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Abstract The coupled 1D nonlinear Schrédinger Zakharov System (sch-zakh) is considered as the
model equation for Nonlinear Wave Interactions model. Tanh—coth Scheme is used to derive
abundant solitary wave solutions for the model equations. The obtained solutions include soliton
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1. Introduction

Nonlinearity is a fascinating element of nature and many
scientists see nonlinear science as the most important frontier
for the fundamental understanding of nature. Many complex
physical phenomena are frequently described and modeled
by nonlinear evolution equation, so the exact or analytical
solutions of the discussed nonlinear evolution equation
become more and more important, which not only is consid-
ered a valuable tool in checking the accuracy of computational
dynamics, but also gives us a good help to readily understand
the essentials of complex physical phenomenon, e.g., collision
of two solitary solutions. Looking for exact solitary wave
solutions to nonlinear evolution equations have long been a
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major concern for both mathematicians and physicists. These
solutions may well describe various phenomena in physics
and other fields, such as solitons and propagation with a finite
speed, and thus they may give more insight into the physical
aspects of the problems. Modern theories of nonlinear science
have been highly developed over the last half century.

At the classical level, a set of coupled nonlinear wave
equations describing the interaction between high-frequency
Langmuir waves and low-frequency ion-acoustic waves were
firstly derived by Zakharov [1]. Since then, this system has
been the subject of a large number of studies. In one dimen-
sion, the Zakharov Equations (ZE) may be written as

iE, +E,—nE=0,

1
JER =0 W

Ny — Ny

where E is the envelope of the high-frequency electric field, n is
the plasma density measured from its equilibrium value. The
system can be derived from a hydrodynamic description of
the plasma [2,3]. However, some important effects such as
transit-time damping and ion nonlinearities, which are also
implied by the fact that the values used for the ion damping
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have been anomalously large from the point of view of linear
ion-acoustic wave dynamics, have been ignored in the ZE. This
is equivalent to say that, the ZE are simplified model of strong
Langmuir turbulence. Thus we have to generalize the ZE by
taking more elements into account. Starting from the
dynamical plasma equations with the help of relaxed Zakharov
simplification assumptions, and through taking use of the
time-averaged two-time-scale two-fluid plasma description,
the ZE are generalized to contain the self-generated magnetic
field [4]. The generalized Zakharov equations (GZE) are a
set of coupled equations and may be written as [5]

iE, 4+ Ex, — 2B|E['E + 2nE = 0,
Ny — Nyx + ‘Eli‘c =

(2)

where E is the envelope of the high-frequency electric field, and
n is the plasma density measured from its equilibrium value.
This system is reduced to the classical Zakharov equations
whenever = 0. Due to the fact that the GZE is a realistic
model in plasma, it makes sense to study the solitary wave
solutions of the GZE. Recently various powerful mathematical
methods such as homotopy perturbation method [6], varia-
tional iteration method [7-13], Adomian decomposition
method [14] and others [15-19] have been proposed to obtain
exact and approximate analytic solutions for nonlinear
problems.

2. Description of tanh—coth method

We now present briefly the main steps of the tanh—coth strat-
egy that will be applied. A PDE

Plu, vy, iy, gty ...) =0 (3)
can be converted to an ODE
Plu, o u" " ...) =0 (4)

upon using a wave variable ¢ = x —c¢t Eq. (4) is then
integrated as long as all terms contain derivatives where inte-
gration constants are considered zeros. Introducing a new
independent variable Y = tanh (&) leads to the change of

derivatives:
(1—Y2)d—"y
,,g—< Y2><3Y2—1> 6Y<1—Y2>Zfiz+<1—Y2>3i%

The tanh—coth method admits the use of the finite expansion
m . m b
w9 =S =3 ar+3 (5)

where m is a positive integer, for this method, that will be
determined. Expansion (5) reduces to the standard tanh
method b; = 0, 1 < i< m. The parameter is usually obtained,
as stated before, by balancing the linear terms of the highest
order in the resulting equation with the highest order nonlinear
terms. If m is not an integer, and then a transformation for-
mula should be used to overcome this difficulty. Substituting
(5) into the ODE results is an algebraic system of equations
in the powers of that will lead to the determination of the
parameters @; = 0, (i = 0,...,m)b; =0,(i = 1,...,m)and c.

3. Application tanh—coth method for generalized Zakharov
equations

We introduce a transformation for (GZE) Eq. (2)

E(x, 1) = U(&)e”, n(x, 1) = V(&),
0 =kx+wt, &=p(x-—_2kt)
where k, w and p are real constant. Put these transformation in

Eq. (2), we have the ordinary differential equation (ODE) for
U (&) and V(Q)

U(&)(K + o) = pPU"(&) + 2BU° (&)
(4k> = )V"(&) + U"(¢) = 0B

SwEr9 =0 o

where prime denotes the differential with respect to &. Integra-
tion of second equation of Eq. (6) twice with respect to &.
C-U(9

" ="we—

™)

where C is second integration constant and the first one is
taken as zero. The value of V(&) is put in first Eq. (6)

2 _ 2C 2y =
U(é)(k +o 4k271) p U (&)

+2<[1+m) U() =0 (8)

Obtain after integrating the ODE once and setting the constant
of integration equal to zero. Balancing U” with U in Eq. (8)
gives m + 2 = 3m, i.e. m = 1. The tanh-coth method (5)
admits the use of the finite expansion

b
u(f):S(Y):a0+a,y+—Yl 9)
Substituting Eq. (9) into Eq. (8), we get

1-¥?)°
oc(ao +a1Y+ﬁ) —2p2b1{¥—
Y b

I b\’
2(ﬂ+4k2_1) (a0+lllY+7) —0

b, ) 1 2
oc(a0+a1Y+?) —2p°h, <Y3 Yf?)

b
+2p2<(a1 +bh)Y —a ¥ 77;)

1 b\’
2 _— Y+—) =
+ (,3 + 42— 1) ((10 +at + Y) 0

Comparing the coefficients of ¥* and ¥* we get aq a; = 0,
aphy = 0. So for a non-zero aq only trivial solution exists. To
get a non-trivial solution, we get the following four sets of
solutions

(1) The First set

(1():07 a1:0,

20 +o=0

. (4 - 1)
V@ -+ {2 — 1+
(2) The Second set
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Figure 1  Plot of one set of solution of theoretical model for C=a=f=p =k = 1.
—p(4k* -1 2(4k% — 1
ap =0, a1=\/ 3 e 2) ) E4(x,t):\/ 3 L 1
(4" =)+ D){2p*> — 1 4+ o} (P4 — 1)+ D{4p> + 1 — o}
by=0, 2p°+a=0 [tanh{p(x — 2k1)} — coth{p(x — 2kt)}]e'®**+)
. C ]72
(3) The Third set ny(x, 1) = T e T
YT (4" —1) (B4 = 1)+ 1){4p* + 1 —a}
w=0. a— k) [tanh{p(x — 2k1)} — coth{p(x — 2k1)}]’
Pk =1+ {8 — 1 +a}
2
b = — —p(4k — 1) 8pP +a=0 4. Conclusions
(B@K> = 1)+ 1){8p> =1+ 0o}
(4) The Fourth set By using the tanh—coth method, traveling wave solutions are
derived for Generalized Zakharov equations (GZE). The
—0 _ P4k — 1) transformation formulae were used for nonlinearity to show
=0 4= (4> — 1) + D{4p> + 1 — o} that the analysis is applicable to a nonlinear problem. The
5 present method is readily applicable to a large variety of such
by = — P4k —1) 4p2 —u=0 nonlinear equations. The obtained solutions include soliton
(4> — 1) + D{4p> +1 — o}’ solutions, periodic solutions and rational solutions.
whereoc:kz—i-w—%

In view of this we obtain the following kink shaped solitary
wave solution (see Fig. 1)

Ey(x.1) = —p2 (47— 1)
n (B — 1)+ D){2p> — 1 + o}
coth{p(x — 2kt)}e'>+e0),

2

(B(4k> — 1) + D{2p> — 1 + o}

nl(xvt) = (4k2— 1)+

coth® {p(x — 2kr)}

Ey(x z)_\/ —pP(4k° — 1)
S (T Gy
tanh{p(x — 2kt)}ei(kx+w1)7

2

(B(4k> — 1) + D{2p* — 1 + o}

ﬂz(x» t) = (4k2 — 1) +

tanh®{p(x — 2k1)}
Ex(x,1) = \/ P )
(B4 = 1) + 1){8p% — 1 + o}
[tanh{p(x — 2kr)} — coth{p(x — 2kr)}]e'®*+)
c I
@ 1) (AR 1)+ {8 — 1+ 2}
[tanh{p(x — 2kt)} — coth{p(x — 2k1)}]’

3 (xv t) =
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