0. With the center coordinates x, = (4E —BD)/(B>—AC)
and y, = (CD — BE)/(B? — AC), one has A(y — y.)* +2B(x —x.)(y — y) + Cx = x.? + F =
0, with F = F — Ay? — 2Bx.y. — Cx2 = F + Dy, + Ex, = F + (CD* — 2BDE + AE?)/(B* —
4C),

x=x(s)=x +VAG +q7),  y=3(s) =y + V(g + g (6)
is a valid parametric representation of (5), (if AC #0), where (2 =F /(4(B? — AC)) and
2B 4B?
1/2 12 _ _ ie. -1 _ 7 5
¢ +q T e ata =0 M

Indeed, x(s) = x(—s) is kept by the transformation s < —s in (6) but y becomes y(s + 1).
If AC = 0, the schemes of Figs. 1 and 2 do not work: horizontal and/or vertical lines do not meet
the conic in two points any more.
The generic (also rightly called Ayperbolic) case |q| # 1 gives a hyperbola (Fig. 2(a)). Remark
that the asymptotes are given by (x and y large) y ~ (C/4)"?¢* ' x:

q is the ratio of the slopes of the asymptotes of the conic.

If F =0, one finds x — x. = X/Aqg", y — y. = X/Cq'*'?, the “old” g-lattice (Fig. 2(b)).
(2) The conic (5) has no center, B> — AC = 0. Then,

o D — AF DyVC+EVA ,
x—x(s)_\/z{2A(D\/6+E\/Z)_2 AC S}’

B B E*—~CF  DVC+EVA |,
y_y(s)_\/a{2C(D\/6+E\/Z) SO TRENC 2)}’

found directly to satisfy (5) in the parabolic case B> = AC, or by taking the limit of (6) when ¢ — 1:
let ¢ = exp(e), then, ¢° = 1 +se+5%c%/2+ -+, B= —/AC(q¢"* +¢7'?)/2 = —/AC(1 +£*/8+- - ),
etc. (Fig. 2(¢c)).
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Fig. 2. Other kinds of lattices.

If Dv/C + Ev/A = 0, one redefines s through the translation

lim 4 sy + Y —A)C
Sold = m new H
T pvEsEVioo 2ADVC + EVA)
to get
D’ — AF E DI—AF
Xx=—H =S J’—\/;I—C——z 7 6E3);

the simplest lattice (this one is uniform, Fig. 2(d)).

These points form one of the special nonuniform lattices (snu/) I-VI of [24,25]. If the quadratic
equation (5) describes an ellipse, as in Fig. 1, this lattice fills densely an interval, unless it is finite
(periodic: ¢ = 1).

3. Semi-classical orthogonal polynomials on snuls

Semi-classical snul orthogonal polynomials may be defined through a Z-difference equation of
the form

W28 )x) = 2V (x)(MS)x) + U(x) (8)
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for the Stieltjes function

S = [ w07 dun = >
Supp. u 0

(Stieltjes transform of the orthogonality measure du) where W, V and U are polynomials and .#
is the arithmetic mean operator:

(A f)x) = (f(@1(x)) + f(92(x)))/2.

If u has a jump (pole of §) at some y,, it must have jumps at the other points y,+i, Vuta, ---
of the corresponding lattice.

It is possible to recover a difference relation extending (3) to the present difference operators,
as attempted and min of meer (less or more) achieved in [21], see here an attempt to achieve the
converse:

Theorem 1. A sequence of orthogonal polynomials { p,} is @-semi-classical, i.e., its Stieltjes func-
tion satisfies an equation (8) with polynomials W, V, and U, if each p, satisfies a linear first-order
difference relation connecting p, with p,_

WixN(ZD pa)(x) = Qu(x )M pp)(x) — @, Ou(x WM py1 )(x), )
where W,, Q,, and ©, are polynomials of fixed (independent of n) degrees.

Proof. Indeed, let y; and y, be the ordinates corresponding to x = x|, then (9) is a linear relation
involving pu(y1), pn(¥2), Pn—1(31), and py_1(y2):

Anpn(yl) + Bnpn(yZ) + Cnpn—l(yl) + ann—l(y2) =0, (10)

where 4,, B,. C,, and D, are rational functions of fixed degrees of x = x; and y, (y, may be
replaced by —2(Bx + D)/A — y; in A, = —W,(x)/(y; — 1) — £.(x)/2 etc.). We come to n + 1:

A1 Prs1(01) + Bost Pur(¥2) + Cost pu(31) + Dus1 pa(32) = 0,

and use the recurrence relation (2):

(31 = b)Ant1 + an1 Coir ] P(31) + [(V2 — b2)Bust + @1 Dait ] Pu(32)
—ayAni1 Pr1(M1) — @uBui1 Pu—1(32) = 0, (11)

which is also a linear relation involving p,(y1), pu(32), pr_1(31), and p,_1(1,)!

(i) Either (10) and (11) are dependent for each n, then A4, = K,[(y1 —b,)Ape1+ @2 1Cri1] and C, =
K,a,A,+, i.e., the recurrence relation 4, = K,[(y1 — b,)An1 — a2, Kt 14,12] which looks somewhat
like (2): actually, X, ...K,_a,...a,-,4, would be a solution of (2), and this is incompatible with
the requirement that 4, keeps a finite degree.

(ii) Or (10) and (11) are independent for some n. Then, it is possible to extract p,(y;) and

Pn(y2) in terms of p,_1(y) and p,_i(y,):
Pa(¥1) = Xapai (V1) + Yo puo1(32) , Pn(¥2) = Zy pni(31) + U, pu_1(32),
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where X, ¥,, Z,, and U, arc again rational functions of fixed degrees. We get the relation for n+ 1
using (2):

[t o L The O N[ mn] e [roibn]

Ay Api

-1
_J [yl -b, 0 ] _a, [Xn Yn] [pn(yl)]
Ayt 0 Y2 = bn (/08| Z" Un pn(y2) ’
showing that we can construct similar relations for n+ 1, n+ 2, etc. as far as x is not a zero of the
determinants 6, = X, U, — Z,7Y,, etc.:

L] = [ [ o]

whence the recurrence relations for the X’s, Y’s, Z’s, and U’s:

an+1Xn+l =" — bn - anUn/én s an+1Un+l =WV - bn - aan/an s
an-l—lYn-H = a, Yn/én s an+lZn+l = anZn/én s
af,+15n+l = (yl - bn)()& - bn) - an[(yl - bn)Xn + (yZ - bn)Un]/an + apzy/én .

Let 8, = 0,/0,_, (yes, this is the &, which will appear in (9)), then, with ©,_,X, = 71, and
@n—l Un = Xn»

(2| Tn+l = (yl - bn)@n — Qn)n »

Qi1 Xnt1 = (J’2 - bn)@n — dy Tn 5

ai+1@n+l = (yl - bn)(yZ - bn)@n - an[(yl - bn)Tn + (yz - bn)Xn] + ai@n—l .
Remark that a,6,_,Y, and a,0,_,Z, are independent of n.

These recurrence relations for 7, y, and O, are exactly the recurrence relations satisfied by
products of solutions of (2) at y, and y,! Indeed, if a,. ¢, = (vi = b,)E, —a,éuy, and a, 1M, =
(¥2 = b))y — antn—1, one finds for [&,1,—1, &y 110, Eatn] €xactly the recurrence for [ 1, y., ©,]. (Actu-
ally, this is a recurrence of fourth order, one should work with vectors [&,1,_1, Enr1¥ns Entins En 1 Mn—1]
and [Tm Xns @m @n—l]')

Now, any solution of (2) is a combination of p,(x) and g,(x) defined by

0= [ e =07 A0 = 1/ +
Supp. u
a useful well-known identity is
Pnln—1 = Pn—1qn = Vn/Vn—1 = 1/an,
so, £, is some combination of p,(y,) and ¢,(y), 1, is some combination of p,(»;) and ¢,(y,), and

T, = apu(y1) Pa1(¥2) + BPu{¥1)qn-1(32) + ¥8:(¥1) Pu=1(32) + 0Gu(¥1 )gn—-1(>2)
In = 0P 1(¥1) Pu(32) + BPut(¥1)gn(32) + YGn—1(31) Pu(32) + 0Gu—1(¥1)g:(¥2)
O, = ap.(¥1) Pu(¥2) + Boa(31)qn(32) + y3u(31) Pu(¥2) + 8¢4(¥1)gn(32) -
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As we want the degrees of the left sides to remain bounded when » increases, we must have o = 0.
Let us show that = 0 as well: from p,(y;) =X, p.. (V) + YVapa1(32),

O 1P:(¥1) — O 1 Xy P (1)
= 0,1 Pa(31) — Lo Pu—1(31)
= [BPa—1(¥1)gn—1(32) + 701 (¥1) Pra1(32) + 6@u1(¥1)gn—1(¥2)1 Pn(¥1)
=[BPa(Y1)gn=1(32) + 792 (31) Pr—1(32) + 0gu(¥1)gn—-1(¥2)] Pa_r(31)
=V Pn 1 (Y Gr—1(31) Pa(¥1) — @u(¥1) Puz1(1)]
+0gu 1 (¥ @n-1 (1) Pn(31) = @u(31) Par (31)]
= [y pn1(02) + 0gn1(¥2))/an = On 1 Y, pui(32)
or
YPu—1(32) + 0gu—1(¥2) = @01 Y, pu_i(y2) = constant p,_(»2),
possible only if the constant (with respect to n) @,0,_,Y, =7, and 6 = 0.
One finds similarly «,0,_,Z, = .

Finally, at n =0, @ = Bpo(¥1)90(¥2) + yq0(¥1) Po(¥2) = [BS(¥2) + ¥S(31))/ 1o, and this relation
between S(y,) and S(y,) is exactly (8)! One has U = Oy, W = (¥, — yi )P — 7)/Qup), and

V=-(B+7)/Cu). O

4. Semi-classical measures on snuls

Let us consider meromorphic Stieltjes functions S, corresponding therefore to discrete (atomic [8])
measures. From (8), or from the equivalent form fS(v,) + yS(y1) = U, we have a recurrence

B, YOS(Visr) + (0, yi)S(vi) = poU (),

showing that poles occur at some available lattice ..., v, Viy1,... with residues (masses of the
measure) satisfying
BCxk> YY) + v(xe v u(ve) = 0, (12)

a Pearson-like equation like this is discussed in [29, 30].

The masses will usually not make an infinite convergent sequence, so that they must remain in
finite number if one wants a discrete measure. This is possible only if some value of B(x, y) on a
lattice, say fi(xq, Vo) vanishes, so that we may start the nonzero masses at y; (and put u(y,) = 0),
and also if some value of y(x,y) vanishes on the same lattice, say y(xy, yy) = 0, so that we stop
the nonzero masses at yy (and put u(yy,1) = 0), see [29, the “uninteresting case”, p. 655].

For instance, if ¥ = 0 in (8), we simply have equal masses: f(x,y) = —y(x,y) = W(x), and
W must vanish at two points of the x-lattice at least. If this does not happen, the measure is
approximated by a discrete measure with many small equal masses at more and more lattice points,
and tends towards the limit distribution of these lattice points. Take for instance (6) with x. =
ye =0, (VA4 = {/C = 1, and g = exp(if), then, x, = cos kf, y; = cos(k — 1)0, the lattice VI
of [25], distributed (if 6/ is not rational) like du(x) = (1 — x?)~2dx: we recover the Chebyshev
polynomials! This is not surprising, as these polynomials have interesting properties with respect to
the Z-operator [6,12, 12A].
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Table 1
fory £ = £0/(2rm) — | €0/(2m)] 1= [#6/(2n)] + 1 — nb/(2n)
1 0.6180339887498948481 0.3819660112501051518
2 0.2360679774997896963
3 0.1458980337503154555
5 0.0901699437494742407
8 0.0557280900008412147
13 0.0344418537486330259
21 0.0212862362522081887
34 0.0131556174964248372
55 0.0081306187557833515

5. Dense discrete measures and combinations of Chebyshev polynomials

We keep x; = coskf, y, = cos(k — %)0, the lattice VI of [25] with 0/n not rational, and
try to find a discrete measure with jumps at each of these y;. “Strange” supports, er, carri-
ers, have been well worked [11,20,23,31,32,33], there is a reference to Stieltjes himself in
[18, p. 202].

As semi-classical orthogonal polynomials do not seem to be related to dense discrete measures,
one tries combinations of the simplest such items, i.e., Chebyshev polynomials:

Theorem 2. Let the measure p be discrete with jumps u(y,) = 1/(k — %)2 at y, = cos((k — %)9),
k=...,-2,-1,0,1,2,..., with 0/ irrational. Then, the orthonormal polynomials are

Po=7T -,

_ (52n~—1 + Ian-1 )Tn - (_I)szn_ﬁ/(Zn’)J lZn—lTIn—-fz,,_ll + (_l)l_ﬂz"-|9/(27f)J €2n—1T|n—ﬂ2n—ll
\/27[2€2n12n(52n—1 + 12n—1) ’

n=l1,

(13)

where &; is the value of p which minimizes p0/(2n) — | p0/(2n)] on p = 1,2,...,j, n; is the value
of p which minimizes | p6/(2n)| + 1 — p0/(2n) on p = 1,2,...,j (where |x| is the largest integer
smaller than or equal to x), €; = &;0/(2n) — | £,0/2n)], 1, = [n,0/2n)| + 1 — ,6/(27).

Remark that ¢; and 1; are positive and decreasing with j. These ¢’s and #n’s are known as denomi-
nators of remarkable rational approximants to the irrational number 6/(27) (“Nebenndherungsbriiche”
in [26, §16]) and are linked to the continued fraction expansion of 8/(2x). Each new & or # is the
sum of the two last ones: if ¢; > 1;,, £ =& =& +nand e, = ¢, — 15, 1, = 155 if g5 < 1,
¢ =n;,=¢&+n; and 1, = 1;—¢;, €, = ¢;. For instance, with the golden ratio 6/(2n) = (5'2+1)/2 =
1.618033988749894848]1 ..., one encounters the Fibonacci numbers (Table 1).

With 6/(2%) = /2, one finds new values of & at 1, 3, 5, 17, 29,..., new 5 values at 1, 2, 7,
12, 41, ... .
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Remark also that the present discrete measure is definitely not semi-classical, as u(yi1)/p(yi) =
((k — )/(k + 1))* is not a rational function of x;, = coskf and y; = cos((k — 3)0), as it should
have been according to (12).

Proof of Theorem 2. In order to show that a form like p, = 4,7, + B,T,_¢,_, + C,T,—,,, , is valid
(using 7|, = T,), one must show that the scalar product

(P Tw) = D 1) Pu(Y) Tl Vi)

k=—00

1 &
= '2_ Z :u(yk) [An(TrH—m(yk) + Tn—m(yk)) + Bn(Tn+m—€Zyy—|(yk) + Tn—m—ézn—l(yk))

k=—o00
+Cn(Tn+m—rlzn_| () + Tn-m—nz,,_ (k ))]

vanishes for m = 0,1,...,2n — 1, and has the value 2"~'/y, = 1/4, when m = 2n.
Let

= Y w(ye)Tp()

k=—o0
= 3 (kD cos(pk ~ 1)6)
k=—o0
= 8[cos(4 pB) + cos(3 p0)/9 + cos(3p0)/25 + - -]
= 277 (—1)PE0! (| pb/(27)] + § — pO/(2m)) (14)
= —2r2 (= 1)/ ([ pb/(2m)] — & ~ pbj(2m)), (147)

from elementary Fourier series, where [x] is the smallest integer larger than or equal to x. The
form of (14’") will sometimes be more convenient than (14’). The importance of using Chebyshev
moments of measures with discrete masses has been shown by Prévost [27, 28], remark in particular
that 7, does not tend to zero when p — oo, as it should with absolutely continuous measures. So,
we have (P, Tin) = (AnToim + BaTusm—cos + CaTnsm—ny_, + AnToem + BunTaem—ty,_, + CoTnom—na_ )/2.
Remark that 7, = 7%, so that py = (7o)~ = n~!. For n>1, let us show that it is possible to find
A, By, and C, such that 4,7y + B,tyv_c,, , + CyTy—y,,_, =0 for N =1,2,....2n - 1:

Let p = 0/(2n). As 0 < &yoip — [Eoum1p| SNp — [Np], (N = &)p— 1 < [Np| —Epmip <
INp] — [Can—1p] S(N — &ap-1)p, one has [Np| — [&an1p) = [(N = &an1)p]. As [M2ip) + 1 —
N 1P<Np| +1—=Np < 1, (N =13, )p<|Np| — [M2n—1p) < —H20—1p] +Np < 1+(N —120-1)p,
one has [Np| — [nu-1p] = [(N — n201)p].

In summary:

LNPJ - l_éZn—lpJ = l_(N - éln—l)pJ s LNI)J - ‘.772n—1pJ = [(N - ’72n—l)p-|a (15)
for N =1,2,...,2n— 1.
So,
Ty—gy_, = 21 (— 1)W1 Lenm1v] (INp] = [&an-1p) + % — Np +&-1p)
= (=Dl ley 42— )L ey,
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TN-"DHAI = _znz(_l)LNPJ—Lﬂz,;~1pJ (LNPJ - Ilen—lpJ - % "N,O +712n—l,0)
— _(_1)ann—|pj Ty + 2n2(_1)LNPJ—L£z”_|pJ Lon—1

Aty + Byty_¢,_, + CnTN—nz,,_l = [4, + (_I)Lc“zn—mJBn _ (_1)ann_lpj C,ltn

+2m? ()Wl [(—1)l-pley (B, + (= D)Um-12dy,, G,

which vanishes indeed for N = n+tm = 1,2,...,2n — 1 if B, = —K,(=Dl&2ly,, _, C, =
K, (—=1)lm—12ley, 1, and 4, = K,(e20_1 + 1201).

We now have to look at (p,, T,,) = (AuT2n+ByTon—c,_, + CoTon—pp_, +AnTo+BuTe,, +Cty, )2 =
1/4,.

(1) If &, = &—1 < 2n and #y, = y,—; < 2m, nothing changes in the evaluation of 4,7y -+
Bytv_e, , + Cytn_y, , when we replace N by 2n, so 4,1, +B Tty + CaToney,,_, = 0, and we
have only to look at 4,79 + B,7¢,,_, + C,7y,,_,. One has 1y = 7%, 1, = 27172( Dol — gy, ),
Ty, = —272(— 1)Lz "’J(——lz,, 1) yleldmg A nTo+BuTz,  +Coty,, , = 4K, €0, 11201, Wthh must
be equal to 2/4, = 2/(Ku(€2,—1 + 12,-1)), whence K, = [(€2n—1 + 120-1)/(27€201120-1)]"/, and this
gives (13), as we still have ¢,, = &5, and 13, = 13,_1.

(2) & = 2n or ny, = 2n, which happens only if &,y + #,- = 2n. Then, 4,7p + B,t;,_, +
Cntnz,,_l + AnTZn + BnTZn—fz,,,l + CnTZrz—nz,,q = An(TO + T2n) + (Bn + Cn)(réz,,,l + T )

An interesting consequence of (15) is that |&,_,p] and [#,,_,p] have now the same evenness:
if we subtract the two equations of (15) with N = n = (&, + #2,_1)/2, one finds —|&,,_, el +
[M2n—1p] = [ (Mot = Ean1)p/2] — [(E20—1 — H2n—1)p/2], which is an even integer, as [x] = —[—x]
({15, §1.2.4]).

So, let g = (—1)l»#) = (=1)lm=—1#l. One has B, + C, = 6K,(€2n—1 — 12n-1), Ty, + Ty, =
2n? 0'( — £341) — 27 U(z—lzn 1) = 27%6 (1201 — € 1)-

(2a) If £2n - 21’1 Em = Em—1 — lap—1, 2”/) - LGp_l - éZn 1P — I_éZn 1PJ - (I_nZn 1PJ + 1 -
N2a-1P)s 80, [2np] = [Conip] + [Mancip) — 1, tow = 203(=1)PI(L — &) = —272(1 — &,,),
Au(to + T20) + (B + Cy )1g,,_, + Ty, ) = 47 K,E0,12,_1, Whence (13), as one still has 15, = 12,_,.

(2b) If 12, = 2, 12y = 13p—1 — E2n—1, [2np] +1—2’7P = [Man—1p] + 112010 = (E2um1p = [E2n1p)),
SO I_znp_J |_r’2n lpJ + I,é2n 1PJ Ton = 277:2( l)I_ZHpJ( + lZn) - —27T2( lZn) An(TO + TZn)+ (Bn +
C)(tey , + T, ) = 472K, 15,62,—1, whence (13), as one still has e,, = &5,_,. O

A numerical check has been performed with
p=0/2n) = L1(5"* + 1) = 1.6180339887498948481 .. .,

the recurrence coefficients have been computed by Gautschi’s sti (Stieltjes, of course!) subroutine [9].

For each n, one compares the computed 7,27 = 1/(2"a; ...a,) with the formula predicted from
(13), i.e., ((€2n—1 + 121—1)/(8€2m12,))'?. The agreement is satisfactory, taking into account that all the
series involving u(y,) = 1/(k — %)2 have been truncated to 20 000 terms, so that relative errors of
about 107 may be expected (see Table 2).

We have longer and longer intervals where a, = % and b, = 0. On this example, liminf,_ . a, >
0, although the vanishing of this lim inf could have been expected from pure discrete (atomic) mea-
sures [8], but other results have been published about singular measures [7, 11,13, 14, 18, 20, 23, 31,
32,33].
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Table 2
n an b E2n—1 12n—1 €2n 127 ; Ean—t + lani
2nay ...ay \/ 8e2n12n
0 0.2361
1 0.4247 —0.5451 0.6180 0.3820 0.2361 0.3820 1.177 1.177
2 0.5 0.6180 0.2361 0.1459 0.2361 0.1459 1.177 1.177
3 0.3931 —0.3090 0.0902 0.1459 0.0902 0.1459 1.498 1.498
4 0.3090 0 0.0902 0.1459 0.0902 0.0557 2.423 2.423
5 0.6360 0 0.0902 0.0557 0.0902 0.0557 1.905 1.905
6 0.5 —0.3090 0.0902 0.0557 0.0902 0.0557 1.905 1.905
7 0.3931 0.3090 0.0344 0.0557 0.0344 0.0557 2.423 2423
8 0.5 0 0.0344 0.0557 0.0344 0.0557 2424 2.423
9 0.5 0 0.0344 0.0557 0.0344 0.0557 2.423 2.423
10 0.5 0.3090 0.0344 0.0557 0.0344 0.0557 2.423 2.423
11 0.3931 —0.3090 0.0344 0.0213 0.0344 0.0213 3.083 3.082
12 0.5 0 0.0344 0.0213 0.0344 0.0213 3.083 3.082
17 0.3090 0 0.0344 0.0213 0.0132 0.0213 4.989 4.988
18 0.6360 0 0.0132 0.0213 0.0132 0.0213 3.922 3.921
19 0.5 0 0.0132 0.0213 0.0132 0.0213 3.922 3.921
27 0.5 —0.3091 0.0132 0.0213 0.0132 0.0213 3.922 3.921
28 0.3930 0.3091 0.0132 0.0081 0.0132 0.0081 4.989 4.988
29 0.5 0 0.0132 0.0081 0.0132 0.0081 4.989 4988
44 0.5 0.3091 0.0132 0.0081 0.0132 0.0081 4.989 4.988
45 0.3930 —0.3091 0.0050 0.0081 0.0050 0.0081 6.348 6.344
46 0.5 0 0.0050 0.0081 0.0050 0.0081 6.348 6.344
71 0.5 0 0.0050 0.0081 0.0050 0.0081 6.348 6.344
72 0.3089 0 0.0050 0.0081 0.0050 0.0031 10.277 10.265
73 0.6361 0 0.0050 0.0031 0.0050 0.0031 8.078 8.070
74 0.5 0 0.0050 0.0031 0.0050 0.0031 8.078 8.070
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