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A b s t r a c t  

Difference calculus compatible with polynomials (i.e., such that the divided difference operator of first order applied to 
any polynomial must yield a polynomial of lower degree) can only be made on special lattices well known in contemporary 
q-calculus. Orthogonal polynomials satisfying difference relations on such lattices are presented. In particular, lattices which 
are dense on intervals (Iql = 1) are considered. 
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" / /n 'es t  pas ndcessaire d'esp&er pour entreprendre, ni de rdussir pour perskvdrer." 
(Begin, even without hope; Proceed, even without success.) 
William of Orange (" William the Silent"), murdered in Delft in 15841 

1. I n t r o d u c t i o n  

Many works have been devoted to orthogonal polynomials satisfying remarkable differential or 
difference relations. 

For instance, the classical orthogonal polynomials are characterized by the existence of a differ- 
ential relation of the form 

W(x)p'.(x) = o9.(x)p.(x) + O.p._l(x),  (1) 

* E-mail: magnus@anma.ucl.ac.be. 
I The saying of William of Orange, the most remarkable statesman of the 16th century [3] (could be compared to N. 
Mandela nowadays), applies quite well to scientific research (try to explain that to a contemporary state(?)sman). 
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where W is a fixed polynomial of  degree ~< 2, con is a polynomial of  degree ~< 1, and where On is 
constant (in x) (cf. [1, p. 8]). 

This differential relation interacts most efficiently with the recurrence relation 

an+ipn+l(x) = (x - b , )pn (x )  ÷ anp ,_ l ( x )  (2) 

in the production of various useful identities. 
If we accept higher degree polynomials in (1): 

W(x)p'n(x)  = (2n(x)pn(x) -- anOn(x)pn- ,  (X), (3) 

with W, f2n and On, polynomials of degrees ~<s + 2, s ÷ 1 and s~>0, we get the semi-classical 
class, studied by Laguerre (the notations of (3) are (almost) Laguerre's [19]), Hendriksen and van 
Rossum [10], and Maroni [22] who coined this name. See also [4, 5] for determination of the 
relevant measure. 

If we try to extend (3) to a difference operator of  first order, we expect to see the derivative 
p~,(x) replaced by some combination of p , ( y ( s ) )  and pn(y(s  + 1)), where y ( s )  and y(s  + 1) are 
two consecutive points on a lattice associated to the difference operator. 

We will explore here the extension of the semi-classical property (3) to the remarkable difference 
operators and the corresponding nonuniform lattices studied by many people recently [2, 6, 12, 12A, 
16, 17, 21, 24, 25, 29, 30]. In particular, those lattices which happen to fill densely an interval will 
be considered with special care. 

2. The difference operator and the related lattices 

We consider here a first-order difference operator involving the values of  a function at two points. 
For each x, let q91(x) and ~o2(x) be these still unknown points. The first-order divided difference 
operator at x is 

f ( ~ p 2 ( x ) )  - f ( ~ o ,  ( x ) )  (~f)(x) = ( 4 )  
q)2(x)  - (~01 (x )  

If we impose the condition that ~ f  is a polynomial of  degree n - 1 if  f has degree n, then ~ol(x) 
and ~o2(x) must be the two roots in y of a quadratic equation 

A y 2 + 2Bxy  + Cx 2 + 2 D y  + 2Ex + F = O. (5) 

(see [6, 12, 12A, 21]). 
Indeed, applying ~ to f ( x )  = x 2 and f ( x )  = x 3 readily yields that ~ol + q~2 and ~o~ + q91 (~o2 + (/9 2 

must be polynomials of  degrees 1 and 2, which implies (5). Conversely, if (5) holds, any symmetric 
polynomial in ~ol and ~P2 is a polynomial in x. 

Let us figure the conic (5) and one of its parametric representations {x(s), y ( s ) }  such that y ( s )  and 
y ( s +  1 ) appear naturally as the two ordinates associated to the abscissa x = x(s): one starts from some 
point {xl = x(sl ), Yl = y(sl  )} on the conic, and one looks for the points {xk = X(Sl + k - 1 ), yk = 
y ( s l + k -  1)}, k =  1 ,2 , . . . .  
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Fig. 1. x- and y-lattices. 

To achieve this, let us consider the familiar parametric representations in the two following cases: 
(1) The conic (5) has a center B z - A C  ~ O. With the center coordinates xc = ( A E - B D ) / ( B  2 - A C )  

and Yc = (CD - B E ) / ( B  2 - A C ) ,  one has A ( y  - yc) 2 + 2B(x - xc ) ( y  - yc) + C(x  - x~) 2 + F = 
0, with F = F - Ay2c - 2Bxcyc - Cx 2 = F + Oyc + Exc = F + (CD 2 - 2BDE + AE2) / (B  2 - 

A C ) ,  

x = x ( s )  -= xc + (v/-A(q s + q - S ) ,  y = y ( s )  = yc + ( x / C ( q  s-lIe + q-S+l/2) (6) 

is a valid parametric representation of  (5), ( if  A C ¢  0), where (2 ___ ~ / (4(B 2 _ A C ) )  and 

ql/2 + q-l~2 _ 2B i.e., q + q-1 _ 4B2 2. (7) 
x /AC A C  

Indeed, x ( s )  = x ( - s )  is kept by the transformation s ~ - s  in (6) but y becomes y ( s  + 1). 
I f  A C  = 0, the schemes of  Figs. 1 and 2 do not work: horizontal and/or vertical lines do not meet 

the conic in two points any more. 
The generic (also rightly called hyperbolic)  case Iql ¢ 1 gives a hyperbola (Fig. 2(a)). Remark 

that the asymptotes are given by (x and y large) y ~ (C/A)l/Zq±l/2x: 

q is the ratio o f  the slopes o f  the asympto tes  o f  the conic. 

If  F = 0, one finds x - x~ = X x / A q  s, y - Yc~ = Yx/'-Cq s±1/2, the "old" q-lattice (Fig. 2(b)). 
(2) The conic (5) has no center, B e - A C  = 0. Then, 

x = x ( s )  = ~ 2 A ( D x / f f  + E x / A )  

y =  y ( s )  = ~ 2 C ( D v / ~  + E x / A )  ( s -  ½)2 , 

found directly to satisfy (5) in the parabolic case B 2 = AC,  or by taking the limit of  (6) when q --~ 1: 
let q = exp(~), then, q~ = 1 + se + s2c2/2 + .  • -, B = _ ~ ( q ] / 2  + q-l~2)~ 2 = _ v / A C ( 1  + ~2/8 + . . . ) ,  
etc. (Fig. 2(c)). 
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Fig. 2. Other kinds of  lattices. 

If  Dv/C + Ev/A = 0, one redefines s through the translation 

to get 

v / (DZ_AF)C 
Sol d = lim + Snew + 

~,~+~,~-~o 2~--D---,~ + ~--~) J 

2~/D 2 - AF E v/D2 - AF(s 4- 2), 
X = - v  -A-C- s, Y - v ~  2 A 

the simplest lattice (this one is uniform, Fig. 2(d)). 
These points form one of  the special nonuniform lattices (snul) I-VI of  [24, 25]. If  the quadratic 

equation (5) describes an ellipse, as in Fig. 1, this lattice fills densely an interval, unless it is finite 
(periodic: qN = 1). 

3. Semi-classical orthogonal polynomials on snuls 

Semi-classical snul orthogonal polynomials may be defined through a ~-difference equation of 
the form 

W ( x ) ( ~ S ) ( x )  = 2 V ( x ) ( ~ S ) ( x )  + U ( x )  (8) 
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for the Stieltjes function 

/ *  O ~  

= L (x - t) -1 d/~(t) = ~ Izk/x k+' S(x) 
upp. # 0 

(Stieltjes transform of the orthogonality measure d/t) where W, V and U are polynomials and ~ /  
is the arithmetic mean operator: 

(dg f ) ( x )  = (f(go,(x)) + f(rpz(x)))/2. 

If/~ has a jump (pole of  S) at some y., it must have jumps at the other points Yn+~, Y.+2, .. .  
of the corresponding lattice. 

It is possible to recover a difference relation extending (3) to the present difference operators, 
as attempted and min of  meer (less or more) achieved in [21], see here an attempt to achieve the 
converse: 

Theorem 1. A sequence of  orthogonal polynomials {p.} is Y-semi-classical, i.e., its Stieltjes func- 
tion satisfies an equation (8) with polynomials W, V, and U, i f  each p.  satisfies a linear first-order 
difference relation connectin9 Pn with P.-I  

Wn(x )( ~ pn )(X ) = On(X )( J~ pn )(X ) -- an6)n(X )( J//{ Pn--I )(X ), (9) 

where W., f2., and 6). are polynomials o f  f ixed (independent o f  n) degrees. 

Proofi Indeed, let y~ and Y2 be the ordinates corresponding to x = Xl, then (9) is a linear relation 
involving P.(Yl),  P.(Y2), Pn- l (Y l ) ,  and P.-1(Y2): 

Anp.(yl  ) + B.p.(y2)  + C.pn-l(Yl ) + Dnp. - l (y : )  = 0, (10) 

where A., B., C., and D n are rational functions of  fixed degrees of  x = xl and Yl (y2 may be 
replaced by -2 (Bx  + D)/A - Yl in A. = -W.(x) / (y2  - Yl) - f2.(x)/2 etc.). We come to n + 1: 

A.+~pn+I(yl) + B.+1p~+j(y2) + Cn+lp.(yl) + D.+1p.(y2) = O, 

and use the recurrence relation (2): 

[(y~ - b.)A.+l + a.+lC.+~]p.(yl) + [(Y2 -- bn)B.+~ + a.+lD.+~]p~(y2) 

--a.A.+lp~-l(yl)  -- a.B.+lp.- l(y2) = 0, (1 1) 

which is also a linear relation involving P.(Yl),  Pn(Y2), P.-I(Yl) ,  and Pn-l(Y2)! 
(i) Either (10) and (11 ) are dependent for each n, then A. = K. [ (Yl -  bn )An+l-}-an+l Cn+l] and Cn = 

KnanA.+ l i.e., the recurrence relation An Kn[(Yl - b.)A,,+l 2 , = --an+lK,+lAn+2] which looks somewhat 
like (2): actually, Kl . . .K._lal  . . .a ._ iA.  would be a solution of  (2), and this is incompatible with 
the requirement that A. keeps a finite degree. 

(ii) Or (10) and (11) are independent for some n. Then, it is possible to extract Pn(Y~) and 
P.(Y2) in terms of  Pn-1(Yl )  and Pn-I(Y2): 

p . ( y , )  = X . p . - l ( y l )  + r . p . _ l ( y z ) ,  p.(y2) = Z.pn_,(yl)  + U.p._l(y2), 
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where X., Yn. Z., and U. are again rational functions o f  fixed degrees. We get the relation for n + 1 
using (2): 

P n + l ( Y 2 ) J  - -  an+l 0 Y2 - b .  P.(Y2)]  a n + l  P n - I ( Y 2 ) J  

an+ i 0 Y2 - bn an+ 1 Z ,  U. J P.(Y2)J ' 

showing that we can construct similar relations for n + 1, n + 2, etc. as far as x is not a zero of  the 
determinants 6. = X.U.  - Zn Yn, etc.: 

rx,,+, l r,,:<:y,:, ] 
Pn+l(Yz)J = [Zn+, u.+, j L p . ( y 2 ) j  ' 

whence the recurrence relations for the X ' s ,  Y's, Z 's .  and U's :  

an+lYn+l  = Y l  - bn - an U./(~n , an+l U .+l  = Y2 - bn - a .X . /6 .  , 

a.+lY.+l = a.Y. l f i .  , an+lZn+ 1 = anZnl~) n , 

a2.+,6.+, = (y ,  - b . ) (y2  - b . )  - a . [ (y ,  - b.)Xn + (Y2 - D.)U.]I6.  + a]t6. . 

Let 6. = O. /O._1  (yes, this is the On which will appear in (9)),  then, with O . _ l X .  = T. and 
O n - l  Un = I~.n, 

an+l Tn+l  ----- ( Y l  - -  b . ) O .  - anZn , 

an+lZn+l = (Y2 - -  b . ) O .  - a .  Tn , 

a2+lOn+l  = ( Y i  - -  b n ) ( Y 2  - bn)O)n - a.[ (y ,  - b . )  T.  + (Y2 - b . ) z . ]  + a2.0 . - ,  • 

Remark that a . O . _  ~ I1. and a . O . _  1Z. are independent o f  n. 
These recurrence relations for T., Z. and O.  are exactly the recurrence relations satisfied by 

products  of  solutions of  (2) at yi and Y2! Indeed, if  a.+l~.+l = (Yi - b . )~ .  - an~.- l ,  and a.+lr/.+l = 
(Y2 - b . )q .  - a.  q._ 1, one finds for [~n r/._ l, ~ . -  I q., ~ntl,,] exactly the recurrence for [ T. ,  Z., On]. (Actu- 
ally, this is a recurrence o f  f our th  order, one should work with vectors [~. q._ 1, ~.-i t / . ,  ~. r/., ~._ it/._ l] 
and [T. , )~n,O. ,On_~].)  

NOW, any solution o f  (2) is a combination of  p . ( x )  and q . ( x )  defined by 

q . ( x )  = [ p . ( t ) ( x  - t) -I  d#( t )  = 1/(Tn x " + l )  + ' ' .  , 
.Is upp..u 

a useful well-known identity is 

P . q . - i  - p . - l q .  = 7n/T.-i = l/an, 

so, ~. is some combination o f  P. (Y l  ) and q,,(Yl ), rl. is some combination o f  P.(Y2) and q.(Y2), and 

T. = ~P . (Y l  )Pn-i  (Y2) + f lP . (Y ,  )qn-~ (Y2) + Yq.(Yl )P.- l (Y2 ) + 6q . (y l  )q._ l(Y2).  

Zn = o~Pn-l(Yl )Pn(Y2) ÷ f lPn- i (Y i  )qn(Y2) ÷ 7qn-l(Yl  )Pn(Y2) ÷ (~qn-i(Yl)qn(Y2) , 

O.  = o~p.(yl )P.(Y2) + f lP . (Y ,  )q . (Y2)  + Yq.(Yi )P.(Y2 ) + 3q . ( y ,  )qn(Y2) . 
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As we want the degrees of  the left sides to remain bounded when n increases, we must have ~ = 0. 
Let us show that 6 = 0 as well: from P . ( Y l ) = X n p . - ~ ( y l ) +  Y.Pn-l(Y2), 

O . - l p n ( y l ) -  O . - lX .p~- l ( y l )  
= o . _ , p . ( y ~ )  - r.p._~(yl) 
: [fiP.-l(Yl)q.-l(Y2) + 7q.-I(Yl)P.-~(Y2) + 6q.- l(Yl)q.-I(Y2)]p.(Yl)  

--[fiP.(Y~)q.-,(Y2) + 7q.(Y,)P. ,(Y2) + 6q.(Yl)q.-~(y2)]p.-~(yl) 

: 7P.-1(Y2)[q.-,(Yl )P.(Yl ) -- q.(Yl )P.-I(Y,  )] 

+6q.-l(y2 )[q.-l(yl ) P.(Yl ) -- q.(Yl ) P.-I(Yl  )] 
: [TP.-l(Y2) + 6q._l(y2)]/a. = 6) .-1Y.P.-I(Y2),  

o r  

7Pn-l(Y2) ÷ 6qn-l(Y2) = anOn-I Y. Pn-I(Y2) = constant P.-I(Y2), 

possible only if  the constant (with respect to n) a.On-1Y. = 7, and 6 = 0. 
One finds similarly a.O._1Z. = t~. 
Finally, at n = 0, O0 = [3po(yl )q0(Y2) ÷ 7qo(Yl )P0(Y2) = [flS(y2) + 7S(Yl)]/#o, and this relation 

between S(y~) and S(y2) is exactly (8)! One has U = O0, W = ( Y 2 -  Y l ) ( /~ -  7)/(2#0), and 
V = -(/~ + 7)/(2#0). [~ 

4. S e m i - c l a s s i c a l  m e a s u r e s  on snuls 

Let us consider meromorphic Stieltjes functions S, corresponding therefore to discrete (atomic [8]) 
measures. From (8), or from the equivalent form ~S(y2)+ 7 S ( y l ) =  #0U, we have a recurrence 

fl(xk, Yk)S(Yk+1 ) + 7(xk, Yk)S(Yk) = #0 U(xk ), 

showing that poles occur at some available lattice . . . , yk ,  yk+l, . . ,  with residues (masses of  the 
measure) satisfying 

fl(xk, Yk)#(Yk+, ) + 7(xk, Yk)#(Yk) = 0, (12) 

a Pearson-like equation like this is discussed in [29, 30]. 
The masses will usually not make an infinite convergent sequence, so that they must remain in 

finite number i f  one wants a discrete measure. This is possible only if  some value of/~(x, y )  on a 
lattice, say /~(x0, Y0) vanishes, so that we may start the nonzero masses at Yl (and put #(Y0) = 0), 
and also i f  some value of  7(x,y)  vanishes on the same lattice, say 7(XN, YN) = O, SO that we stop 
the nonzero masses at YN (and put #(YN+I ) = 0), see [29, the "uninteresting case", p. 655]. 

For instance, i f  V = 0 in (8), we simply have equal masses: fl(x,y) = - 7 ( x , y )  = W(x), and 
W must vanish at two points of  the x-lattice at least. I f  this does not happen, the measure is 
approximated by a discrete measure with many small equal masses at more and more lattice points, 
and tends towards the limit distribution of  these lattice points. Take for instance (6) with Xc = 
Yc = 0, ~x/A = (x /C  = ½, and q = exp(i0), then, x~ = cos kO, Yk = c o s ( k -  1 ~)0, the lattice VI 
of  [25], distributed ( i f  O/n is not rational) like d#(x) : (1 -x2) - l /2dx :  we recover the Chebyshev 
polynomials! This is not surprising, as these polynomials have interesting properties with respect to 
the @-operator [6, 12, 12A]. 
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Table 1 

or r/ e = {0 / (2~)  - L¢O/(2=)J ~ = LqOl(2rc)j + 1 - ~0/(2=) 

1 

2 
3 
5 
8 

13 
21 
34 
55 

0 .6180339887498948481 
0 .2360679774997896963 

0 .0901699437494742407 

0 .0344418537486330259 

0 .0131556174964248372 

0 .3819660112501051518 

0 .1458980337503154555 

0 .0557280900008412147 

0 .0212862362522081887 

0 .0081306187557833515 

5. Dense discrete measures and combinations of  Chebyshev polynomials 

We keep xk = cos k0, yk = c o s ( k -  ½)0, the lattice VI o f  [25] with 0/re not rational, and 
try to find a discrete measure with jumps at each o f  these Yk. "Strange" supports, er, carri- 
ers, have been well worked [11 ,20 ,23 ,31 ,32 ,33 ] ,  there is a reference to Stieltjes h imself  in 
[18, p. 202]. 

As semi-classical orthogonal polynomials do not seem to be related to dense discrete measures, 
one tries combinations o f  the simplest such items, i.e., Chebyshev polynomials: 

i ) 2  1 Theorem 2. Let the measure p be discrete with jumps I~(yk) = 1/(k - ~ at Yk = cos((k - $)0), 
k = . . . , - 2 , - 1 , 0 ,  1 ,2 , . . . ,  with 0/~ irrational. Then, the orthonormal polynomials are 

P 0  = 7~-1, 

(~ '2n-I  q - 1 2 n - l ) T n  (--1)[~2"-'O/(2*OJt2n_lTIn_¢2,,_,l + ( - - l~Lq="- ' ° / (2~)Jc  T - ., 2n--I In-q2,,-iI 
n~>l, 

P" = V/2TC2g2nlZn(eZn-I ~- lZn-l ) ' 

(13) 

where ~j is the value o f  p which minimizes p O / ( 2 ~ ) -  [pO/(2rr)J on p = 1,2 . . . .  , j ,  tlj is the value 
o f  p which minimizes LpO/(2n)J + 1 - pO/(2r 0 on p = 1,2,... , j  (where LxJ is the largest integer 
smaller than or equal to x), cj = ~j0/(2r~) - [~j.0/(Zr0J, zj = [,/j0/(Zrt)J + 1 - t/j0/(2~). 

Remark that cj and lj are positive and decreasing with j .  These ~'s and t/'s are known as denomi- 
nators o f  remarkable rational approximants to the irrational number O/(2n) ("Nebenn/iherungsbriiche" 
in [26, §16]) and are linked to the continued fraction expansion of  0/(2n).  Each new ~ or t/ is the 
sum o f  the two last ones: i f E j  > t j, ~ = ~E = ~ j + r / j  and e~ = c j - -  b, zE = b; i f ~ j  < ~j, 
f = r/e = ~j + r/j and tz = t j -  cj, ¢t = ¢j. For instance, with the golden ratio 0/(2rt) = (51/2+ 1 )/2 = 
1 .6180339887498948481. . . ,  one encounters the Fibonacci numbers (Table 1). 

With 0/(2re) = x/2, one finds new values of  ~ at 1, 3, 5, 17, 2 9 , . . . ,  new t/ values at 1, 2, 7, 
12, 41 . . . . .  
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Remark also that the present discrete measure is definitely not semi-classical, as #(Yk+l)//~(Yk) = 
((k - ½)/(k + ½))2 is not a rational function of  xk = cosk0 and Yk = cos((k - ½)0), as it should 
have been according to (12). 

P roof  of  Theorem 2. In order to show that a form like Pn = AnTn +BnTn-¢2,,_, + CnT.-,2,,_, is valid 
(us ing  Tip I = Tp), one must show that the scalar product 

(p,,Tm) = ~ #(Yk)Pn(Yk)Tm(yk) 
k=-~ 

= ~ g(Yk) [A.(L+m(y~) + L-m(Y~)) + Bn(L+m-~2,,_,(Yk) + T~-m-~2,,_,(Y~)) 
k = - - ~  

+G(r~+m-.2,,_, (yk) + T.-m-.2,,_,(Yk))] 

vanishes for m = 0. 1 . . . . . 2 n -  1. and has the value 2"-1/7n = 1~An when m = 2n. 
Let 

O(3 

Zp = Z p(yk)Tp(yk) 

f ~  

= ( k  - ½ ) - 2 c o s ( p ( k  - ½)0) 
k = - - o ~  

= 8[cos(½P0) + cos(3pO)/9 + cos(~pO)/25 + . . . ]  

1 _ _  
= (IpO/(2 )l + (14') 

_ _  l - -  = -2n2(  - 1)[P°/~2~)l ([pO/(2n)] ~ pO/(2n)), (14") 

from elementary Fourier series, where [x~ is the smallest integer larger than or equal to x. The 
form of  (14")  will sometimes be more convenient than (14'). The importance o f  using Chebyshev 
moments of  measures with discrete masses has been shown by Pr6vost [27, 28], remark in particular 
that zp does not tend to zero when p ~ oc, as it should with absolutely continuous measures. So, 
we have (Pn, Tin) :- (AnZn+m q- Bnzn+m-~z,,_, q- CnTn+m-q2,,_l ~- Anzn-m q- Bnzn-m-~2,,_t q- Cnzn-m-n:,,_, )/2. 
Remark that Zo = 7z 2, so that po : (Zo) -J/2 = rc -~. For n ~> 1, let us show that it is possible to find 
An, Bn, and C, such that A,ZN-bBnZN-¢:,,_, "b CnZN-,I:,,_, : 0 for N = 1 , 2 , . . . , 2 n -  1: 

Let p = 0 / ( 2 7 0  . As 0 < ¢ 2 , - 1 P -  L ~ 2 n - l p J ~ N p -  LNpJ, ( N - ~ 2 , _ ~ ) p - 1  < [NpJ-~2n_~p < 
[NpJ - L¢2n-~pJ <~(N - ~2n-1)p, one has [NpJ - L¢2n-lpJ ---- L( N - -  ¢2n-])PJ. AS [tl2n_~pJ + 1 - 
~12n_~p<~NpJ + 1 - N p  < 1, (N-qz ._ , )p<~ LNpJ - Lt/2._lpJ < -Lt/2n_~pJ +Np < 1 + ( N -  t/zn_~)p, 
one has [NpJ - L~=.-lPJ = [(N - t/2n-l)pl. 

In summary: 

L N p J  - L~2,,-lpJ = L ( N -  ¢2n- l )P] ,  [ N p J  - [r/2,,_,pJ ---- [ ( N -  r/2n-,)p], (15) 

for N = 1,2 . . . .  ,2n - 1. 
So, 

1 
T'N-~2 , ,_ ,  = 2~2(-1) LNpj-L¢z'-'p] (LNpJ - i ~ . - l P J  + 2 - N O  H-~2n-lP) 

= ( -  1 )L¢~,,-,pJ 170 + 2~2( - 1 ) LNpj - L¢=,,-,pJ e2n-1, 
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~IN__.2,,_I I~ I2~-~2(I1)LNp~IL~2n-lPJ (LNp j I L~2/l_l~oj I 1 - N ~ o  +~2/lI1~0) 

I I  - - ( - -  I )l q2.-,PJ ~'U + 2~2(  - 1 )[Xpj- L~2,,_,pj t2._ 1, 

An'ON + Bn'CN-~,,_, + C/l'rN_#2 .... = [An + ( -1 ) [¢z" - 'PJBn - ( - 1  )[,2,,-,pj Cn]z N 

+27r2( - 1 )[NpJ [ ( _  1 )L¢:"-'PJc2/I_IB . + ( -  1 ) LI/2'- Ipj t2/l_ I C/l] ,  

which  vanishes  indeed for  N = n 4 - m  = 1 , 2 , . . . , 2 n -  1 i f  Bn = -g/l(-1)L¢:"-'PJt2/l_1, C/l = 
Kn(-1)l"2"- 'PJc2/l_l ,  and A n = gn(~2n_ 1 + /2n-l ) .  

We  now have  to look at ( p . .  T/l) = (Anrz.+Bnz2/l_~:,,_~ +C/l'rzn_q2,,_, +A#r0 +B.T¢:,,_, + C/lr.2,,_ , ) /2 = 
1/A/l. 

(1 )  I f  ~2. = ¢2.-1 < 2n and r/z. = q2.-1 < 2n. nothing changes  in the evaluat ion o f  An'ON + 
Bn'~N-~2,, , + C/l'CX-q2,, , when  we  replace  N by 2n. so A/lrz. + B.r2.-¢2,,_, + C.r2._.2,,_, = 0. and we 
have on ly  to look at A#ro +B.z¢~,,_, + C.%.,,_,. One has r0 = rc 2, z¢~,,_, = 2~z2(-1)[  ~2', ,PJ(½ - e2/l-I). 

z.2,,_ , = -2rc2(  - 1 )L.:,, ,pJ (½ _ t2.-i  ). y ie ld ing A/lzo +B.%.,, , + C.%~,, . = 4KnTzZc2n_112n--l, which  must  
be equal  to 2/A.  = 2/(K/l(e2._l + t2/l-l)), whence  K.  = [(e2.-1 + lZn-1)/(27"C2CZn-l12/l-l)] 1/2, and this 
gives (13) .  as we still have  c2/l = e2.-1 and 12. = t2.- l .  

(2)  ~2. = 2n or r/2. = 2n. which happens  only  i f  ~2.-1 + q2/l-I -- 2n. Then.  A.r0 + B.r¢~,,_, + 

C/l'cqz,,_, + A/l'c2/l + Bn'CZn-~2,, ~ + Cn'c2,-,2,,_, = A.(Zo + "CZn ) + (Bn + Cn)('c¢:,, t + "c~2 .... ). 
An interest ing consequence  o f  (15)  is that L~z.- lp/  and L~/z/l_lpJ have n o w  the same evenness:  

i f  we subtract  the two equat ions  o f  (15)  with N = n = (~2.-1 + r/2._1)/2, one finds -L ~zn - lp J  + 

L/Izn-lpJ = l ( " 2 n - 1 -  ~Zn--l)P/ZJ -- [ (¢Z . - -1 -  rlZn-,)P/2q, which  is an even  integer,  as [xJ = - F - x ]  
([15.  §1.2.4]).  

So, let o- = (-1)L~2,, ,pJ = (-1)L.~,, ,p3. One has B/l + C. = aK. (e2 ._ l  - t2 . - l ) ,  z~,,_, + z~,,_, = 

2zza(½ - CZn-1 ) -- 2rtza(½ -- t2/l-1 ) = 2rcza(12.-i -- C2n-, ). 

(2a)  I f  ~2n = 2n. ez. ---- eZn_l -- 12n-l. 2rip -- LZnpJ = ~2 . - , p  - [~2/l-lpJ - ([r/z/l-lpJ + 1 - 
q2n- lP ) ,  SO, LZnpJ = L~z , - lpJ  + Lr/2/l-lpJ - 1. z2. = 2~z ( -1 ) [2npJ (½ -e2n)-----27"c2(21- - ~ Z n ) ,  
A/l(Zo + z2.) + (B.  + C.)(r¢:,,_, + z.~,,_, ) = 4rcZK.e2. tZn_l, whence  (13) .  as one still has t2/l = t2._1. 

(2b)  I f  q2. = 2n. tZn = t2/l-1 --C2.-1. LZnpJ + 1 - -2np  = Lqz.-lpJ + 1 - q z . - l p  - ( ¢ 2 . - 1 p  - L~z.-lpJ ). 
so [2npJ = Lq2.-,pJ + [~2 . - ,pJ .  z2. = 2rc2(-1)L2"PJ(-½ + 12.) = -2rc2(½ - ,z.).  An(zO + r2/l) + (B. + 
Cn)(V~:,,_ L + zq:,,_t)--47rZKnlz/le2/l_l, whence  (13) .  as one still has e2. --CZn-l- [] 

A numer ica l  check  has been  pe r fo rmed  with 

p = 0/(2re) = 1 1/2 5(5 + 1) = 1 . 6 1 8 0 3 3 9 8 8 7 4 9 8 9 4 8 4 8 1 . . . .  

the recur rence  coefficients  have been  compu ted  by  Gautsch i ' s  s z i  (Stielt jes.  o f  course!  ) subrout ine [9]. 
For  each n. one compares  the compu ted  rc7.2 " = 1/(2"al  . . .  a . )  with the formula  predic ted  f rom 

(13) .  i.e.. ((E'Zn_l + 12n--1 ) /(ge2n tZn))1/2. The  agreement  is sat isfactory,  taking into account  that all the 
series involving / t (yk)  = 1 / ( k -  ½)2 have been  t runcated to 2 0 0 0 0  terms,  so that relat ive errors o f  
about  10 -3 m a y  be expec ted  (see Table  2). 

i and b.  = 0. On this example ,  l im i n f / l ~  a/l > We  have longer  and longer  intervals where  a/l = 5 
0. a l though the vanishing o f  this l im inf  could  have been  expec ted  f rom pure  discrete (a tomic)  mea-  
sures [8], but  o ther  results have been  publ i shed  about  s ingular  measures  [ 7 . 1 1 . 1 3 . 1 4 .  1 8 . 2 0 . 2 3 . 3 1 .  
32 .33] .  
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Table 2 

1 
an bn E2n-- 1 12n-- 1 E2n 12n 

2hal • • • an 
/ E2n--1 mc 12n--I 

0 
1 0.4247 

2 0.5 

3 0.3931 

4 0.3090 

5 0.6360 

6 0.5 

7 0.3931 

8 0.5 

9 0.5 

10 0.5 

11 0.3931 

12 0.5 

17 0.3090 

18 0.6360 

19 0.5 

27 0.5 

28 0.3930 

29 0.5 

44 0.5 

45 0.3930 

46 0.5 

71 0.5 

72 0.3089 

73 0.6361 

74 0.5 

0.2361 
-0.5451 

0.6180 

-0.3090 

0 

0 

-0.3090 

0.3090 

0 

0 

0.3090 

-0.3090 

0 

0 

0 

0 

-0.3091 

0.3091 

0 

0.3091 

-0.3091 

0 

0 

0 

0 

0 

0.6180 0.3820 0.2361 0.3820 1.177 1.177 

0.2361 0.1459 0.2361 0.1459 1.177 1.177 

0.0902 0.1459 0.0902 0.1459 1.498 1.498 

0.0902 0.1459 0.0902 0.0557 2.423 2.423 

0.0902 0.0557 0.0902 0.0557 1.905 1.905 

0.0902 0.0557 0.0902 0.0557 1.905 1.905 

0.0344 0.0557 0.0344 0.0557 2.423 2.423 

0.0344 0.0557 0.0344 0.0557 2.424 2.423 

0.0344 0.0557 0.0344 0.0557 2.423 2.423 

0.0344 0.0557 0.0344 0.0557 2.423 2.423 

0.0344 0.0213 0.0344 0.0213 3.083 3.082 

0.0344 0.0213 0.0344 0.0213 3.083 3.082 

0.0344 0.0213 0.0132 0.0213 4.989 4.988 

0.0132 0.0213 0.0132 0.0213 3.922 3.921 

0.0132 0.0213 0.0132 0.0213 3.922 3.921 

0.0132 0.0213 0.0132 0.0213 3.922 3.921 

0.0132 0.0081 0.0132 0.0081 4.989 4.988 

0.0132 0.0081 0.0132 0.0081 4.989 4.988 

0.0132 0.0081 0.0132 0.0081 4.989 4.988 

0.0050 0.0081 0.0050 0.0081 6.348 6.344 

0.0050 0.0081 0.0050 0.0081 6.348 6.344 

0.0050 0.0081 0.0050 0.0081 6.348 6.344 

0.0050 0.0081 0.0050 0.0031 10.277 10.265 

0.0050 0.0031 0.0050 0.0031 8.078 8.070 

0.0050 0.0031 0.0050 0.0031 8.078 8.070 
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