Stability of an integro-differential equation

Chuhua Jin ${ }^{\text {a,*, }}$, Jiaowan Luo ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, PR China

A R T I C L E IN F O

Article history:

Received 4 August 2007
Received in revised form 1 December 2008
Accepted 9 January 2009

Keywords:

Fixed points
Contraction
Stability
Integro-differential equation
Variable delay

Abstract

In this work we study a scalar integro-differential equation and give some new conditions ensuring that the zero solution is asymptotically stable by means of the fixed-point theory. Our work extends and improves the results in the literature.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we consider the following integro-differential equation

$$
\begin{equation*}
x^{\prime}(t)=-\int_{t-r(t)}^{t} a(t, s) x(s) \mathrm{d} s \tag{1.1}
\end{equation*}
$$

as well as the nonlinear analogue

$$
\begin{equation*}
x^{\prime}(t)=-\int_{t-r(t)}^{t} a(t, s) g(x(s)) \mathrm{d} s \tag{1.2}
\end{equation*}
$$

for $t \geq 0$, where $r:[0, \infty) \rightarrow[0, \infty)$ is differentiable with $t-r(t) \rightarrow \infty$ as $t \rightarrow \infty, a:\left[-r_{0}, \infty\right) \times\left[-r_{0}, \infty\right) \rightarrow R$, where $r_{0}=\max _{t \geq 0}\{t-r(t)\}, g: R \rightarrow R$ are continuous functions and $x g(x)>0$ if $x \neq 0$ is sufficiently small.

Many authors (see [1-5] and the references quoted therein) have studied the stability of the above two equations and their special forms. Recently, Burton [1] considered the case that $r(t)=r$ is a constant. Becker and Burton [2] investigated (1.1) and (1.2) with the variable delay $r(t)$ under the assumption that the function $t-r(t)$ is strictly increasing. In the present work, however, we rewrite (1.1) and (1.2) in a fashion different from that in [1,2] and introduce a function $v(t)$ in constructing a a fixed-point mapping. Consequently, we eliminate the condition that $t-r(t)$ be strictly increasing and obtain less restrictive conditions for stability. For such a technique being used, our results extend and improve the results in [1,2]. We mainly use the fixed-point theory, which has been effectively employed to study the stability of functional differential equations with variable delays [6-9].

The rest of this paper is organized as follows. In Section 2 we consider the linear equation and in Section 3 we consider the nonlinear equation. In Section 4, we give some remarks and examples to illustrate that our results are stronger than that in [1,2].

[^0]
2. The linear equation

In order to find a new fixed-point mapping for (1.1), we write (1.1) as

$$
\begin{equation*}
x^{\prime}(t)=B(t, t-r(t))\left(1-r^{\prime}(t)\right) x(t-r(t))+\frac{\mathrm{d}}{\mathrm{~d} t} \int_{t-r(t)}^{t} B(t, s) x(s) \mathrm{d} s \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
B(t, s):=\int_{t}^{s} a(u, s) \mathrm{d} u, \quad \text { with } B(t, t-r(t))=\int_{t}^{t-r(t)} a(u, t-r(t)) \mathrm{d} u \tag{2.2}
\end{equation*}
$$

Lemma 2.1. If $x(t)$ is a solution of (1.1) on an interval $[0, T)$ and satisfies the initial condition $x(t)=\psi(t)$ for $t \in\left[-r_{0}, 0\right]$, then $x(t)$ is a solution of the integral equation

$$
\begin{align*}
x(t)= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{ds}} \psi(0)-\mathrm{e}^{-\int_{0}^{t} v(u) \mathrm{d} u} \int_{-r(0)}^{0}[v(u)+B(0, u)] \psi(u) \mathrm{d} u \\
& +\int_{t-r(t)}^{t}[v(u)+B(t, u)] x(u) \mathrm{d} u-\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s}[v(u)+B(s, u)] x(u) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}[v(s-r(s))+B(s, s-r(s))]\left(1-r^{\prime}(s)\right) x(s-r(s)) \mathrm{d} s \tag{2.3}
\end{align*}
$$

on $[0, T)$, where $v:\left[-r_{0}, \infty\right) \rightarrow R$ is an arbitrary continuous function. Conversely, if a continuous function $x(t)$ is equal to $\psi(t)$ for $t \in\left[-r_{0}, 0\right]$ and is a solution of (2.3) on an interval $[0, \tau)$, then $x(t)$ is a solution of (1.1) on $[0, \tau)$.
Proof. Multiplying both sides of (2.1) by the factor $\mathrm{e}_{0}^{t} v(u) \mathrm{d} u$ and integrating from 0 to any $t \in[0, T)$, we get

$$
\begin{aligned}
x(t)= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{d} s} \psi(0)+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) x(s) \mathrm{d} s+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \frac{d}{\mathrm{~d} s} \int_{s-r(s)}^{s} B(s, u) x(u) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} B(s, s-r(s))\left(1-r^{\prime}(s)\right) x(s-r(s)) \mathrm{d} s .
\end{aligned}
$$

Performing an integration by parts, we have

$$
\begin{aligned}
x(t)= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{d} s} \psi(0)+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \frac{\mathrm{~d}}{\mathrm{~d} s} \int_{s-r(s)}^{s}[v(u)+B(s, u)] x(u) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}[v(s-r(s))+B(s, s-r(s))]\left(1-r^{\prime}(s)\right) x(s-r(s)) \mathrm{d} s \\
= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{d} s} \psi(0)+\left.\mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \int_{s-r(s)}^{s}[v(u)+B(s, u)] x(u) \mathrm{d} u\right|_{0} ^{t} \\
& -\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s}[v(u)+B(s, u)] x(u) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}[v(s-r(s))+B(s, s-r(s))]\left(1-r^{\prime}(s)\right) x(s-r(s)) \mathrm{d} s
\end{aligned}
$$

which leads to (2.3). Conversely, suppose that a continuous function $x(t)$ is equal to $\psi(t)$ on $\left[-r_{0}, 0\right]$ and satisfies (2.3) on an interval $[0, \tau)$. Then it is differentiable on $[0, \tau)$. Differentiating (2.3) with the aid of Leibniz's rule, we obtain (2.1).

Next, we will define a mapping directly from (2.3). By Lemma 2.1, a fixed point of that map will be a solution of (2.3) and (1.1). To obtain stability of the zero solution of (1.1), we need the mapping defined by (2.3) to map bounded functions into bounded functions. Let $(C,\|\cdot\|)$ be the set of real-valued bounded continuous functions on $\left[-r_{0}, \infty\right)$ with the supremum norm $\|\cdot\|$; that is, for $\phi \in C$,

$$
\|\phi\|:=\sup \left\{|\phi(t)|: t \in\left[-r_{0}, \infty\right)\right\}
$$

In other words, we carry out our investigations in the complete metric space (C, ρ), where ρ denotes the supremum (uniform) metric: for $\phi_{1}, \phi_{2} \in C$,

$$
\rho\left(\phi_{1}, \phi_{2}\right)=\left\|\phi_{1}-\phi_{2}\right\|
$$

For a given continuous initial function $\psi:\left[-r_{0}, 0\right] \rightarrow R$, define the set $C_{\psi} \subset C$ by

$$
C_{\psi}:=\left\{\phi:\left[-r_{0}, \infty\right) \rightarrow R \mid \phi \in C, \phi(t)=\psi(t) \text { for } t \in\left[-r_{0}, 0\right]\right\}
$$

Let $\|\cdot\|$ denote the supremum on $\left[-r_{0}, 0\right]$ or on $\left[-r_{0}, \infty\right)$. Finally, note that $\left(C_{\psi},\|\cdot\|\right)$ is itself a complete metric space since C_{ψ} is a closed subset of C.

Lemma 2.2. Let $v:\left[-r_{0}, \infty\right) \rightarrow R$ be a continuous function and P be a mapping on C_{ψ} as follows: for $\phi \in C_{\psi}$,

$$
(P \phi)(t)=\psi(t)
$$

if $t \in\left[-r_{0}, 0\right]$, while

$$
\begin{align*}
(P \phi)(t)= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{ds}} \psi(0)-\mathrm{e}^{-\int_{0}^{t} v(u) \mathrm{d} u} \int_{-r(0)}^{0}[v(u)+B(0, u)] \psi(u) \mathrm{d} u+\int_{t-r(t)}^{t}[v(u)+B(t, u)] \phi(u) \mathrm{d} u \\
& -\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s}[v(u)+B(s, u)] \phi(u) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}[v(s-r(s))+B(s, s-r(s))]\left(1-r^{\prime}(s)\right) \phi(s-r(s)) \mathrm{d} s \tag{2.4}
\end{align*}
$$

if $t>0$. Suppose that there exist constants $k \geq 0$ and $\alpha>0$ such that

$$
\begin{equation*}
-\int_{0}^{t} v(s) \mathrm{d} s \leq k \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{t-r(t)}^{t}|v(u)+B(t, u)| \mathrm{d} u+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s)| \int_{s-r(s)}^{s}|v(u)+B(s, u)| \mathrm{d} u \mathrm{~d} s \\
& \quad+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}\left|v(s-r(s))+B(s, s-r(s)) \| 1-r^{\prime}(s)\right| \mathrm{d} s \leq \alpha \tag{2.6}
\end{align*}
$$

for $t \geq 0$, then $P: C_{\psi} \rightarrow C_{\psi}$.
Proof. For $\phi \in C_{\psi}, P \phi$ is continuous and agrees with ψ on $\left[-r_{0}, 0\right]$ by virtue of the definition of P. For $t>0$, it follows from (2.5) and (2.6) that

$$
|(P \phi)(t)| \leq \mathrm{e}^{k}|\psi(0)|+\mathrm{e}^{k} \int_{-r(0)}^{0}|v(u)+B(0, u)\|\psi(u) \mid \mathrm{d} u+\alpha\| \phi \|
$$

Consequently,

$$
\begin{equation*}
\|P \phi\| \leq \mathrm{e}^{k}\|\psi\|\left(1+\int_{-r(0)}^{0}|v(u)+B(0, u)| \mathrm{d} u\right)+\alpha\|\phi\|<\infty \tag{2.7}
\end{equation*}
$$

Thus, $P \phi \in C_{\psi}$.

Definition 2.1. The zero solution of (1.1) is said to be stable at $t=0$ if, for every $\varepsilon>0$, there exists a $\delta>0$ such that $\psi:\left[-r_{0}, 0\right] \rightarrow(-\delta, \delta)$ implies that $|x(t)|<\varepsilon$ for $t \geq-r_{0}$.

Theorem 2.1. Suppose that there exist constants $k \geq 0, \alpha \in(0,1)$ and a continuous function $v:\left[-r_{0}, \infty\right) \rightarrow R$ such that (2.5) and (2.6) hold for $t \geq 0$. Then for each continuous function $\psi:\left[-r_{0}, 0\right] \rightarrow R$, there is an unique continuous function $x:\left[-r_{0}, \infty\right) \rightarrow R$ with $x(t)=\psi(t)$ on $\left[-r_{0}, 0\right]$ that satisfies (1.1) on $[0, \infty)$. Moreover, $x(t)$ is bounded on $\left[-r_{0}, \infty\right)$. Furthermore, the zero solution of (1.1) is stable at $t=0$. If, in addition,

$$
\begin{equation*}
\int_{0}^{t} v(s) \mathrm{d} s \rightarrow \infty \tag{2.8}
\end{equation*}
$$

as $t \rightarrow \infty$, then $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Proof. Consider the space C_{ψ} defined by the continuous initial function $\psi:\left[-r_{0}, 0\right] \rightarrow R$. For $\phi, \eta \in C_{\psi}$,

$$
\begin{align*}
|(P \phi)(t)-(P \eta)(t)| \leq & \int_{t-r(t)}^{t}|v(u)+B(t, u)||\phi(u)-\eta(u)| \mathrm{d} u \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s)| \int_{s-r(s)}^{s}|v(u)+B(s, u)||\phi(u)-\eta(u)| \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}\left|v(s-r(s))+B(s, s-r(s)) \| 1-r^{\prime}(s)\right||\phi(s-r(s))-\eta(s-r(s))| \mathrm{d} s \\
\leq & \left(\int_{t-r(t)}^{t}|v(u)+B(t, u)| \mathrm{d} u+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s)| \int_{s-r(s)}^{s}|v(u)+B(s, u)| \mathrm{d} u \mathrm{~d} s\right. \\
& \left.+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}\left|v(s-r(s))+B(s, s-r(s)) \| 1-r^{\prime}(s)\right| \mathrm{d} s\right)\|\phi-\eta\| . \tag{2.9}
\end{align*}
$$

For $t>0$. By the definition of P and (2.6), P is a contraction mapping with contraction constant α. By Banach's contraction mapping principle, P has a unique fixed point x in C_{ψ} which is a bounded continuous function. By Lemma 2.1, it is a solution of (1.1) on $[0, \infty)$. It follows that x is the only bounded continuous function satisfying (1.1) on $[0, \infty)$ and the initial condition. Similarly to the method in [2], we can show that (1.1) does not have any unbounded continuous solutions.

It is clear that the zero solution of (1.1) is stable. If $x(t)$ is a solution with the initial function ψ, by (2.7), we have

$$
(1-\alpha)\|x\| \leq \mathrm{e}^{k}\|\psi\|\left(1+\int_{-r(0)}^{0}|v(u)+B(0, u)| \mathrm{d} u\right)
$$

Then for each $\varepsilon>0$, there exists a $\delta>0$ such that $|x(t)|<\varepsilon$ for all $t \geq-r_{0}$ if $\|\psi\|<\delta$.
Next we prove that the solution of (1.1) tends to zero when (2.8) holds. First we define a subset of C_{ψ} as follows:

$$
\begin{equation*}
C_{\psi}^{0}:=\left\{\phi:\left[-r_{0}, \infty\right) \rightarrow R \mid \phi \in C, \phi(t)=\psi(t) \text { for } t \in\left[-r_{0}, 0\right] \phi(t) \rightarrow 0 \text { as } t \rightarrow \infty\right\} \tag{2.10}
\end{equation*}
$$

Since C_{ψ}^{0} is a closed subset of C_{ψ} and $\left(C_{\psi}, \rho\right)$ is complete, the metric space $\left(C_{\psi}^{0}, \rho\right)$ is also complete. Now we show that $(P \phi)(t) \rightarrow 0$ as $t \rightarrow \infty$ when $\phi \in C_{\psi}^{0}$. By (2.4) and (2.6), we have

$$
|(P \phi)(t)| \leq \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{d} s}\left(|\psi(0)|+\int_{-r(0)}^{0}|v(u)+B(0, u)| \mathrm{d} u\right)+\alpha\|\phi\|_{[t-r(t), t]}+\left|I_{4}\right|+\left|I_{5}\right|
$$

for $t>0$, where I_{4}, I_{5} denote the last two terms of (2.4), respectively. We can prove that each of the above terms tend to zero as $t \rightarrow \infty$. In fact, it is easy to see that the first term tends to 0 by (2.8) and the second term approaches zero as $t \rightarrow \infty$ since $t-r(t) \rightarrow \infty$. For each $\varepsilon>0$, there exists a $T>0$ such that

$$
\|\phi\|_{[T-r(T), \infty)}<\varepsilon / 2 \alpha
$$

since $t-r(t) \rightarrow \infty$ as $t \rightarrow \infty$. Thus, for $t \geq T$,

$$
\begin{aligned}
\left|I_{4}\right| \leq & \int_{0}^{T}\left|v(s) \mathrm{e}^{-\int_{s}^{T} v(u) \mathrm{d} u} \int_{s-r(s)}^{s}\right| v(u)+B(s, u) \mid \mathrm{d} u \mathrm{~d} s\|\phi\| \mathrm{e}^{-\int_{T}^{t} v(u) \mathrm{d} u} \\
& +\int_{T}^{t}\left|v(s) \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \int_{s-r(s)}^{s}\right| v(u)+B(s, u) \mid \mathrm{d} u \mathrm{~d} s\|\phi\|_{[T-r(T), \infty)} .
\end{aligned}
$$

By (2.8), there exists a $\tau \geq T$ such that $\|\phi\| \mathrm{e}^{-\int_{T}^{t} v(u) \mathrm{d} u}<\varepsilon / 2 \alpha$ for $t>\tau$. Thus, for every $\varepsilon>0$, there exists a $\tau>0$ such that $t>\tau$ implies $I_{4}<\varepsilon$; that is, $I_{4} \rightarrow 0$ as $t \rightarrow \infty$. Similarly, we can show that I_{5} tends to zero as $t \rightarrow \infty$. This yields $(P \phi)(t) \rightarrow 0$ as $t \rightarrow \infty$, and hence $P: C_{\psi}^{0} \rightarrow C_{\psi}^{0}$. Therefore, P is a contraction on C_{ψ}^{0} with a unique fixed point x. By Lemma 2.1, x is a solution of (1.1) on $[0, \infty)$. Hence, $x(t)$ is the only continuous solution of (1.1) agreeing with the initial function ψ. As $x \in C_{\psi}^{0}, x(t) \rightarrow 0$ as $t \rightarrow \infty$.

3. The nonlinear equation

The nonlinear equation (1.2) is written as

$$
\begin{equation*}
x^{\prime}(t)=B(t, t-r(t))\left(1-r^{\prime}(t)\right) g(x(t-r(t)))+\frac{\mathrm{d}}{\mathrm{~d} t} \int_{t-r(t)}^{t} B(t, s) g(x(s)) \mathrm{d} s \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let $\psi:\left[-r_{0}, 0\right] \rightarrow R$ be a given continuous initial function. If $x(t)$ is a solution of (1.2) on an interval $[0, T)$ with $x(t)=\psi(t)$ for $t \in\left[-r_{0}, 0\right]$, then $x(t)$ is a solution of the integral equation

$$
\begin{align*}
x(t)= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{ds}} \psi(0)-\mathrm{e}^{-\int_{0}^{t} v(u) \mathrm{d} u} \int_{-r(0)}^{0}[v(u)+B(0, u)] g(\psi(u)) \mathrm{d} u+\int_{t-r(t)}^{t}[v(u)+B(t, u)] g(x(u)) \mathrm{d} u \\
& -\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s}[v(u)+B(s, u)] g(x(u)) \mathrm{d} u \mathrm{~d} s+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}[v(s-r(s)) \\
& +B(s, s-r(s))]\left(1-r^{\prime}(s)\right) g(x(s-r(s))) \mathrm{d} s+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s)[x(s)-g(x(s))] \mathrm{d} s . \tag{3.2}
\end{align*}
$$

where $v:\left[-r_{0}, \infty\right) \rightarrow R$ is an arbitrary continuous function. Conversely, if a continuous function $x(t)$ is equal to $\psi(t)$ for $t \in\left[-r_{0}, 0\right]$ and is a solution of (3.2) on an interval $[0, \tau)$, then $x(t)$ is a solution of (1.2) on $[0, \tau)$.

Proof. Multiplying both sides of (3.1) by the factor $\mathrm{e}^{\int_{0}^{t} v(u) \mathrm{d} u}$ and integrating from 0 to any $t \in[0, T)$, we obtain

$$
\begin{aligned}
x(t)= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{d} s} \psi(0)+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) x(s) \mathrm{d} s+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \frac{\mathrm{~d}}{\mathrm{~d} s} \int_{s-r(s)}^{s} B(s, u) x(u) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} B(s, s-r(s))\left(1-r^{\prime}(s)\right) x(s-r(s)) \mathrm{d} s \\
= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{d} s} \psi(0)+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) x(s) \mathrm{d} s+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \frac{\mathrm{~d}}{\mathrm{~d} s} \int_{s-r(s)}^{s}[v(u)+B(s, u)] g(x(u)) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} B(s, s-r(s))\left(1-r^{\prime}(s)\right) g(x(s-r(s))) \mathrm{d} s-\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \frac{\mathrm{~d}}{\mathrm{~d} s} \int_{s-r(s)}^{s} v(u) g(x(u)) \mathrm{d} u \mathrm{~d} s .
\end{aligned}
$$

Then an integration by parts yields (3.2). Conversely, suppose that a continuous function $x(t)$ is equal to $\psi(t)$ on $\left[-r_{0}, 0\right]$ and satisfies (3.2) on an interval [$0, \tau$). Then it is differentiable on $[0, \tau$). Differentiating (3.2) with the aid of Leibniz's rule, we obtain (3.1).

Define

$$
\begin{equation*}
C_{\psi}^{l}:=\left\{\phi:\left[-r_{0}, \infty\right) \rightarrow R \mid \phi \in C, \phi(t)=\psi(t) \text { for } t \in\left[-r_{0}, 0\right],|\phi(t)| \leq l\right\}, \tag{3.3}
\end{equation*}
$$

where $\psi:\left[-r_{0}, 0\right] \rightarrow[-l, l]$ is a given continuous initial function.
Lemma 3.2. Let $v:\left[-r_{0}, \infty\right) \rightarrow R$ be a continuous function and a mapping P be defined on C_{ψ}^{l} as follows: for $\phi \in C_{\psi}^{l}$,

$$
(P \phi)(t)=\psi(t) \quad \text { for } t \in\left[-r_{0}, 0\right]
$$

while for $t>0$

$$
\begin{align*}
(P \phi)(t)= & \mathrm{e}^{-\int_{0}^{t} v(s) \mathrm{d} s} \psi(0)-\mathrm{e}^{-\int_{0}^{t} v(u) \mathrm{d} u} \int_{-r(0)}^{0}[v(u)+B(0, u)] g(\psi(u)) \mathrm{d} u+\int_{t-r(t)}^{t}[v(u)+B(t, u)] g(\phi(u)) \mathrm{d} u \\
& -\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s}[v(u)+B(s, u)] g(\phi(u)) \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}[v(s-r(s))+B(s, s-r(s))]\left(1-r^{\prime}(s)\right) g(\phi(s-r(s))) \mathrm{d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s)[\phi(s)-g(\phi(s))] \mathrm{d} s . \tag{3.4}
\end{align*}
$$

Suppose that:
(i) there exists a constant $l>0$ such that g satisfies a Lipschitz condition on $[-l, l]$;
(ii) $v(t) \geq 0$ for $t \geq 0$;
(iii) there exists a continuous function q such that $|B(t, u)| \leq q(u)$ for $t-r(t) \leq u \leq t$.

Then there is a metric d for C_{ψ}^{l} such that:
(iv) the metric space $\left(C_{\psi}^{l}, d\right)$ is complete, and
(v) P has a contraction on $\left(C_{\psi}^{l}, d\right)$ if P maps C_{ψ}^{l} into itself.

Proof. By (i) we can choose a common Lipschitz constant L for $g(x)$ and $x-g(x)$ on $[-l, l]$. For $t \in\left[-r_{0}, \infty\right)$ and a constant $k>4$, define

$$
h(t)=k L \int_{0}^{t}[v(u)+q(u)+\omega(u)] \mathrm{d} u
$$

where

$$
\omega(u)=\left\{\begin{array}{cl}
0, & \text { if } u \in\left[-r_{0}, 0\right] \\
\left|v(u-r(u))+B(u, u-r(u))\left(1-r^{\prime}(u)\right)\right|, & \text { if } u \in[0, \infty)
\end{array}\right.
$$

Now let $\&$ be the space of all continuous functions $\phi:\left[-r_{0}, \infty\right) \rightarrow R$ such that

$$
|\phi|_{h}:=\sup \left\{|\phi(t)| \mathrm{e}^{-h(t)}: t \in[-r(0), \infty)\right\}<\infty
$$

It is clear that $\left(\delta,|\cdot|_{h}\right)$ is a Banach space. Thus (s, d) is a complete metric space, where d denotes the induced metric: $d(\phi, \eta)=|\phi-\eta|_{h}$ for $\phi, \eta \in s$. Since C_{ψ}^{l} is a closed subset of s with this metric, the metric space $\left(C_{\psi}^{l}, d\right)$ is complete and the proof of (iv) is complete.

As for (v), since $P: C_{\psi}^{l} \rightarrow C_{\psi}^{l}$ and g satisfies a Lipschitz condition on $[-l, l]$, we can obtain, for $\phi, \eta \in C_{\psi}^{l}$

$$
\begin{aligned}
|(P \phi)(t)-(P \eta)(t)| \mathrm{e}^{-h(t)} \leq & \int_{t-r(t)}^{t}|v(u)+B(t, u)| L|\phi(u)-\eta(u)| \mathrm{e}^{-h(t)+h(u)-h(u)} \mathrm{d} u \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s}|v(u)+B(s, u)| L|\phi(u)-\eta(u)| \mathrm{e}^{-h(t)+h(u)-h(u)} \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} \omega(s) L|\phi(s-r(s))-\eta(s-r(s))| \mathrm{e}^{-h(t)+h(s-r(s))-h(s-r(s))} \mathrm{d} s \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) L|\phi(s)-\eta(s)| \mathrm{e}^{-h(t)+h(s)-h(s)} \mathrm{d} s \\
\leq & \int_{t-r(t)}^{t} \mathrm{e}^{-k L \int_{u}^{t}[v(\theta)+q(\theta) \mathrm{d} \theta}|v(u)+B(t, u)| L|\phi(u)-\eta(u)| \mathrm{e}^{-h(u)} \mathrm{d} u \\
& +\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s} \mathrm{e}^{-k L \int_{u}^{s}[v(\theta)+q(\theta) \mathrm{d} \theta}|v(u)+B(s, u)| L|\phi(u)-\eta(u)| \mathrm{e}^{-h(u)} \mathrm{d} u \mathrm{~d} s \\
& +\int_{0}^{t} \mathrm{e}^{-k L \int_{s}^{t} \omega(u) \mathrm{d} u} \omega(s) L|\phi(s-r(s))-\eta(s-r(s))| \mathrm{e}^{-h(s-r(s))} \mathrm{d} s \\
& +\int_{0}^{t} \mathrm{e}^{-(k L+1) \int_{s}^{t} v(u) \mathrm{d} u} v(s) L|\phi(s)-\eta(s)| \mathrm{e}^{-h(s)} \mathrm{d} s .
\end{aligned}
$$

By (iii), we have

$$
|v(u)+B(t, u)| \leq v(u)+q(u)
$$

for $t-r(t) \leq u \leq t$. Consequently,

$$
\begin{equation*}
|(P \phi)(t)-(P \eta)(t)| \mathrm{e}^{-h(t)} \leq\left(\frac{1}{k L}+\frac{1}{k L}+\frac{1}{k L}+\frac{1}{k L+1}\right) L|\phi-\eta|_{h} \leq \frac{4}{k}|\phi-\eta|_{h} \tag{3.5}
\end{equation*}
$$

for all $t>0$. Thus $d(P \phi, P \eta) \leq(4 / k) d(\phi, \eta)$. Since $k>4$, we conclude that P is a contraction on $\left(C_{\psi}^{l}, d\right)$.
Theorem 3.1. Suppose g, v and B satisfy conditions (i)-(iii) in Lemma 3.2 and further suppose that:
(i) g is odd and strictly increasing on $[-l, l]$;
(ii) $x-g(x)$ is non-decreasing on $[0, l]$;
(iii) there exists an $\alpha \in(0,1)$ such that, for $t \geq 0$

$$
\begin{aligned}
& \int_{t-r(t)}^{t}|v(u)+B(t, u)| \mathrm{d} u+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s)| \int_{s-r(s)}^{s}|v(u)+B(s, u)| \mathrm{d} u \mathrm{~d} s \\
& \quad+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s-r(s))+B(s, s-r(s))|\left|1-r^{\prime}(s)\right| \mathrm{d} s \leq \alpha .
\end{aligned}
$$

Then $a \delta \in(0, l)$ exists such that, for each continuous function $\psi:\left[-r_{0}, 0\right] \rightarrow(-\delta, \delta)$, there is a unique continuous function $x:\left[-r_{0}, \infty\right) \rightarrow R$ with $x(t)=\psi(t)$ on $\left[-r_{0}, 0\right]$, which is a solution of (1.2) on $[0, \infty)$. Moreover, $x(t)$ is bounded by l on $\left[-r_{0}, \infty\right)$. Furthermore, the zero solution of (1.2) is stable at $t=0$.

Proof. Since g is odd and satisfies the Lipschitz condition on $[-l, l], g(0)=0$ and g is (uniformly) continuous on $[-l, l]$. Thus we can choose a δ that satisfies the inequality

$$
\begin{equation*}
\delta+g(\delta) \int_{-r(0)}^{0}|v(u)+B(0, u)| \mathrm{d} u \leq(1-\alpha) g(l) \tag{3.6}
\end{equation*}
$$

Let $\psi:\left[-r_{0}, 0\right] \rightarrow(-\delta, \delta)$ be a continuous function. Note that (3.6) implies $\delta<l$ since $g(l) \leq l$ by (ii). Thus, $|\psi(t)|<l$ for $-r_{0} \leq t \leq 0$. Now we show that for such a $\psi, P: C_{\psi}^{l} \rightarrow C_{\psi}^{l}$. In fact, for an arbitrary $\phi \in C_{\psi}^{l}$, it follows from conditions (i) and (ii) that

$$
\begin{aligned}
|(P \phi)(t)| \leq & \delta+g(\delta) \int_{-r(0)}^{0}|v(u)+B(0, u)| \mathrm{d} u+g(l) \int_{t-r(t)}^{t}|v(u)+B(t, u)| \mathrm{d} u \\
& +g(l) \int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \int_{s-r(s)}^{s}|v(u)+B(s, u)| \mathrm{d} u \mathrm{~d} s \\
& +g(l) \int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s-r(s))+B(s, s-r(s))|\left|1-r^{\prime}(s)\right| \mathrm{d} s+(l-g(l)) \int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u} v(s) \mathrm{d} s
\end{aligned}
$$

for $t>0$. By (iii) and (3.6), this implies

$$
\begin{aligned}
|(P \phi)(t)| & \leq \delta+g(\delta) \int_{-r(0)}^{0}|v(u)+B(0, u)| \mathrm{d} u+\alpha g(l)+l-g(l) \\
& \leq(1-\alpha) g(l)+(\alpha-1) g(l)+l=l .
\end{aligned}
$$

Hence, $|(P \phi)(t)| \leq l$ for $t \in\left[-r_{0}, \infty\right)$ since $|(P \phi)(t)|=|\psi(t)|<l$ for $t \in\left[-r_{0}, 0\right]$. Therefore, $P \phi \in C_{\psi}^{l}$. By Lemma 3.2, P is a contraction on the complete metric space $\left(C_{\psi}^{l}, d\right)$. Then P has a unique fixed point $x \in C_{\psi}^{l}$, which is a solution of (1.2) on $[0, \infty)$ by Lemma 3.1 and $|x(t)| \leq l$ for all $t \geq-r_{0}$. Hence, $x(t)$ is the only continuous function satisfying (1.2) for $t \geq 0$ and with $x(t)=\psi(t)$ for $-r_{0} \leq t \leq 0$.

To obtain stability at $t=0$, let $\varepsilon>0$ be given and choose $m>0$ so that $m<\min \{\varepsilon, l\}$. Replacing l with m beginning with (3.6), we see there is a $\delta>0$ such that $\|\psi\|<\delta$, which implies that the unique continuous solution x agreeing with ψ on $\left[-r_{0}, 0\right]$ satisfies $|x(t)| \leq m<\varepsilon$ for all $t \geq-r_{0}$.

Definition 3.1. The zero solution of (1.2) is asymptotically stable if it is stable at $t=0$ and a δ exists such that for any continuous function $\psi:\left[-r_{0}, 0\right] \rightarrow(-\delta, \delta)$, the solution $x(t)$ with $x(t)=\psi(t)$ on $\left[-r_{0}, 0\right]$ tends to zero as $t \rightarrow \infty$.

The following theorem provides the asymptotic stability of Eq. (1.2). The proof is similar to that of Theorem 3.13 [2] and hence, we omit it.

Theorem 3.2. Suppose that all of the conditions in Lemma 3.2 and Theorem 3.1 hold. Furthermore, suppose that g is continuously differentiable on $[-l, l]$ and $g^{\prime}(0) \neq 0$. If $\int_{0}^{t} v(s) \mathrm{d} s \rightarrow \infty$ as $t \rightarrow \infty$, then the zero solution of (1.2) is asymptotically stable.

4. Remarks and examples

Remark 4.1. The work of Becker and Burton in [2] requires that $t-r(t)$ be strictly increasing. However, in the present work, this condition is removed.

Remark 4.2. The conditions in [2], parallel to (2.6) and (2.8), are

$$
\begin{equation*}
\int_{t-r(t)}^{t}|G(t, u)| \mathrm{d} u+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} G(u, u) \mathrm{d} u}|G(s, u)| \mathrm{d} u \mathrm{~d} s \leq \alpha \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t} G(s, s) \mathrm{d} s \rightarrow \infty \quad \text { as } t \rightarrow \infty \tag{4.2}
\end{equation*}
$$

where $G(t, s)=\int_{t}^{f(s)} a(u, s) \mathrm{d} u, f(t)$ is the inverse of $t-r(t)$. Choosing $\mathrm{v}(\mathrm{s})=\mathrm{G}(\mathrm{s}, \mathrm{s})$, Theorems 2.1 and 3.1 reduce to Theorem 3.3 and 3.10 of [2], respectively. So our results generalize and improve those of [1,2]. See Example 4.1.

Example 4.1. Consider the equation

$$
\begin{equation*}
x^{\prime}(t)=-\int_{0.4635 t}^{t} \frac{1}{s^{2}+1} x(s) \mathrm{d} s \tag{4.3}
\end{equation*}
$$

Following the notation in Remark 4.2, we have $f(t)=\frac{t}{0.4635}$, then

$$
G(t, s)=\int_{t}^{s / 0.4635} \frac{1}{s^{2}+1} \mathrm{~d} u=\frac{s / 0.4635-t}{s^{2}+1}
$$

for $t \geq 0$ and $0.4635 t \leq s \leq t$. Consequently,

$$
\lim _{t \geq 0}\left\{\int_{0.4635 t}^{t}|G(t, u)| \mathrm{d} u+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} G(u, u) \mathrm{d} u}|G(s, s)| \int_{0.4635 s}^{s}|G(s, u)| \mathrm{d} u \mathrm{~d} s\right\}=2\left(-\frac{\ln 0.4635+1}{0.4635}+1\right)=1.003
$$

Then there exists some $t_{0}>0$ such that

$$
\int_{0.4635 t}^{t}|G(t, u)| \mathrm{d} u+\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} G(u, u) \mathrm{d} u}|G(s, s)| \int_{0.4635 \mathrm{~s}}^{s}|G(s, u)| \mathrm{d} u \mathrm{~d} s>1.002
$$

for $t \geq t_{0}$. This implies that condition (4.1) does not hold. Thus, Theorem 3.3 in [2] cannot be applied to Eq. (4.3).
However, By (2.2),

$$
B(t, s)=\int_{t}^{s} \frac{1}{s^{2}+1} \mathrm{~d} u=\frac{s-t}{s^{2}+1}
$$

Choosing $v(t)=\frac{t}{t^{2}+1}$, clearly, condition (2.8) holds. Furthermore, we have

$$
\begin{aligned}
\int_{t-r(t)}^{t}|v(u)+B(t, u)| \mathrm{d} u= & \int_{0.4635 t}^{t}\left|\frac{2 u-t}{u^{2}+1}\right| \mathrm{d} u \\
= & \int_{0.4635 t}^{0.5 t} \frac{t-2 u}{u^{2}+1} \mathrm{~d} u+\int_{0.5 t}^{t} \frac{2 u-t}{u^{2}+1} \mathrm{~d} u \\
= & t(2 \arctan 0.5 t-\arctan t-\arctan 0.4635 t)+\ln \left(t^{2}+1\right) \\
& +\ln \left(0.4635^{2} t^{2}+1\right)-2 \ln \left(0.25 t^{2}+1\right) \\
= & w(t)
\end{aligned}
$$

Since the function $w(t)$ is increasing in $[0, \infty)$ and

$$
\lim _{t \rightarrow \infty} w(t)=1 / 0.4635-3+2 \ln 2+2 \ln 0.927=0.3992
$$

then

$$
\begin{aligned}
& \int_{t-r(t)}^{t}|v(u)+B(t, u)| \mathrm{d} u<0.3992 \\
& \begin{aligned}
\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s-r(s))+B(s, s-r(s))|\left|1-r^{\prime}(s)\right| \mathrm{d} s & =(1 / 0.4635-2) \int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} \frac{u}{u^{2}+1} \mathrm{~d} u} \frac{s}{s^{2}+1 / 0.4635^{2}} \mathrm{~d} s \\
& <1 / 0.4635-2=0.1575
\end{aligned}
\end{aligned}
$$

and

$$
\int_{0}^{t} \mathrm{e}^{-\int_{s}^{t} v(u) \mathrm{d} u}|v(s)| \int_{s-r(s)}^{s}|v(u)+B(s, u)| \mathrm{d} u \mathrm{~d} s<0.3992
$$

Let $\alpha:=0.3992+0.1575+0.3992=0.9559<1$, then the zero solution of (4.3) is asymptotically stable by Theorem 2.1.

5. Conclusion

In this work, a scalar integro-differential equation has been studied. Some sufficient conditions to ensure that the zero solution is asymptotically stable have been established. These obtained results extend and improve the results in [1,2]. Moreover, an example is given to illustrate our results.

Acknowledgements

The authors thank very sincerely the anonymous referees for their valuable comments and helpful suggestions.

References

1] T.A. Burton, Fixed points and stability of a nonconvolution equation, Proc. Amer. Math. Soc. 132 (2004) 3679-3687.
[2] L.C. Becker, T.A. Burton, Stability, fixed points and inverse of delays, Proc. Roy. Soc. Edinburgh 136A (2006) 245-275.
[3] J. Hale, Sufficient conditions for stability and instability of autonomous functional-differential equations, J. Differential Equations 1 (1965) $452-482$.
[4] J.J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc. 14 (1963) 534-541.
[5] J.J. Levin, J.A. Nohel, On a nonlinear delay equation, J. Math. Anal. Appl. 8 (1964) 31-41.
[6] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.
[7] B. Zhang, Fixed points and stability in differential equations with variable delays, Nonlinear Anal. 63 (2005) e233-e242.
[8] C.H. Jin, J.W. Luo, Fixed points and stability in neutral differential equations with variable delays, Proc. Amer. Math. Soc. 136 (2008) $909-918$.
[9] C.H. Jin, J.W. Luo, Stability in functional differential equations established using fixed point theory, Nonlinear Anal. 68 (2008) 3307-3315.

[^0]: . This work was supported in part by NNSF of China Grant \#10671043.

 * Corresponding author.

 E-mail addresses: jinchuhua@tom.com (C. Jin), mathluo@yahoo.com (J. Luo).

