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Abstract

This paper presents properties of relations between words that are realized by deferministic
finite 2-tape automata. It has been made as complete as possible, and is structured by the
systematic use of the matrix representation of automata. It is first shown that deterministic
2-tape automata are characterized as those which can be given a prefix matrix representation.
Schiitzenberger construct on representations, the one that gives semi-monomial representations
for rational functions of words, is then applied to this prefix representation in order to obtain
a new proof of the fact that the lexicographic selection of a deterministic rational relation on
words is a rational function. (©) 1999 Published by Elsevier Science B.V. All rights reserved.

Résumé

Cet article donne une présentation des propriétés des relations entre mots réalisées par des
automates finis & deux bandes dérerministes, qu'on a voulu aussi compléte que possible. Elle
est organisée autour de la notion de représentation matricielle des automates. On montre d’abord
que les automates déterministes a deux bandes sont ceux qui admettent une représentation
matricielle préfixe. La construction de Schiitzenberger sur les représentations, celle qui donne
les représentations semi-monomiales pour les fonctions rationnelles, est alors appliquée a cette
représentation préfixe afin d’obtenir une nouvelle preuve du fait que la sélection lexicographique
d’une relation rationnelle déterministe est une fonction rationnelle. © 1999 Published by Elsevier
Science B.V. All rights reserved.
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0. Introduction

Automata theory is concerned with the study of various models of computational
machines. The most basic of these models is probably the finite one-way automaton,
with one or many input tapes. As soon as 1959, Rabin and Scott presented in a survey
paper [14] — that was the reference for a long time — a number of results and problems
on finite one-way automata, the last of which — the decidability of the equivalence of
deterministic 4-tape automata — has been solved only recently and by means of purely
algebraic methods [9].

Relations between sequences of symbols, or words, that are computed, or accepted
by 2-tape automata, are called here rational relations and have proved to be a very
powerful concept in formal language theory (cf. [2]) as well as an ubiguituous com-
putation model in Computer Science, from compiler construction to natural language
processing. Finite automata with one input tape are easily shown to be equivalent to
deterministic ones, whereas this result does not hold anymore for finite automata with
two or more input tapes, which means that not every rational relation is deterministic.

The purpose of this paper is to present the properties of relations between words
that are realized by deterministic finite 2-tape automata. We have tried to make it as
complete as possible. It thus contains the description, and the proof, of properties of
deterministic rational relations that are often considered as folklore. The presentation
is structured by the systematic use of the matrix representation of automata. It aims at



M. Pelletier, J. Sakarovitch! Theoretical Computer Science 225 (1999) 1-63 3

a new proof of the Lexicographic Uniformization Theorem, which deserves few words
of presentation.

In his treatise on automata, Eilenberg established that every rational function can be
made unambiguous, by means of the so-called Rational Cross-section Theorem [4]. As
a corollary, he then stated the Rational Uniformization Theorem.' Along the line of
this Cross-section Theorem, we showed that, under certain conditions, the lexicographic
cross-section of the mapping equivalence of a morphism is rational [15]. Johnson then
raised the problem whether rational equivalence relations always have rational cross-
section — problem which remains open up to now — and gave a positive answer for
deterministic relations, showing that the lexicographic uniformization of a deterministic
equivalence relation is rational [10]. On the other hand, Schiitzenberger gave another
method for proving that rational functions are unambiguous, via the construction of
semi-monomial matrix representation for rational functions [20, 2, 17].

The main contribution of this paper is to show how the Schiitzenberger construct on
representations allows to find again the uniformization result for deterministic relations.
After having recalled the definition of deterministic relations (Section 2), we show
that deterministic relations are characterized as those that have prefix representations
(Section 3). We then explain how the Schiitzenberger construct on representations
yields uniformization results when applied to general relations instead of functions.
This construction when applied to the prefix representation of a deterministic relation
gives then a lexicographic uniformization (Section 5). These two results have been
presented in [12].

1. Preliminaries

We first recall the definition of automata as labelled graphs, that makes natural the
generalization from automata on a free monoid to automata on direct product of free
monoids which is the way we define 2-tape automata. We then present the notions of
matrix representation of automata — that yields Kleene—Schiitzenberger Theorem — and
of covering of automata.

Notations. The free monoid over a finite alphabet A is denoted by 4™, its identity
element, the empty word, by 14~ and the set of words different from 14 by A%,
Accordingly, the identity of a monoid M is denoted by 1), by 1 if no ambiguity is
feared.

The length of a word f in 4™ is denoted by |f| and |f|, is the number of letters
a which appear in f. A word f in A* is a prefix (resp. a strict prefix) of a word g
— denoted by f <g (resp. f <g) — if there exists a word % in A* (resp. in A*) such
that g= fh. If £<g then f~'g denotes the word # such that g = fh.

I'Cf. Section 5 for a more detailed presentation of this result.
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a
b b

Fig. 1. The automaton .o/;.

1.1. The model of labelled graphs for automata

An automaton </ over a finite alphabet A, o/ = (Q,A,E,I,T), is a directed graph
labelled by elements of 4; Q is the set of states, I CQ is the set of initial states,
T C @ is the set of terminal states and £EC Qx4 x Q is the set of labelled edges
called transitions. The automaton 7 is finite if Q is finite; we shall consider only
finite automata and thus call them simply automata in the sequel. We also note p -,
for (p,a,q)€E, or even p Lﬂ/q if there is a possible ambiguity on the automaton. A

computation c¢ in o/ is a finite sequence of transitions:
. aj az dn
C:po—=Pr—= P2 Pn-1 — DPn

The label of c is the element aja; - - - a, of A*. The computation c is successful if pg
is in I and p, in T. The language accepted by .o/, also called behaviour of o7, is the
subset |.o/| of 4* consisting of labels of successful computations of .=7.

A state g is said to be accessible if there exists a path in .o/ starting in / and
ending in g. The accessible part of <7 is the set of its accessible states together with
the corresponding edges. A state g is said to be co-accessible if there exists a path
in o/ starting in ¢ and ending in 7. The co-accessible part of </ is the set of its
co-accessible states together with the corresponding edges. An automaton .7 is said to
be trim if every state g is accessible and co-accessible.

The automaton .o7 is complete if for every state p in Q and every letter @ in A there
exists at least one state g such that (p,a,q) is an edge in E; o« is deterministic if for
every state p in Q and every letter a in A there exists at most one state g such that
(p,a,q) is an edge in E; o/ is co-deterministic if for every state ¢ in Q and every
letter a in A there exists at most one state p such that (p,a,q) is an edge in £. The
automaton .« is unambiguous if for every pair of states (p,q) and every word f in
A* there exists at most one computation from p to g with label f.

Automata have a natural graphic representation as labelled graphs.

Example 1.1. Fig. 1 shows an automaton .o/ whose behaviour is the set of words with
a factor ab.

The definition of automata as labelled graphs extends readily to automata over any
monoid M: an automaton of over M, o/ ={Q,M,E,I,T) is a directed graph the edges
of which are labelled by elements of the monoid M. The automaton .o/ is finite if the
set of edges E C Q x M x Q is finite (and thus Q is finite). The label of a computation

. m my my
Cipo— p1r — P2 " Pn—t — Pn
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is the element mym;---m, of M. The behaviour of ./ — obviously, we do not say
“language accepted” in this case — is the subset |.o/| of M consisting of labels of
successful computations of .. Two automata are said to be equivalent if they have the
same behaviour. In this context, an automaton over an alphabet 4 is to be understood
as an automaton over the free monoid 4*.

For a monoid M, the rational closure of finite sets — i.e. the least family of subsets
of M containing the finite subsets and closed under union, product and the “star”
operation — is denoted by Rat M its elements are the rational sets of M. The following
generalization of Kleene’s theorem is due to Elgot and Mezei (cf. [16] for more details).

Theorem 1.1 (Elgot and Mezei [5]). A subset of M is rational if and only if it is the
behaviour of a finite automaton over M, the labels of the edges of the automaton
being taken in any set of generators of M.

The set £ of labelled edges of an automaton o = {(Q,M,E,I,T) is currently iden-
tified with the incidence matrix of the graph /. It is a (Q x Q)-matrix the entries
of which are finite subsets of M: every E,, is the set of labels of edges from the
state p to the state g. Along the same line, the subsets / and 7 are identified with a
Boolean row-vector, respectively column-vector, of dimension (. Since @ and M can
be recovered by projection from E, one can denote also & by .« = (I, E, T'). Obviously,
E* = ,en E" and, with these notation,

of|=1-E*-T

holds where the - indicates the matrix multiplication. The same equation shows that the
entries of £, and of / and 7, can be taken in RatM without changing the generating
power of finite automata,

We are concerned here with (finite) 2-tape automata, or 2-automata for short, that
is, in the above terminology, with automata over a direct product 4™ x B* of free
monoids. (They have also been called in the literature as generalized sequential ma-
chines or transducers.? ) The behaviour of such an automaton .o = (Q,A* x B* E, I, 7
is a subset of 4* x B*, that is the graph® of a relation 8 from A* into B* :

vied® f0={geB*|(f.9)€||}.

In this case, we also say that </ realizes 6.

A relation from 4™ into B is said to be rational if and only if its graph is a rational
subset of A* x B*, that is, according to Theorem 1.1 if and only if it is the behaviour
of an automaton over 4* x B*. We denote by Rat 4* x B* the set of rational relations
over A* x B*, by Rat, if the alphabet is not specified.

2 Admittedly, the notation “2-automaton” is not completely satisfactory. In the area of automata reading
numbers, it comes into collision with the notation “k-automaton™ that refers to automata reading numbers
written in base k. Moreover, it does not translate easily into French. We stick to it, however, for it supports
one of the idea we illustrate here: technics developed for classical automata are relevant to 2-tape automata.

3 By abuse, we currently identify a relation and its graph and we shall write (f,g)€ 8 for g € 0.
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A rational relation, or the automaton & that realizes it, is unambiguous if any
element of [.</] is the label of a unigue successful computation in .o7.

The set (4 x {1z })U({14+} x B) is a set of generators of 4™ x B*: a 2-automaton
the edges of which are labelled by elements of (4 x {1g-})U({14«} x B) is said to be
normalized and it follows from Theorem 1.1 that any 2-automaton is equivalent to a
normalized one. We shall currently denote a normalized 2-automaton over 4™ x B* as
a sextuple {Q,4,B,E, [ T).

If &/ is a normalized automaton the matrix £ can be written as £ =X + Y where the
entries of X are in (4 x{1p-}) and those of ¥ are in ({14 } X B). The straightforward,
and classical, following computation,

Wt | =1- (X + Y)Y T=1-(Y*X)Y* - T=1.(Y*X)* (Y*T), (LI.1)

shows that .7 is equivalent to the automaton .o/ = (L E'. T’} with E' =(Y*X) and
T’ =(Y™*T). This computation has broken the symmetry between the first and second
component of 4™ x B*, between the “two tapes” of .«/. But as a result, the label of
every edge of ./’ is in A4 x Rat B¥, that is exactly one letter is “read” on the first
tape at every move or transition of /’; such an automaton is often called a real-time
transducer.

1.2. Matrix representation of automata
Automata over a free monoid are classically given matrix representations. The technic

extends to automata over a product of free monoids 4™ x B*.

1.2.1. Boolean matrix representation of automata over A*
Any finite automaton 7 ={0,4,E,[,T) may be given a matrix representation (4,
u,v) over the Boolean semiring B where u:A4* — B2*C is the morphism defined by

1 if (p,a,q)€E,
"PqEQ, Vacd ap,= {O otherwise,
and where 2 and v are the row and column vectors, respectively, defined by
YgeQ Jy=legqgcl VpeQ v,=lepel
The triple (4, i, v) is a representation of </ in the sense that

A\ ={f €A* |G fu- =1},

The morphism y is called a representation (of A* by Boolean matrices) as well.

Example 1.1 (continued). The matrix representation of .o/ is

110 100 0
A=(1 0 0), au={0 0 O}, bu={0 0 1], v={0
00 1 0 0 1 1
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1.2.2. Matrix representation of automata over A* x B*
Let o/ =(I,E,T) be a normalized 2-automaton and /' ={[E',T') the automaton
obtained in (1.1). Every entry of E’ is an union of elements of the form

(a, K)=(14~,K)(a, 15+),

with @ in 4 and K in Rat B*. In such writing, (14-,K) can be seen as the coefficient
of (a, 13-). By slight abuse,* and when no ambiguity is feared, we note K instead of
{14+,K) and g instead of (a, 15-). With these conventions, the matrix £’ can thus be
written as

E'=3 (ap)a,

acA

where, for every a in A4, au is a (Q x Q)-matrix with entries in Rat B*. Note that,
accordingly, / is a Boolean vector and that every entry of 7’ is in Rat B*. We put
/=1 and v=T" and we have

Vp.geQ, YacA ap,,={veB*|3IscQ p LI ﬂ)>q}f.

Also 4 and v are the row and column vectors, respectively, defined by
WeQ, d=leqel, VpeQ vy={veB*|FeT p=ti)

The mapping p extends then into a morphism from 4* into (Rat B*)¢* €, We call the
triple (4, i, v) a (matrix) representation of the automaton 7; this definition is justified
by the fact that

|| = {(u,0) [0 € A up- v},
The decomposition £ =X + Y also implies the dual computation

A =1-X+YY - T=I-Y*"Xy** r=0ur"-(xvy"*.r

which leads to another representation (A', i, v') of .«/:

Vp,qeQ, Vacd “#;,(;:{DEB*ISSEQ P((—dgsﬂq},

geQ A,={veB*|Jiel ig’—gq}, VpeQ v,=lepel

And then again
| = {w o) [ve i upd v}

holds. All these constructions are summed up in the following result.

41t is not an abuse indeed. It is the expression of the canonical (semi-ring) isomorphism between
PA* x B*)} and (B(B*)){{4)}, the semi-ring of formal power series on A4* with coefficient in P(B*).
It has not seemed necessary to introduce the heavy formalism of power series to deal with such intuitive
evidence,
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Theorem 1.2 (Kleene-Schiitzenberger Theorem). Let 0 be a relation from A™ into
B*. The following assertions are equivalent:
(i) 8 is a rational relation;
(i) O is realized by a real-time 2-automaton o over A* x B*;
(iii) @ is realized by a matrix representation (4,u,v) with entries in Rat B*,

Let .o/ be a real-time 2-automaton and (4, g, v) its representation. If every non zero
entry (in A, au and v) is replaced by a 1 (from the Boolean semiring), one gets the
representation of a finite l-automaton by Boolean matrices: we call it the underlying
input automaton of of (or of (4, u,v)).

1.2.3. Representations of direct products of automata

The direct product of of ={Q,A,E, LT} and B=(R,A,F,J,U) is by definition the
automaton of X B={(Q x R, A, G, I xJ,T x U) where the set G of labelled edges is
defined by

G={((p,),a,(¢,8)) | (p,a,q) €E, (r,a,s)EF}.

The operation of direct product of automata translates into the tensor product of their
representations. Let us first recall that the tensor product of two Boolean® matrices X
and Y of dimension P x Q and R x S, respectively, is the matrix X ® ¥ of dimension
(P x R) x (Q x §) defined by

YpeP, weQ, WeR, VseS§ X8 Ypruigs) =Xpg¥rs

It is noteworthy that X ® Y has a natural block decomposition which will be currently
used in the sequel: X ® Y is a block-matrix of dimension P x  of blocks of dimension
R x S (or vice versa). The tensor product of representations makes sense because of
the following.

Lemma 1.1. Let M be any monoid and let y: M — B2*C gnd x: M — B> pe two
morphisms. The mapping u® « defined for every m in M by

MU K =mu S mx
is a morphism.
We then have
Proposition 1.2 (Schiitzenberger [18]). Let (4,1, v) and (1,k,{) be the Boolean rep-

resentations of o = {0, A E, LT and B=(R,4,F,J,U), respectively. Then (4,1,v) @
(n,Kk,{) is the representation of o/ X 4.

3 This definition and the following two results are valid for matrices with entries in any commutative
semiring but we do not need such generality here.
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By definition (4, 1, v)Q (1, x,{) = (Aen, @ K, v®{). The key to Proposition 1.2 lies
in the fact that, by Lemma 1.1, uek is a morphism from 4% into B(QXF) x{OxR)

1.3. Recognizable sets

A subset R of a monoid M is classically said to be recognizable if there exists a
morphism ¢ from M into a finite monoid N such that R=Rp ™! (cf. [2,4]). The set
of recognizable subsets of M is denoted by Rec M.

We shall make use in the sequel of a definition of recognizable sets by a more general
construction than morphisms that we present first. A (right) action of a monoid M over
a set S is a mapping from S x M into §, denoted by a -, and satisfying the following
conditions:

(i) vseSs-ly=s;
(i) VseS,Ym, meM(s-m)-m' =s-mm' .

A subset R of M is recognized by an action of M over § if there exists an 5o in §
and a subset U of § such that

R'—‘{YI’ZEM}SQ'HIGU},

in which case we say, by imitation of automata, that R is recognized by the S-tuple
{S,M, -, s, U). It is straightforward to verify the following.

Lemma 1.3. A subset of a monoid M is recognizable if and only if it is recognized
by an action of M over a finite set.

The terminology is coherent by virtue of Kleene’s Theorem:
Theorem 1.3. If 4 is a finite alphabet then Rec A* = Rat 4*.

A recognizable subset of 4* x B* is also called a recognizable relation. The fol-
lowing are well-known results about recognizable relations.

Proposition 1.4. The intersection of a rational relation and of a recognizable relation
is a rational relation.

{(We reprove it in the next section (cf. Lemma 1.9), in the framework of actions
that we shall need later.)

Corollary 1.5. Rec(4* x B¥*)CRat(4* x B*).
Theorem 1.4 (Mezei; cf. Berstel [2]). 4 subset of A* x B* is recognizable if and only
if it is a finite union of cartesian products of the form § x T with S in Rat 4™ and

T in Rat B*.

Corollary 1.6. Rec(4* x B*) is closed under product.
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1.4. Covering and co-covering of automata

The aim of this section is to adapt and extend to automata the notion of covering
as defined by Stallings [22] for graphs. This has been already published, partly in [8],
more completely in [17], and is included here for sake of completeness.

1.4.1. Morphism of automata
Given an automaton .o/ = (Q,M,E,I,T), the set E of labelled edges is canonically
equipped with three mappings (the three projections):

1E—-Q 1:E—~Q and g:E—M

The vertices e: and et are respectively the origin and the end of the edge ¢; ec is the
label of the edge e.

A morphism ¢ from an automaton # = (R,M, F,J, U} into an automaton o/ ={(Q,M,
E,IT) is indeed a pair of mappings (both denoted by ¢) ¢ :R—Q and ¢:F —E,
which satisfy the three properties ©:

por=10¢p and @ot=rTOQ, (1.2)
poe=¢, (1.3)
JpCI and UpCT. (1.4)

Conditions (1.2) imply that the image of a path in % is a path in <. Condition (1.3)
implies that the label of a path in & is the same as the label of the image of that
path in . Conditions (1.4) imply that the image of a successful path in # is a
successful path in of — and with the same label. In particular || C |&/].

Example 1.2. The classical construction of direct product of automata gives rise to an
important instance of morphism of automata. Let &/ x #=(Q xR, 4,G,I xJ,T x U)
be the direct product of .« ={(Q,A4,E,I,T) and # = (R,A,F,J,U). The projections n
and 74 from the set Q x R on the first and on the second components respectively,
together with the corresponding mappings from G into E and F are clearly morphisms
from .o/ X &% onto &/ and 4, respectively.

1.4.2. Covering and co-covering
For every state g of an automaton o = (O, M, E, I, T}, let us denote by Outy(q) the
set of edges of ./ the origin of which is ¢, that is, edges that are “going out” of ¢:

Outy(g)={e€E|e1=gq},

and let us denote by Iny(g) the set of edges of .o/ the end of which is g, that is,
edges that are “arriving at” g:

Ins(g)={ecE|et=q}.

6 Though we use the postfixed notation for functions (e.g. er) we find it clearer to indicate composition
of functions explicitely by a symbol (o) than with the mere concatenation.
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If ¢ is a morphism from # = (R,M,F,J,U) into o ={Q,M,E,I,T) then for every
r in R, @ maps Outg(r) into Out(r¢), and Ing(r) into Iny(re) .

We say that ¢ is QOut-surjective (resp. Out-bijective, Out-injective) if for every
r in R the restriction of ¢ to QOutg(r) is surjective onto Out(r@) (resp. bijec-
tive between Outgz(r) and Out(r¢), injective). Accordingly, we say that ¢ is In-
surjective (resp. In-bijective, In-injective) if for every r in R the restriction of ¢ to
Ing(r) is surjective onto In(r¢@) (resp. bijective between Ing(r) and In, (re), injec-
tive).

What we call Qut-bijective morphism is exactly what Stallings calls a covering (of
graphs). The definition of covering of automata we are now coining is consistent with
the one of covering of graphs and puts also in relation the initial states and the terminal
states respectively.

Definition 1.1. A morphism ¢ from an automaton % = (R,M,F,J,U) into an automa-
ton &/ ={(Q,M,E,I,T) is a covering if the following conditions hold:
(i} @ is Out-bijective;
(i1) for every i in I, there exists a unique j in J such that jo =i
(iii) for every t in T, to~' CU (i.e. by (1.4) To~' =U).

We also need the dual definition:

Definition 1.2. A morphism ¢ from # into o/ is a co-covering if the following
conditions hold:
(i) ¢ is In-bijective;
(ii) for every i in I, ip~' CJ  (ie. by (1.4) Ip~' =J);
(iii) for every ¢ in T, there exists a unique s in S such that s¢ =1.

The immediate consequence of these definitions is the following (cf. [17]).

Proposition 1.7. If ¢ : % — o is a covering, or a co-covering, then for every success-
Jul path ¢ in <of there exists a unique successful path d in B such that do =c (and
thus B is equivalent to <¥).

Corollary 1.8. A trim covering (resp. co-covering) of an unambiguous automaton is
an unambiguous automaton.

The last definitions we need are those of immersion and co-immersion.

Definition 1.3. A morphism ¢ from % into .« is an immersion if the following con-
ditions hold:

(1) @ is Qut-injective;

(ii) for every i in [/ there exists at most one j in J such that jp =i.
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Definition 1.4. A morphism ¢ from # into o/ is a co-immersion if the following
conditions hold:

(1) @ is In-injective;

(i) for every ¢t in T there exists at most one u in U such that ugp =t.

Roughly speaking an immersion (resp. a co-immersion) is a covering (resp. a co-
covering) from which some edges have been removed and where some states have lost
the property of being initial or terminal.

If o:#— ./ is an immersion (resp. a co-immersion), it is not only true that
|| C |.«/| — which holds as soon as there exists a morphism from # into &/ — but ¢ is
moreover an injection from the set of successful pathes of % into the set of successful
pathes of .o7.

Example 1.3. A subautomaton # of </, that is an automaton obtained from .«7 by
deleting edges and/or by suppressing the quality of being initial or terminal to certain
states is an immersion (the morphism being the identity mapping on the set of states).

It will be convenient to say that # covers o/ or is a covering of </ (resp. is an
immersion in /) if there exists a morphism ¢:% — o/ that is a covering (resp. an
immersion).

1.4.3. An example

As an illustration of the above definition let us state a refinement of the classical
proposition asserting that, in any monoid, the intersection of a rational set with a
recognizable set is rational.

Lemma 1.9. Let o/ be an automaton over a monoid M and R a recognizable subset
of M. There exists then an immersion % in </ such that |%|=|<|NR.

Proof. Let o/ = (Q,M,E,I,T). The classical construction is indeed what is needed to
establish the lemma and can be performed on any action (P,M,-, po,U) that recog-

nizes R.
Let ' ={Q x P,M,F,J,S") be defined as follows:

F={((g,p)m(q.p-m)|peP, (g.mq)eE}, J=Ix{py} and
S'=TxP.

The projection of O x P onto ( induces then, by construction, a covering of .o/ by #’.
By induction on the length of the computations,

(q,po)%»(q’,p) implies that p = pg - m.

Let #=(Q x P,M,F,J,S) with S=T x U. Then |#|=|#'|\R= || NR holds. O
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1.5. Miscellaneous

We end this preliminary section with two properties that are easy exercises, but not
classical enough to be simply called by reference.

1.5.1. Factorizing the elements of A* x B*

The monoid 4* x B* is not a free monoid, i.e. every element has not a unique
Jactorization into elements of a base. In a sense however, “it is not far” from being
free. This is what we try to state formally here and that will be used in the next
section.

The set X = (4 x {13 })U({14+} X B) is the minimal generating system of 4™ x B
That is, every element (u,v) of A* x B* is factorized as a product of elements of
X:(u,0)=x1%3...%,, X; € X. As said before, this factorization is not unique, e.g. {(a,b)
={a, 1){1,5)=(1,b)a,1). We define the length of (u,v), denoted by |(,v}], to be the
quantity |u| + [vl. It is the common length of all factorizations of (u,v) over X. This
terminology is legitimate since |(u, v)(u/,v")|, = [(u, v)| + |(&/, )]

An element (u,v) of A* x B* is a prefix of (f,g) if there exists (k) such that
(f,9)=(u,v)(h,k); in such case, u is a prefix of f, f=uh, and v is a prefix of g, ¢
= vk. The relation “being a prefix” is a partial ordering of 4* x B* called the prefix
ordering. The set of all prefixes of any element (f,g) is a lattice for the prefix ordering.
A maximal chain of prefixes of (f,g) uniquely determines a factorization of (£, g) over
X and conversely.

Lemma 1.10. Let (f,g) in A* x B* and let (u,v) and (',v') be any two prefixes
of {f,g) which may be equal but such that none is a strict prefix of the other. Let
(u,0)=x1x2...%, and (W' ,V')= y1y2... ym be any two distinct” factorizations of these
elements and let x,x3 ... X1 = V1 V2 ... Vi-1 be the longest common prefix of these two
factorizations (as sequences of X* i.e. x;=y; for every j, 0<j<i— 1, and x; % y;).
Then x;€(A4 x {1~ }) and y; € ({14} x B), or vice versa.

Proof. Let (%,k)=xx2...x;_;. Suppose that both x; and y; belong to (4 x {lz-}):x;=
(', 1) and y; =(a",1). Then (h,k)x; = (hd',k) and (h,k)y; = (ha'. k), ha' and ha' are
both the prefix of f of length [A| + 1. Thus & = a”, a contradiction with x; 5 y;.
The same contradiction arises if x; and y; are both in ({14} x B). U

1.5.2. Prefix families of languages
A subset K of 4* is said to be prefix if no element of K is a prefix of another
element of K, ie.

Vi, hed® feKand fheK = h=Il4.

7 This has to be specified since (u,v)=(x',¢') is possible.
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A family {K;},e; of subsets of 4* is called a prefix family if the following two condi-
tions are met: (i) the K; are pairwise disjoint, (ii) the union K = | J ies K is prefix, i.e.

Vi,jeJ, Vf,heAd* feK;and fheK;, = h=14. and i =]

We want to characterize families of prefix rational sets by means of automata. First,
we call exit automaton, or e-automaton for short, an automaton where there is no
edge “going out” from a terminal state (i.e. as soon as a terminal state is reached, the
computation halts).

Lemma 1.11. A4 rational language K is prefix if and only if it is the behaviour of a
trim deterministic e-automaton.

Proof. Let K be a rational prefix language and let o/ be a trim deterministic automaton
which recognizes K. Assume that there exists an edge ¢t —— g, where ¢ is a terminal
state. Since .o is trim, ¢ is accesssible and ¢ is co-accesssible. There are thus two
words f and ¢ such that f and fag are in K, a contradiction with K prefix.
Conversely, let K be the behaviour of a trim deterministic e-automaton o/ ={(Q, 4, E,
qo, 7). If f and fh are elements of K, then the two states ¢ and s uniquely defined by

g0 2Ly s are terminal. By hypothesis, s=1¢ and 4= 14~, hence X is prefix. U

By a slight abuse, we say that an automaton o = (0,4, E,I,T) recognizes a finite
Jamily of languages {K;};c; if there exists a partition {T;};c; of T such that every K;
is the behaviour of ./, = (Q,4,E,LT}).

Any finite family of rational languages is recognized by a finite automaton. This can
be derived from the first part of proof of the following statement.

Lemma 1.12. A finite family of languages {K;},cs is a prefix family of rational
languages if and only if there exists a trim deterministic e-automaton which recognizes
the family {K;};es.

Proof. By Lemma 1.11, a trim deterministic automaton =/ that recognizes K = (J,, K;
is an e-automaton. But & does not necessarily answers the question for it might be
the case that a word in K; and a word in K}, i # j, both reach the same terminal state
in /. The construction requires slightly more care.

For every j in J, let «; =(Q;,4,E},q0,;,U;) be a trim deterministic e-automaton
that recognizes K; (as given by Lemma 1.11) and let .«/ be the product of the .</;:

=y

o =]ot;= < 11 Q,',A,G,(qo,l,%,z,--~,fI0,n)»U>a
jed

where G is defined as in Section 1.2.3 and where

U={(q1,92,---.9,) | F/ €J g, € U}}
=(Uy xQax - X@IU(Q x Uz x - XxO)U - U(Qy x Oa X --+ x Uy)



M. Pelletier, J. Sakarovitch! Theoretical Computer Science 225 (1999) 1-63 15

The automaton ./ is deterministic and recognizes | J,c; K;. Let &/’ be the accessible
part of </, R its set of states and, for every j, T, = (01 x -+ xU; x --- x O,)NR.
Any two distinct T; are disjoint for any two distinct K; are disjoint and the .<7; are
deterministic. Hence .o/’ is a trim e-automaton and recognizes the family {K;};c,.

Conversely, it should be clear that any family of languages recognized by a trim
deterministic e-automaton is a prefix family. O

2. Deterministic relations

The original model of k-tape automaton of Rabin and Scott that we quoted in the
introduction had two features that we have not yet mentioned. First, the word written
on every tape ends with a special symbol that does not appear anywhere else, called
an endmarker and almost universally denoted by $. Second, the automaton behaves
deterministically.

The model of 2-automaton as labelled graph does not feature normally any endmarker
for it would not change the generating power. It is possible to translate the property
of determinism in this model but it is necessary then to reintroduce an endmarker in
order to keep the same generating power as the (deterministic) 2-tape automata. This
is the object of the next two subsections.

2.1. Deterministic 2-automata

A normalized 2-automaton will be said deterministic if, roughly speaking, every state
determines unambiguously on which tape the input is read and if the letter read on the
adequate tape defines a unique move of the automaton. Let us state it formally.

Definition 2.1. A normalized 2-automaton .o/ = {(Q,4,B,E,I,T) is deterministic if the
following conditions hold:

(i) there exists a partition of the set of states Q = Q4 U Qg, such that the label of an
edge whose origin is in Q4 is in (4 x {1-}), respectively the label of an edge
whose origin is in Qp is in ({14~} x B);

(ii) for every p in Q and every label x in (4 x {1z })U ({14~} x B), there exists at
most one g in @ such that (p,x,q) is in E;

(iii) Card/ =1 (i.e. there is a unique initial state, denoted by g¢ in the sequel).

This definition is the transcription, in the model of labelled graphs, of the conditions
of determinism for 2-tape automata. It can probably be considered as folklore; the
only place where we have seen it in the literature is Johnson’s papers [10, 11]. Note
that some authors call “deterministic” 2-automata that are in general (and more wisely)
called (left) sequential, that is, real-time 2-automata whose underlying input automaton
is deterministic (cf. [2] for instance).

It directly follows from the definition:
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Proposition 2.1. Any covering or immersion of a deterministic 2-automaton is a de-
terministic 2-qutomaton.

The determinism of a 2-automaton ./ implies that its computations share the most
important properties with the computations of a deterministic automaton, though .o/
works over a non-free monoid. This is what we describe in the remaining of the
section; let us first begin with a definition.

Let .7 be an automaton over a monoid M and let ¢ be a computation of =7:

N 7y 3 My
cipy— Py —> P2 Pa—t T Dae

A prefix (resp. the prefix of length 4} of ¢ is a (resp. the) computation d,

diPoﬂpx ﬂ’,pZ"'Pk—I “‘{&pk

with & smaller than, or equal to, .
By definition of a free monoid, any word f of 4* has a unique factorization f =
a\ay...a, over A. Let </ be a determlmstlc automaton over 4*. By definition of

determinism, a computation c: p —-—-» q starting in p and with label f, if it exists, is

unique, uniquely determined by p and f. The determinism also implies that if g is the
prefix of f of length k£ (k<#n), then the computation starting from p with the label g
is the prefix of length k& of the computation ¢. On the other hand, every f of 4™ is
represented by a (partial) function from @ into itself; this representation defines an
action of A* over O and may be denoted as such: p- f=gq.

This situation somewhat extends to deterministic 2-automata with the even stronger
feature that the factorization of the label of a computation does not exist @ priori but
is determined by the automaton.

Let us first state that computations are unique once the factorizations are given —
which is a mere extension of the case of (1-)automata, with the same (easy) proof by
induction on the length of the computations.

Lemma 2.2. Let of be a deterministic 2-automaton over A* x B* and let

cip=po -5 pi o pres Pat = pa

and

[ X3 X2 ’ X

cip=py— Py — P2 pnl_-)pn
be two computations starting in a same state p, with the same label (f,g), and
that correspond to the same factorization of (f,g)=xix2...x,. Then c=¢, i.e. for
every i, p;= pj

It is consistent, and convenient for induction proofs, to consider that for every state p

of a 2-automaton .o/ there exists a computation of length O, starting in p and with
label (14-, 15+).
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The fact that the computations of .o/ determine a factorization for the elements
of A* x B* is expressed by the following.

Lemma 2.3 (Corrugated Cardboard Lemma). Let o/ be a deterministic 2-automaton
over A* x B*. Let p be any state of o/ and (f,g) any element of A* x B*. The set
of prefixes (u,v) of (f,g) such that there exists a computation starting in p with
label (u,v) is a chain for the prefix ordering, maximal between (ly~,1p«) and its
largest element.

Proof. By virtue of the convention we have just taken, the set of considered prefixes
of (f,g) is not empty. Let

L X X2 Xn
cip=po—p1r——> P27 Dn

and

d:p=po - p| =5 pho- 2 p,
be two computations of .o/ with labels (u,v) and (u/,v'), respectively, such that both
(u,v) and («',v') are prefixes of (f,g).
Suppose that none is a prefix of the other and let

X1 X2 ... Xi—1 = V1Y2... Vi1

be the longest common prefix of the corresponding factorizations (as sequences of X*,
ie. x; = y; for all j such that 0<j<i—1 and x; # y;). As noted in Lemma 2.2, the
prefixes of length i — 1 of ¢ and d thus coincide

Xy X2 Xi—1 Xi X,
Cip=po—> Pl —— P2 — Pi] — Pi+ — Dy

and

d:p=po == p —> py--- - Pi-1 —}—’P,/ i‘Pin-

From Lemma 1.10, it follows that x; = (a, 13+) and y; = (14+,b) (or vice versa) a
contradiction: p;_; cannot be the origin of two edges, one with label in 4 x 13+ and
one with label in 14~ x B. Thus, of (x,v) and (#/,v"), one is a prefix of the other and
the prefixes of (f,g) that are labels of computations starting in p form a chain. Let
(h, k) be its largest clement; the computation

d:p(h;kzq

determines a factorization of (h, k) over (4 x {lg-})U ({14~} x B), that in turn defines
a maximal chain between (14, 13-) and (A, k). O

An immediate consequence of both Lemmas 2.2 and 2.3 is that if there exists a
computation starting in p with label (f,g), it is unigue.
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h
(e JeaJea]os] "2 | f
2 R T I D e 7= y

k

Fig. 2. A path oscillating between f and g¢.

As in the case of automata, if a deterministic 2-automaton .o/ over A* x B* is given,
every (f,g) of A* x B* is thus represented by a partial function from the state set
Q of o/ into itself. Remark that, in contrast to the case of 1-automata, this does not
define an action of A* x B* over Q. We note

. (f.9)
pol(f.9)=q if c:p=Fgq
A 2-automaton .o/ = (Q,A,B,E,I,T) thus computes, for every (f,g) in 4% x B* for
which goo(f,g) is defined, a unique factorization; we refer to it as the factorization
of (f,g) if no ambiguity is to be feared.

Remark 2.1. Given p and (f,g), Lemma 2.3 ensures existence and uniqueness of a
computation starting at p and having a prefix of (f,g) as label. A natural way for
representing that computation will be a path oscillating forth and back between f and ¢
as in Fig. 2; hence the name we gave to the lemma.

The consequences of Lemma 2.3 are conveniently summarized in the following.

Corollary 2.4. Let 57 be a deterministic 2-automaton over A* x B*. Let p be a state
of o and let (u,v) and (h,k) be two elements of A* x B*.
() If po(u,v)=q and qo(h,k)=r, then po(uh,vk)=r.
(i) If po(u,v)=gq and po(uh,vk)y=v, then go(h,k)=r.
(iil) If both po(uh,v) and po(u,vk) exist, then h= 14 or k= lg-.

Proof. (i) follows directly from the definition: (uh,vk) is the label of the computation
obtained by the concatenation of the two computations:

(w,0) (h.k)
p—¢q and q—r.

(ii) Since (u,v) is the unique prefix of length |(u,v)| of (uh, vk) such that po(u,v)
is defined, the computation p A g is necessarily a prefix of the computation p whel) .

i i 0y (hk
which thus may be written as p ) q Ll r
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(iii) (uh,v) and (u,vk) are both prefixes of (uh,vk); Lemma 2.3 implies that one
should be prefix of the other, which makes the condition A=14- or k=1z-
necessary. [

2.2. Deterministic relations

Deterministic 2-automata allow to define deterministic relations. In order to give
these 2-automata their full generative power, we have first to define their behaviour
when they are endowed with an endmarker.

2.2.1. 2-automata with endmarker

Let $ be a symbol that, by convention, does not belong to any alphabet and, for
every alphabet 4, let us denote by Ag the set AU {$}.

A 2-automaton .« over a monoid A;( X B;{ will be called a 2-automaton with end-
marker over A* x B*. The $-behaviour of such an automaton .« is, by definition, the
set |.o/|s:

|/ |s = {(u,v)eA"< x B* | (u$,v8) € |.«/|}.

Since |./|s =(|/|NA*$ x B*$)n — where 7 is the morphism of A x By onto
A* x B* that erases the $ — the $-behaviour of an automaton with endmarker is a
rational relation and converserly any rational relation is the $-behaviour of an automa-
ton with endmarker since for any 2-automaton .o, |.</|($,$) is a rational set.

2.2.2. Deterministic and pure deterministic relations

Definition 2.2. A rational relation from A* into B* is deterministic if it is the
$-behaviour of a deterministic 2-automaton with endmarker over 4* x B*. A rational
relation from A* into B* is pure deterministic if it is the behaviour of a deterministic
2-automaton over 4* x B¥.

It does not directly follow from the definition that a pure deterministic relation is a
deterministic one. However, an easy construction restores consistency.

We denote by DRat 4™ x B* (resp. D’Rat 4* x B*) the set of deterministic (rational)
relations (resp. of pure deterministic (rational) relations) over 4* x B*. We denote them
also by DRat, and D'Rat,, respectively, if the alphabet is not specified.

It is well-known that DRat; is a proper subclass of Rat, which contains Rec;, that
it is closed under complementation and that it is not decidable within Rat, [7].®
Example 2.1 is the classical paradigm for rational relations that are not deterministic.

Example 2.1. The function &, : {x}* — {x}* defined by

2 2n

x "OC| = x 2n+1

and x7" o =x"

for every n in N is a rational function, but not a deterministic one.

8 This means that, given a 2-automaton, it is not decidable whether there exists or not an equivalent
deterministic one.
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It is “intuitively” clear that «, is not deterministic. But if one wants fo prove that
fact, one cannot help from establishing an itcration lemma. An iteration lemma for
rational relation is given for instance in [2, Lemma I11.3.3]. Such a lemima can be
made more precise for deterministic (and pure deterministic) relations.

Lemma 2.5 (Iteration lemma). For every deterministic relation 0 of A* x B* there
exists a positive integer N with the following property. Every pair (u,v) in 0, with
both u and v of length greater than N, admits a factorization

(u, v) = (u1,01)(f, 9) (42, 02)

which meets the following conditions:
O (/9lz0;
(i) (i f, i) <N;
(iit) for any h and k such that (uy fhyvigk) is in 0, then (u) f"h,v1g"k) is in 8 for
any integer n.
If 6 is pure deterministic, the condition “\ul>N and |v|>N" may be replaced by
“I{u, 0)} >N while the same conclusion holds.

Proof, Let o7 = {(Q,4s,Bs,E,q0, T) be a deterministic 2-automaton which realizes 0
and let N =|Q|. Let (u,v) € 6 such that |u{>N and |v|>N, then goo (u$,v8)=t€7T.
Let (/1) be the prefix of length N of the factorization of (u$,v$) determined by .o/,
Since the length of both u and v is greater than N, the final $ neither belongs to
nor to v/. The computation gp o (¢/,v") may thus be written as

G~ gL qa g1 — g (2.1)

with every ¢; in (4 x {1z })U({ls+} X B). The rest of the proof mimics the classical
one for the iteration lemma for (1-)automata. Since N =|Q|, there exist distinct i and
J such that g; =g, =q. Let us note

(u,v1)=cy---¢; and (f,g)=cip1- ¢

Then gg o (u1,v;) =g and go(f,g) =gq. Thus, for any (4, k) such that go (B k)=1 €T,
and for any integer n,

qo o [(ur,v))(f, ) (h k)] =1

holds. The three conditions of the lemma are thus met.
If 6 is pure deterministic, it is realized by a deterministic 2-automaton .7 = {Q, 4, B,
E,L,T) and the computation (2.1) exists as soon as [(u,0)|>N. O

The necessity of considering 2-automata with endmarker is expressed by the follow-
ing.
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Fig. 3. A deterministic automaton with endmarker for 0,.

Proposition 2.6. D'Rat, is a proper subclass of DRat;.

Proof. Condition (iii) of Corollary 2.4 takes indeed a special form for pure determin-
istic relations: If 0 is a pure deterministic relation from A* into B*, then

Vu, fed¥, Yv,g€B* (uf,v)€8 and (u,v9)€0= f =14 or g=lg-. (2.2)

The universal relation, i.e. the relation the graph of which is the whole set 4* x B*,
which is recognizable, and thus deterministic, does not meet (2.2). O

The following example shows that, conversely, (2.2) is not a sufficient condition for
a deterministic relation to be a pure deterministic relation,

Example 2.2. The relation 6, = {(a"b,a")|n>0}U{(a",1)|ne N} is deterministic
since it is the $-behaviour of the deterministic automaton with endmarker drawn in
Fig. 3. Moreover, 8, satisfies (2.2): let u, v, f and g be such that (uf,v)€ 6; and
(u,0g) € 8,. Assume that g £ 1p-; then (u,vg)=(a"h,a") and (uf,v)=(a"bh,a™) (since
a"b 1s not a prefix of a™). Since a"b has to be a prefix of a™b, we obtain m=n and
g = 13* .

On the other hand, 0, does not satisfy the specialization of Lemma 2.5 for pure
deterministic relations.

Let us end this section by the fact that we do not know whether D'Rat; is decidable
within DRat; or not.

2.2.3. An example

Morphisms, and thus inverse morphisms, as well as intersection with rational sets
are (pure) deterministic relations. This implies, by the way, that (pure) deterministic
relations are not closed by composition. The next result gives an interesting example
of non-trivial deterministic relations (resp. pure deterministic) as well as a lemma for
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afa+b/b+c/c

(a) A 2-automaton for e~}

{b) A deterministic one

Fig. 4. Two 2-automata that realize @ ¢ ~'.

later use. Recall that a morphism ¢ from 4™ into B* is continuous if Ap C BT, i.e. if
no letter of 4 is mapped by ¢ on lg-.

Proposition 2.7. Let ¢:A* — B* be a morphism. Then the mapping equivalence
@@~ A% — A" is a deterministic relation. Moreover, if ¢ is continuous then @ ¢~'
is pure deterministic.

Example 2.3. Let 4= {a,b,c} and B={x, y}. Also let ¢ : 4* — B* be the morphism
defined by

ap=x, bp=yx and cep=uxy.

Then straightforward computations lead to the 2-automaton shown at Fig. 4(a) for
@@~!. Also normalization and rearrangement yield the deterministic 2-automaton of
Fig. 4(b); states in “Qpg” are shown in grey and the names of states match the names
used in the construction given below for the proof in the general case.

Proof of Propesition 2.7. Let us first prove the statement for continuous morphisms.
Thus, let ¢ : 4% — B* be a continuous morphism. Let S be the set of prefixes of 4¢:

S={scB*|3ac4d s<agp}.

Then the automaton ./ we are buiding will have the set O =S5 x {1,2} as set of
states; the unique initial state is (1z«, 1), which is the unique terminal state as well.
The transitions of .o/, described in the functional setting, are the following:

((a@)7's, 1) if ap<s,
(s, Do(a, l=)=< (s"'(ap),2) if s<aop, (2.3)

undefined otherwise,
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((a@)~'s,1) if ap<s,
(s,2)o(I4-,a) =< (s7'(ap),2) if s<ap, (24)
undefined otherwise.

Let us prove, by induction on |f| -+ |g], that, for every s in S, the two equivalences
hold:

S(g(p):f(p < (S’l)o(f>g):(13*’l)’ (25)
s(fe)=g¢p and s# lp & (5,2)0(f,9)=(Ip, 1) (2.6)

Transition (2.3) gives (2.5) and transition (2.4) gives (2.6) for |f|+ |gl=1.
Suppose s(gp)= f@; then | f|=1, f=af" with a in 4 and either ap <s, in which
case

(s, Do(a,=)=(s,1) and s'(go)=f"¢

or s <agp, in which case

(S, 1)0 (a’ IA“ ) :(Sfaz) and S’(flq)):q(p

In both the cases, the induction hypothesis yields
(S, l)o(fﬁg):(lE*a l)'

Suppose conversely that (s, 1)o(f,g)=(13-,1); from the definition of the transitions
of & then necessarily f =af’ with a in 4 and either ap <s, in which case

(s:Dolaly)=(s,1) and (5, 1)o(f",9)=(Ip-. 1)
or s<a¢, in which case

(s, )o(a,14)=(s,2) and (s,2)o(f",9)=(lp-,1).
In both the cases, the induction hypothesis yields

s(gp) = fo

Equivalence (2.6) is treated exactly the same way. Now, noting that (1p«,1) is the
unique initial state as well as the unique terminal state of .7, the equivalence (2.5),
taken for 5= lp-, expresses exactly that o~ = |&/|.

Suppose now that ¢:C* — B* is not a continuous morphism. There exist then a
partition C =4 + D such that the restriction of @ to 4* is a continuous morphism and
for every d in D do=1z-. It is clear then that (u,0) € @ ¢~ if and only if u and v
may be written as

u=xifixafa - xpfpxpr1 and v=y191y202 " Ve Vgri (2.7)

with the f;’s and g;’s in 4, the x;’s and y;’s in D*, and such that (fif>--- Jo@1g2- -

g €@t
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Let us build an automaton as above for the restriction of ¢ to 4* and let us add,
for every s in § and every d in D, the following transitions:

(s, Do(d,1¢c*)=(s,1) and (s,2)o(1l¢c-,d)=(s,2).

It is not difficult to check that the behaviour of such a transformed automaton will be
exactly the set of pairs (u,v) such that y,, = 1p- in the factorization (2.7). In order
to recover the whole graph of @ ¢~! we must use an endmarker and add another two
states ¢ and ¢ with the following transitions:

(I, 1)o($,1cx)=t VdeD, to(lg-,dy=t to(lc+,$)="¢,

and the terminal state is not (1-,1) any more but /. [

2.3. Serialization of deterministic automata

The aim of this section is to show that any deterministic automaton with endmarker
may be put into a kind of normal form in which the endmarker is read once and only
once on each “tape”. We first begin with the specialization of Proposition 1.4 for the
case of deterministic relations.

Corollary 2.8. The intersection of a deterministic relation and a recognizable relation
is a deterministic relation.

Proof. Let 0 be the $-behaviour of a deterministic 2-automaton with endmarker of =
(Q, 45, Bs, E, q0, T)), then |.o7|NA*$ x B¥*$=0(3,$). Let RERec(A* x B*), then R(S$,$)
€ Rec (45 x By) since recognizable relations are closed under product (Corollary 1.6).
By Lemma 1.9 and Proposition 2.1, there exists a deterministic 2-automaton # over
A x B§ such that |.o/| N R($,$)=|2)|. Hence

|B| N A*S x B*$ = |.o/|NA™$ x B*$NR(S,$)
=0(8,$)NR($.$)
=(0NR)($,9)

holds, and 6N R is the $-behaviour of the deterministic 2-automaton #. [

Remark that Lemma 1.9 also implies that the intersection of a pure deterministic
relation from 4* into B* and of a recognizable relation from 4™ into B* is a pure
deterministic relation from 4™ into B*.

Proposition 2.9. Any deterministic relation from A* into B* is the $-behaviour of a
deterministic 2-automaton 2 such that |9\ is a subset of A*$ x B*$. Moreover, we
may assume that 9 has a unique terminal state t, which belongs to Qy.

Proof. Let 6 be the $-behaviour of a deterministic 2-automaton with endmarker .o/ =
(Q,As,Bs,E,I,T). As we did in the preliminaries, we identify the set £ with a
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Fig. 5. The block decomposition of .7

(Q x Q)-matrix which can be written X +Y (where the entries of X are in (4 x {15-})
and those of ¥ in ({14} x B)) and we identify the set / with a row vector and the
set 7 with a column vector. The partition 0= 0, Qp yields the following block
decomposition of X and Y:

(X X {0 0
X"(o 0 ) Y_<YA YB)’
where X (resp. Xz) is a (Q4 X Q4)-matrix (resp. (Q4 X Op)-matrix) over (4s x {lz-})

and Y, (resp.¥p) is a Qp x Q4-matrix (resp. Oz x QOp-matrix) over ({14} x Bs). The
Boolean vectors 7 and T can be written as well as

T,
1:(1,4 IB) and T:<TZ>,

where I, and Ty, and Iy and Tp, are respectively of dimension @4 and Qp. This is
illustrated in Fig. 5.

The aim of Proposition 2.9 is to separate the endmarkers $ from the letters of 4 and
B so it will be convenient to write the matrix X as the disjoint union of two matrices:
one, X', with entries in (4 x {lz-}) and the other, X", with entries in {($,15+)}. In
the same way, the matrix Y is written as the disjoint union of a matrix ¥’ with entries
in ({14} xB) and a matrix Y”, with entries in {(14-,$)}. It induces the following
block decomposition:

vty (X4 Xp Xi{ Xy
XWX+X—(O R R B

o wn (00 0 0
YwYﬁ—Y—(Y/; Yz; + Y/;’ Yl;, .

The set A*$ x B*$ is recognized by the action #=(R,43 x BY,-,{1},{4}) as drawn
in Fig. 6.

By Lemma 1.9, the set |.&/| N |%| (which is equal to |«/|N(4*$ x B*$)) is the be-
haviour of the deterministic 2-automaton € = (Q X R, 43, Bs, G, 1 x {1}, T x {4}), where
the set G of labelled edges is defined by

G={((p.r).c.(g:sN|(p.c.q) EE, r-c=s)}.
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{1}xB

Ax{1}

Fig. 6. An action # recognizing 4*$ x B*$.

Fig. 7. The automaton % with behaviour |&/]N(4*$ x B*$).

The definition of G implies that

pE€Qy cedsx{lg} ref{l2}
(p.r)e(g,s)NEC = or
pPEQs CE{IA;}XB$ re{l,3}.

Remark that the states of (Q4 x {3})U(Qs x {2}) are not co-accessible since they are
not terminal and there is no edge which starts from these states. So we may delete
them and we obtain the 2-automaton as drawn in Fig. 7.
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Fig. 8. The serialized 2-automaton &.

There is no edge which starts from the states of (Q4 x {4})U(Qs x {4}) so we
may identify all these states with a unique terminal state ¢. Finaly, let us consider the
following notation,

X;H:X;TA +X§TB and Y;!Z /?TA +YgTB,

Q=04 x {1}, i=0sx{2},  Qp=0px{1} and Qy=0sx{3},

which allows to define the deterministic 2-automaton & as drawn in Fig. 8. The set
|.oZ| N (A*$ x B*$) is the behaviour of Z and 0 is its $-behaviour. This automaton &
is called serialized. [

2.4. Synchronized rational relations

The only families of deterministic relations we have seen so far are the recogniz-
able relations and the mapping equivalences of morphisms (between free monoids).
Other works on rational relations have shown the usefulness of another subfamily of
deterministic relations: the synchronized rational relations (cf. [8]). For they will be
considered in the last section of this paper, we briefly review here their definition,
some of their properties, and we give some examples of such relations.

Roughly speaking, synchronized rational relations are those relations realized by
2-automata where the two reading heads move simultaneously on the two input tapes
(if one is considering the Rabin-Scott mode! of automata). More precisely, and in
the labelled graph model of automata, one defines first two classes of 2-automata:
the letter-to-letter 2-automata and the 2-automata with terminal function. A letter-to-
letter 2-automaton is a 2-automaton with edges labelled in 4 x B. A 2-automaton
with terminal function is a 2-automaton in which the set of terminal states — which
can be considered as a function from @ into B — is replaced with a function ©
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from Q into P(A* x B*). The behaviour of such an automaton is the set of pairs

of words (f'f",4'g"”) for which there exist an initial state p and a state g such

that p('f’—‘%)q and (f",¢")Eqw.

Definition 2.3 (Frougny and Sakarovitch [8]). A rational relation 0 is synchronized if
it is realized by a letter-to-letter 2-automaton with a terminal function taking its value
in the set

Diffgy = {(8 X 1z-)U (14 x T)| S €Rat 4™, T € Rat B*}.

Let us mention at this point that, like determinism and unlike recognizability or
being letter-to-letter, being synchronized is an oriented notion as the automata read
words from left to right.

The family of synchronized relations strictly contains Rec, and is an effective Boolean
algebra.?

It will be convenient to have a more general characterization of synchronized rela-
tions:

Proposition 2.10. A rational relation 0 is synchronized if and only it is realized by a
letter-to-letter 2-automaton with a terminal function taking its value in Rec (4* x B*).

Proof. Since Diff g, is a subset of Rec (4* x B*), the condition is obviously necessary.

Let 6 be a relation from A™* into B* realized by a letter-to-letter 2-automaton
of = (Q,4* x B¥,E,I,») with a terminal function o taking its value in Rec (4™ x B*).
Since the union of two synchronized relations is synchronized, we may assume that
there is only one state ¢ such that tw # 0 and that ¢ is not an initial state. Since
every recognizable relation is a synchronized relation, there exists a letter-to-letter
2-automaton with terminal function #= (P,4™ x B*,F,J,e) which realizes tw. Let
%= (QUP,A* x B*,G,1,¢) with

G=EUFU{(p,a,b,j)|jeJ and (p,a,b,t)€ E};

then % is a letter-to-letter 2-automaton with terminal function taking its value in Diffgy
and € realizes 6. [

Proposition 2.11 (Frougny and Sakarovitch [8]). Synchronized rational relations are
deterministic.

We shall prove in Section 5.4 that the family of synchronized rational relations 1is
closed under composition (Proposition 5.7), unlike the family of deterministic rational
relations.

? This means that if two elements of this family are (effectively) given, by a finite 2-automata say, one
can compute a 2-automaton that recognizes the intersection, the complement, and one can also decide if the
elements are empty or not.
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{(a,a)lacA} AxA {(a,a)la€A} AxA

{{a,b)la<b} {(a:b)|a<b}
{1}xAt (At x{1hu({1}x4")

Fig. 9. Lexicographic ordering: induced relations.

AxA

{((lva)laeA}

{(a:b)lb“«l}

AxA

Fig. 10. The relation 0s.

Example 2.4. The classical orderings on words provide useful examples of synchro-
nized rational relations (and they will be used in Section 5).

Let < be an ordering on the alphabet 4 and let < be the strict ordering associated
to it. The lexicographic ordering on A*, denoted by <, is defined by

g=fh with A€ A" or
f=uav, g=ubw with a<b

f<g©{

The military ordering on A*, denoted by C, is defined by

{Ffl<!91 or
[fI=lgl and f=xg

(i) The relation 8; which associates to every word u the set of words v of same length
as u and greater than u in the lexicographic (or military) ordering is a synchronized
relation. It is realized by the letter-to-letter 2-automaton as drawn in Fig. 9(a).

(ii) The relation 8; which associates to every word u the set of words v greater
than u# in the lexicographic ordering is a synchronized relation. It is realized by the
letter-to-letter 2-automaton with output function, as drawn in Fig. 9(b).

fCg &
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(1i1) The relation s which associates to every word u the set of words v greater than
# in the military ordering is a synchronized relation. It is realized by the synchronized
2-automaton drawn in Fig. 10.

3. Representation of deterministic relations

In this section we prove that a deterministic rational relation can always be given
a representation of a special form (Proposition 3.2). We have first to define what is
a matrix representation for a 2-automaton with endmarker, and what is this “special
form”.

3.1. Prefix matrices

We extend here the definition of prefix subsets to matrices of subsets.
Let M be a (P x Q)-matrix with entries in B(4™). For every p in P we denote by
Mp,+ the union of the entries of the line p of M, i.e. Mp o= coMpq

Definition 3.1. A (P x Q)-matrix M with entries in B(4™) is prefix if every row of
M forms a prefix family of languages, i.e. for every p in P: (i) the entries M, , are
pairwise disjoint; (ii) M, o is a prefix subset of 4™.

The product of two prefix subsets is a prefix subset. A slightly stronger property
indeed holds.

Property 3.1. Let X be a prefix subset of A*. Then
vx,x' €X, Vy,y ed*  xy<x'y = x=x and y<y.

Proof. If xy is a prefix of x'y’ then x is a prefix of x’ or x’ is a prefix of x. Since X
is prefix, it follows that x =x'. Now xy <x)’ implies that y<3y’. [

Proposition 3.1. The product of two prefix matrices is a prefix matrix.

Proof. Let M be a prefix (P x Q)-matrix and M’ be a prefix (O x R)-matrix, both
with entries in P(4*). Let p in R, let r, s in R and let u, v in 4™ such that

ue(MM'y,, veMMM"),, u<u.
By definition of the product of matrices, there exist j and & in Q such that
3feM,;, 3feM;, u=ff and 3geM,;, g eM; v=gg.
Since both f and g belong to the prefix subset M, ., we have (Property 3.1)

ff'<gd = f=g and f'<g.
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Since the (M, )4co are pairwise disjoint, f =g, with f in M, ; and g in M, ;, implies
that j=k. Hence, f’ and ¢’ both belong to the same row j of M":

7 14 ! ’
feEM;, and g €M,

Now f’<¢g' implies /' =g’ and r =s. Thus u=v and r = 5. Hence the pth row of MM’
forms a prefix family. O

3.2. Representation of 2-automata with endmarker

We have recalled in Section 1 that every 2-automaton over 4* x B* can be given
a so-called representation (A, u,v) where y is a morphism from 4™* into a monoid of
square matrices with entries in Rat B*. Since we are going to discuss representations
of deterministic relations and since such relations are defined via 2-automata with
endmarker, we have first to describe what is a representation of such an automaton.

Let .o/ be a 2-automaton over a monoid A5 x Bf. Then there exists pu:A5 —
(Rat B{)2*¢ and / and v vectors with entries in Rat By such that

|| ={(u,0)|veE i uu-v}
The $-behaviour of .o/ is thus represented in the following way:
(u,v)eldls & vS€l-up-(Su-v).

Note that, since it is always possible to assume that |.o/| C 4*$ x B*$, this implies, if
o is also chosen to be trim, that the entries of 4, of v/ =8u-v, and of A-uu-v/, A-up,
up - v and up, for every u in 4%, all belong to Rat B* or to (Rat B*)$.

Accordingly, a representation with endmarker of a relation 6 from A* into B* is
a triple (4,4,v) where y is a morphism p:4* — (RatB{ )22, ie(RatBg)'*¢ and
v e (Rat B )2*! such that

Y(u,v)€A* x B* (u,v)€0 < v$€i-up-v.

3.3. Representation of deterministic relations

A representation (4, i, v) from 4* into B* will be said to be prefix, if A, v and ay,
for every a in A, are prefix matrices. In such a case, it follows from Proposition 3.1
that A -wp-v, A-uy, up-v and uy, for every u in A*, are prefix matrices.

We are now in a position to state the characterization of deterministic relations we
are aiming at.

Proposition 3.2. A rational relation is deterministic if and only if it has a represen-
tation with endmarker that is prefix.

Proof. (A) Let 0 be the $-behaviour of a deterministic 2-automaton with endmarker
o = {Q,As,Bs,E,I,T) — with the understated partition O = Q, U Qg. With the same
notation as in Section 2.3, the O x Q-matrix £ is written as £ = X +7Y, and the partition
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Fig. 11. The block decomposition of ..

Ta+IpYgYa IpY}

Xa+XpY2iYa

Fig. 12. An automaton # equivalent to 7.

O =Q4UQp yields a block decomposition of [,X,Y and T. By Proposition 2.3, we
may assume that .o/ is serialized and we thus get the representation of (the block
decomposition of) &/ as shown in Fig. 11,
As the equality E=X + Y gives
|| =(IY*) - (XY*)* - T,

the block decomposition of .o/ induces a block decomposition of /Y* and XY*:

IY* =L+ IgY; Yy 1Y), (3.1)
XY™ = (XA “(()BY;YA XBOY;) : (3.2)

and then gives the following expression for |.o/|:
|| =g+ 1Y Ya) - (X4 + XgY3 Ya)* - T, (3.3)

which corresponds to an automaton # equivalent to .7 and represented as in Fig. 12.
Starting from (3.3), we define a representation of %, (4,u,7), of dimension Q4 of
A* by matrices over Rat B such that

Y(u,0) €A X B§ (u,v)€ || & vEL-up-y. (3.4)

(The representation (A, g, v) is built in the same way as the representation (2, ', v")
in Section 1.2.2.) The vector I4+1zY; Y, is the block of dimension Q4 of the vector /Y*
(by (3.1)) and thus

VpeQs Ap={veB;|qo(l,v)=p}.

The matrix Xy + XY Y4 is the block of dimension Q4 x Q4 of XY* (by (3.2)) and
thus

Vp,ge Q4 Vx€Ag )c,upqz{veBg< | po(x,)o(1,v)=gq}
and vy is the Boolean vector of dimension Q4 defined by

VgeQs 74=1 geTy
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Claim 3.1. The representation (A, p,7) is prefix.
Proof. (i) The vector y is a prefix matrix since it is a (Boolean) column vector.

(ii) Let p in Q4. Assume that there exist ¢,¢' in Q4 and v,4 in B;‘ such that
VEXHp, and vhCxup.
Then we would have
po(x,1)o(l,v)=¢q and po(x,1)o(l,vh)y=q

which implies, by Corollary 2.4, that go(1,h)=g’. Since g is in Q4 and (1,%) in 1 x By,
we necessarily have

h=1 and g=gq.

Therefore, the pth row of xu is a prefix family and xpu is a prefix matrix.
(iii) The row vector A is shown to be prefix in the same way. O

Moreover, the definition of $-behaviour and (3.4) imply that
V(f.9)ed* xB*  (f,9)€b & g8 -(fSu-y.

Let v=($u) - y. Then v is prefix (as the product of two prefix matrices) and
(f.9)€0 & gS€l-fu-v.

Hence (4,4, v) is a prefix representation with endmarker of the relation 6 (we identify
u with its restriction to 4™).

(B) Let (4, u,v) be a prefix representation with endmarker of the relation 6 and let
R be the dimension of (4, y,v).

Since (4,)pcr is a prefix family of rational languages of Bg‘ , there exist a determin-
istic e-automaton ¥ = (L, Bs,D,i,R) which recognizes this family. By definition, we
have

pEL, i 7 p. (3.5)

For every state p in R and for every letter a in A4, the pth row of ayu is a prefix fam-
ily of rational languages of By. Let .#, ,= (My p,Bs,Eq p, ja, p»R) be a deterministic
e-automaton which recognizes this family. By definition, we have

e
veE(awlpy < Jup 7 q. (3.6)
~Ha p

Remark that % and all the .#, , share the same set R of terminal states. This is
possible since there is no edge starting from terminal states.
For every p in R, let A, = (N,,Bs, Fp,k,, {t}) be a deterministic e-automaton which
recognizes the prefix language v,. By definition, we have
vEV, & kp -:—> L 3.7)

e
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Remark once again that all the .4, may share the same terminal state ¢ since there is
no edge starting from terminal states.
Let us now build a deterministic 2-automaton with endmarker 8 = (0, As, Bs, E, gy, T),
the $-behaviour of which is equal to 0. Let
\e

By identification of the clements of By with the elements of {1} x B{, the edges of
the automata %, (.# 4 placa, per and (A}, c g become the edges of the automaton 4,
the labels of which are in {1} x Bs. It is clear that every such edge starts from a state
of Og. The edges of the automaton 2, the labels of which are in Ag x {1}, connect
the automata &, (.#, pluca. per» (-4, )per together, by linking terminal states to initial
states. More precisely, for every p in R, we define an edge with label (a,1) from p
t0 jo,p and an edge with label ($,1) from p to k,. The initial state of # is equal to i
and the set of terminal states of # is equal to {¢}.

It is clear that # is deterministic on the second tape (since # coincides with one of

QA:RU{I} and Qp= [( U Ma.p>ULU(UNp>

a€4, pER peER

the deterministic automata %, .#, , or .¥,). If there exist a transition p el q (resp.

8. . N
P &1 q), then g=j, , (resp. ¢g=k,), and thus # is also deterministic on the first

tape.
The equivalences {3.5)—(3.7) and the construction of # yield the following equiv-
alences:

. (L) ($.m) {ar)
UE Ly & i - P wWEV, < g - t, and velap)p, & p -4 (3.8)

By induction on the length of f, it follows from (3.8)

. (@R
Ué(.fﬂ)p,q < P 7 q-
We then have the following series of equivalence:

dp.gE€R, Elu,v,w€}3’§<

gsei-(fu)y-v & :
gS=uow, u€ld,, ve(fu)p, and wcy,

Ap.gER, E]u,v,weBg<
s (L (/.Y ($.w)

g% = uvw, i=—p P9 and q 1

PP (8g8) L)

which is exactly what is to be established. [
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Fig. 13. A deterministic 2-automaton o/ for 0y,

Example 3.1. Let 4= {a,b} and B={x, y} and let 85 be the relation from 4™ into B*
defined by (f,9)€bs < |fla<lgh<|fla+1.

The relation ¢ is the $-behaviour of the deterministic 2-automaton with endmarker
of as drawn in Fig. 13.

The partition of Q is Q4 ={p4s,qs.t4} and Qp={ps.qa}; it yields the block de-
composition of /, X, Y and T:

0
Li=0 0 0), Izg=(1 0), TAz(O) and TB——-(g),
1

b1y 0 0 (a,1) (§, 1)
Xy = 0 (B ($,I)), Xg:( 0 0 )
0 0 0 0 0

_[(Ly) (1L,§) 0 ((Lx) 0
YA“( 0 0 (i,S)) and YBM( 0 (1’}}))

We then get
L+ LY Ye=((1,y*x) (1,y*$) 0),
(b, 1)+ (a,y*x) (a,»"3) @Jfﬁ)

X+ XpYiY= 0 b1 (5.1
0 0 0
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b/i+a/y*x

bf1+afy*x

(b) The representation (A, i, )

Fig. 14. The computation of a prefix representation for tg.

which defines the prefix representation (4, g, 7):

1 00 y*x »*$ 0 0 0 '8
ap={0 1 0}, bu=1{ 0 0 0 and $u={0 0 1 |,
0 0 O 0 0 0o 0 0 0

and, finally, the prefix representation with endmarker (4, u,v): 4 and m as above and v
defined by

¥*$
v=8u)-y=1 1
0

The representations (4,4,7) and (4, p,v) correspond to the 2-automata drawn in
Fig. 14(a) and (b).
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Fig. 15. The automata &, My 1, s, Hp 2, A1 and A7

(1,8)

(1,y) (Ly) (L)

Fig. 16. The automaton 4.

Conversely, 8 has the prefix representation with endmarker (4, g, v) of dimension
R={1,2} defined by

* *
o« " [(y'x ¥'8 {10 (V'S
A=({y"x y' %), au-( 0 0 ), bu—(o | and v= L)

The corresponding automata &, # ., M1, #Hpo, N1 and A constructed in part B
of the proof of Proposition 3.2 are drawn in Fig. 15 and the resulting deterministic
2-automaton with endmarker # is drawn in Fig. 16.

We have not yet taken full advantage of the possible assumption that .« is serialized.
This assumption allows indeed to give more information on the prefix representation
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that has been constructed in the proof of the preceding proposition. In order to present
the refined version of the statement, we have to define a notation which allows to
describe certain families of matrices.

Notation. Let £, £y, E5, E4 be four sets. We denote by

E, Ez}

Block
oc [E3 E,

the family of matrices M which have a block decomposition
M M
v~ )
where the entries of every M; are in E;. We shall also use the notation
Eqn .. Eig
Block [E, FE»], Block [ijl and, more generally, Block
Euwi oo Eny
with the obvious meaning.

Proposition 3.3. For any deterministic relation from A* into B*, there exist a prefix
representation (2, u,v) such that, for all ac A,

* * B*$
A €Block [B* B*$] auecBlock [B(; BBSS} v € Block [ - } .

Proof. Let 6 be the $-behaviour of a deterministic 2-automaton with endmarker
o= ((,As,Bs, E,I,T). By Proposition 2.9, we may assume that ./ is a serialized
automaton. We then prove that the representation (4, g, v) built in Proposition 3.2 has
the required form. As seen before, |«/] may be written as

|| =i+ IgY5 Vo) - (Xa + Xp Y5 V)" - T
Since o is serialized, Q4 and Qp admit the following partitions:
04=0,U0 U{t} and Qp=QpUQg

and the matrices /4, {g, X4, Xg, Y4, Yp, T,y and Tp have the following block decom-
positions:

0
Li=(; 0 0), Ig=(Iz 0), Ty=|0] and TB:<8>,
1
X; 00 X; Xy
XA: 0 X}; X;’ and Xgﬁ 0 0 N (3,9)

6 o0 ¢ 0 0
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Fig. 17. The block decomposition of the serialized 2-automaton .&/.

Y, Y, 0 Yp 0
4 == N d Yp= N A
Yy ( 0 0 X,” an B 0 Xé, (3.10)

where the entries of X and X}, (resp. Y} and Y;) are in 4™ x {1} (resp. {1} x B*)
and the entries of X7 and X/ (resp. ¥} and Y/") are in {(8$, 1)} (resp. {(1,$)}). These
block decompositions are illustrated in Fig. 17. With the previous decompositions of
1y, In, X4, X, Y4, Yp, we obtain

L+ 1Yy Yy = (L +15v5 Yy 15y v) o)), (3.11)
t 1yt ¥yt 1yt Ky 1yt ¥
Xy +Xp¥p Yy Xp¥p Yy Xp¥p ¥,
Xi+XpYg V= X! X/ 0 . (3.12)
0 0 0

These computations are illustrated in Fig. 18. Let us recall the construction made in
Proposition 3.2. We first built a prefix representation (4, i, 7) of dimension Q,UQ/U{t}
from A{ into B such that

(f,9)€0 & gSei-(fSHu- 7.
For every states p and ¢ of O, UQ//U{s} and for every letter x of As,

. * * bifg=t
ip={v€Bs |(Lv)eUa+ 1Y Ya)p}, V4= 0 otherwise

Xlpq ={0EBY | (x,0) € (Xy + Xp Y5 ¥a) gl



40 M. Pelletier, J. Sakarovitch| Theoretical Computer Science 225 (1999) 1-63

I TEY Y4 I,Y'5Yy

X+ XGY'5Y)

1"
xXnyryn Xf
BY Bt

Fig. 18. The computations {3.11) and {3.12).

From the block decomposition of 1,4+ /Y5 ¥4 and X+ XY Y, (in (3.11) and (3.12))
and by definition of X}, X}, Y}, Yz, Xz, X/, Y}, Y/, it should be clear that

0
A€Block[B* B*$ 0], y€Biock | 0],
1
B* B*S 0 0 0 B*S
apeBlock | 0 B O for a in 4, and $u<€Block|{0 0 B
0 0 0 0 0 ¢

We then defined a prefix representation (4,4, v) from 4™ into BJ: u is identified with
its restriction to 4* and v=(8u).y, thus

B*$
veBlock] B
0

Since all entries in row and column ¢ are 0, the dimension of (4, 4, v} is in fact O/, U OF.
Therefore, for every g in 4, we have

*

*® * B
B B $J and veBlock{ B

A€Block[B* B*S$], auc Block[ 0 B

4. Complement of a deterministic relation

If the complement of a rational relation is not, in general, a rational relation, it is
not difficult to figure out, starting from the definition of a deterministic 2-automaton
and the description of its behaviour, as done in Section 2.1, that the complement of a
deterministic rational relation is again a deterministic rational relation. Such a statement
is given, for instance, in [14] with no more explanation than that.
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The prefix representation of deterministic rational relations yields a canonical con-
struction of the complement relation. We give it here as an illustration of the potential
of such a representation. It goes through the definition of the prefix complement of a
prefix subset.

For any subset L of A%, let Pre(L) (resp. Pre.(L)) be the set of prefixes (resp.
the set of proper prefixes) of the elements of L. If L is prefix, then Pre (L)=
Pre(L)\L. Obviously, L CPre.(L)- A4 and LNPre.(L)=0 if L is prefix. Let us de-
note by L the set

L =[Pre,(L)- A]\Pre.(L).
Then L is prefix and L CL if L is prefix.

Definition 4.1. Let L be a prefix subset of 4* that we suppose to be non-empty nor
equal to 14-. We call prefix complement of L, and we denote by L, the complement
of L with respect to L:

L=I\L.

It will be consistent to take L= 14+ in the cases where L is empty or equal to 14«;
then we have } =14+ and 14+ =9. It follows from the definition that the prefix com-
plement of a rational prefix subset is rational.

Proposition 4.1. The complement of a deterministic relation is a deterministic
relation.

Proof. Let 6 be a deterministic relation from 4™ into B* and let (A, 1, v) be a prefix
representation of 8 of dimension Q. We may assume that there exists a partition 0, U 0
of O such that, for every a in A,

) B* B* B*$
/. €Block [B* B*S], ap e Block[ 0 BBﬂ , v € Block l . ] .

Let #; and ¢ be two new states and let

O=0i1u{n}, O=0%U{n} and Q' =QU0.

We define the representation 8 of dimension Q' together with the four vectors «, 7,
6 and &’ by the following:

Ql hH Qz %]

o= ~ * ~
,11, jeNB ,1p A.QB*$ ,
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o] 4 [ tg
Aplp.q a}x\g,ﬂB* atip g aﬁ.ﬁ3*$
0 1 0 0
0 0 Allp.g Aflp,e
0 0 0 1
B*$ Vg B*$\y,
B*$ 0 B*$
")) = “)), o
1 vy Ny,
1 0 1
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By construction, (a, §,0), (2, f,y) and (a, B,7’) are prefix representations.
Let u be in 4*; the definition of («, 8,7) gives the following three implications:

PEQ = ap=4ip
(geQ and (”ﬁ)p,q #0) = (peQ and (uﬁ)p.q :(u,u)p.q)
Vq#o = (g€ @ and 7(1:"11)

Hence, we have
a-uf-y= 3 ap(uB)pg¥g= D Ap(U)pgve =74 up-v.
pqeQ’ p.9€Q

Therefore («, f,7) is a prefix representation (with endmarker) of 6.
Claim. (o, 8,3) is a prefix representation (with endmarker) of the whole set A* x B*.

First remark that, for every a in A4,
VpeQj, JgER, app,=1. “4.1)

Let # in A* and v in B*. If a, does not contain any prefix of v, it contains v$ since
it is the smallest prefix complete subset which contains . Moreover, v$ belongs to o,
and since &, = | =(uf),,,, for every u, v$ belongs to o - uff - o.

Assume now that o, contains a prefix of v and let v; be the longest prefix of v such
that there exists a prefix u; of u such that

4] 6(0( . u]ﬂ)..

Such u; is unique; let v, =(v;)"'v and uy = (u;)"'u. Since v; is in B*, the state p
in Q' such that v; € (o - u; ), is in O} and thus 5, =B*$.

If u=wu, then v$ =v(1,8 is in (« - up),0,, contained in o - uf - 6.

If u#u;, then u=uwu au;. By construction, (af), . does not contain any prefix
of vy. It thus contains v;$ since it is the smallest prefix complete subset which
contains (au)p, .. Moreover, 1,$ belongs to (af),,, and since &, =1=(u2f),,, for
every u, v10,3$ belongs to o - ujauyf - . And the claim is proved.

Let now ¢ be the relation from 4™ into B* realized the representation (o, f,7');
since this representation is prefix, €' is deterministic. Since d=yUy’, (a,8,0) is a
representation of 6 U6 and thus

0Ue =4" x B*.
Assume that 6N ¢ is not empty, i.e. there exists a pair (»,v) such that
v8 € (o up - )N (- uf-y").
It follows then

dge @', Jvi €(a-uf)y, In €y, v$ =010,
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and

3¢ €O, I\ e(a-up)y, ey v$ = v 1h.
Obviously, either v; is a prefix of v] or | is a prefix of v, and since the family {(«-
uf)p}pco is prefix, then

vy =0, (and thus »,=1v%) and g=g¢"

But v, = vy contradicts y, N7, =0 and thus 0N ={: 0" is the complement of (' and
we have already seen that this complement is a deterministic relation. [

Example 4.1. Let 4 ={a,b,c} and let 6; be the mapping equivalence of the morphism
that erases the letter a. Then 0; has the following prefix representation (4, u,v) of
dimension Q=0 ={1}:

A=) v=(d*$) au=(1) bu=(a"b) cu=(da*c) v=(a*$).
Let Q' =QU{tt}. Let (,f8,0) be the representation of dimension Q' defined by

A*$
x=(1 0 0), o=[4"s],
1

1 00 ab a*c a*$ ate a*b a*$
ap={0 1 0 = 0o 1 o =10 1 0
0 0 1 0 0 1 0 0 1

(for every letter x of A, xf; 1 =xuy, and x5, (resp. xf8,,) is the prefix complement
of xuy, in A* (resp. in 4*$) and « is obtained in an analoguous way). The column-
vectors 7 and ' are defined by

a*$ A*S\a*$
y=1{ 0 and ' = A*S
0 |

5. Uniformization of deterministic rational relations

Let 0:4* — B* be any relation; a function o:4™ — B* is said to uniformize 0, or
to be a uniformization'? of 0, if it selects one element in f0 for every f in Dom 6.
In other words, a is a function such that

Domoa=Dom0 and Vfe€Dom0 foc f0.

It is easy to derive the following result from Eilenberg’s Rational Cross-Section
Theorem [4].

10 This terminology comes from logic; cf. for instance [1, p. 368].
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Theorem 5.1 (Rational Uniformization Theorem). Any rational relation is uni-
Jformized by an unambiguous rational function.

As a corollary, one gets that every rational function is unambiguous.

We have explained in [17] how a construction on automata due to Schiitzenberger
yields an enlightening proof of Theorem S5.1. This construction naturally takes place
in the framework of covering of automata. We have also shown in the same paper
that this result, instead of being a corollary of some other proposition, can be given a
central position in the theory of rational relations. In spite of its restored preeminence,
Theorem 5.1 remains unsatisfactory by one aspect: it says that any rational rela-
tion @ can be uniformized by a rational function «, the proof guarantees that such
uniformizing o is effectively computable from a 2-automaton .o/ that realizes 0, but
it does not say anything on the “nature” of «. In particular, o will not be intrinsic
to 6 and, in fact, the computed o will depends not only on the automaton .o/ one
starts from, but also on a number of choices that have to be made in the course of
the construction. Let us explain what could be an intrinsic uniformization of a rela-
tion.

Suppose first that a (total) ordering < is chosen on the alphabet B. This ordering
extends, as in Section 2.4, Example 2.4, to the lexicographic ordering on B*. The
lexicographic ordering is total, but is not a well ordering: a subset may well have no
smallest element (e.g. a*b, with a <b).

Given any relation 6:4* — B*, we define 8y, : A* — B* as the function that asso-
ciates to every element f of 4* the smallest element of f0 when this smallest element
exists. We call O the lexicographic selection of 6. Obviously, Dom 8., C Dom 6; if
Dom 8y, =Dom 8, i.e. if 0 contains a smallest element for every f in Dom 6, then 0.,
is a uniformization, called lexicographic uniformization of 0. Clearly, the lexicographic
uniformization of 0 is intrinsic to 6.

In general, the lexicographic selection of a rational relation is mor a rational func-
tion. Though it is difficult to state it formally, it is very likely that any reasonable
attempt to define intrinsic uniformizations would fail in giving rational uniformiza-
tions. The following result, proved by Johnson [10], settles the case for deterministic
relations.

Theorem 5.2 (Lexicographic Uniformization Theorem). The lexicographic selection of
a deterministic rational relation is an unambiguous rational function.

The purpose of this section is to show how Schiitzenberger construct yields a proof
for this result as well, though we have to proceed in way dual to the one we naturally
used for Theorem 5.1. For the sake of completeness, and because of the “duality”,
we recall the Schiitzenberger construct as it is presented in [17]. Let us first add few
comments to Theorem 5.2,

In [15], we showed that the lexicographic selection of the equivalence mapping of a
morphism between free monoids is a rational relation. As such equivalence mappings
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are deterministic relations {(cf. Section 2.2.3), this appears now as a particular case of
Johnson’s theorem. !!

In the same paper, we also considered the “military” selection of a relation, using
the military ordering instead of the lexicographic ordering for the choice of an element
in a subset of B¥*; since the military ordering is a well ordering, we define thus a
“military uniformization” in any case. But it turns out that, even in the very special
case of the eguivalence mapping of a morphism, the military uniformization is not
a rational relation. Which shows that Theorem 5.2 does not state only a property of
deterministic relation, but also a property of the lexicographic ordering, or, to be more
accurate, a property of the relationship between deterministic relation and lexicographic
ordering.

To tell the truth, Johnson proved in [10] that the lexicographic selection (of a deter-
ministic relation) is a (functional) deferministic relation, which is stronger statement
than Theorem 5.2. We are interested here in giving the Lexicographic Uniformization
Theorem, that applies to deterministic relations, the same proof as the one we gave
in [17] for Rational Uniformization Theorem for general rational relations, in order to
point up where the hypothesis of determinism really plays a role and how it allows
to construct the lexicographic selection. It is an open question whether this could be
achieved while retaining the full strength of Johnson’s result.

5.1. The Schiitzenberger construct on automata

The Schiitzenberger construct operates on “classical” automata (not on 2-automata)
and yields Theorem 5.3 below. We first describe the construct in terms of labelled
graphs and then we rephrase it by means of matrix representations. We shall stress on
the dual construct for it is the one we shall use later.

Theorem 5.3. Let o/ be an automaton on A*. There exists an unambiguous au-
tomaton that is equivalent to </ and that is an immersion in /. There exists an
unambiguous automaton that is equivalent to </ and that is a co-immersion in /.

The essence of this statement — which is the way the construction of [21] is presented
in [17] — lies in the fact that the quoted equivalent automaton is an immersion (or a
co-immersion) in of. For otherwise, the deterministic automaton /g, and the co-
deterministic automaton .., associated to &/ by the so-called “subset method” are
obviously unambiguous and equivalent to .%/. But they are not an immersion, nor a
co-immersion, in .o/: for instance, there is no relationships between the pathes in o/
and those in 7, as it can be observed in Fig. 19.

The immersion we shall get is a subautomaton of a special covering, that we shall
call S-covering of o/ and that is the accessible part of the direct product of o/ o

'l The relations that are considered in [15] are indeed slightly more general, since they are the composition
of an equivalence mapping of a morphism with the intersection with a rational set. Such relations can be
shown to be deterministic as well.
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Fig. 19. The automaton /| and .o/, its co-determinized by the subset method.

with f; accordingly, the co-immersion we shall get is a subautomaton of a special
co-covering, the S-co-covering of </, which is the co-accessible part of the direct
product of A g With <.

The S-covering and the S-immersion have been built in [17]. We recall here these
constructions and we adapt them to the S-co-covering and S-co-immersion.

5.1.1. The construct on labelled graphs

As we just did, we note /4 the deterministic automaton obtained from an automa-
ton o/ over a free monoid by the subset method (and we call it the determinized
of o).

Theorem & Definition 5.4. Let o/ be an automaton and .o 4 its determinized. Let
S be the accessible part of o/ 4 x /. It then holds:

(1) ny is a covering of & onto o,

(ii) my, is an In-surjective morphism from & onto </ .

We call ¥ the S-covering of /.

Example 1.1 (Continued). The S-covering & of /1, together with =/, and 7,4 are
shown on Fig. 20. The transitions of & on which n,, is not In-injective are marked
up as bold arrows.

As already mentioned, we denote by .7 .4 the co-deterministic automaton obtained
from an automaton ./ by the subset method (and we call it the co-determinized of 7).

Theorem & Definition 5.5. Let o/ be an automaton and of . its co-determinized.
Let &' be the co-accessible part of of oq % Z. Then the following holds:

(i) my is a co-covering of &' onto o/,

(ii) 7y, is an Out-surjective morphism from &' onto A g

We call &' the S-co-covering of /.

Example 1.1 (Continued). The S-co-covering & of o}, together with .&/; and .o7| .
are shown on Fig. 21. The transitions of & on which n.,_, is not Out-injective are
marked up as bold arrows.
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Fig. 21. The S-co-covering of 7.

In order to prove Theorem 5.4, we first state two easy properties of morphisms
of automata (cf. [17]). Let & = (Q. A, E,[,T) and #= (R, A,F,J,U) be two automata
on A*.

Property 5.1. Let B be a deterministic and complete automaton on A. For any au-
tomaton ¢ on A, .y Is an Out-bijective morphism from B x of onto <.

Property 5.2. Let ¢ : B — o/ be an Out-bijective morphism and let € be the accessible
part of B. Then the restriction of ¢ to € is an Out-bijective morphism from % onto <.



M. Pelletier, J. Sakarovitch! Theoretical Computer Science 225 (1999) 1-63 49

Condition (i) of Theorem 5.4 is then seen as a particular case of a more general
statement.

Propesition 5.1. Let of be an automaton, # a deterministic automaion equivalent
to 7, and & the accessible part of # x /. Then n. is a covering from & onto .

Proof. By Properties 5.1 and 5.2, n, is an Out-bijective morphism from & onto 7.
Since # (as any deterministic automaton) has only one initial state J = {rq}, then
for every initial state i of .o/ there exists one and only one initial state in in;,‘: (ro,8).
Let now (r, p) in R x Q be an accessible state of # x .o7, i.e. there exist f in 4*
and i in / such that

, J ! .S
70, r, thus r and i .
(o7 27, () 0 o
If pisin T, then f is in | /| and r is in U since & is equivalent to .«/: every state
of & that is mapped onto p by 7. is terminal.

The three conditions for being a covering have thus been checked for n. : ¥ — /.
O

Proof of Theorem 5.4. It remains to prove condition (ii).
Let .o/, = (29,4,F,J,U).'2 By definition,

F={(P,a,5)€29 xAx22|8S={s|IpcP(p,a,s)CE}},
J={I} and U={se2?|SNT #0}.

From this definition, it follows that

Ps & = {q|apep p_“fq}
and then

YP,SCQ VYgqeS P 7 S = 3dpeP p 7 q

= 3peP (P,p) — (S.q)
Ay X of
which expresses that n4,: % — .o/ 4 is In-surjective. [
Proof of Theorem 5.5 goes in a way dual to the one of Theorem 5.4. Statement of

intermediary properties is useful for it helps understanding, but formal proofs are not

really needed since the dual of what is true for .« holds for 7"

12 This should not be confusing, for <74 and Z never appear in the same statement; on the contrary, .o/
happens to be a special case of an automaton 4.
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Property 5.3. Let # be a co-deterministic and co-complete automaton on A. For any
automaton of on A, wy is an In-bijective morphism from % x s onto <.

Property S.4. Let ¢:%# — of be an In-bijective morphism and let € be the co-
accessible part of 8. Then the restriction of ¢ to € is an In-bijective morphism
from € onto .

Condition (i) of Theorem 5.5 is then seen as a particular case of a more general
statement.

Proposition 5.2. Let o/ be an automaton, # a co-deterministic automaton equivalent
to .7, and ' the co-accessible part of B x of. Then =y Iis a co-covering from &'
onto .

Proof of Theorem 5.5. It remains to prove condition (ii).
Let o0 = (29,4, F',J', U}, By definition,

F'={(P,a,8)€22 x Ax 22 |P={p|3s€S (p.,a,s)€E}},
J' ={Pe2?|PNI#0} and U ={T}.

From this definition, it follows:

P—S < P={p|3geS p—>q}

¥ cafr

and then

YP,SCQ, VpeP P%S = Jges p%q

oo

= qes (P.p) = (S.9)

oy X o0

which expresses that n,_,: " — o o0 is Out-surjective. [J

Proof of Theorem 5.3. Let ¥ be the S-covering of an automaton /. Since 7y, is
In-surjective from & onto &/, it is possible, by deleting some edges in &% if ny,
is not In-injective, and by suppressing if necessary their quality of being terminal to
certain states, to construct a sub-automaton & of & that is a co-covering of .o/ 4. Such
a g is thus unambiguous (Corollary 1.8), and equivalent to /¢, and thus to /. Since
& is a covering of .o/, Z is an immersion in .&7.

Let &’ be the S-co-covering of .o7. Since 7., is Out-sutjective from %’ onto o7 coe,
it is possible, by deleting some edges in &' if ny_, is not Out-injective, and by
suppressing if necessary their quality of being initial to certain states, to construct a
sub-automaton 7 of &’ that is a covering of sf.y5. Such a F is thus unambiguous
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{(Corollary 1.8), and equivalent to /., and thus to .o/, Since ¥’ is a co-covering
of &/, 7' is a co-immersion in /. [J

5.1.2. The construct on matrix representations

The above construct may be rephrased in terms of matrix representations. In itself,
this does not bring in anything new. But the framework of representations proves to be
better suited for the application we are aiming at: the uniformization of deterministic
relations. In [17], we have presented the computation of the matrix representation of
both the S-covering and a S-immersion of an automaton /. Here, we give the compu-
tation of the matrix representation of the S-co-covering and of a S-co-immersion of .&/
since it is this matrix representation that we shall use next. As we have already ob-
served, the two computations are indeed the same and a sheer transposition of matrices
yields one from the other.

Let (4, p,v) be the representation of &/ ={Q,4,E,I,T) and (1, ', &) the represen-
tation of 7 cop = (29,4,F",J', U, ie.

VP,S€Q, VacAd akps=1 & P={p|IgeS app,=1},
ng=1 & 3geS iy,=1 and =1 P={p|v,=1}.

By definition, ax’ is column-monomial, i.e. every column has at most one non zero
entry (this is clearly equivalent to the fact that o/ is co-deterministic).

By Proposition 1.2 the representation of o/.og % o is (', k', EHR(4, 4, v). Any ma-
trix (f)'®u is a 22 x 2€ block matrix made of blocks of size O x Q.

In order to describe the representation of the S-co-covering, the co-accessible part
of f 9 X s, we need another notation. Let « be any (Q x R)-matrix and let S be
any subset of R. We denote by a5/ the matrix whose columns are those of « if their

index is in S and O otherwise, ® i.e.
o if geS8,
(OCISI )p,q = e 9 .
0 otherwise.

The dimension of the representation ({’,6’, ') of the S-co-covering is 22 x Q, the
same as the one of (7, x’, & )®(A, 4, v). For every a in A4, the matrix a¢’ is a 2¢ x 29-
matrix of blocks obtained by replacing the non zero entry in the column S of ax’ by
the Q x Q-matrix au!dl, ie.

apSif akps=1,

'
aa rouand
(P,O)(S5.0) { 0 otherwise.

I3 Here is the only subtle difference with (the notation of ) [17]. For a () X R-matrix &, we denoted there
by alf! the matrix the lines of which are equal to those of a if their index is in P and to 0 otherwise.
What we need here, by transposition, is to retain columns of o instead of fines; but the notation of%) would
have been ambiguous when confronted to alfl, If we were to use also /71 in the present paper — which we

purposely avoided — or if we had to rewrite {17], we would denote it by .
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Accordingly,

v if E=1,

— s -
vscQ QS’Q)—M' and wEP’Q)_{O otherwise

Example 1.1 (Continued). The matrix representation of the automaton 7 is

110 1 00 0
A=(100), au=10 0 0], bu={0 0 1}, v=1|0
0 01 0 0 1 i
The matrix representation of o7 4 is

0 0 0 0 1 10
; , 1110 ;10 0 0
n=(11 0 0), ac'=1"4 0 ol bi' = 00 1
00 01 0 0 0

0

g |0

g“ 0 s
1

and the representation ({’, o', w’) of the S-co-covering &’ of &/, is then

0
0
0
0
0
{'= (100 100 o000 000), o = z ,
0
0
0
0
1
0 0 0 0
110 100 010
o000 000 o000 0
, 001 001 001
ac’ =
0 0 0 0
000
0 0 0 o000
\ 001

o = O O
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and

100 1 00

001 001 0 0

001 00 1

0 0 0 0

be' = oo0oo0o o0o00o0]’

0 0 001 001
001 001

0 0 0 0

where the “big zeroes” represent (3 x 3)-blocks of zeroes.

The reader will easily check that this is the representation of the automaton shown
in Fig. 21, with the difference that, in order to have all blocks of the same size (3 x 3),
every dashed box in the figure is supposed to contain 3 states, the missing ones being
the initial or terminal state of no edge whatsoever.

The definition of an S-co-immersion is then straightforward from ({’,¢’,w’). For
every letter a in 4¥, every non-zero block agy, 0)(s.0) 1S replaced by a row monomial
block which has the same non zero rows as the original block. In other words, every
non monomial row of any (Q x Q)-block of a¢’ is made row monomial, but not zero,
by the deletion of arbitrary entries. The same operation is performed on the (1 x Q)-
block vectors of (.

Example 1.1 (Continued). There are two S-co-immersions 7} and 775 in ./, with
representations (x|, 7}, ®’) and (x5, 15, w’), respectively. Obviously, bt} = bt =bo’ and
¥t =5 =1{". The construction has a real impact on at] and a1} only:

0 0 0 0
1 0 100 010
0@0 000 000 0
, 001 001 001
at) =
0 0 0 0
000
0 0 0 o000
00 1
and
0 0 0 0
Ol to 100 010
0 00 000 000 0
gr—= 001 001 0o
2 0 0 0 0 |-
000
0 0 0 000
00 1
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where the “deleted” entries have been marked by a box for easier location. They
correspond to the transitions that have been marked up in Fig. 21.

The example shows clearly that it is the blocks of ac’ (or bo’) that are transformed
into row monomial matrices, and not the whole matrix as’ (or bo').

It is probably under this matrix representation that the “idea” that makes the S-co-
covering so powerful appears more clearly. For instance, the product &/, X &, is a
co-covering of &/, as is 9, but it does not allow the construction of S-co-immersions
by (arbitrary) deletions of entries with a simple criterion (as “transforming any block
into a column-monomial one”).

We now extend the construct from automata over 4™ to automata over 4* x B*.

5.2. S-uniformization of rational relations

The above construction of S-co-immersions yields a proof of Rational Uniformization
Theorem.

Proof of Theorem 5.1. Let §: 4™ — B* be a rational relation and let (4, », v) be a matrix
representation — of dimension 0 — of 8. Let € be the real-time 2-automaton defined
by (A, v) and .o/ its underlying input automaton. Let (#,k’, &) be the (Boolean)
representation — of dimension 292 — of ... It is the virtue of the notion of co-
covering (and of the notation) that the definition of the matrix representation ({’, ¢’, ')
of the S-co-covering &’ of € is identical as the one in the previous section. The only
difference is that the entries of the matrices (and vectors) are in P(B*) instead of B:

apll if axh g =1,

!
aa =
(P.O)(S.0) { 0 otherwise.

Accordingly,

v o if &=1,

ot s ’ _
VSCQ Usg=4" and wfpg,= {0 otherwise.

In particular, since &’ is equivalent to €, we have {'- fo' - = 2. fu-v for every [
in A%,

The making of the representation (y’,7’,y’) of a S-co-uniformization goes also as
above. For every letter a in 4, every non-zero block ao(p 4,5 0, is replaced by a row
monomial block which has the same non-zero rows as the original one. More precisely,
for each non-zero row p of the block (P,S) of as’: aa{ P.py(s.0r We choose a single s
in @ (such that aafpy PUES) is not empty) and we then choose a single word g,
in ao(p ;s (1-€. in (a)ps) and these choices define '

dps€ap,s if g=s,

/ —
vhSCQ, VpeP TP P8 T {0 otherwise.
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B

Fig. 22. The 2-automaton %), its S-co-covering, and a S-uniformization of 6|, built from the S-co-covering.

The same operation is performed on the (1 x Q)-block vectors of {’ and on the (Q x 1)-
block vectors of ' in order to define ¥’ and V', respectively.

Let o be the relation realized by (3',7',y). Remark that the underlying input au-
tomaton of (¥',7’,y') is a S-co-immersion in .o/, the underlying input automaton of %
and this implies that Dom « is equal to the behaviour of .o/, i.e. to Dom 6. This un-
derlying input automaton is thus unambiguous, and as every entry of ¥, ¥/, and of
every at’, is a single word (in B*), fa=y'- ft -/ is a single word as well: o is a
function. Finally, as y’, i/, and every at’, are obtained from {’, ', and every a¢’ by
taking “subsets” one has

fa=y -f' Yy el fo o =i fuv=ys6 0O

Example 1.1 (Continued). Let 0; be the relation from {a,b}* into {a,b}* that re-
places in any word one of its factor ab by a word in b%a . The Fig. 22 shows an
automaton %) that realises 6, the underlying input automaton of which is .«/; (on
the left, vertically), the S-co-covering of % and a S-co-immersion computed as in the
above proof.

The matrix representation of € is

bta

o

0
A=(100), au= 0], bum=
a

o O Q
oo o
o= O

0
0

V) =

- o O
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And the representation ({',¢’,®") of the S-co-covering of 4, is then:

0
0
0
0
0
{'=(100 100 o000 o000), o'=|],
0
0
0
0
1
0 0 0 0
a a0 a 00 0 bta 0
o 0 0 000 o0 o o 0
, 0 0 a 00 a 0 0 a
ac’ =
0 0 0 0
00 0
0 0 0 000
0 0 a
and
500 50 0
001 601 0 0
0 e b 00 b
0 0 0 0
bo' = 0060 000
0 0 001 00 I
006 00 b
0 0 0 0

The representation (y',7’,y’) of the S-uniformization of 0, shown in Fig. 22 is given
by

0 0 0 0
[0l bal 0 2 0 0 o [p2q 0
0 0 0 06090 o g o 0
' 0 0 a 00 a ¢ ¢ g
at = .
0 0 0 0
000
0 0 0 00 0
0 0 a

bt'=bo', ¥ ={" and ' =’

5.3. Lexicographic S-uniformization

We reach the point we were aiming at. The arbitrary choices that took place in the
preceeding proof will be made intrinsic in the case of deterministic relations. For that
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purpose, we suppose that a (total) ordering =<\ is chosen on the alphabet B and we
complete it as an ordering on Bs with the convention that $ is smaller than every
letter of B. This ordering extends to the lexicographic ordering on Bgf‘ .

The lexicographic ordering is “almost” compatible with the multiplication (in BY).
Indeed, if u= fxh and u' = fyk, with f, b, k in B, x, y in Band x < y, then uv < u't/
for any v, v/ in Bg‘ . The reverse statement reads then:

Property 5.5. Vu,u/,v,v’ €BY (W'v' < uv and u < u') = u is a prefix of u'.

As we work with matrix representations of rational relations, it is convenient to
define the lexicographic selection of a matrix.

Definition 5.1. Let M be a (P x Q)-matrix, with entries in P(B*). For every p in P,
let w, be the smallest element in the lexicographic ordering (if it exists) of M, ,. The
lexicographic selection of M, denoted by M., is the matrix defined by

wy, ifwyeMp,,

vpeh Vq€Q (Mie)pg= { 0  otherwise

Note that by definition, every entry of M. is monomial, i.e. either a word in B*
or 0, and that if M is prefix, then My is row monomial.

In the sequel, M will be a P x @-matrix and N a @ x R-matrix, both with entries
in P(B*). If X and Y are matrices with entries in P(B*), we say that X is a submatrix
of Y if for every entry (p,7), X5, CYp s

Lemma 5.3. If M is prefix, then MixNiex is a submatrix of (MN ),

Proof. Let p in P, r in R and w = (MjexNiex ) p,» # 0; then there exists ¢ in O such that
U= (Mlex)p,qa v= (Mex)q,r and w=uv.

By definition, « is the smallest element of M, and v is the smallest element of Ng,.
Assume that there exists an element w' of (MN),., W €(MN),,, smaller than w.
Then there exists ¢’ in O such that

u’Z(Mex)p,q', U,:(Mex)q’,r’ and W =u'v.

By Property 5.5, w' <w implies that u is a prefix of u'. As {M, };co is a prefix
family, u=1u' and g =¢'. Now, w' <w and u=u' imply v/ < v, and since g=¢’, v="1',
Hence [(MN )i lpr=w. O

Proof of Theorem 5.2. Let 6: 4™ — B* be a deterministic rational relation and let (4, 1,
v) be a prefix representation with endmarker — of dimension Q — of 8

veul & vSei-up-v.
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Since § is the smallest letter of By,
v=ullx & 35=(1 up V).

holds. Let ¢ be the real-time 2-automaton defined by (4, v) and & its underlying
input automaton. Let (', x’, ') be the (Boolean) representation — of dimension 2¢ —
of o/ colr -

As above, let ({’,¢’, ") be the S-co-covering of (4,4, v) and let (¥”,7”,y") be the
representation of the “lexicographic” S-co-uniformization defined as follows:

v§CQ X&.Q) = [ngaQ)}iex = [’Usnlex’
Yac A, VP,SCQ at(pg)s.0) =2 0)s5.0)]
VPCO Ys0 =I0pp]

= [a#‘Si]lex’

lex
lex”

In other words, the choices that have to be performed for the construction of a S-
uniformization are determined — they are not arbitrary any more — by the lexicographic
selection in every block of the S-co-covering.

In order to conclude, we have to go slightly more into details than for the proof of
Theorem 5.1

Let f =ma;...a, be a word of A and let

PP -5P Py P
be the unigue successful path of label f in .2&7,,,. We have
hofu-v=0"fo' o
={ro0) " TR 01P.0) TP 0)PL0) " BT 0)Pa0) * PP

Since every matrix on the right-hand side of the equation is prefix (as submatrix of a
prefix matrix), we have, by Lemma 5.3,

- # 7 t 7
U S Vliex 2 Eipoo))iey ~ [0100R0010P10) i 7 [2:0(p,_ 0)iPo ey [P 01 ) ex
:X” . ff” R w’f'

Since we know, by the proof of Theorem 5.1, that y” - f” -y is different from 0, it
follows then that

[)v . f[l . v]lex :xll . f;[ll . ‘plll

Therefore, (y", 1", y/"") is a representation (with endmarker) of Ui; it is unambiguous
as it is a S-co-immersion. O

Once again, this proof shows the power of the S-co-covering: as (4, 4, v) is a prefix
representation, one could try to take directly its lexicographic selection. This yields of
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b/b

b/b

Fig. 23. The lexicographic S-uniformization of 0.

course a function whose graph is contained in the graph of @ but whose domain is, in
general, stricly contained in the domain of 8 it is not a uniformization of 6.

Example 1.1 (Continued). The representation (y”,7”,y”) of the lexicographic S-
uniformization of 6, shown in Fig. 23, is given by

0 0 0 0

0 0o 0 [bd o
L?@0800000 0

at’ = 0 00 a 00gag 0 0 a
0 0 0 0
00 0
0 0 0 000
00 1

bt"=bo’, ¥ ={"and y" =0’
The lexicographic selection of (41, uy,v;) is

a [ o b 0 0 0
0 0 a 0 0 b 1

It realizes a function with empty domain.

Remark 5.1. In the preceding proof, we have used an “external” and powerful argu-
ment to assert that, roughly speaking, the lexicographical selection of a product (of
prefix matrices) is the product of the lexicographical selection of the matrices. One
can also give a sufficient condition on the matrices to achieve the same property.

Definition 5.2. We say that the matrix N' continues the matrix M (or, is a continuation
of M) if

VpEP, VgeQ M,,#0 = N, 0.

Proposition 5.4. If M is prefix, and if N continues M, then MiexNiex = (MN Nex:
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Proof. Let p in P, r in R and w= [(MN ), ],.- #0; then there exists ¢ in O such that
u=M,, v=N,, and w=up.

By definition, w is the smallest element of (MN),.. Assume that there exists an
element v’ in M,,, u' €M, ,, smaller than u. Since N continues M, there exists »’
in R such that Ny, contains at least one element v/ and u'v' is in (MN),.. By
Property 5.5, w<w' implies that «’ is a prefix of u. As {M,},cp is a prefix family,
u=u" and ¢g=¢'. Now, w<w' and u=u' imply v < ¢'. Thus, v is the smallest element
in Nyo and v € (Niex)g,r. Therefore w € (MiexNiex ).

The reverse inclusion is given by Lemma 5.3. OJ

Proposition 2.7 implies the following specialization of Theorem 5.2:

Corollary 5.5 (Sakarovitch [15]). The lexicographic uniformization of the mapping
equivalence of a morphism between free monoids is a rational function.

5.4. Uniformization of synchronized relations

Since synchronized relations are deterministic, the lexicographic selection of any
synchronized relation is a rational function. In this section, we prove that the lexico-
graphic selection of any synchronized relation is in fact a synchronized function, and
that the same is true of other selections than the lexicographic one. The proof relies
on the closure of the set of synchronized relations by complement and by composition.
To prove this last assertion, it is convenient to characterize the synchronized relations
by their real-time representations.

Definition 5.3. A representation (4, u,v) from 4* into B* of dimension Q is a syn-
chronized representation if there exists a partition Q; U Q> of O such that

A€ BlockfBO] and au € Block [8 for every a in 4.

B
0 B
Proposition 5.6. A rational relation is synchronized if and only if it has a synchro-
nized representation.

Proof. Assume first that 0 is realized by a letter-to-letter 2-automaton ./ = (Q, 4* x
B*,E,I,w) with terminal function w taking its value in Diffg, . Without loss of gener-
ality, we may assume that there exists a unique ¢ in Q such that {w is different from (.
Let ScRat4* and T €RatB* such that to=(S x {1}DU({1} x T) and S does not
contain 1-. Let .# = (P,A4,G,j,F) be a deterministic automaton recognizing S. Let

Ri=¢Q and R;=P.
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Let (4, u1,v) be the representation of dimension R =R, UR; defined by

P 1 if pel,
7710 otherwise,

{beB|(p,a,b,g)cE} if peR) and g€R,,

apty, = 1 if p=t, qeRy and (j,a,9q)€G,
Pq 1 if peERy, g€R, and (p,a,q9) <G,
0 otherwise.
T, ifg=t,
vy=4¢1 ifgeF,
0  otherwise.

Then (A, u,v) is a synchronized representation of 6.
Conversely, assume that 0 has a synchronized representation (4, y,v) of dimension
R=R;UR;,. For every q in R; and r in Ry, let

Syr={u€d* |up,,=1}.
Let

Q:Rls
E={(p,a,b,g)cQxAxBxQ|bcauy,}
I={qeQ| =1},

g = U (S4,r X v,) for every g€ Q.
réRr

Then & = (Q,4* x B*,E,I,w) is a letter-to-letter 2-automaton with terminal function
o taking its value in Rec(4* x B*) and &/ realizes 6. [J

Proposition 5.6 has been set up here in view of the following.

Proposition 5.7. The composition of two synchronized relations is a synchronized
relation.

Proof. Let 6 be a synchronized relation from 4™ into B* and let ' be a synchronized
relation from B* into C*. Let (4, u,v) be a synchronized representation of 6 of dimen-
sion P =P UP; and let (2, 1/,v") be a synchronized representation of 6 of dimension
P’ =P UP}. According to Proposition 1.2, 8¢’ is realized by the representation («, f,7)
of dimension Q=P x P’ defined in the following way:

%p.pry= A (Apit'),
aBip,pia.p) =@} p Ol
Tig.P )= (Vql",) v



62 M. Pelletier, J. Sakarovitch| Theoretical Computer Science 225 (1999) 1-63

for all p,q in P and for all a in A. Then

Py XP| P XP, P,xP P,xP
o € Block (B 0 0 0)

and

P|XPI( P|XP£ PZXP{ PQXPé

c B B B

B B B

ap €Block | o 0 B B
0 0 B B

Let Q=P x P} and O, =0\Q; then (a,f,7) is a synchronized representation of
dimension Q,UQ,. O

Let us now come to the uniformization of synchronized relations. It will be possible
to give a statement that holds not only for the lexicographic ordering but for a whole
familly of orderings.

In the sequel, let o be an ordering on B*. Basically, « is a relation from B* into
itself: (u,v) is in « if, and only if, # is smaller than, or equal to, v for a. It is thus le-
gitimate to say that a is “synchronized” if, as a relation, it is a synchronized (rational)
relation. Note that, since 1, the identity relation, is a synchronized relation, it is equiva-
lent to say that a or o\1, the strict ordering associated to «, is synchronized. In Section
2.4, we have seen that the lexicographic and military orderings are synchronized.

Let now 0 be any relation from A* into B*. As we have done for the lexicographic
ordering at the beginning of this section, we define the a-selection of 0, denoted by 6.,
to be the function that associates to every f in 4* the smallest element of f0 (in
the ordering o) and when this smallest element exists. Obviously, Dom 6, C Dom 0;
if Dom6,=Dom @, i.e. if f0 contains a smallest element for every f in Dom 0, then
0, is a uniformization of 6.

Proposition 5.8. Let o be a synchronized ordering on B* and 0 a synchronized ra-
tional relation from A* into B*. Then the a-selection 0, is a synchronized rational
Sfunction.

Proof. For simplicity, let o/ =a\1. For every f in A*, the set of words in B* that are
larger than one element of 8 is

fOoo ={v|Fue f Ouv)ca'}.

Then the smallest element of £ is the unique element of fO\(f6 o o) if this set is
non-empty. It follows that

0, =6\(0 o o)
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is a synchronized rational relations as these relations are closed under composition and
difference. [J

The specialization of Proposition 5.8 to lexicographic and military orderings yields:

Corollary 5.9. The lexicographic selection and the military uniformization of a syn-
chronized relation are synchronized functions.
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