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1. Introduction

One-relator groups form a very interesting and very mysterious class of groups. In 1910 Dehn
proved that the Word Problem for the standard presentation of the fundamental group of a closed
oriented surface of genus at least two is solvable by what is now called Dehn’s algorithm (see [21]
for details). In 1932 Magnus developed a general powerful approach to one-relator groups [19], nowa-
days known as Magnus break-down procedure (see [20,18]). In particular, he solved the Word Problem
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(WP) in an arbitrary one-relator group. The decision algorithm is quite complicated and its time com-
plexity is unknown. In fact, we show here that the time function of the Magnus decision algorithm
on the Baumslag group

G(1,2) = 〈
a,b

∣∣ b−1a−1bab−1ab = a2〉
is not bounded by any finite tower of exponents. Furthermore, it is unknown whether there exists any
feasible general (uniform) algorithm that solves WP in all one-relator groups, and at present it seems
implausible that such algorithm exists. However, it is quite possible that the Word Problem in every
fixed one-relator group is tractable. In the Magnus collection of open problems in groups theory [5]
the following question is posted.

Problem 1.1. (See [5], (OR3).) Is it true that WP in every given one-relator group G is decidable in
polynomial time?

The current state of affairs on WP in one-relator groups can be described as follows. On one hand,
there are several large classes of one-relator groups where WP is well understood and is decidable in
polynomial time (hyperbolic, automatic, linear, etc). On the other hand, there are several sporadic ex-
amples of one-relator groups where WP requires a special treatment, though at the end is polynomial
time decidable. Finally, there are a few one-relator groups where WP seems especially hard and the
time complexity is unknown. These are the most interesting ones in this context.

One of the principal unsolved mysteries on one-relator groups is which of them have a hard WP
and why. More precisely, the problem is to determine the “general classes” of one-relator groups and
divide the rest (the sporadic, exceptional ones) into some well-defined families.

There are several conjectures that describe large general classes of one-relator groups which we
would like to mention here.

1.1. Hyperbolic groups

Notice, that if G is hyperbolic, in particular, if it satisfies the small cancelation condition C ′( 1
6 ),

then WP in G is decidable in linear time by Dehn’s algorithm [14]. Since the asymptotic density
of the set of words w ∈ F (X) for which the symmetrized one-relator presentation 〈X | w〉 is C ′( 1

6 )

small cancelation is equal to 1, one may say that for generic one-relator groups the answer to the
question above is affirmative. One can check in polynomial (at most quadratic) time if a one-relator
presentation, when symmetrized, is C ′( 1

6 ) or not. Hence, it is possible to run in parallel the Magnus

break-down process and Dehn’s algorithm for symmetrized C ′( 1
6 ) presentations and obtain a correct

uniform total algorithm that solves WP in one-relator groups, and has Ptime complexity on the set of
one-relator groups of asymptotic density 1. Unfortunately, such an algorithm will not be feasible on
the most interesting examples of one-relator groups. Some interesting examples of hyperbolic one-
relator groups can be found in [15].

Of course, not all one-relator groups are hyperbolic. The famous Baumslag–Solitar one-relator
groups

B(m,n) = 〈
a,b

∣∣ b−1amb = an〉, m,n � 1,

introduced in [6] are not hyperbolic, since the groups B(1,n) are infinite metabelian, and the other
ones contain F2 × Z as a subgroup.

The following outstanding conjecture (see [5]) describes, if true, one-relator hyperbolic groups.

Problem 1.2. Is every one-relator group without Baumslag–Solitar subgroups hyperbolic?

Independently of the above, it is very interesting to know which one-relator groups contain groups
B(m,n) .
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Problem 1.3. Is there an algorithm to recognize if a given one-relator group contains a subgroup
B(m,n) for some m,n � 1?

Notice, that in 1968 B.B. Newman in [24] showed that all one-relator groups with torsion are
hyperbolic and, hence, the Word Problem for them is decidable in linear time.

1.2. Automatic groups

Automatic groups form another class where WP is easy. It is known that every hyperbolic group
is automatic and WP is decidable in at most quadratic time in a given automatic group. Furthermore,
the Dehn function in automatic groups is quadratic. We refer to [11] for more details on automatic
groups. Observe, that the group B(m,n) is not automatic provided m �= n, since its Dehn function is
exponential.

The main challenge in this area is to describe one-relator automatic groups. Answering the follow-
ing questions would help to understand which one-relator groups are automatic.

Problem 1.4. Is it true that one-relator groups with a quadratic Dehn function are automatic?

Problem 1.5. Is it true that one-relator groups with no subgroups isomorphic to B(m,n),m �= n are
automatic?

Problem 1.6. (See [5], (OR8).) Is the one-relator group 〈X | [u, v]〉 automatic for all words u, v ∈ F (X)?

1.3. Linear and residually finite groups

Lipton and Zalstein in [17] proved that WP in linear groups is polynomial time decidable, so one-
relator linear groups provide a general subclass of one-relator groups where WP is easy. Until recently,
not much was known about linearity of one-relator groups. We refer to [3] for an initial discussion
that formed the area for years to come. The real breakthrough came in 2009 when Wise announced in
[28] that if a hyperbolic group G has a quasi-convex hierarchy then it is virtually a subgroup of a right
angled Artin group and, hence, is linear. This result covers a lot of one-relator groups, in particular all
one-relator groups with torsion. There are two interesting cases that we would like to mention here.
In [1] Baumslag introduced cyclically pinched one-relator groups as those ones that can be presented
as a free product of free groups with cyclic amalgamation

〈X ∪ Y | u = v〉 = F (X) ∗u=v F (Y )

where u ∈ F (X) and v ∈ F (Y ) are non-trivial non-primitive elements in the corresponding factors.
Similarly, one can define conjugacy pinched one-relator groups as HNN extensions of free groups with
cyclic associated subgroups:

〈
F (X), t

∣∣ t−1ut = v
〉
.

Wehrfritz proved in [27] that if neither u nor v is a proper power in F (X) then the group
F (X) ∗u=v F (Y ) is linear. However, it was shown in [7,16] that if either u or v is not a proper power
then the group F (X) ∗u=v F (Y ) is hyperbolic, so WP in these groups is linear time decidable. Similar
results hold for conjugacy pinched one-relator groups as well. Observe, that cyclically and conjugacy
pinched one-relator hyperbolic groups have quasi-convex hierarchy, so their linearity follows from
Wise’s result. On the other hand, WP in hyperbolic groups is easy anyway, so linearity in this case
does not give much in terms of the efficiency of WP.

The general problem which one-relator non-hyperbolic groups are linear is wide open. Recall, that
every finitely generated linear group is residually finite. Hence, to see that a given one-relator groups
is not linear it suffices to show that it is not residually finite.
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Notice that there is a special decision algorithm for WP in residually finite finitely presented
groups. The algorithm when given such a group 〈X | R〉 and a word w ∈ F (X) runs two procedures in
parallel: the first one enumerates all the consequences of the relators R until the word w occurs, in
which case w = 1 in G; while the second one checks if w is non-trivial in some finite quotient of G .
Since R is finite and G is residually finite, one of the two procedures eventually stops and gives the
solution of WP for w . However, this algorithm is extremely inefficient. This is why we do not discuss
residually finite one-relator groups as a separate class here, but only briefly mention the results that
are related to linearity.

Meskin in [22] studied residual finiteness of the following special class of one-relator groups:

B(u, v,m,n) = 〈
X

∣∣ u−1 vmu = vn〉, m,n � 1,

where u and v are arbitrary non-commuting elements in F (X). He showed that if m �= 1, n �= 1, m �= n
then the group B(u, v,m,n) is not residually finite. It follows that the group B(m,n) is residually finite
if and only if m = 1, or n = 1, or m = n.

Later Vol’vachev in [26] found linear representations for all residually finite groups B(u, v,m,n).
Sapir and Drutu constructed in [10] the first example of residually finite non-linear one-relator groups.
They showed that the group

D S = 〈
a, t

∣∣ t−2at2 = a2〉
is residually finite and non-linear.

The general classes of one-relator groups described above are the only known ones where WP is
polynomial time decidable. Now we describe the known sporadic one-relator groups where WP is
presumably hard or requires a special approach.

1.4. Baumslag–Solitar groups

Gersten showed that the groups B(m,n) , where m �= n, have exponential Dehn functions [12]
(see also [11] and [9]), so they are neither hyperbolic nor automatic. As we mentioned above the
metabelian groups B(1,n) are linear, so WP in them is polynomial time decidable. The non-metabelian
groups B(m,n) are not linear, so WP in them requires a special approach. Nevertheless, WP in these
groups is polynomial time decidable (see Section 2). It would be interesting to study WP in the groups
B(u, v,m,n) which are similar to the Baumslag–Solitar groups.

Problem 1.7. What is complexity of WP in the groups B(u, v,m,n)?

1.5. Baumslag group G(1,2)

The group G(1,2) = 〈a,b | b−1a−1bab−1ab = a2〉 is truly remarkable. Baumslag introduced this group
in [2] and showed that all its finite quotients are cyclic. In particular, the group G(1,2) is not resid-
ually finite and, hence, is not linear. In [13] Gersten showed that the Dehn function for G(1,2) is
not elementary, since it has the lower bound tower2(log2(n)) and later Platonov in [25] proved that
tower2(log2(n)) is exactly the Dehn function for G(1,2) . This shows that G(1,2) is not hyperbolic, not
automatic, not asynchronously automatic. It was conjectured by Gersten that G(1,2) has the highest
Dehn function among all one-relator groups. As we have mentioned above the time function for the
Magnus break-down algorithm on G(1,2) is not elementary. Taking this into account it was believed
until recently that WP in G(1,2) is the hardest to solve among all one-relator groups. In this paper
we show that the Word Problem for G(1,2) can be solved in polynomial time. To this end we develop
a new technique to compress general exponential polynomials in the base 2 by algebraic circuits
(straight-line programs) of a very special type, termed power circuits [23]. We showed that one can do
many standard algebraic manipulations (operations x + y, x − y, x · 2y, x � y) over the values of ex-
ponential polynomials, whose standard binary length is not bounded by a fixed towers of exponents,
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in polynomial time if it is kept in the compressed form. This enables us to perform some variations
of the standard algorithms in HNN extensions (or similar groups) keeping the actual rewriting in the
compressed form. The resulting algorithms are of polynomial time, even though the standard versions
are non-elementary.

1.6. Baumslag groups G(m,n)

The approach outlined above is quite general and we believe it can be useful elsewhere. In partic-
ular, it works for groups of the type G(m,n) , where m divides n. Here the groups G(m,n) are defined by
the following presentations:

G(m,n) = 〈
a,b

∣∣ b−1a−1bamb−1ab = an〉.
Unfortunately, we do not have any compression techniques for the case when m does not divide n
and n does not divide m. So the following problem seems currently as the main challenge regarding
WP in one-relator groups.

Problem 1.8. What is the time-complexity of the Word Problem for G(2,3)?

1.7. Generalized Baumslag groups

In [4] Baumslag, Miller and Troeger studied another series of one-relator groups G(r, w) which are
similar to the group G(1,2) . Namely, if r, w are two non-commuting words in F (X) then put

G(r, w) = 〈
X

∣∣ rrw = r2〉.
The group G(r, w) is not residually finite (neither linear nor hyperbolic), it has precisely the same
finite quotients as the group 〈X | r〉. These groups are surely among the ones with non-easy WP.

Problem 1.9. Let r, w be two non-commuting elements in F (X).

1) What is the Dehn function of G(r, w)?
2) What is time complexity of WP in G(r, w)?

Going a bit further one can consider WP in the following groups

G(r, w,m,n) = 〈
X

∣∣ (
rm)rw = rn〉.

The paper is organized as follows. In Section 2 we discuss algorithmic properties of elements
of G(1,2) as an HNN extension of the Baumslag–Solitar group, set up the notation, and outline the
difficulty of solvig the Word Problem using the standard methods for HNN extensions. In Section 3
we define the main tool in our method, namely the power circuits, and present techniques for working
with them. In Section 4 we define a representation for words over some alphabet which we call a
power sequence. In Section 5 we present the algorithm for solving the Word Problem in G(1,2) and
prove that its time-complexity is O (n7).

2. The group G(1,2)

In this section we represent the group G(1,2) as an HNN extension of the Baumslag–Solitar group
B(1,2) and describe two rewriting systems R and R′ to solve WP in G(1,2) . The system R represents
the classical Magnus breakdown algorithm for G(1,2) . To study complexity of rewriting with R we
construct an infinite sequence of words {wk} such that
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• |wk| � 2k+2;
• it takes at least tower2(k − 1) steps for R to rewrite wk;
• R rewrites wk into a unique word of length tower2(k).

This shows, in particular, that the time function of the Magnus breakdown algorithm on G(1,2) is not
bounded by any finite tower of exponents. Our strategy to solve WP in G(1,2) can be roughly described
as follows. We combine many elementary steps in rewriting by R into a single giant step and make
it an elementary rewrite of a new system R′ . It is not hard to see that now it takes only polynomially
many steps for R′ to solve WP in G(1,2) . In the rest of the paper we show that every elementary
rewrite in R′ (the giant step) can be done in polynomial time in the length of the input, thus proving
that WP in G(1,2) is decidable in polynomial time.

2.1. HNN extensions

The purpose of this section is to introduce notations and the technique that we use throughout
the paper.

Let H be a group with two isomorphic subgroups A and B , and ϕ : A → B an isomorphism. Then
the group

G = 〈
H, t

∣∣ at = ϕ(a) for each a ∈ A
〉 = 〈

H, t
∣∣ At = B

〉
is called the HNN extension of H relative to ϕ . We refer to [18] for general facts on HNN extensions.
The letter t is called the stable letter. If H is generated by a set Y then Y ∪ {t} generates G and any
word w in the alphabet (Y ∪ {t})±1 can be written in the syllable form:

w(H, t) = h0tε1h1tε2 h2 . . . tεn hn

where εi = ±1 for each i = 1, . . . ,n and hi are words in the alphabet Y ±1. The number n is called
the syllable length of w = w(H, t) and denoted by |w|t . A pinch in w is a subword of the type t−1ht
with h ∈ A or a subword tht−1 where h ∈ B . A word w is reduced if it is freely reduced and contains
no pinches.

Theorem (Britton’s lemma). (See [8].) Let G = 〈H, t | At = B〉. If a word

w(H, t) = h0tε1h1tε2 h2 . . . tεn hn

represents the trivial element of G then either n = 0 and w =H 1 or w(H, t) has a pinch.

Corollary 2.1. Let G = 〈H, t | At = B〉. Assume that:

(G1) The Word Problem is solvable in H.
(G2) The Membership Problem is solvable for A and B in H.
(G3) The isomorphisms ϕ and ϕ−1 are effectively computable.

Then the Word Problem in G is solvable.

Proof. The decision algorithm that easily comes from Britton’s lemma can be described as rewriting
with the following infinite rewriting system RHNN:

{
t−1ht → φ(h)

∣∣ h ∈ F (Y ) and h ∈ A
} ∪ {

tht−1 → φ−1(h)
∣∣ h ∈ F (Y ) and h ∈ B

}
∪ {

h → ε
∣∣ h ∈ F (Y ) and h =H 1

}
(1)

where ε is the empty word. �
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2.2. The group G(1,2) and Magnus breakdown

Proposition 2.2. Let G(1,2) = 〈a,b | b−1a−1bab−1ab = a2〉. Then the following hold:

1) The group G(1,2) is a conjugacy pinched HNN extension of the Baumslag–Solitar group B(1,2) =
〈a, t | t−1at = a2〉 with the stable letter b:

G(1,2) = 〈
B(1,2),b

∣∣ b−1ab = t
〉
.

2) An infinite rewriting system R:

{
t−1akt → a2k

∣∣ k ∈ Z
} ∪ {

ta2kt−1 → ak
∣∣ k ∈ Z

}
∪ {

b−1akb → tk
∣∣ k ∈ Z

} ∪ {
btkb−1 → ak

∣∣ k ∈ Z
}

∪ {
aa−1 → ε, a−1a → ε, bb−1 → ε, b−1b → ε

}
(2)

is terminating and for any w = w(a,b),

w =G 1 ⇔ w →∗
R ε.

In particular, R gives a decision algorithm for the Word Problem in G(1,2) ,

Proof. Notice that

G(1,2) = 〈
a,b

∣∣ b−1a−1bab−1ab = a2〉 = 〈
a, t,b

∣∣ t−1at = a2, b−1ab = t
〉

= 〈
B(1,2),b

∣∣ b−1ab = t
〉

which proves 1).
To prove 2) observe first that the groups B(1,2) and G(1,2) are HNN extension, which satisfy the

properties (G1), (G2), and (G3) from Corollary 2.1. Hence WP in both groups can be solved by the
corresponding rewriting systems of the type RHNN from the proof of Corollary 2.1. Combining these
rewriting systems into one we obtain the system R. It follows that for any w = w(a,b),

w =G 1 ⇔ w →∗
R ε.

It remains to be seen that R is terminating. To see this associate with each word w = w(a,b, t) a
triple (α,β,γ ) where α is a total number of b symbols in w , β is the total number of t symbols in w ,
and γ = |w|. It is easy to see that any rewrite from R strictly decreases (α,β,γ ) as an element of
N

3 in the (left) lexicographical order. Since the lexicographical order is a well-ordering it follows that
the rewriting system R is terminating. �

Notice, that the system R is not confluent in general.
Proposition 2.2 states that R solves the Word Problem for G(1,2) , but it does not give any estimate

on the time-complexity of the rewriting procedure. To estimate the complexity of rewriting with R
consider a sequence of words over the alphabet of G(1,2) defined as follows
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w0 = a,

w1 = (
b−1 w0b

)−1
a
(
b−1 w0b

)
,

...

wi+1 = (
b−1 wib

)−1
a
(
b−1 wib

)
. (3)

Lemma 2.3. Let G = G(1,2) = 〈a,b | b−1a−1bab−1ab = a2〉. Then (in the notation above) the following hold:

1) for any i ∈ N, wi =G a2
2...2

}
i times

= atower2(i);
2) atower2(i) is the only R-reduced form of wi ;
3) it takes at least tower2(i − 1) elementary rewrites for R to rewrite wi into atower2(i) .

Proof. By induction on k

wk+1 = (
b−1 wkb

)−1
a
(
b−1 wkb

) =G t−2
2...2

}
k

at2
2...2

}
k

=G a2
2...2

}
k+1

which proves 1). Now 2) and 3) are easy. �
Theorem 2.4. The time function of the Magnus breakdown algorithm on G(1,2) is not bounded by any finite
tower of exponents.

Proof. Since the presentation 〈a,b | b−1a−1bab−1ab = a2〉 for G(1,2) has a unique stable letter b in its
relator, the Magnus procedure represents G(1,2) as the HNN extension

G(1,2) = 〈
B(1,2),b

∣∣ b−1ab = t
〉
.

Similarly, since the presentation 〈a, t | t−1at = a2〉 has a unique stable letter t in its relator, the Magnus
procedure represents B(1,2) as the HNN extension of Z = 〈a〉

B(1,2) = 〈〈a〉, t
∣∣ t−1at = a2〉.

Now, to determine if a given word w = w(a,b) represents the identity of G(1,2) the Magnus process
applies Britton’s lemma to the constructed HNN extensions. The rewriting system R describes pre-
cisely the applications of Britton’s lemma to the word w , when one first eliminates all the pinches
related to b and then all the pinches related to t . Independently of how one realizes the rewriting in
Magnus breakdown (rewriting with R) in a deterministic fashion the rewriting of the words wi of
(3) is essentially unique and takes at least tower2(i − 1) elementary rewrites to finish. Notice that for
every i ∈ N,

|wi | = 2|wi−1| + 5 and |w0| = 1.

Hence, |wi | = 6 · 2n − 1 and, as Lemma 2.3 shows, reducing the word wi produces the word of length
tower2(i). Hence the result. �
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2.3. Large scale rewriting in G(1,2)

To make the rewriting by R efficient one must be able to:

• work with huge numbers that appear as exponents in the rewriting process;
• perform rewrites at bulk, i.e., perform many similar rewrites at once.

In Section 5 we will use the rewriting system

R′ = {
b−1amb → tm, btmb−1 → am

∣∣ m ∈ Z
}

∪ {
tkam → am2−k

tk
∣∣ m,k ∈ Z, m2−k ∈ Z

}
∪ {

xkxm → xk+m
∣∣ k,m ∈ Z, x ∈ {a,b, t}} (4)

instead of the system (2). To perform such rewrites efficiently it suffices to perform efficiently the
following arithmetic operations on exponents that occur in rewriting:

(O1) addition and subtraction;
(O2) multiplication and division by a power of 2.

In the next section we introduce a representation of integer numbers over which the sequences of
operations (O1) and (O2) can be performed efficiently.

3. Power circuits

In this section we define a presentation of integers which we refer to as power circuit presentation
and show how one can perform some arithmetic operations over power circuits. See [23] for more
details on circuits.

A power circuit is a quadruple (P ,μ, M, ν) satisfying the conditions below:

• P = (V (P ), E(P )) a directed graph with no multiple edges and no directed cycles;
• μ : E(P ) → {1,−1} a function called the edge labelling function;
• M ⊆ V (P ) a set of vertices called the set of marked vertices;
• and ν : M → {−1,1} a function called the sign function.

For an edge e = v1 → v2 in P denote its origin v1 by α(e) and its terminus v2 by β(e). For a vertex
v in P define sets

Inv = {
e ∈ E(P)

∣∣ β(e) = v
}

and Outv = {
e ∈ E(P)

∣∣ α(e) = v
}
.

A vertex v in P is called a source if Inv = ∅. Inductively define a function E : V (P ) → R (E stands for
evaluation) as follows: for v ∈ V (P ) define

E (v) =
{

0 if Outv = ∅;
2

∑
e∈Outv μ(e)E (β(e)) otherwise.

We are interested in presentations of integer numbers only and hence we assume that E (v) ∈ Z for
each v ∈ P . Such circuits are called proper. Since P contains no cycles the function E is well defined.
Finally, assign a number N to the quadruple (P ,μ, M, ν) as follows

N = N (P,μ, M, ν) =
∑

ν(v)E (v).
v∈M
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Fig. 1. Power circuits representing integers 1, −1, 16, 2 and 35. Black vertices denote the marked vertices. An edge e is labeled
with + if μ(e) = 1, a marked vertex v is labeled with + if ν(v) = 1.

Fig. 2. Taking difference of circuits d) and e) from Fig. 1.

If N = N (P ,μ, M, ν) then we say that (P ,μ, M, ν) is a power circuit presentation of the number
N ∈ R, or that N is represented by (P ,μ, M, ν). Throughout the paper we denote the quadruple
(P ,μ, M, ν) simply by P .

For a circuit P denote by |P | the number |V (P )| + |E(P )| called the size of the circuit and by
N (P ) the integer represented by P .

3.1. Zero vertices in power circuits

A vertex z in P is called zero if Outz = ∅. It follows from the definition of the function E that z is
a zero vertex in P if and only if E (z) = 0. Clearly, each non-trivial circuit has at least one zero vertex.
If P has more than one zero vertex then its size can be reduced. The next lemma is obvious.

Lemma 3.1. Let z1 and z2 be distinct zero vertices of a circuit P and P ′ a circuit obtained from P by gluing z1
and z2 together. Then |V (P )| = |V (P ′)| + 1 and N (P ) = N (P ′).

3.2. Addition and subtraction

Let P1 and P2 be two circuits. To compute a circuit P+ such that N (P+) = N (P1) + N (P2)

one can take a union of P1 and P2 leaving the labeling functions the same. Clearly the obtained
result satisfies the equality N (P+) = N (P1) + N (P2). Similarly, to compute a circuit P− such that
N (P−) = N (P1) − N (P2) one can take a union of P1 and P2 leaving the labeling functions on P1
the same and changing the labeling function on M(P2) to the opposite. Clearly the obtained result
satisfies the required equality. See Fig. 2 for an example of difference of two circuits.
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Proposition 3.2. (See [23], Proposition 7.2.) Let P1 and P2 be power circuits and P+ = P1 + P2 . Then
N (P+) = N (P1) + N (P2), |V (P+)| = |V (P1)| + |V (P2)|, and |E(P+)| = |E(P1)| + |E(P2)|. Moreover,
P+ and P− are computed in time O (|P1| + |P2|).

3.3. Comparison (circuit reduction)

We say that P is reduced if it is proper and for every v1, v2 ∈ V (P )

E (v1) = E (v2) ⇔ v1 = v2.

For more detail see [23]. Here we outline the main results about reduced circuits.

Theorem 3.3. (See [23], Propositions 5.16 and 5.17.) There exists an algorithm which for every power circuit P
constructs an equivalent reduced circuit P ′ such that

∣∣V
(

P ′)∣∣ �
∣∣V (P)

∣∣ + 1 and
∣∣M(

P ′)∣∣ �
∣∣M(P)

∣∣,
and orders vertices of P ′ according to their E values. Moreover, the time complexity of the procedure is
O (|V (P )|3).

Proposition 3.4. (See [23], Proposition 7.11.) There exists a deterministic algorithm which for every power
circuit P computes

Sign(P) =

⎧⎪⎨
⎪⎩

−1, if N (P) < 0;
0, if N (P) = 0;
1, if N (P) > 0.

Moreover, the time complexity of that procedure is bounded above by O (|V (P )|3).

Proposition 3.5. Let P be a reduced power circuit, v ∈ M(P ) the marked vertex satisfying E (v) = min{E (u) |
u ∈ M(P )}, and m ∈ N. Then N (P ) is divisible by 2m if and only if E (vi) is.

Proof. Follows from the definition of N (P ) and the definition of a reduced circuit. �
3.4. Multiplication and division by a power of two

Let P1 and P2 be power circuits. Assume that N (P2) > 0. In this section we outline a procedure
for constructing circuits P• and P◦ satisfying

N (P•) = N (P1) • N (P2) := N (P1) · 2N (P2)

and

N (P◦) = N (P1) ◦ N (P2) := N (P1)

2N (P2)
.

Recall that N (P1) = ∑
v∈M1

ν(v)E (v), where E (v) = 2
∑

e∈Outv μ(e)E (β(e)) is a power of 2. Hence, to

multiply N (P1) by 2N (P2) one can multiply the values of E (v) by 2N (P2) for each v ∈ M(P1) which
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Fig. 3. Multiplication by a power of 2.

corresponds to increase of the value of the sum
∑

e∈Outv
μ(e)E (β(e)) by N (P2). Thus, to multiply

N (P1) by 2N (P2) one can perform the following steps:

(1) make each marked vertex v in P1 a source;
(2) take a union of P1 and P2;
(3) for each v1 ∈ M1 and v2 ∈ M2 add an edge e = v1 → v2 and put μ(e) = ν(v2);
(4) unmark all vertices of P2.

See Fig. 3 for an example.
In this paper we work with integer numbers only. Hence the operation ◦ is not always defined

for all pairs P1, P2 of circuits. To check if P1 ◦ P2 is defined one can reduce the presentation of P1
and check the conditions of Proposition 3.5. To actually multiply P1 by 2−N (P2) one needs to 1)
reduce P1, 2) invert the value of P2 and, 3) apply the algorithm outlined above to compute P◦ .

Proposition 3.6. Let P1 and P2 be power circuits. Assume that P• and P◦ are obtained by the outlined above
procedures. Then:

1) N (P•) = N (P1)2N (P2) and N (P◦) = N (P1)

2N (P2) .
2) |V (P•)|, |V (P◦)| � |V (P1)| + |V (P2)| + |M1|.
3) The time required to construct P• is bounded by O (|P1| + |P2|).
4) The time required to construct P◦ and to check that it properly defines an integer is bounded by

O (|V (P1)|3 + |P2| + |M1| · |M2|).

Proof. Straightforward to check. �
3.5. Normal forms of power circuits

A binary sum is an algebraic expression

ε12q1 + · · · + εk2qk , (5)

where εi ∈ {−1,1} and q1 > q2 > · · · > qk are natural numbers. A binary sum (5) is called compact if
qi − qi+1 � 2 for every i = 1, . . . ,k − 1.

The following lemma shows that compact binary sums give some kind of a normal form for natural
numbers.

Lemma 3.7. (See [23], Lemma 2.8.) The following hold:

(1) For any n ∈ N there exists a unique compact binary sum Pn = ε12q1 + · · · + εk2qk representing n. Fur-
thermore, k,q1, . . . ,qk � log2 n and Pn can be found in linear time O (log2 n).

(2) A compact binary sum representation of a given number n ∈ N involves the least possible number of terms
among all other binary sums representing n.
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Let P be a power circuit. We say that P is in the normal form if:

(N1) P is proper and reduced.
(N2) For every vertex v ∈ V (P ) the binary sum

∑
e∈Outv

μ(e)E (β(e)) is compact (after proper enu-
meration of children of v).

(N3) The binary sum E (P ) = ∑
v∈M ν(v)E (v) is in the compact form.

Power circuits P1 and P2 are isomorphic if there exists a graph isomorphism ϕ : P1 → P2 mapping
M(P1) bijectively onto M(P2) and preserving the values of μ, ν , and γ .

Theorem 3.8 (Normal forms). (See [23], Theorem 4.9.) Two power circuits in the normal form represent the
same number if and only if they are isomorphic.

The following theorem gives an important algorithmic result about normal power circuits that we
use in the sequent.

Theorem 3.9 (Computing normal forms). There exists an algorithm which for any n ∈ N computes the unique
normal power circuit Pn representing n in time O (log2 n log2 log2 n). Furthermore, |V (Pn)| � �log2 n� + 2.

Proof. It follows from Lemma 3.7 that the required circuit Pn contains at most 2 + log2 n vertices
with E -values 0,20,21, . . . � n. It is straightforward to process each vertex v with E (v) = 2k and
make sure that it satisfies the property (N2) in time bounded by O (log2 k) � O (log2 log2 n). Therefore,
Pn indeed can be constructed in time O (log2 n log2 log2 n). �
4. Power sequences

Let X be an alphabet, x1, . . . , xn ∈ X±1, and P1, . . . , Pn power circuits. A sequence S = (x1, P1),

. . . , (xn, Pn) is called a power sequence. We say that a power sequence S represents a word

W (S) = xN (P1)
1 . . . xN (Pn)

n .

If all the power circuits Pi are normal then the sequence S is termed normal.
For a power sequence S we define the following numerical characteristics: the total number of

marked vertices in its circuits

M(S) =
∑

(x,P)∈S

∣∣M(P)
∣∣;

and the total number of vertices in its circuits

V (S) =
∑

(x,P)∈S

∣∣V (P)
∣∣.

If S represents a word w = xp1
1 . . . xpn

n and g = xpi
i . . . x

p j

j is a subword of w denote by S g the
segment of S corresponding to g .

A power sequence is reduced if it does not contain:

(R1) a pair (x, P ) where N (P ) = 0,
(R2) a subsequence (x, P ), (x, P ′).
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To reduce a power sequence S one can consequently replace non-reduced subsequences (x, P ), (x, P ′)
by the corresponding pairs (x, P + P ′), and remove the pairs (R1). The described process is called a
reduction of a power sequence.

Proposition 4.1. Let S be a power sequence and S ′ be obtained by reducing S . Then S and S ′ represent the
same element of the corresponding free group F (A). Furthermore, M(S ′) � M(S) and V (S ′) � V (S). The
time complexity of reduction is not greater than O (V (S)3).

Proof. Follows from Proposition 3.2. �
Proposition 4.2 (Computing normal power sequences). For a given word w in an alphabet X±1 one can
compute the unique reduced normal power sequence Sn representing w in time O (|w| log |w|).

5. The Word Problem in G(1,2)

In this section we describe an efficient decision algorithm for the Word Problem in G(1,2) . It is
based on the large scale rewriting system R′ introduced in Section 2.3, which allows one to per-
form many similar elementary rewrites at once. Furthermore, to avoid huge numbers as exponents in
the rewriting process we keep the numbers in the compressed form, representing words by power
sequences. We show in Section 5.3 that the resulting algorithm has polynomial time complexity. To
some extent this is a compressed version of the classical Magnus breakdown algorithm for the Word
Problem in G(1,2) .

5.1. The compressed form of the Magnus breakdown algorithm

We mentioned in Section 2.2 that the Magnus breakdown algorithm for the Word Problem in
G(1,2) represents the group G(1,2) as the HNN extension

G(1,2) = 〈
B(1,2),b

∣∣ b−1ab = t
〉
, (6)

where

B(1,2) = 〈
a, t

∣∣ t−1at = a2〉, (7)

and then rewrites a given word eliminating all possibles pinches according to Britton’s lemma.
Eliminating several similar pinches of the type tamt−1, t−1amt (that correspond to the HNN exten-

sion (7)) at once, results in the large scale rewriting system R′ (see Section 2.3):

{
b−1amb → tm, btmb−1 → am

∣∣ m ∈ N
}

∪ {
tkam → am2−k

tk
∣∣ m ∈ N, m2−k ∈ Z

}
∪ {

t−kam → am2k
t−k

∣∣ k ∈ N
}

∪ {
xkxm → xk+m

∣∣ k,m ∈ Z, x ∈ {a,b, t}}. (8)

A single rewrite of the form b−1amb → tm or btmb−1 → am decreases the total power of b in a
given word, so the rewriting algorithm performs at most |w|/2 such transformations. It remains to be
seen how one can execute efficiently all other rewrites in R′ . To tame large exponents we represent
words in the alphabet {a,b, t}±1 by the power sequences from Section 4. This is done in Section 5.2.
In particular, this involves an efficient checking if a word u(a, t), when given as a power sequence,
is equal to am or tm in B(1,2) .
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The decision algorithm for the Word Problem in G(1,2) denoted by A can be roughly described as
follows.

• Given a word w(a,b, t) find a normal power sequence S w for w .
• Eliminate all the pinches in the sequence S w that come from the HNN extension (6). If the

resulting sequence contains the letter b, then return No.
• Otherwise, eliminates all the pinches in the sequence S w that come from the HNN extension (7),

using the rules from R′ . If the resulting word is empty, then return Yes. Otherwise, return No.

More precise description of the algorithm A is given below.

Algorithm 1 Word Problem for G(1,2)

Input: A word w = w(a,b, t).
Output: Yes if w represents the identity in G(1,2) , No otherwise.

1: Represent w as a product of powers

w(a,b, t) = g0(a, t)bε1 g1(a, t)bε2 g2(a, t) . . .bεn gn(a, t) (9)

where

gi(a, t) = ami,0 tδi,1 ami,1 tδi,2 ami,2 . . . tδi,ki ami,ki (10)

and εi , δi, j,mi, j ∈ Z.
2: Compute a power sequence S representing w .
3: while S contains a subsequence S gi satisfying the following do
4: if εi < 0, εi+1 > 0, and S gi =B ap for some p ∈ Z then
5: Replace (b, εi)S gi (b, εi+1) in S with (b, εi + 1), (t, p), (b, εi+1 − 1).
6: end if
7: if εi > 0, εi+1 < 0, and S gi =B t p for some p ∈ Z then
8: Replace (b, εi)S gi (b, εi+1) in S with (b, εi − 1), (a, p), (b, εi+1 + 1).
9: end if

10: end while
11: if S involves a letter b then
12: return No.
13: end if
14: if S represents the trivial element in B(1,2) then
15: return Yes.
16: else
17: return No.
18: end if

In the next section we describe how one can decide if S gi =B ap or S gi =B t p and how to compute
the corresponding power p.

5.2. Word processing in B(1,2)

Let

(a, Pm0), (t, Pδ1), (a, Pm1), (t, Pδ2), (a, Pm2) . . . (t, Pδk ), (a, Pmk ) (11)

be a power sequence representing a word

g = am0tδ1am1tδ2am2 . . . tδk amk

over the alphabet of B(1,2) .
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Fig. 4. A circuit representing
∑k

i=0 Pmi ◦ (
∑i

j=1 Pδ j ).

Proposition 5.1 (All non-positive powers). Consider a sequence (11). Assume that δ1 + · · · + δi � 0 for every
i = 1, . . . ,k. Then g = aMtσ in B(1,2) where

σ =
k∑

i=1

δi and M =
k∑

i=0

mi · 2−∑i
j=1 δ j .

Furthermore, there exist power circuits PM and Pσ such that N (PM) = M and N (Pσ ) = σ and

(a) |V (Pσ )| = ∑k
j=1 |V (Pδ j )| and |V (PM)| � ∑k

j=0(|V (Pm j )| + |M(Pm j )|) + ∑k
j=1 |V (Pδ j )|;

(b) |M(Pσ )| = ∑k
j=1 |M(Pδ j )| and |M(PM)| = ∑k

j=0 |M(Pm j )|.

Proof. The equality g = aMtσ in B(1,2) is obvious. A circuit Pσ can be constructed by taking a disjoint
union of the circuits Pδ1 , . . . , Pδk . A circuit PM can be obtained as follows.

• Take a disjoint union of the circuits Pm0 , . . . , Pmk , Pδ1 , . . . , Pδk .
• Add edges between Pmi and Pδ j as it is done in multiplication by a power of two (see Sec-

tion 3.4).
• Unmark vertices in Pδ j ’s. See Fig. 4.

Clearly PM and Pσ satisfy equalities (a) and (b). �
We call the transformation of Proposition 5.1 the (T1)-transformation. Applying (T1)-transforma-

tions to subsequences of (11) we either obtain a power sequence

S = (a, PM0), (t, Pσ1), (a, PM1), . . . , (a, PMn−1), (t, Pσn ), (a, PMn ), (12)

where σi > 0 for every i = 1, . . . ,n; or a power sequence

S = (a, PM0), (t, Pσ1), (a, PM1 ), . . . , (a, PMn−1), (t, Pσn ), (a, PMn ), (t, Pσn+1), (13)

where σi > 0 for every i = 1, . . . ,n and σn+1 < 0. Furthermore, for every σi and Mi we have

Pσi = Pδq + · · · + Pδr and PMi =
r∑

j=q−1

Pm j ◦
( j∑

m=q

Pδm

)
(14)

for some q < r. The next lemma follows from Britton’s lemma.



340 A. Myasnikov et al. / Journal of Algebra 345 (2011) 324–342
Fig. 5. A circuit representing M0 + 2−σ1 M1.

Lemma 5.2. If the sequence (12) or (13) represents in B(1,2) an element ap or t p for some p ∈ Z then for every
i = 1, . . . ,n the condition

2−σi
(· · · + 2−σn−2

(
Mn−2 + 2−σn−1

(
Mn−1 + 2−σn Mn

)) · · ·) ∈ Z

is satisfied.

Proposition 5.3 (All positive powers). Consider a sequence (12) or (13) representing an element g ∈ B(1,2) .
If g = aMtσ in B(1,2) , then for every i = 1, . . . ,n the condition

2−σi
(· · · + 2−σn−2

(
Mn−2 + 2−σn−1

(
Mn−1 + 2−σn Mn

)) · · ·) ∈ Z (15)

is satisfied. Furthermore,

σ = σ1 + · · · + σn,

M = (
M0 + · · · (Mn−2 + (Mn−1 + Mn ◦ σn) ◦ σn−1

) · · · ◦ σ1
)
,

and there exist circuits PM and Pσ for M and σ satisfying:

(a) |V (Pσ )| = ∑n
j=1 |V (Pσ j )| and |V (PM)| � ∑n

j=0(|V (PM j )| + |M(PM j )|) + ∑n
j=1 |V (Pσ j )|;

(b) |M(Pσ )| = ∑n
j=1 |M(Pσ j )| and |M(PM)| = ∑k

j=0 |M(PM j )|.

Proof. The equality (15) follows from Britton’s lemma. To construct a circuit Pσ we take a disjoint
union of Pσ1 , . . . , Pσn . Clearly, Pσ satisfies (a) and (b).

We prove the existence of a required circuit PM by induction on n. If n = 0, then PM = PM0

and we have nothing to do. The case when n = 1 provides us with the induction step. In this case
we need to construct a circuit representing M0 + 2−σ1 M1. By (14) we have σ1 = δ1 + · · · + δl and
M0 = m0 + m12−δ1 + · · · + ml−12−δ1...−δl−1 . The structure of circuits Pσ1 and PM0 was described in
Proposition 5.1. To construct PM we do the following (see Fig. 5).

• Reduce PM1 to obtain an equivalent circuit P ′
M1

.
• Take a disjoint union of PM0 , Pδl and P ′

M1
.

• Unmark all vertices in Pδl .• By construction, PM0 contains subgraphs corresponding to Pδ0 , . . . , Pδl−1 . So, we add edges from
marked vertices in PM1 to vertices in Pδ0 , . . . , Pδl that were marked as for operation ◦.

• Collapse zero-vertices in the obtained circuit.

It follows from the construction that N (PM) = M and that properties (a) and (b) hold for PM . �
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Proposition 5.4 (Complexity of word processing in B(1,2)). It takes

O

(
k

(
k∑

j=0

(∣∣V (Pm j )
∣∣ + ∣∣M(Pm j )

∣∣) +
k∑

j=1

∣∣V (Pδ j )
∣∣)3)

operations to determine if (11) is equivalent to a sequence (a, P ) or a sequence (t, P ). If (11) is equivalent to
a sequence (a, P ) then P satisfies:

∣∣V (P)
∣∣ �

k∑
j=0

(∣∣V (Pm j )
∣∣ + ∣∣M(Pm j )

∣∣) +
k∑

j=1

∣∣V (Pδ j )
∣∣ and

∣∣M(P)
∣∣ =

k∑
j=0

∣∣M(Pm j )
∣∣.

If (11) is equivalent to a sequence (t, P ) then P satisfies:

∣∣V (P)
∣∣ =

k∑
j=1

∣∣V (Pδ j )
∣∣ and

∣∣M(P)
∣∣ =

k∑
j=1

∣∣M(Pδ j )
∣∣.

Proof. The bounds on |V (P )| and |M(P )| for both cases follow from Propositions 5.1 and 5.3. Fur-
thermore, at every step in the process all power circuits in the sequence (11) have the number of
vertices bounded by

∑k
j=0(|V (Pm j )| + |M(Pm j )|) + ∑k

j=1 |V (Pδ j )|. Hence, it takes up to

O

((
k∑

j=0

(∣∣V (Pm j )
∣∣ + ∣∣M(Pm j )

∣∣) +
k∑

j=1

∣∣V (Pδ j )
∣∣)3)

operations to check if conditions of Propositions 5.1 and 5.3 hold at every step. The algorithm per-
forms O (k) transformations and hence the claimed bound on complexity. �
5.3. Complexity estimate for Algorithm 1

Finally, it remains to estimate the time complexity of Algorithm 1.

Theorem 5.5. Algorithm 1 solves the Word Problem for G(1,2) in time O (|w|7).

Proof. Let w = w(a,b, t) be a reduced word over the alphabet {a,b, t}. First, Algorithm 1 constructs a
power sequence S for w . As described in [23] it is straightforward to construct circuits for numbers
mi, εi, δi . Clearly, the total number of vertices for circuits mi, εi, δi is not greater than 2|w|. This can
be done in O (|w|) steps.

In the loop 3–10 Algorithm 1 determines what subsequences S gi can be shortened into (a, P ) or
(t, P ). By Proposition 5.4 this can be done in time

O
(|gi| ·

(∣∣V (P gi )
∣∣ + ∣∣M(P gi )

∣∣)3)
and the obtained circuit P satisfies

∣∣V (P)
∣∣ � V (S gi ) + M(S gi ) and

∣∣M(P)
∣∣ � M(S gi ).
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Hence, a single transformation on a step 5 or 8:

• does not increase the total number of marked vertices in S ;
• can increase the total number of vertices by the number of marked vertices.

Therefore, in the worst case steps 5 and 8 are performed on a sequence S gi of size V (S gi ) = O (|w|2).
Algorithm 1 performs up to |w| steps 5 and 8. Hence the result. �
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