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1. INTRODUCTION

The uses of interpolation theory in various branches of analysis, especially
Fourier analysis, are well known. For many operators a weak type interpolation
theory is indispensible for accurately describing their mapping properties.
Such for example is the case with the Hilbert transform, maximal operators, etc.

The early results in interpolation theory were for spaces of measurable
functions. Subsequently, a strong type interpolation theory was developed
for arbitrary Banach spaces by using various functionalizations of these spaces.
The most widely known are the A. P. Calderén complex method [16] and the
Lions—Peetre real method [13].

We will show in this paper that it is a straightforward matter to develop
a generalized weak type interpolation theory for arbitrary Banach spaces by
combining the Peetre functionalization with the maximal operators of Calderén
[15]. As would be expected, this generalized weak type theory has many inter-
esting applications.
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WEAK INTERPOLATION IN BANACH SPACES 59

It was shown by Calderén [15] that T is a linear operator which is simul-
taneously of weak type (py,q1) and (po,qs), | <py <py < 0, 1 < qq,
g» < oo (in the classical sense) if and only if for each measurable f,

@y < e frm [ smpag L
’ (L.1)
—1iay ¥ 1/m ds
4+t j R O i S
" §
where g* denotes the decreasing rearrangement of |g| and m is the slope
of the line which passes through the points (1/p,, 1/g1), (1/ps, 1/gs). We use
the term decreasing in the broader sense of nonincreasing.

It is an important observation that (1.1) can be used as the definition of
weak type if now we talk about weak type for two pairs of indices (p,, ¢;)
and (p,, ¢,) rather than the indices separately. It was shown by C. Bennett [4]
that (1.1) serves as a natural definition for weak type even if p, is infinite. Hence,
if T satisfies (1.1), we will say T is of weak type o(p;, 41 P2 G2)-

Suppose an operator T satisfies (1.1). Function norms can be applied to
both sides of (1.1) and then Hardy’s inequality, or some variation thereof,
can be used to obtain mapping properties of T (see [6, 15, 25]). This gives
not only information for indices strictly interior to the segment o(p, , 41 ; P2, ¢2)
(cf. Section 2) but also information at the endpoints (p,, ¢,), i = 1, 2 as well.
So the inequality (1.1) automatically contains information on the mapping
properties of 7. In Section 2, we give an expanded discussion of weak type
o(p1. 91 P2, go) interpolation, and the resulting mapping properties.

It is a simple matter to replace the roles of f* and (7f)* in (1.1) by an
appropriate functionalization of the Banach spaces to obtain a definition of
weak type interpolation in arbitrary Banach spaces. For the majority of our
applications, the K functional is the most suitable functionalization. In this
case if (.Y,, A}) and (Y, Y,) are two pairs of Banach spaces, we say that
T is of generalized weak type o(p;, q1; P2, g2) With respect to the couples
(X, X)), (Y,, 1) if for every ¢+ > 0,

Ky(Tf, i< -1'q e 1 p, x(f,
N T
a4 e "x gl (MS_)) ﬂ -

$

< m \ N

where Ky(g, ) = K(g, 3 Yy, Yy) and Kx(f, -) = K(f, -; X;, X;). The nota-
tion of generalized weak type o[p,, ¢, ; P2, ¢2) and o(p,, ¢, ; P2, gs] means
that the integral corresponding to the closed endpoint does not appear on
the right hand side of (1.2). Of course, if an inequality such as (1.2) holds

for an operator T, then only one endpoint and the slope of o will be explicitly
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given. We take the remaining endpoint of o to be the intersection of the boundary
of the unit square with the straight line passing through the given endpoint
with slope m. There are, in general, two points of intersection, but the require-
ment 1 <<p;, <p, < o0, | << q, ¢ < 0, ¢, # ¢ (which we will insist
hold throughout the paper) determines the remaining endpoint uniquely.
Hardy type inequalities will show that this is the optimal selection in ocur
situation.

Using Hardy inequalities as mentioned above, we can deduce that if T
is of generalized weak type o(p,, q;; P2, ¢:) and (I/p, 1/q) is on the open
line segment joining (1/p,, l/g,) to (1/ps, 1/g,), then the operator T maps
(X1, Xo)k,p,« continuously into (¥, Y,)x .. (notation as in Section 3). Finer
results are also possible such as inclusion of logarithm factors in the definition
of the spaces and a description of the mapping properties of T at the endpoints.
These are spelled out in detail in Section 3.

In order to point out the usefulness of the formulation (1.2), we give several
applications of generalized weak type interpolation to various problems in
analysis. In many of these applications, the resulting weak type inequality
(1.2) is a well known classical inequality, while in others the very formulation
of (1.2) leads one to search for the correct weak type inequality. The reason
that (1.2) usually has a classical formulation is that for the classical spaces
there are descriptions of the K functional in terms of more familiar quantities.
For example, K(f, t;L,,L,) = tf**(t) with f**@) =1t f(t,f*(s) ds and
K(f,t;L,, W) ~ w,(f, 1), (cf. Section 4) when W, is the Sobolev space
of r times differentiable functions in L, and w(f, -), is the r-th order moduli
of smoothness in L, .

Perhaps the most familiar weak type inequality is Marchaud’s inequality
which compares the moduli of smoothness of two different orders. If 2 is a
subset of R", then it is a simple matter to show that for each fe L (2) and r
and & positive integers, we have

wil(fi )y <€ wlf, 1)y, t>0. (1.3)

With certain structural assumptions on £, this inequality has a (weak) converse

w [P Wl fs $)y v d
el o ri - ) ek = (1.4)

which is the famous Marchaud inequality (the term [ f|/, does not appear
when £ = R"). Using the equivalence of the K functional with w,, (1.4)
can be rewritten as a weak type inequality of the form (1.2); namely, the identity
operator is of generalized weak type ofl, 1; (r +— k)/k, o0) for the couples
(L,, Wi*) and (L,, W,7). There are other inequalities for smoothness of
derivatives (even for the semigroup setting) which are of generalized weak
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type. These are given in Section 4 along with their applications to equivalent
characterizations of Besov spaces, reduction theorems for semi-groups, etc.

There are also weak type inequalities for moduli of smoothness in different
L, spaces. We examine this in Section 5, where we prove among other things
that if 2 satisfies certain properties, then for ¢ > p and fe L (£2),

t
wlf < e[ stolf S0, 10

where 8 = n/p — n/q. This shows that the identity operator is of generalized
weak type ofr/(r — 8), 1; oo, r/6] for the pairs (L, , W,7) and (L, , W,"). This
implies classical embedding results for Besov spaces (cf. Section 5): for example
that B3*%% — BYy®if X > 0, as well as B — L, .

There are finer descriptions of the mappings of Besov spaces into the L,
spaces and these rest on the weak type inequality

Fry < fifly+ [ orimdf, 9,4
v

where again the term || f||, can be dropped when £ = R». This inequality
leads to the embeddings B%® — L%% when 8 = nfp — n/q as well as results
for ¢ = oo which exhibit a loss of a logarithm (see Corollary 5.5).

In Section 6, we show that the Hilbert transform Hf satisfies the weak type
inequality

w0, < e [ ol 9,50 [ w9, ],

Here, only the cases p = [, oo are interesting since when | << p << o, we
have strong inequalities. This inequality together with the mapping theorems
established in Section 3, show that if fe B%® then the conjugate function is
also in B%?. This of course includes the classical result that if f€ Lip o, then
Hf e Lip o, 0 << a << 1. The endpoint mappings of Section 3 also give endpoint
results for the Hilbert transform now with the anticipated loss of a logarithm
(cf. Zygmund [30, p. 121]).

In Section 7, we give some applications to approximation theory. Following
[8] and [20] we first show that inverse theorems for approximation on the
circle by trigonometric polynomials can be written as weak type inequalities.
Using this together with Jackson’s direct theorem we see (see Corollary (7.1))
that approximation spaces can be characterized as Besov spaces while a loss
of logarithm occurs in the endpoint embeddings of the approximation spaces
and Favard classes. Next we prove a weak type inequality relating the growth
of Fourier coefficients to the modulus of continuity: for 1 < p << 2

o<t + [ 2L &) oy - )

L 5 -



62 DEVORE, RIEMENSCHNEIDER, AND SHARPLEY

On R, we can drop the term || f||, and allow all ¢, but must integrate to co.
This shows that the Fourier transform is of weak type o[1, p/(p —1); p/(p—1), 1)
for (L,, WY and (L,,L.), | <<p < 2. Applying function norms, we get
classical statements about the absolute convergence of Fourier transforms.

It is possible to derive the mapping results for many of our applications
by avoiding the question of weak type inequalities completely. This has been
done by Peetre in his many beautiful applications of interpolation theory in
various problems of analysis. The weak type inequality is replaced by some
sort of argument with the J-functional together with appropriate use of the
reiteration and equivalence theorem for K and ] interpolation. In this case,
all results are stated in terms of mappings of the appropriate spaces.

Using weak type interpolation has not only the advantage of giving a unified
approach, but one can also see the fundamental inequality behind the mapping
properties. Such a weak type inequality carries more information than any
statement about mapping properties deduced from it (or in some other way).
However, there is no question that these two approaches are closely related.
‘We mention these relationships in Remark 8.5. The essential point is that
the J- and K-functionals are comparable by certain strong and weak type
inequalities. We also discuss briefly there how the reiteration theorem can
be viewed in the light of weak type inequalities.

As mentioned above, some of the inequalities are classical and most of the
others can be found in the literature. However, we do supply the proofs of
these inequalities if we have a more direct approach.

2. THE CrassicaL THEORY

We want to begin with an overview of classical weak type interpolation
for spaces of measurable functions. This will serve as an orientation for the
formulation of general weak type interpolation in the next section and also
introduce much of the needed notation.

It is important to begin with the “correct” formulation of weak type. For
our purposes, this turns out to be the approach given by C. Bennett and K.
Rudnick [6] based on the Calder6n maximal operators.

F1<p<p<o0, 1<q, <0, @1 #q, let o(psy,q:;0:,40)
denote the set of all (p, ¢) such that the point (1/p, 1/g) belongs to the open
line segment in R? with endpoints (1/p,, 1/¢,) and (1/p,, 1/g,). The notation
o[Pr+ 15 Po» 92) (resp. o{Py , 41 5 P ¢]) means that the endpoint (1/py , 1/g,)
(resp. (1/p,, 1/gp)) is included in the segment. The restrictions imposed on
P15 @1 Po, and g will be carried throughout the paper.

There are three maximal operators associated with segments depending
on the form of the segment. Suppose o is a segment of one of the three types
given above.
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For t € (0, o0) and f measurable on (0, <o), let

Si(f)t) = 7V JO " F(u) '™ d_u

u
2.1
Sl = 7 [ f) win %
tm u
where m = (1/g, — 1/g)/(1/py — 1/p,) is the slope of the segment o.
We now define the maximal operator S, for a segment ¢ as
Sie %f o =0(p1,4q1; P2 ¢)
S, = 155, %f o=olp1,q1; P25 %) 22)
(Sm‘*"Szo if o=0(p1,q15P2+ %)

If (X, p) is a totally o-finite measure space and f a measurable function
which is finite a.e., then denocte by f* the decreasing rearrangement of | f].
Suppose T is a quasilinear operator. We say that T is a-weak type if

(T)*@) < e SAf*)N),  1e(0, ), (2.3)

for all f for which the right hand side is finite. For a discussion of the relation
of o-weak type with the classical definitions of weak type as well as several
examples of weak type operators in Fourier analysis, we refer the reader to [6].

It is clear from (2.3) that any mapping property of S, will in turn give a
statement on mapping properties of 7. For example, consider the Lorentz-
Zygmund spaces L?%logL)* defined for 1 <p < w0, 1 <a < w0, —0 <
a < oo as the set of all functions f for which || f*1], ., < o, where for any
decreasing

7 @+ mepy S 1<a<w

I lpae = " (2.4)
sup [£/3(1 + | In ¢ \* $(1)], = o
o<t<o

For p > 1, or p =1 with a = 1 and « = 0, these spaces are Banach spaces
under a norm equivalent to |[#],,,- In order to obtain mapping results
for o-weak type operators on the spaces L?%(log L)*, we are led to examine
integral inequalities for .S,. We state two such theorems. The first applies
to interior indices, while the second deals with the endpoint case. In these
theorems, ¢ denotes an arbitrary nonnegative measurable function, but of

course ¢ = f* is the choice of present interest. For proofs we refer the reader
to Theorems 6.4 and 6.5 of [6].

580/33/1-5
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TueorREM 2.1 (Intermediate inequalities). Let 1 <a << w0 and —0 <
a < 0. If (p, ) € o, then

1 S 2%+ ey sl
- 1/a (2.5)
=° Uo () o1 + ey 4]

where the integrals are replaced by a supremum norm when a = o0 and ¢ is a
constant independent of if.

Tueorem 2.2 (Endpoint inequalities). Let I be either the interval (0, 1)
or (1, o) and define sgn I as the sign of the function Int on I. For a segment o
with slope m define

I if m>0
]::](U’I)Zg(o,oo)—l if m<O.

Let 1 <b<a,B—1+1b=a+1/a and i =1 or 2. If sgn(a + 1/a) =
(—1) sgn Isgn m when (p;, q,) is not in o, the operator S, satisfies

U, (So()(e) £1°(1 + | In £ ]))* —dtLglm
» dt (2.6)
t

<e ([ w2 +1m ey )" 4 s

with the change to the supremum norm if a or b are co and ¢ a constant independent
of Y. When o + 1/a > 0, the term S,()(1) in (2.6) can be dropped. Inequality
(2.6) is also valid for « = =0, a = 0, and b = 1.

Taking ¢ = f* in (2.5), it follows that if 7" is of weak type o and (p, g) € 5,
then T is a continuous map from the Banach space L?%(log L)* into L%(log L)*.
At an endpoint (p;, g;) not in o, the inequality (2.6) gives a similar result
except there is a loss of a logarithm.

3. GENERALIZED WEAK TYPE INEQUALITIES

In order to extend the definition of weak type to the Banach space setting,
it is enough to functionalize the Banach spaces. This can be done in several
ways and the method that should be chosen depends on the problem at hand.
For most of our applications, it will be convenient to work with the Peetre
K-functional representation,
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A pair of Banach spaces (X, , X,) continuously embedded in some Hausdorff
topological vector space & is called a Banach couple. The sum of X; and X, ,
denoted by X, + X,, is the set of all f=f; + f,, with f,e X,, i =1,2.
For each fe X -+ X,, we define the Peetre K-functional for f by

K(f, 6 Xy, Xp) = inf (i, + £ fa e XY

If there is no chance of confusion we do not indicate the dependence on X,
and X, and write instead K(f, ¢). Also, in some specific settings, it is customary
to work with a modified K-functional in which || | x, is a seminorm. This is
the case for example with interpolation between Sobolev spaces which we
use in some of our applications. All the results of this section hold as well
for such a modified K functional.

The K method generates interpolation spaces (see [13, Chapter 3]) by applying
function norms to K(f, t)/t. For example, if 1 < p,a << coand —o0 << a < 0,
then let us denote by X, , , = (X3, Xy)k, p,a.o the set of all fe X; 4 X, for which

”f”K,p.a.a = ”fHX,,,a,a = ” K(f’ t)/t ”p,a,fx < 400, (32)

where || [|,.q.. 15 defined in (2.4). Note that K(f, t) is concave and so K(f, t)/t
is decreasing. Thus K(, t)/t in (3.2) takes the place of f* in (2.4).

In what follows we will generalize the weak type interpolation of Section 2
by placing K(f, ¢)/t in the role of f*. As we have mentioned, in some instances
it is better to work with decreasing functionalizations other than K(f, t)/t,
such as k(f, t), the derivative of K(f,t). For example k(f, ¢t} would exactly
recover the Bennett Rudnick setting. In some problems in approximation
theory the approximation functional E(f, ?) (see Section 7) seems to be most
convenient. All in all, which functionalization to use depends on the application
in mind and it is easy to rework our results for that setting.

DErINITION. A quasi-linear operator T is of generalized weak type o
with respect to the Banach couples (X;, X)) and (Y;,Y,) if whenever
SJUK(f, 5 X1, Xu)/()](2,) is finite for some t,, then Tf belongs to Y, + ¥,
and there holds

K(1f,t, Y,, Y,
6%, ¥

K(f, -; X1, Xp)
)

As is the case for weak type operators for spaces of measurable functions,
this definition is equivalent to the property that T map (X, Xy)k 5 1.0 tO
(Y1, Yo)i,q,.0 for i = 1,2 (see Theorem (3.4)). For notational convenience,
in the remainder of this section we shall drop the dependence on the spaces
X1, Xs, Y, Y,.Itis understood that the domain of the operator T is associated
with a pair (X, X;) and the range of T is associated with a pair (Y, , Y,).

cSo[ ](t), 0<t<m (33)



66 DEVORE, RIEMENSCHNEIDER, AND SHARPLEY

When T is of generalized weak type o, Theorem 2.1 gives almost immediately
an interpolation theorem for the spaces generated as in (3.2).

THeoreM 3.1 (Intermediate interpolation). If T is of generalized weak type o
and (p, q) € o, then

1 Tflly < clifllxs (3-4)

where Y = (Y1, Yok gaw @nd X = (Xy, Xo)kopiao with 1 < a < 0, —0 <
o < 0.

Proof. Let a << oo (the case a = o0 is handled similarily). From (3.3), it
follows that

| K(Tf, 1)t llq.a.a

- (3.5)
<c¢ UO (SLK(f, Y(N@) tl/a(l | Int )y

dt y1l/a
t

Since S,(K(f, -)/(*)) may not be decreasing, we avoid the quasinorm notation
on the right hand side. Applying (2.5) for (t) = K(f, t)/t and (p,g)€ o to
the right hand side of (3.5), we get (3.4), as desired.

The endpoint case is much more complicated as the variety of inequalities
within (2.6) illustrates. Because of the nature of the inequalities, it is generally
not possible to state results just in terms of the spaces X, ,, and Y, , but
instead we introduce the following spaces.

For 1l <p,<p, <0, 1<a b ooand ~0 <o < oo, we denote
by (X1, Xo)k.pae + (X1 Xo)k.n,08 the space generated by the norm

Uol [K({, t) (] ,ln”)a]“ %3”"
] b 1.b (3.6)
+ ?Jl [K({, t) tllvz(l 4 |Int I)B] %_$

with the usual change if @ or b are oo. Note that the ordering p; < p, has an
essential role in the nature of these spaces. The intersection (X, Xo)x 5 0,0 N
(X1 Xo)k,p,0.6 1 generated by

max(l] K(f’ t)/t “pl,n.a ) H K(f’ t)/,t I.Dz-b,B)' (37)

The definition in (3.7) is equivalent to interchanging the indices p, and p,
in (3.6). It follows from Theorem 2.2 that

TuroreM 3.2 (Endpoint interpolation).  Suppose | < b < a < 00,1 <d <
c < oo, and —0 < o, B, y, 8 < 0. If T'is of generalized weak type o(p;, 4y ;
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P2y @) and o+ 1lja=B—1+1/b>0, y+ 1/c=8— 1+ 1/d >0, then

T: (X, Xz)K,pl.b,B + (X, X2)K.1Jg.d,5 — (Yy, YZ)K.al,a,cx + (Y1, Yz)K,q:_;.c,y .

When o+ 1ja=8—1+1b<0,y+1jc =8— 1+ 1/d <O, then

T: (Xl ’ XZ)K,pl.b,B N (Xl ’ X2)K‘1)2,d.6 - (Yl ’ Y2)K,al.a,a N (Yl ’ Yz)K.qg,c.v .

In some of our applications, we will be in the situation that only small
values of ¢ are important in the definitions of the spaces (X, X,)x. p.e.o - For
this reason, we want to give the corresponding versions of Theorems 3.1
and 3.2.

THEOREM 3.3. Let X, C X, Y,C Y, and let ¢ be a segment with positive
slope. Further let 1 <b<a, and B— 1 + 1/b =o + lja. If T is of gener-
alized weak type o (where (3.3) only need hold for 0 <<t < 1) and (p, q) s in
o, then

gfol [_{_{(__th_’ﬁ_ tl’q(l + llntl)u}agzl/a

(3-8)
1 1l/a
<ef[ [F a4 iy] S
If (p: ¢;) is an endpoint of o with sgn(« + 1/a) = (—1)**, then
;J. K(Tf t) tl’a (1 _J[_ llntl)a) dT; /e
3.9

<eo({f [ e S ).

In the case i = 1 and S, = S,, , the term | f|| x, can be dropped from inequality
(3.9).

We mention one additional result before we turn to the applications of
generalized weak type inequalities. Using weak type notions which we outline
in Remark 8.5, Calderdn’s theorem [15, Theorem 8] can be extended to Banach
spaces in the following manner.

TrEOREM 3.4. Suppose | << p; < p, < 0,1 < gy, ¢ < ©, and g, F ¢, ,
then a necessary and sufficient condition that an operator T be of generalized
o(P1s 415 P2 » G2) weak type for (Xy, X,) and (Yy,Y,) is that T: Xg.n, 10—
Yiqmort=12.
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4. MobuLl OF SMOOTHNESS

Our applications of the weak type theory introduced in Section 3 will center
for the most part around inequalities for moduli of smoothness and their uses
in obtaining embedding theorems and mapping properties of some operators
on smoothness spaces.

Let £2 denote a subset of R™ of one of the following two types: in the case
of one dimension, #n = 1, 2 is either a closed interval [a, b] or the whole line R;
in the case n >> 2, £ is either R” or a closed bounded subset for which

there exists a finite number of open sets U; covering
the boundary of £ and corresponding finite open
cones C; such that x — C; is contained in the
interior of 2 for each x in U, N Q.

(4.0)

Our results could also be given for semi-infinite cases.
If 2 is as above and ke R", we let @2, = {x: x + ah e, for all 0 <o < 1}.
When r > 0 and x € 2, , let 4,7(f, x) denote the »-th difference of f

T . rak [
A7(f, 1) = 3 (=D () fx + kh)
0
and define the r-th order modulus of smoothness for functions f in L (£2) by
wlf, 1), = Ishlllgt I 4a"(fs %)lipa) ($25n)-

Here, the notation || ||,(»(£2,,) indicates that the norm is taken with respect
to the variable x and is the L, norm over £,, . Similar notation is used through-
out. In the definition of w,(f, t), in the case of 2w-periodic functions, the norm
is taken over all of (—m, 7].

Let W, (2) denote the Sobolev space consisting of all functions f which
have partial derivatives (in the distributional sense) of order a, for all | o | <7
and for which

[ flio(82) = max | D, (Q) < oo.

O lgr

Sometimes, we will need the seminorm
| 15.A82) = max || D°f]l, (2).

We do not indicate the dependence on £ if there is no confusion.
The modulus of smoothness w,(f, ‘), is intimately connected to the modified
K-functional

K(f, 0= inf (if ~gh+t1gld 120
v
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In fact, for our purposes K,(f, t7), and w,(f, t), are equivalent because there
are constants C; , C, > 0 such that

Crolfit)y < Kl(fit")y < Crofi )y t>=0. (4.1)

The inequalities in (4.1) are quite easy to prove when 2 = R", n > |,
by using Stecklov averages. The general case of £ is more complicated and
was given only recently by H. Johnen and K. Scherer [19, Theorem 1, Corol-
lary 3}.

Let us now consider the fundamental question of comparing different order
moduli of smoothness. If 2 >> 0, it is a trivial matter to show that

wr+k(f’ t)p sc¢ wr(f’ t)z) ’ t =0, (42)

with ¢ a constant depending only on %k and . As a partial converse to (4.2),
we have the famous Marchaud type inequalities

wr({; 1), <ec %”fup + :O ﬂ‘i(_j_c’s)—l’sk_ is_ (4.3)

sT+k s

with ¢ depending only on & and . When 2 = R" or we work with 27 periodic
functions, the term [[f{|, can be dropped. For proofs, see H. Johnen [18]
for the case # = 1 and H. Johnen-K. Scherer [19] for n > 2.

The inequalities in (4.1) can be used to rewrite (4.3) as a weak type inequality.
Indeed, replacing w,(f, t), by K,(f, "), and changing variables gives for ¢ =
o[1, 1; (r + k)/k, o0) and any ¢ > 0

BED < g, + 5, (Kol Do) o (44)
which is the key weak type inequality. Recall, || f]|, does not appear when
£ = R™ and, since we are always working within the space L, , the term || f||,,
has no effect for other £.

The inequality (4.4) gives information about embeddings of the spaces
Xyga=Lps W) g . 0.e into the spaces Y, .. =(L,, W, )x..c. . Before
stating these results, it is appropriate for us at this stage to introduce the classical
notation for these spaces.

IH0>0,1<p<o0,and 1 < ¢ < o0, and 7 is any integer >>8, then the
Besov space B%7 is the space of all functions f in L,(£2) for which

1’q

1715 = [ a0y S < oo 43

when g << 0. The usual change is made when ¢ = co. Since w,/(f, ), <
27| fll, , the integral in (4.5) could also be taken over (0, o). Hence, BJ? =
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Y, 0 With g = 7/(r — 6). The embedding results from Theorem 3.3 in the
case of bounded domain and Theorem 3.1 in the case of R™ together with the
inequalities (4.2) and (4.4) show that the definition of the Besov space B%?
does not depend on the choice of the integer 7. Usually, the choice r = [6] - 1
is made for definitiveness which we will also do.

Let us also introduce the spaces B%%* as the set of functions f e L?(R2) for
which

‘q

e = [ ol 0, = ey <0 46)

again with the usual change for ¢ = 0. In (4.6) — o0 < o < 00. We can
even let # = 0 in which case only the values of o > —1/¢ give something
different than L. We should remark that in the case that § =0, « > —1/g,
the space BS™® is not the same as the space X, ,, since the latter space is
trivial (polynomials of degree <(r) due to the fact that the integral over (1, o)
is not negligible.

The results of Section 3 also give endpoint results with the expected loss
of a logarithm. For example, among many other things, Theorem 3.3 shows
that for 1 << p < o0, a -+ 1/g < 0, the space (L, , W5k o 4441 1 COntinuously
embedded in (L, , W,k .« 4o (for « = —1, g = 00, compare p. 107 of [28]).

There are also comparisons for the smoothness of derivatives of f and the
smoothness of f. A strong inequality is

wrenlfy By < (1" sup w (DY, 1)}, >0, @)
|1Bl=E

As a partial converse to (4.7), we have [19] that if 8 is an n-tuple of non-negative
integers with | 8| = &, then

t
WD, ), < c [ sedfidle y 21 150 (4.8)

sTHE $

Changing over to the K functionals shows that D? is of generalized weak type
o((r + k)/r, 1; o0, ©]. Thus Theorem 3.3 (or Theorem 3.1 for 2 = R®)
shows that the space B5** with 8 > k could equally well be described as the
set of all f for which

1 dt
[ [sup (D%, 6, 7K1 - |10 YT - < o0,

At the endpoint we have that if f € B5@**! o 4- 1/g > 0, then for any | 8| = &,
D8f e B,

The development given above can also be carried out for semi-groups of
operators. We follow the treatise in Butzer—Berens [13]. If X is a Banach space
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and {7(t); 0 <t < o0} is an equibounded C; semi-group, we can define
the 7-th order modulus of smoothness for fe X and ¢t > 0 by

wlf, O = sup I(T6) — Il -

0ss%

Likewise, if .4 is the infinitesimal generator of the semi-group, let
KAf, )r = inf (If — glix + 11| A% )
geD(A")
with D(A") the domain of 4”. As before one shows
¢ o f, t)r < K(fitr < colfit)r. (4.9)
Analogous to (4.2), we have that for any 2 > 0

wrx(fi )r < c o (f, 1)y (4.10)

with ¢ a constant depending only on r and k2. Marchaud’s inequality is proved
for semi-groups in the same way as it is proved for ordinary differences on R,
so that

wr+k(f) 5)7‘ ¥ j{_

%“01<C£——?q—~ =, >0 @.11)

This last result can be stated in terms of K-functionals as

Kr(]; t)T < cS

a

[Kr+k(.f’ )T] (t) (412)
Q)
with o = o[l, 1; (r 4+ k)/k, 0). Hence, now from Theorem 3.3, we have that
(X, D(AN)k.q.0. 18 equivalent to (X, D(A™*))¢ ;... provided (p,q) is in
o[l, I; (r + k)/k, o0), i.e. 1/g = (r + k)/rp — k[r. Here, in the definition of
the intermediate spaces, we take the integral in (2.3) only over the interval
(0, 1) and we also use the modified K-functional as defined above. Theorem 3.3
also gives among many other things the embeddings (X, D(A™*)x . ¢;+0) k0,001 C
(X, D(A"))k.0.a,« Provided a 4 1ja < 0.
It is also possible to establish weak inequalities for powers of 4 analogous
to (4.8). These in turn give reduction theorems for semi-groups (see [13,
Section 3.4]). The appropriate weak inequality for A/ is

b wdlf, S)r E_

%4M%0r<c0 5 - 0<j<r. (4.13)

The inequality (4.13) can be derived from the inequality

I Aflx < e {E7 0 fllx + 77 11 A7 | (4.14)
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which holds for all fe D(A™) and 0 < j < ». To prove (4.14) let M, be the
B-spline of degree j — 1 (order j) with knots {0, 1,...,j} (see {17]). Then AM;
has the properties: M; > 0 and M; vanishes outside of the interval (0, j),
JZ. Mj(#)dt = 1, and most importantly M; is the Peano kernel for j-th dif-
ferences

1(T(t) — Iyf = f_i (T(s) Af) Mt-%s) 1 ds 4.15)

where the integral is vector valued.
Now write

(—iyaf=[ " IUT(s) — Iy=7 -+ (— 1y=+0) Af] Mi(t%s) - ds
- " (T — Iy~ Aif] M35y 12 ds = f, + £,

Because of (4.15), f; can be written as a sum of terms of the form
=T (tlk) — I—if, 1 < k < r—j. Hence

Ifillx < et fllx. (4.16)
On the other hand, in order to estimate f, , we use the fact that
(T () — Iy~ Afilx
S0 [ T s ) A iy sy

S e A«

|

X

and find
Ifollx < cll Affllx [ -IMy(%s) £ ds < e = || Af lix

where we used the fact that M, has integral one and is supported on (0, j).
‘This last inequality together with (4.16) shows that (4.14) holds.

The proof that (4.14) gives (4.13) is the same as in the classical case (see [18])
and we do not give the details. The weak inequality (4.13) shows that 4/ is
of generalized weak type ofr/(r — j), 1; 00, 0] for the pairs (X, D(A")) and
(X, D(A7)).

Hence we get the following reduction theorems (see Theorems 3.4.6 and
3.4.10 of [13]): For j =0,1,....,r —1 and 0 < 1/p < (r —j)/r the space
(X, D(A")k.p.0.« can be described as the set of f such that

fl . N dt
[w,_(Af, t)p t#rQ/p=0(] 4 [ In ¢ |)2]e =
0



WEAK INTERPOLATION IN BANACH SPACES 73

is finite. In particular, for j=r—1 and ¢ =p/r > 1 we obtain:
Fe(X, D(AN)k.p.a.« if and only if fe D(A™1) and A" e (X, D(A))k.q.0.0 -
Thus, we obtain Theorem 3.4.6 of [13] when ¢ < o0 and Theorem 3.4.10
of [13] when ¢ = oo0.

5. EMBEDDINGS FOR BESOV AND SOBOLEV SPACES

Besides the inequalities for moduli of smoothness of different orders given
in Section 4, there are also inequalities relating moduli of smoothness in different
L, spaces. These inequalities together with the weak type interpolation theory
of Section 3 combine to give simple proofs of the fundamental embeddings
for Besov and Sobolev spaces. We continue to work in the setting of Section 4
except that now we assume that £2 is a bounded set. This is only for convenience.
The case of infinite £2 has similar results with slightly different proofs. So,
throughout this section, we assume that £ has the properties given in relation
(4.0).

The following lemma summarizes some of the fundamental inequalities
which lie at the heart of proving weak type estimates for moduli of smoothness
in different L, spaces.

LemMa 5.1. If 7 is a positive integer and | < p < q << o0, then the following
hold for 0 == nfp — njq and for some hy > O (depending on 2):
(5.1) Ifge W, (), r =n, hy > h >0, then

lgle < ch®{llgl,+ A gl
(5.2) Ifge W,7(2), hy > h > 0, r = n, then
w,(g, h)q Sch? ¥4 |zz,r .

(5.3) For each hy > h > 0 and feL(8), there is a g (independent of p)
such that whenever f in addition belongs to L (2), 1 < p < o0, then

Q) If—gl, <c wr(f’ h)n
(i) 1glpr < chTwlf, h),

where constants depend at most on p, q, r, n, and 2 and all norms are assumed
to be taken over L.

In order to move more quickly to the weak type inequalities, we postpone
the somewhat technical proof of this lemma until the end of this section. The
next theorem gives the fundamental weak type inequality for moduli of smooth-
ness in different L, spaces.
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TueOREM 5.2. Ifr = m, 1 < p < ¢ < ©, t > 0 and f € L (Q), then
rto ds
A A (5-4)

with the constant independent of f and t.

Proof. For each k > k,, let g, be a function which satisfies (5.3) for / =
2% < hy and let b = gi.; — g U feL,(R) is such that the right hand
side of (5.4) is finite, then for any j = &,

Sl <o Y 2% e lly 4+ 275 o [5,0)
k>i kzj (5_5)

k0 ~k T ds
<e Y (f, 27, <o sCwlf 9
ks 0 §
where the first inequality uses {5.1) and the second uses the triangle inequality
along with (5.3). In particular, taking j = &y in (5.5) and writing f = &, +
2ok, Yy, we see that fe L, (£2).
Now, if 0 <t < 2-%, take j so that 2-7 < ¢ < 21, and write f =
& + Lai¥r - Then,

w,.(f, t)q < g, )+ ¢ Z [l g

(>3]

<t g lprt+ Y 2% delly + 277 [ i 1p.0))

k>j

<c (Zjewr(f’ 2_j)p + Z 2k6wr(f’ 2_k)p)

k>i

1
< ¢ ‘ S~Bw,(f, s)p i{"
Jo s
where the second sum was estimated as in (5.5) and the term g; was estimated
by (5.2) and (5.3)(ii). This proves (5.4) for t << 27%. The inequality then
automatically holds for + = 2% from standard properties of w, .

If we use (4.1) to replace the moduli of smoothness by the corresponding
K-functionals, then Theorem 5.1 shows that the identity operator is of weak
type o(r/(r — 8), 1; o, 7/6] for the pairs (L,(2), W,7(2)) and (L(%2), W, ().
We then have the following embeddings for the Besov spaces B%“ and their
generalizations B%** (cf. Section 4).

CoroLLARY 5.3. Let 1 <p < q< 0 and 8 = n/p —nlq. For any 1 <
a << oo and —o0 < o < o0, we have

(i) B0t > B, 0 <),
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(i) BL®= > BY* o+ 1fa >0,
(i) BO-—L,.

Proof. For (i), take r = [A 4 0] + 1 and recall that if 0 << p <7, then
By®* = (Ly, Wy)r/tr-),a.« With equivalent norms. Hence (i) and (i) follow
from Theorem 3.3. Finally, if fe B9?, then the right hand side of (5.4) is
finite for all ¢ and hence as we have shown in the proof of Theorem 5.2, this
gives fel,.

The embedding (iii) of Corollary 5.3 can be refined and this in turn will
give more information as to which Besov spaces can be embedded in L, . These

refinements depend on a weak type inequality between the K-functional
KX(f, ) = K(f, £ Ly(£2), L($2))

and the K-functional K,(f, -),, or equivalently, w,(f, -),. This is given in
the following theorem.

THeOREM 5.4. If | < p < o0 and p’ is the conjugate index to p, (1/p +
1/p" == 1), then the identity operator is of generalized weak type o1, p; p’, )
with respect to the pairs (L, , W), (L,,L.). More precisely, for any feL,(£2),
t >0,

K* L1 P >0 ) 3 d
FLL (1t [ s, 9,5 (56)
For p = 1, we have the strong inequality
K*(f, 1) < ¢ (Ky(f, )y + min(L, £}l fll), ¢ >0. (5.7

Proof. Consider first the case 1 < p < co. We use the same notation as
in Theorem 5.3. If 27 <{ ¢t <C 27+, and f is a function so that the right hand
side of (5.6) is finite, then we decompose f as f = g; + (f — g;). According
to (5.3) we have

If—gilly < cwufs z_j)p K cw(fi1),. (5.8)

To estimate the L, norm of g,, write g; = Zi.u i, with ¢, = g, — 2.1
for k > ko and ¢y = g, . From (5.1) with h = 2%, we have

I ‘ﬁk e < ¢ 2%n/p max(“ ‘/’k ”p , 27Fn ' ‘/’k lp.r) Sy zlm/pwn(f! 2_k)p ’ (59)
where we used (5.3) (writing ;, = (f — gr_1) — (f — gx)). For & = k&, , we have

iy Nl = 11 gk, 1o < € (180, lln + 1 83 [5r) < €I fMlss (5.10)
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where the first inequality used (5.1) and the second used (5.3) and the fact

that w,(f, k), < 2" [ fl,-
The inequalities (5.9) and (5.10) combine to show that

1ol < Ai” bl < (Hfllp+ S 2kni(f, 2- k))

0 kg+1

1 (5.11)
(11 + [ (s, ), 55

Now let f = f — g; and §* denote the decreasing rearrangement of . Then,

K oo [yt as < oo | oy af”

t’n

S| Yrly = [y < et Pon(f 1), (512)

@ ds

Sef emranf, 9,5

Finally,
K*(f tn) K*(‘/‘» tn) + K*(gJ 4 t") K*(‘l’! t") + " ”g:i ”oo
* —n/ D *s 7
el [ smonfe)y S+ £

where the last inequality uses (5.12) and (5.11). Replacing " by ¢ gives the
desired result (5.6) for 1 << p < c0.
When p = 1, ¢ = oo, taking b = 2% in (5.1) gives that whenever g Wy,
gisin L, and
lglle < c(lglh+ 18 l1n)

If ¢ > 0, let g € W, be such that

Hf*glh + t Ig ll,n < 2Kn(f’ t)l .

From the definition of K*, we have for 0 << ¢ << 1

K¥fity<|lf—glh+tlgloe <If—glh+et(liglh + 180
< o[ Ku(fi th + 2 fll4]

where we used the fact that {|g|l, < | f— gily+ || fll.. This shows (5.7)
for 0 <<t 1. But (5.7) holds trivially for ¢ > 1, and so the theorem is
proved.
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CoroLLARY 5.5. If 1 <p<g< o, I <a< o, —0 <a< ®© and
6 = n/p — njq, then
(i) B&%**— Los(log L)
() If 1<p<oo, 1l <a<o, o+ lja<O0, them By»*+ —
L>-%(log L)*.
(i) BY?L0— L=,

Proof. The embedding (i) follows from Theorem 3.2. For (ii) one need
only apply Theorem (2.2) in what is by now an obvious fashion. The embeddings
for 2 = R~ have a slightly different form (see 8.3).

‘We now turn to the proof of Lemma 5.1. In order to avoid technical difficulties
we will give the proofs only for the case 2 = I*, with I = [—1, 1]. The same
ideas carry over to the general case of £ using arguments similar to that in
[19]. The proof of (5.3) is already given in [19], since the function g constructed
there does not depend on p. We therefore concentrate on the proofs of (5.1)
and (5.2).

The proof of (5.1) for p = 1, ¢ = oo is given in [7], so we restrict ourselves
further to the remaining cases. The cube I" can be written as the union of 2
cubes I, ,..., In , with each I}, of the form I}, = {x: 0 <C (—1)* x; < 1} with the
o;’s either 0 or 1. We will show that for each ge W, "(I"), ¢ >0, and 1 <
k << 2%, we have

g lelZe) < € {1 g 1(T") 4 € 1 & [ (I} (5.13)

This of course gives (5.1).

In order to establish (5.13), let [, = {x: 0 << (—1)** x, < 1}. Thus, if
xel,andye J;, then x + y eI Further,let T, ; = {x: 0 < (— 1) x; < ¢}
and for x € I, define

gex®) = < [ (=1 40(g, %) + g(x) d. (5.14)
Now, ,
48 %) = [ ¥ Di(g x + &) M8 de, (5.15)
—® |a|=r

where M, is as before the B-spline of order » with knots 0, 1,..., r. From (5.15),
and Fubini’s theorem we find that

180) — gx@ < e [ [ (X 1D(g, %+ €0)] Xz, (6) M8 di) de.
TR R al=r (5.16)
For notational convenience, let us set G,(x) = | D¥(g, x)| X;a(x). Changing
variables gives for each x € I, and each «,

[ 1D(g, & + €0)] Xz, (t) dt = £7(G, * ho)x).
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with hy(x) = Xt e (—x). The right hand side makes sense for all x. Thus,
taking an L, norm in (5.16) and using Minkowski’s inequality to take the norm
inside the integral gives

“g —ge,kHa(Ilc)
<o [T (T §G whe L) M8 d
- lal=r

< e [T (3 16w bR £M,(6) dt

- Ma|=r

< e J. ( Z “ G ”u(Rn) H hE Hs(Rn) f‘"}‘l,.(f) d§

la]=r

(5.17)

S 1glpAIry enonis [ goneniaM (£ dE < e 0| g |y, (1%)

where in the third inequality, we used Young’s inequality with 1/s =1 +

1/g — 1/p > 0; in the fourth inequality we used the definition of G and

| B lls = (£€)™*; and in the last inequality we used the fact that A, has a zero

of order r — 1 > n — 1 at the origin to conclude that the integral is finite.
We also need to estimate || g, ;. l,(I;). We have

gea@ = <[ X[ 1y (7)o o+ v0)

and so with G = gX;u, h(x) = X7 (—%)

[, sCvnde] @ =16 xR
< || G LR [y ()
< g 1,0 ey
Summing over v, we get
| 8o lalLe) < =112 1,17, (5.18)

Thus the estimates (5.17) and (5.18) show that (5.1) is true.

The proof of (5.2) is very similar to that of (5.1). Again, the case p = I,
g = oo is argued separately, so we prove only the case 1/p — 1/g << 1. Using
the same notation as in the proof of (5.1) and letting I, = {x; —} <
(—1)* x; < 1}, then the exact same estimate as in (5.17) shows that

g — gexllo(ly) < e g1, (IM). (5.19)
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In the same way that we have argued in the proof of (5.18) we can show
that for |a| =7,

I Doge i lioldi) < ce® | Dog (L) < ce™® | g 1, (I).

Since « is arbitrary, we have

| ge.r Ia.r(Ik) < ce™? |g lp.r(In)' (520)

If we denote by K.(f, -, ]), , the usual K-functional for interpolation between
L(J) and W,7(]), then the inequalities (5.19) and (5.20) show that

KAf, &, 1)y < e | g [, 1),

We now use the modified subadditivity of the K-functional (see [19, p. 8])
to find

2"
K(f, e, 1N =K, (fes UL) <c Y K(f e L,
& q k=1

< e lg lp,r (I")'

Finally, using the equivalence of K,(f, €"), with w.(f, €), (see (4.1)) in this last
inequality gives (5.2) as desired.

6. SMOOTHNESS OF THE HILBERT TRANSFORM

In this section we want to consider the smoothness properties of the Hilbert
transform on R:

Hf () = pv. — [ fe— 0 2. (6.1)

It is well known that H maps L (R) and W, (R) boundedly into themselves
when 1 << p < o0 and therefore satisfy strong estimates. For this reason
only the cases p = 1, oo are interest. On L= one must redefine the Hilbert
transform to get almost everywhere existence, so in order that we not obscure
the ideas we only consider the case p = 1 and leave to Remark 8.4 the comments
about generalization to other spaces, to other singular integrals, and the modifica-
tions necessary when p = oo.

Before proceeding to estimate the smoothness of Hf we derive some in-
equalities involving the smoothness of a partition of unity applied to the kernel
of the transform (6.1). Let {{,}<_ be a partition of unity of the line generated
by a nonnegative infinitely differentiable ¢ in such a manner that

W) =p (B T =1 62)

580/33/1-6
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and {y: Y(y) > 0} = (3, 2). Notice that this forces ¢, and its derivatives to
have support in (—2F+1¢, —2%-1¢) U (2812, 2F+1t). Define

a(y) = ‘bk( 7) (6.3)
and
buy) = 3, (—1y () B
21 J
6.4)
Z . t
= —1)+ { ~a /'
C (])J W17)
for fixed positive integer 7.
Now, obviously
k-+1g )
[taiar<2 | wn)T <81l < (6.5)
and thus there is a constant ¢ independent of % so that
[ 1) dy <. (6.6)
Similarly, using Leibnitz’s rule of differentiation we can estimate
- |y dy
r R 2 =
[ Dray(v)l dy < Z() (247 (r — l)'J.iD‘/’ 2kt) [y [+
=0 6.7
< o2b)r, allk
and so there is a ¢ so that
[ | Drby(y)l dy < c(2%1)",  all k. (6.8)
For each fin L, we let
Hyf(x) = f * bylx). (69)

Since Hf exists almost everywhere and i1 (—1YH(5) = 1, we have

Hf (x) :i H,f(x) a.e.

k=—x

The following lemma is an essential part of our estimation of smoothness
of the Hilbert transform.
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Lemma 6.1.  There is a constant ¢ depending only on r such thas
K, (H.f,t™)y < cmin(l, 27%7) K,(f, (2%t)),,  allk. (6.10)

Proof. First consider the case £ < 0. By a change of variables, we see

i (T . i r
Hif@) = 3 07 (0) [ £ =) ) dy = | — 400 6) ) dy
s
since | a,(y) dy = 0 allows us to insert the term for j = 0. Hence we obtain

K(Hyfy 1) < I Hef Iy < [ la(3)ldy sup || 4,7,

Lyl <2+

wr(f, 2k+lt)1 < c Kr(f: (2kt)r)l

where we have used the inequalities (6.5), w,(f, 2s) << 27w/, 5), and the
equivalence inequality (4.1).

Now consider the case £ > 0 and fix such a k. Select f, €L, and f, € "
so that

I fully + 25) 11 Dfy il < 2K, (252)7), (6.11)

Let g = by xf, and b = b, x f,, then H,f = g 1+ h Using inequalities (6.8)
and (6.11), we see that

Kig th <t Dgly < v [ 1 Drby(3)l dy | fuly

(6.12)
< €27k ”fl “1 < Cz—kTKr(f) (2kt)7)1 °
Similarly, using (6.6) and (6.11), we obtain
K(h, 9 < 7 Dy < o [ [B(3)l dy | D'Foli
(6.13)

< | Dfplly < 27MK(f, (2%1)); -

Using the subadditivity of the modified K functional together with the estimates
(6.12) and (6.13) establishes the lemma for £ > 0.
Now using the lemma we have

K{df, v) v KAHf, 1)
— < z _*_1_

¢y —Iﬂf—t@ml— min(1, 2-#7) (6.14)

—

VAN

N

c( r(fs)l '(,r,l)%

Y0
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since

ok
K(f, Q%)) < ct” K(f, 5"), i:— for k<0

2k—1;
and
2kt r
KAf, @y, < ey | BALTh &

for k> 1.
ok 14 sT 5 =

Making the change of variables " — ¢ and s* — s in (6.14), we obtain

THEOREM 6.2. If r is a positive integer, then the Hilbert transform is of
generalized weak type o(1, 1; 00, ) for the couples (L, , Wi7) and (L, , Wy"),
that is

Kr(fif’ th <ec f” Kr({r N i (i, 1) a

0 t s

An immediate application of Theorem 6.2 is the following mapping result
for the Hilbert transform.

CoroLLARY 6.3. If 0 >0, a =1, and —o0 < a < o, then whenever
fe B8 the Hilbert transform Hf is also in B%***. The standard loss of logarithm
occurs when 8 = Q.

7. FURTHER APPLICATIONS

In this section we examine two additional areas where weak type inequalities
play an important role: inverse theorems of approximation and absolute con-
vergence of Fourier transforms. We consider one example only from each area.

Interpolation theory has for some time been recognized as an important
tool in the approximation of functions. It's potential was recognized early
by Butzer and Berens [13], Berens [8], Butzer and Scherer [14], Peetre {24]
and their collaborators. In the first part of this section we point out that the
classical inverse theorem of Bernstein can be formulated as a weak type in-
equality involving the modulus of smoothness and error of approximation.
We consider periodic functions on the unit circle and approximate by
trigonometric polynomials. The error of approximation in L, is given by

E(f, 1), =inf{|f — gll, | g€ Z, deg(g) < [t} (7.1)

where 2 is the set of trigonometric polynomials. For each f, the functionalization
E(f, -), is a positive decreasing function on (0, c0) which is constant on each
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interval [#, 7 + 1). The approximation space A%** is defined as the set of all
functions f in L, for which the functional

([ B0, 0+ mory ey (7.2)

is finite, where 0 << 0 < 00, — 0 < a < o0, and | < a < o0. The usual
modification is made for @ = co. Actually, (7.2) is equivalent to the sequence
space norm [?-%(log 1)* applied to {E(f, n),}%_; .

To estimate the r-th modulus of smoothness, we need to consider

E(f1), = E(f, 1),  t>1 (1.3)

which provides the necessary approximation functionalizations to carry out
our discussion. We notice by a simple change of variable that the spaces 4%
could be defined as the set of f in L, where

l/a

([ B0 0, 70+ ey 5

is finite. Here any integral r > 6 will do, but » = [#] -~ 1 is usually chosen.

Jackson’s theorem (cf. [20, p. 56], [28, p. 260]) gives a direct estimate of
the form

E(f, 1]t), <colfit),, 0<t<I.

Using (4.1), we rewrite this to get

E(f,1]t), < cK(f, t),, 0<r <L (7.9

The “weak” converse is commonly called Bernstein’s inequality

t 1/t
fi{’—)ﬂ— <c["E(fo,d 0<t<I (7.5)
. I8
(cf. [20, p. 59], [28, p. 331]). In our terminology, this is just the statement
that the identity operator is of weak type o(l, o0; oo, 1] for the pairs (L, , &),

and (L,, W,") where (L,,?), gives rise to the functionalization E.f, ), .
Using relations (7.4) and (7.5), we can now state:

CororLary 7.1. If1 < a < oo, then
(i) A% = B%% for 0 < 6, —o0 < a < 00.

(i) AT o (L, W )gman— A7 forr > 1,0+ 1ja < 0.
(ili) ApY°—>(Ly, W)k wnoforr > 1.
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Proof. The embeddings A%%* — B%%> follow from the intermediate
mapping properties of S, (Theorem 2.1) applied to (7.5), while the first embed-
ding in (ii) is just the endpoint result of Theorem 2.2. The remainder of the
embeddings in (i) and (ii) follow from relation (7.4). Part (iii) follows directly
from (7.5).

A similiar analysis can be carried out for approximation on a closed interval
by algebraic polynomials (cf. [28, pp. 344, 521], [20, pp. 65, 73]) or for approxi-
mation on the line by integral functions of exponential type (cf. [28, pp. 259,
340]). Combining (7.5) with the results of Section 4, one obtains differentiability
properties of functions according to their rates of approximation. Indeed,
weak type inequalities relating these concepts have a long history (cf. pp. 406,
347, 365 of [28] and pp. 57, 61 of [20]).

Now we turn to our final application: the absolute convergence of Fourier
transforms. We choose to work with Fourier series but the methods presented
are adequate for Fourier transforms on R” (see (7.10)). Our choice was influenced
by the cumbersome nature of the endpoint results on R" (see Theorem 3.2).

The Fourier transform of an integrable function f on [—m, 7] is defined
as {f(n)}=__, where

fny = [ S ine s

The weak type control of the growth of the Fourier transform by smoothness
properties is given by

Lemma 7.2. For each feL [—m 7, | <p <2, and l[p' =1 — 1/p, we have
s

1/t f: () ds <clft (ilfi11+ f/tfk({—’s)isw ﬂ), t=1. (1.6)

Proof. We assume that 1 < p <{2. The case p = 1 follows similarly.
Since [(f)* % = || /|12 and

3 If'(k)l”"\:z [(H*®)P, m=0

Ikjgamt
we have
Y oIfmr < Y 1R (1.7)
2Mm<k 2m Lk

But if f = f, + f, with fy €L and f, € W,1, then

(¥ lf‘(k)!f”)“"'<nf1n,,'+2—m+l( Y |kf2(k)|pl)”p'

2m=1g| k] 2m1 |k
<A+ 2™ f |
K2 AN+ 27 { falpa)
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where we’ve used the Hausdorff-Young theorem to get || 7 o <Ifllo (1 <p <2)
and the fact that |(Df,)"(k)| = | kfs(k)|. Combining this with (7.7) and mini-
mizing over all selections of f; and f, , we get

(= wrer)” <k(i2m,, m=012.. (13

Mk

Using Hélder’s inequality and (7.8), we then obtain

Z f*(k) g 2mip ( Z l];*(k)lp’)l/p,

ML omtl 2m<k

S eV, 277, (7.9)

2—-m+1
B T

2—m $

For t > 2, pick m, such that 2™ < ¢ < 2m*1, then summing (7.9) from
m = 1 to m, , we get

2m,.,+1

~1

J;t (F)*(s) ds < kgz Xk < cJ &]‘:"V)L s/ _i;_ + £*Q)

2-My
K s , ds
< AN Y aypr Y .
¢ fnt §$ e + 1 fih

§

But
) ") ds = £40) + F*1) < 27

Adding these last two inequalities and dividing by ¢ leads to inequality (7.6).

The proof which we have presented is actually an adapted proof of Bernstein’s
theorem due to Peetre [23]. On R*, the weak type statement reads: for r > »
and 1 <p <2

(7.10)

K(f: t; L1(Rn)r L\,C(R")) <Lclit J-w ——-—Kr(f’ S)l' gl-n/or ﬁ
t IR A, s s

which shows that the Fourier transform is of weak type o[1, p’; pr/(pr — n), 1)
for the pairs (L,(R"), W,"(R")) and (L(R"), L (R")).
Applying function norms to (7.6) in the usual way produces

CorOLLARY 7.3. For 1 <p <2, I/pf =1—1/p, 1l <g<p', and 6 =
1/q — 1[p’ the Fourier transform on the circle satisfies:
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(l) ”f”q.a,a < Hf** ”q.a,a < C”f”B:'a'm ’ 1 < a < 00, —0o0 < a < 0.
@) f hae <IF** lae < el fllatresn, 1 <a < 00, «+ 1fa <0.

@) (£l < cllflgmre.
Proof. The first inequalities of (i) and (ii) follow since

fo<ef FHs) ds = frH(p).

The second inequalities follow from the intermediate theorem 2.1 and the
endpoint theorem 2.2, respectively. Part (iii) follows directly from (7.6) upon
multiplying by ¢ and taking the limit as ¢ — co.

One should keep in mind that the norms of the spaces on the left hand side
of each of the inequalities in Corollary 7.3 are actually sequence space norms
17%logl)*. Using the fact that | ¢l ,or1/a < €l llpae for « + 1/a <0
(see Theorem 12.1 of [6]), we could actually strengthen part (ii) of Cotollary 7.3
to read

(B;/D.a.zx+1)/\ — ll.a(log l)a+1/a

where | <p <2, 1 <<a<oo,anda-+t 1ja <O,

8. ApDITIONAL RESULTS AND REMARKS

Remark 8.1. The interpolation results of this paper can be extended to
function norms [21] other than those of the Lorentz-Zygmund spaces. We
only need to determine pairs of measurable function spaces L, and L, such
that S,;:L, — L, where S, appears in the weak type mequal]ty (3.3). “Then
each operator T of generalized weak type o will satisfy

I Tf llkep < €11 flikcoy -

A particular example of this situation is obtained from results of Boyd [10]:
Suppose T is of generalized weak type o(py, Py ; ps, pe) for (X;, X,) and
(Y, Y,) then

T: (X, Xo)k,o = (Y1, Yo)io
when the Boyd indices o, and g, of L, satisfy
Upe <oy Bo<lipy.
Here || filix,.x,),, = P(K(f, )/()) and [l = p($) (see [10, 3, 4]). Boyd

gives necessary and sufficient conditions on function norms p such that Calderén
operators S, of the type above map L, to L, . We only need to invoke the suf-
ficiency of this theorem for our result, the proof of which is straight forward.
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In the same way, we may generate other interpolation results once we know
the classical mapping properties of S, (see [25]).

Endpoint results involving iterated logarithms could be established as well
and depend upon proving the appropriate Hardy inequalities. We have avoided
this type of extension since the added notational complexity would only obscure
the ideas.

Remark 8.2. The use of weak type inequalities in determining embedding
properties for Besov spaces and other Lipschitz type spaces has been implicit
in the literature for some time. The importance of operators S;, and S,, in
such embedding theorems is present already in A. P. Calderén [16]. Brudnyi
and Shalashov [12] present embedding theorems for a variety of Lipschitz
type spaces by explicitly applying function norms to both sides of Marchaud
type inequalities. Again, operators of the form S,, and S,, play a major role
in determining the embedding properties. In another work, Brudnyi {11] states an
inequality which is stronger than our inequality (5.4) and remarks that embed-
ding results involving the space B.M.O. also follow from his techniques.

Remark 8.3. For £ = R" in Section 5 the proofs become somewhat simpler
because we can use Steklov averages in proving Lemma 5.1. In this case, the
statements in Lemma 5.1 will hold for any £ > 0. Theorem 5.2 and Corollary 5.3
carry over unchanged.

In equations (5.6) and (5.7), the terms ||f|[, and min(l, )| fl|l,, respec-
tively, can be omitted on the right hand sides. This may be seen by using
h = 27% in (5.1) to estimate || g; [, in (5.10) and noting that %, is arbitrary.
In the proof of (5.7) we use (5.1) with arbitrarily large .

The endpoint embeddings of Corollary 5.5 now take on the variety suggested
by Theorems 2.2 and 3.2. Since the endpoint (I, p) is contained in o, Theorem 3.2
does not give all the desired information. However, we can apply Theorem 2.2
and the results in Bennett and Rudnick to obtain the proper theorem. Since
such an exercise is instructive and illustrates the complexity in the case of
functionalizations on [0, o), we sketch the analogue of the second half of
Theorem 3.2. Applying (5.5) and Lemma 2.2 to the norm (3.6) with p, = p’,
P = 1 (equivalent to the norm of the intersection (3.7)), we obtain

{f [BED (i e &)

|
. “;‘ [K*(tf, t) /r(1 4 | lnt|)5]d ?—gl’d

o) R e o]

o {7 AR ] 2

(8.1)

1/b
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for « + 1/a =B — 1 4 1/b < 0, where we have used the fact that S, is of
strong type (1, ) in estimating the second term (see also [6, Theorem 9.1]).
From (8.1) and the remarks following (4.6), we can deduce

By — (L?, W, x5 0.6 0 (L7, Wy")k1,0.0 — L>(log LY* 0 L**(log L)’
(8.2)

for a4+ ljfa=8—1+1/b <0, 1 <d< o, §+ 1/d < 0. Using the fact
that L= *(log L)* is the Orlicz space exp(L~Y*) for a << 0 {6, Theorem 10.3],
(8.1) and (8.2) give in particular

B;/P.b.l)_) exp(Ll/b’) nLP+E,d (8-3)
and

B;/D'I'O—P B:/p.l.—ﬁ__, eXp(LI/B) an+c,d (84)

l<p<oo, I <b<Loo, 1+ 1/ =1,8>0,e>0and | <d < w,
where in the first embedding of (8.4) we used [6, Theorem 9.3]. After some
scrutiny one can see that these results contain Theorems 4.4 and 4.2 respec-
tively of Blozinski [9] since his class exp L(p, g) is exp(L?) N LP1.

The complete endpoint result generated by (5.5) in the case £ = R" is
given in the following theorem.

TreorEM 8.1. If 1 < p << 0, then

(i) Bp®¥E L>log L)* " L*¥log LY for a + 1Ja =B — 1 + 1/b <0,
1 <d=<<oo,d+ 1/d <0

(i) BY®® — Lrdlog L) + L>(log L)V/* for « + 1/a > 0, | < d < oo,
— o0 < & < o0.

Remark 8.4. In Section 6 we determined weak type inequalities for the
Hilbert transform involving L,(R) and W,"(R). One can extend these results
to Sobolev spaces Wy"(R) which are based on translation invariant function
spaces X other than L, . The only requirement is that Hf exist in the principle
value sense for each fe X. Along this same line one may redefine the Hilbert
transform in order to get almost everywhere convergence for functions in

L. (R):

Hf () = lim [ (0l =) — ay(—)) dy

where
L e
a(y)={y’
0, otherwise.

With this definition and the proof of Theorem 6.2 one can show that the Hilbert
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transform is of generalized weak type o(1, 1; o0, cv) for the couples (C, W_7)
and (C, W_"), where C is the space of continuous functions.

In another direction one can obtain weak type inequalities for smoothness
of singular integral operators on other groups. For example, a natural operator
on the circle grouyp is the conjugate transform

F(x) = pov. = [ fx + t) cot(t/2) dt.
It is a standard argument to write
f=Hf+ Mf.

Here H'f(x)=p.v. I/ |7, f(x -+ t) dt/t and Mf = f * ¢ where ¢ is a continuous
periodic function on [—m, 7). After altering slightly the partition of unity
in the proof of Theorem 6.2 near -+, one can use the proof to establish corre-
sponding theorems for the conjugate operator. On R” one can establish the
weak type relationships for singular integrals whose kernel is of the form a(y) =
Q»/ly |**1 where £(y) is homogeneous of degree zero and satisfies the
necessary differentiability properties. An obvious example would be the Riesz
transforms given by

Rfe) =enpv. | fe—9) i dn  1<i<n

The actual weak type inequality for the conjugate function is not new. For
r = 1 it appears in Zygmund [30, p. 121], and the general case was given
by Bari and Stechkin 2] (see [28, p. 163]).

Remark 8.5. We want to consider the connections between the J- and K-
functionals given in the standard development of the interpolation theory as
set forth in Chapter 3 of Butzer-Berens [13]. The important equivalence and
reiteration theorems follow from certain strong and generalized weak type
inequalities.

The J-functional for the Banach couple (X, X,)} is defined by
JUi 1) = JUf, t; X1y Xp) = max{|| fllx, , 211 fllx,}

for each f in X; N X, . A basic relation for the J- and K-functionals for the
same Banach couple is

K(f, t) < min(1, 1/s) J(, s). 8.5)

The space (X , X,),,p.q.0 generated by the J-functional is the set of all elements
fin X; + X,, which have a representation f = ff,o u(t) dtft, where u(t) is a
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X; N X, valued strongly measurable function on (0, ®©) and the integral
converges in the usual vector valued sense in the X; + X, norm. The norm
in this space is given by

“fHJ.D.a.O = in{ | ](u(t)’ t)/t Hp,a,o .

r=fPult)at/t

The equivalence theorem [13, Sect. 3.2.3] states that the spaces generated by
the K- and J-functionals coincide for the same choice of parameters 1 < p < o0,
a = 1. The direct inclusion

(X1 Xo)k.n.a0 C (X1 Xo)ropoao s 1 <p<oo (8.6)

is obtained by constructing an appropriate u(t) so that f = (g u(¢) dt/t and for
which the strong inequality

Jau(t), t) < 4K(f,t), 0 <t 8.7)

holds.

In order to get the reverse inclusions to (8.6), one seeks a weak type inequality
as a partial converse to (8.7). Since K(-, t) is a norm, using (8.5), we find that
fort >0

KD L[ Ko 92
b ds Jau(-), ) (8.8)
< 7 J; min(1, t/s) J(u(s), s) — = S, [____’__] )

with ¢ = o(l, 1; o0, 00) which is the desired weak type inequality that is the
converse to (8.7). Applying norms | - ||, , 0 to both sides of (8.8), taking an
infimum over all #, and using Theorem 3.1 gives the reverse inclusions in (8.6).
It is clear that the above embedding could be extended to spaces with the
inclusion of a logarithm and then in this setting derive endpoint results as well.

The standard development of the K method has as a fundamental component
the “reiteration’” theorem. This theorem says in effect that the construction
of intermediate spaces of intermediate spaces can be identified as intermediate
spaces of the original pairs. This helps in the identification of intermediate
spaces in classical settings and provides the essential interpolation property.
We want to give a brief description of how the weak type theory comes into
play at this point.

Let X, = (X;, Xo)k,p.a0 Where 6; =1 —1/p;, 1 =1,2 and 1 <p, <
P> < c©. For the pair (X, , Xp,), we have the K-functional

K(f, 1) = K(f, t; X4, , X,)-
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From the definition of the K-functionals, we have [13, p. 177] the strong
inequality

K(f, t) < ¢ K(f, 1%7%) (8.9)
which holds for every f in X,,1 + X, . This gives the direct inclusion

(Xo, » Xo,)R 0,000 € (X1 5 X2k, 9,000
forall (p, q)eo(py, 1; py, ).

(8.10)

As in the equivalence theorem, we look for the appropriate weak type
inequality to reverse the inclusions in (8.10). This inequality can be derived
from the proof in [13, Sect. 3.2.4] and (8.5) and it reads

K(f H o S(KU >)(t) t>0, (8.11)

where o = o(p,, 1; po, 00). This shows that the inclusion in (8.10) can be
reversed.

The weak type inequality (8.11) allows us to extend Calderén’s theorem
[15, Theorem 8] to Banach spaces (see Theorem 3.4).

Proof of Theorem 3.4. The necessity is, of course, the last remark in Theo-
rem 2.2 with y(t) = K(f, t)/t.
If T maps Xyp 1.0t Yiq,w0,? = 1,2, then we have

K(T{ )_ < c t—l/(li Hfz ”K,pl-,l_() (812)

for fi€ Xk p 10 Letting Xy = Xyg 10, 6; =1—1/p;, and using the
subadd1t1v1ty and definition of the K- functlonal we obtain for fe Xo + Xg

K(Tf, ¢ -1 -
KCED <o inf 1S+ V)

—c t—l/alg(f’ tl/a‘—llag)‘

(8.13)

Now the result follows from (8.13) by applying inequality (8.11) and changing

variables.

Remark 8.6. We indicate in this remark the simplicity of multilinear
interpolation for the K method [29] when viewed in terms of multilinear
Calderén operators [26]. Suppose, for convenience, T is a bilinear operator
from (X, N X,) ® (Y, N Y,) into Z, N Z, such that

I T, 0z, < cllflx llglly, i=1,2.

580(33/1-7
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It then follows that
](T(u’ 7))! rs; Zl ’ Z2) S ¢ ](u» rs Xl ’ X2) ](7"7 5 Yl ’ Yz)

for each ue X; N X,, ve Y;NY,, and so one easily obtains

K(T(J;,g), 1) gcf: L‘” K({, ) K(f’ ) mi“(rt_s’l)i:“dss‘

K(f,1) Kig )
=cS, , t
where S, is the multilinear Calderén operator [26] corresponding to the inter-
polation segment ¢ = ((1, 1), 1; (0, 00), 0). Now applying function norms

to both sides (Theorem 3.4 of [26]) one obtains the multilinear theorem for
the K method:

H T(f! g)“K,p.r < ¢ Hf”K,p LN Hg HK,p.sz

where 1/r = 1/s; + 1/s, — 1. As illustrated in [26] one may even obtain the
logarithmic convexity of the operator norms in the above inequality. Selections
of o other than ((1, 1), 1; (0, 00), 0) may also prove useful in applications
when strong type initial estimates do not hold. One example appears in a special
case of interpolation of several spaces: Suppose T is a bilinear operator satisfying

T, oz, < el filx gy,
I T(f, &)z, < cllfllx 1 £]ly,

| T(f, 4§')||z2 <c¢ ||fo2 llglly,

where (X, , X,), (Y;, Y;) and (Z; , Z,) are Banach couples, then one can show
that J(T(u, v), s + t) < ¢ J(w,s) J(v,t) and so

KIU.9.0) _, [* 7 KD Ko
t =0 Y r $

. rs\ dr ds
min (r, s, ——) —_—
t r s

K(f,) _Kg )
= Sa [ t
=5 &l
where S, is the multilinear Calder6n operator [26] for the segment o =
(1, 1), 1; (o0, 1), 03 (1, ), o0). Applying function norms to this inequality

will produce norm estimates [26]. One example of an operator of this type
is convolution with X; =V, =2, =L, and X, =Y, =2, =L,,.

Remark 8.7. At the beginning of Section 7 we mentioned that interpolation



WEAK INTERPOLATION IN BANACH SPACES 93

theory has long been recognized as a useful tool in approximation theory.

In

particular, Butzer and Scherer [14] developed an extensive theory using

Jackson and Bernstein type estimates. Berens [8] has also noted that Hardy
inequalities can be put to effective use in our situation. The book of Timan
[28] contains weak type inequalities for many approximation processes.

N
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