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Abstract

In this paper, we present a simple and easily applicable approach to construct some third-order modifications of Newton’s method
for solving nonlinear equations. It is shown by way of illustration that existing third-order methods can be employed to construct
new third-order iterative methods. The proposed approach is applied to the classical Chebyshev–Halley methods to derive their
second-derivative-free variants. Numerical examples are given to support that the methods thus obtained can compete with known
third-order methods.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve nonlinear
equations, iterative methods such as Newton’s method are usually used. Throughout this paper we consider iterative
methods to find a simple root �, i.e., f (�) = 0 and f ′(�) �= 0, of a nonlinear equation f (x) = 0 that uses f and f ′ but
not the higher derivatives of f.

Newton’s method for the calculation of � is probably the most widely used iterative methods defined by

xn+1 = xn − f (xn)

f ′(xn)
. (1)

It is well known [14] that this method is quadratically convergent.
In recent years, many modifications of the Newton method that do not require the computation of second derivatives

have been developed and analyzed, see [1–4,7–10,12–15] and references therein.
One classical third-order modification of Newton’s method is given [12] by

xn+1 = xn − f (xn) + f (yn)

f ′(xn)
, (2)
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where

yn = xn − f (xn)

f ′(xn)
, (3)

this notation will be used throughout.
Another third-order variant of Newton’s method appeared in [15] where rectangular and trapezoidal approximations

to the integral in Newton’s theorem

f (x) = f (xn) +
∫ x

xn

f ′(t) dt (4)

were considered to rederive Newton’s method and to obtain the cubically convergent method

xn+1 = xn − 2f (xn)

f ′(xn) + f ′(yn)
, (5)

respectively.
Frontini and Sormani [4] considered the midpoint rule for the integral of (4) to obtain the third-order method

xn+1 = xn − f (xn)

f ′((xn + yn)/2)
. (6)

In [8], Homeier derived the following cubically convergent iteration scheme:

xn+1 = xn − f (xn)

2

(
1

f ′(xn)
+ 1

f ′(yn)

)
(7)

by applying Newton’s theorem to the inverse function x = f (y) instead of y = f (x).
There exists another third-order method often called Newton–Steffensen method [13] given by

xn+1 = xn − f (xn)
2

f ′(xn)[f (xn) − f (yn)] . (8)

More recently, new third-order methods have been proposed and analyzed in [3] by applying a modified finite
difference approximation to Osada’s result [11], two of which are given by

xn+1 = xn − 3

2

f (xn)

f ′(xn)
+ 1

2

f (xn)f
′(yn)

f ′(xn)
2

, (9)

and

xn+1 = xn − f (xn)

f ′(xn)
− 1

2

f ′(xn) − f ′(yn)

f (xn) + f ′(xn)

f (xn)

f ′(xn)
, (10)

respectively.
It has been shown that the above-mentioned methods are comparable and can be competitive to Newton’s method in

the performance and efficiency. Now that many efficient third-order methods have appeared in open literature, it would
be desirable to have a simple approach to make full use of them in devising new modifications of Newton’s method,
this is the main purpose of this paper. By way of illustration, we show that any pair of existing third-order iteration
formulas may be used to construct new third-order methods. The methods thus obtained are proven to be third-order
convergent, and several numerical examples are given to support that they can be competitive in performance with
other known third-order methods.

2. Development of methods and convergence analysis

For the sake of simplicity and illustration, let us consider the third-order methods defined by (7) and (8), respec-
tively. To derive the methods, we approximately equate the correcting terms of both methods to obtain the following
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approximate expression:

f (xn)
2

f ′(xn)[f (xn) − f (yn)] ≈ f (xn)

2

(
1

f ′(xn)
+ 1

f ′(yn)

)
, (11)

this gives a new approximation

f ′(yn) ≈ f ′(xn)[f (xn) − f (yn)]
f (xn) + f (yn)

. (12)

We then apply the approximation (12) to any other iterative method depending on f ′(yn), which will be shown by way
of illustration with some known third-order methods.

Using (12) in (5), we obtain the known third-order method given in (2)

xn+1 = xn − f (xn) + f (yn)

f ′(xn)
. (13)

Using (12) in (9) and (10), we obtain new modifications of Newton’s method

xn+1 = xn − f (xn) + 2f (yn)

f (xn) + f (yn)

f (xn)

f ′(xn)
(14)

and

xn+1 = xn − f (xn)

f ′(xn)
− f (xn)f (yn)

[f (xn) + f (yn)][f (xn) + f ′(xn)] , (15)

respectively.
We can substitute the new approximation (12) in other third-order methods depending on f ′(yn) to find more

modifications of Newton’s method.
It has been shown that the Maple package can be successfully employed to rederive error equations of iterative

methods, that is, to find their order of convergence (see [1] for details), the methods (14) and (15) in this case are found
to be third-order as shown in the following theorem.

Theorem 2.1. Let � ∈ I be a simple zero of a sufficiently differentiable function f : I → R for an open interval I. If x0
is sufficiently close to �, then the methods defined by (14) and (15) have third-order convergence and satisfy the error
equations

en+1 = 3c2
2e

3
n + O(e4

n), (16)

and

en+1 = c2(1 + 3c2)e
3
n + O(e4

n), (17)

respectively, where en = xn − � and ck = f (k)(�)/k!f ′(�).

Repeating the above process with other pairs of third-order methods, we can find other approximations to f ′(yn).
For example, if we approximately equate the correcting terms of the methods defined by (5) and (7), we obtain

2f (xn)

[f ′(xn) + f ′(yn)] ≈ f (xn)

2

(
1

f ′(xn)
+ 1

f ′(yn)

)
, (18)

this gives another new approximation to f ′(yn)

f ′(yn) ≈ f ′(xn)
2

2f ′(xn) − f ′(yn)
. (19)



84 C. Chun / Journal of Computational and Applied Mathematics 219 (2008) 81–89

Using (19) in (9) and (10), we obtain new modifications of Newton’s method

xn+1 = xn − 3

2

f (xn)

f ′(xn)
+ 1

2

f (xn)

2f ′(xn) − f ′(yn)
(20)

and

xn+1 = xn − f (xn)

f ′(xn)
− 1

2

f (xn)[f ′(xn) − f ′(yn)]
[f (xn) + f ′(xn)][2f ′(xn) − f ′(yn)] , (21)

respectively.
By the help of the Maple package, it can also be shown that the methods (20) and (21) are both third-order convergent.

Theorem 2.2. Let � ∈ I be a simple zero of a sufficiently differentiable function f : I → R for an open interval I. If
x0 is sufficiently close to �, then the methods defined by (20) and (21) are third-order convergent and satisfy the error
equations

en+1 = [4c2
2 + 1

2c3]e3
n + O(e4

n), (22)

and

en+1 = [c2 + 4c2
2 + 1

2c3]e3
n + O(e4

n), (23)

respectively, where en = xn − � and ck = f (k)(�)/k!f ′(�).

The classical Chebyshev–Halley methods [5] which improve Newton’s method are given by

xn+1 = xn −
(

1 + 1

2

Lf (xn)

1 − �Lf (xn)

)
f (xn)

f ′(xn)
, (24)

where

Lf (xn) = f ′′(xn)f (xn)

f ′(xn)
2

. (25)

This family is known to converge cubically, and includes, as particular cases, the classical Chebyshev’s method (�=0),
Halley’s method (�= 1

2 ) and super-Halley method (�=1) (see [5–7,14] for more details). It is observed that the methods
depend on the second derivatives in computing process, this making its practical utility restricted rigorously, so that the
methods that do not require the computation of second derivatives would be desired. In what follows the idea presented
in the above is applied to derive second-derivative-free variants of Chebyshev–Halley methods.

To derive a second-derivative-free approximation to f ′′(xn) in (24), let us consider any third-order method requiring
f ′′(xn), for example, the Cauchy method [14] defined by

xn+1 = xn − 2

1 + √
1 − 2Lf (xn)

f (xn)

f ′(xn)
, (26)

where Lf (xn) is defined by (25), and any second-derivative-free third-order method, for example, the method of
Weerakoon–Fernando defined by (5).

Approximately equating the correcting terms of the methods (5) and (26), we have

1 + √
1 − 2Lf (xn)

2
f ′(xn) ≈ f ′(xn) + f ′(yn)

2
. (27)

Using (27) we can approximate after simplifying

f ′′(xn) ≈ f ′(xn)
2 − f ′(yn)

2

2f (xn)
. (28)
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Using (28) in (24), we obtain a new one-parameter family of methods free from second derivative

xn+1 = xn − 1

2
· (5 − 2�)f ′(xn)

2 + (2� − 1)f ′(yn)
2

(2 − �)f ′(xn)
2 + �f ′(yn)

2
· f (xn)

f ′(xn)
. (29)

For the methods defined by (29), we have

Theorem 2.3. Let � ∈ I be a simple zero of a sufficiently differentiable function f : I → R for an open interval I. If
x0 is sufficiently close to �, then the methods defined by (29) have third-order convergence for any � ∈ R, and satisfy
the error equation

en+1 = [ 1
2c3 + (3 − 2�)c2

2]e3
n + O(e4

n), (30)

where en = xn − � and ck = f (k)(�)/k!f ′(�).

Proof. Let � be a simple zero of f. Consider the iteration function F defined by

F(x) = x − 1

2
· (5 − 2�)f ′(x)2 + (2� − 1)f ′(y(x))2

(2 − �)f ′(x)2 + �f ′(y(x))2
· f (x)

f ′(x)
, (31)

where y(x) = x − f (x)/f ′(x).
In view of an elementary, tedious evaluation of derivatives of F, we employ the symbolic computation of the Maple

package to compute the Taylor expansion of F(xn) around x = � (see [1] for details). We find after simplifying that

xn+1 = F(xn) = � + [ 1
2c3 + (3 − 2�)c2

2]e3
n + O(e4

n), (32)

where en = xn − � and ck = f (k)(�)/k!f ′(�). Thus,

en+1 = [ 1
2c3 + (3 − 2�)c2

2]e3
n + O(e4

n), (33)

which indicates that the order of convergence of the methods defined by (29) is at least 3. This completes the
proof. �

The family (29) includes, as particular cases, the following ones:
For � = 0, we obtain a new third-order variant of Chebyshev’s method

xn+1 = xn − 1

4

[
5 − f ′(yn)

2

f ′(xn)
2

]
· f (xn)

f ′(xn)
. (34)

For � = 1
2 , we obtain a new third-order variant of Halley’s method

xn+1 = xn − 4f ′(xn)f (xn)

3f ′(xn)
2 + f ′(yn)

2
. (35)

For � = 1, we obtain a new third-order variant of super-Halley’s method

xn+1 = xn − 1

2
· 3f ′(xn)

2 + f ′(yn)
2

f ′(xn)
2 + f ′(yn)

2
· f (xn)

f ′(xn)
. (36)

For � = 3
2 , we obtain a new third-order method

xn+1 = xn − 2[f ′(xn)
2 + f ′(yn)

2]
f ′(xn)

2 + 3f ′(yn)
2

· f (xn)

f ′(xn)
. (37)
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For � = 3, we obtain a new third-order method

xn+1 = xn − 1

4
·
[

3 + f ′(xn)
2

f ′(yn)
2

]
· f (xn)

f ′(xn)
. (38)

In a similar fashion, the proposed approach can be continuously applied to produce various types of approximations
to the other terms of iterative methods that we have considered such as f (yn), f ′( 1

2 (xn + yn)) and f ′′(xn), which can
in turn be used to derive some third-order iterative methods. It is observed that the midpoint method (6) can be obtained
by using the midpoint value f ′( 1

2 (xn + yn)) instead of the arithmetic mean of f ′(xn) and f ′(yn) in the method of
Weerakoon and Fernando (5). It is worth mentioning that this aspect was observed in [10], and applied to Homeier’s
method (7) to obtain a modification of Newton’s method. However, it should be emphasized that their result is just a
special case of our idea presented in this contribution.

3. Numerical examples

All computations were done using MAPLE using 64 digit floating point arithmetics (Digits := 64). We accept an
approximate solution rather than the exact root, depending on the precision (�) of the computer. We use the following
stopping criteria for computer programs: (i) |xn+1 − xn| < �, (ii) |f (xn+1)| < �, and so, when the stopping criterion
is satisfied, xn+1 is taken as the exact root � computed. For numerical illustrations in this section we used the fixed
stopping criterion � = 10−15.

We present some numerical test results for various cubically convergent iterative schemes in Table 1. Compared
were the method defined by (2) (PM), the method of Weerakoon and Fernando defined by (5) (WF), the midpoint rule
defined by (6) (MP), Homeier’s method defined by (7) (HM), the method of Kou et al. (KM) [9], and the methods (14)
(CM1), (15) (CM2), (20) (CM3), and (21) (CM4) introduced in the present contribution. We used the test functions
and display the approximate zeros x∗ found up to the 28th decimal places

f1(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140968457608068290,

f2(x) = sin2x − x2 + 1, x∗ = 1.4044916482153412260350868178,

f3(x) = x2 − ex − 3x + 2, x∗ = 0.25753028543986076045536730494,

f4(x) = cos x − x, x∗ = 0.73908513321516064165531208767,

f5(x) = (x − 1)3 − 1, x∗ = 2,

f6(x) = xex2 − sin2x + 3 cos x + 5, x∗ = −1.2076478271309189270094167584,

f7(x) = sin x − x/2, x∗ = 1.8954942670339809471440357381,

f8(x) = (x3 + 4x2 − 10)2, x∗ = 1.3652300134140968457608068290.

As convergence criterion, it was required that the distance of two consecutive approximations � for the zero was
less than 10−15. Also displayed are the number of iterations to approximate the zero (IT), the value f (x∗) and the
computational order of convergence (COC).

The test results in Table 1 show that for most of the functions we tested, the methods introduced in the present
presentation have at least equal performance compared to the other third-order methods, and can also compete with
Newton’s method. It can be observed that for the function f8 having a repeated zero, all of the third-order methods
under consideration show linear convergence even if the initial guess x0 = 1.4 is rather close to zero as in Newton’s
method, which is well known.

We also present some numerical test results for various Chebyshev–Halley methods, their variants and the Newton
method in Table 2. Compared were the Newton method (NM), Chebyshev’s method (CHM), Halley’s method (HM),
super-Halley’s method (SHM), the variant of Chebyshev’s method defined by (34) (VCHM), the variant of Halley’s
method defined by (35) (VHM) and the variant of super-Halley’s method defined by (36) (VSHM). All computations
were done using MAPLE using 128 digit floating point arithmetics (Digits := 128). Displayed in Table 2 is the number
of iterations (IT) required such that |f (xn)| < 10−32.
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Table 1
Comparison of various cubically convergent iterative schemes

IT f (x∗) �

f1, x0 = 1.5
PM 4 0 2.99e − 29
WF 4 0 3.37e − 32
MP 4 0 3.36e − 33
HM 4 0 4.4e − 43
KM 4 0 8.82e − 31
CM1 4 −1.3e − 62 3.3e − 27
CM2 4 0 1.57e − 24
CM3 4 0 1.19e − 25
CM4 4 −1.3e − 62 −1.39e − 23

f2, x0 = 2.0
PM 5 1.3e − 63 1.39e − 33
WF 5 −2.0e − 63 6.02e − 42
MP 5 −2.0e − 63 7.11e − 41
HM 4 −2.0e − 63 1.08e − 24
KM 5 −2.0e − 63 5.29e − 31
CM1 5 1.3e − 63 1.89e − 29
CM2 5 −2.0e − 63 9.23e − 25
CM3 5 1.3e − 63 7.11e − 27
CM4 5 1.3e − 63 3.55e − 23

f3, x0 = 2
PM 5 0 3.23e − 42
WF 5 1.0e − 63 1.62e − 34
MP 4 1.0e − 63 3.95e − 24
HM 5 0 9.33e − 43
KM 5 1.0e − 63 5.51e − 29
CM1 5 −1.0e − 63 3.81e − 38
CM2 5 0 6.06e − 30
CM3 5 1.0e − 63 1.23e − 27
CM4 5 1.0e − 63 2.12e − 31

f4, x0 = 1.7
PM 4 0 1.75e − 24
WF 4 1.0e − 64 1.04e − 21
MP 4 −3.32e − 61 1.45e − 20
HM 4 −5.02e − 59 9.64e − 20
KM 5 0 2.36e − 33
CM1 4 0 4.91e − 23
CM2 4 −6.67e − 50 4.77e − 17
CM3 4 9.99e − 60 3.33e − 20
CM4 4 −1.88e − 57 1.14e − 19

f5, x0 = 3.5
PM 6 0 1.84e − 28
WF 6 0 3.28e − 37
MP 6 0 1.26e − 42
HM 5 0 1.46e − 24
KM 6 0 2.50e − 35
CM1 6 0 8.19e − 23
CM2 6 1.11e − 49 2.1e − 17
CM3 6 1.32e − 54 4.72e − 19
CM4 6 0 1.04e − 43

f6, x0 = −2
PM 7 −4.0e − 63 3.34e − 35
WF 7 −4.0e − 63 3.11e − 44
MP 6 −4.0e − 63 2.12e − 23
AM 6 −4.0e − 63 4.35e − 45
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Table 1 (continued)

IT f (x∗) �

HM 6 −4.0e − 63 2.57e − 32
KM 6 −4.0e − 63 8.87e − 34
CM1 7 −4.0e − 63 3.63e − 26
CM2 7 −4.0e − 63 9.5e − 33
CM3 7 −4.05e − 56 5.84e − 20
CM4 7 −4.0e − 63 9.96e − 24

f7, x0 = 2.3
PM 4 −7.63e − 52 1.12e − 17
WF 4 −3.0e − 64 1.13e − 21
MP 4 −1.39e − 59 3.64e − 20
HM 4 −3.0e − 64 2.22e − 38
KM 4 −3.70e − 46 8.27e − 16
CM1 4 −1.01e − 46 5.0e − 16
CM2 5 −3.0e − 64 1.07e − 39
CM3 4 −5.0e − 64 8.32e − 44
CM4 5 8 −3.0e − 64 4.62e − 38

f8, x0 = 1.4
PM 33 (COC: 1.21) 2.73e − 29 5.27e − 16
WF 30 (COC: 1.18) 8.46e − 30 3.52e − 16
MP 30 (COC: 1.18) 8.25e − 30 3.48e − 16
HM 24 (COC: 1.12) 4.55e − 30 3.87e − 16
KM 33 (COC: 1.21) 2.63e − 29 5.18e − 16
CM1 35 (COC: 1.22) 4.94e − 29 6.39e − 16
CM2 35 (COC: 1.22) 5.01e − 29 6.43e − 16
CM3 37 (COC: 1.24) 2.61e − 29 4.33e − 16
CM4 37 (COC: 1.24) 2.64e − 29 4.35e − 16

Table 2
Comparison of various Chebyshev–Halley type methods and Newton’s method

f (x) IT

NM CHM HM SHM VCHM VHM VSHM

f1, x0 = 2 7 5 5 5 5 5 5
f1, x0 = 1 7 5 5 5 5 5 5

f2, x0 = 2.3 8 6 6 5 6 6 5
f2, x0 = 2 8 6 5 5 6 5 5

f3, x0 = 0 6 4 4 4 5 4 4
f3, x0 = 1 6 5 5 5 5 5 5

f4, x0 = 1.7 7 5 5 5 5 5 5
f4, x0 = 1 6 5 5 5 5 4 4

f5, x0 = −1 8 5 5 5 7 6 5
f5, x0 = −1.5 8 6 5 6 6 6 6

f6, x0 = 3.5 8 5 5 5 6 6 5
f6, x0 = 3.4 10 7 6 5 8 7 7

f7, x0 = 1.6 7 5 5 5 6 5 5
f7, x0 = 2 6 5 4 4 5 5 4
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The results presented in Table 2 show that for most of the functions we tested, the variants introduced in the
present presentation have equal performance as compared to the corresponding classical methods that do require the
computation of second derivatives, and also converge more rapidly than Newton’s method.

4. Conclusions

In this work we presented a simple approach to construct some modifications of Newton’s method from known third-
order methods and some second-derivative variants of the Chebyshev–Halley methods. It has been proved that they are
third-order convergent. Some of the obtained methods were compared in performance to the other known third-order
methods and the classical Chebyshev–Halley methods, and it was observed that they have at least equal performance.
Our approach may be continuously applied to obtain as many new methods, not just restricted to third-order by doing
exactly the same way as we did in this contribution.
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