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1. Introduction

In this work, we consider the following integro-differential equation

t
X(t) = —/ a(t, s)x(s)ds (1.1)
t—r(t)
as well as the nonlinear analogue
t
X(t) = —/ a(t, s)g(x(s))ds (12)
t—r(t)

fort > 0, wherer : [0, 00) — [0, 00) is differentiable witht — r(t) — ocoast — oo, a : [—rg, 00) X [—TIg, 00) — R,
where rp = max>o{t — r(t)}, g : R — Rare continuous functions and xg(x) > 0 if x # 0 is sufficiently small.

Many authors (see [1-5] and the references quoted therein) have studied the stability of the above two equations and
their special forms. Recently, Burton [1] considered the case that r(t) = r is a constant. Becker and Burton [2] investigated
(1.1) and (1.2) with the variable delay r(t) under the assumption that the function t — r(t) is strictly increasing. In the
present work, however, we rewrite (1.1) and (1.2) in a fashion different from that in [1,2] and introduce a function v(t) in
constructing a a fixed-point mapping. Consequently, we eliminate the condition that t —r(t) be strictly increasing and obtain
less restrictive conditions for stability. For such a technique being used, our results extend and improve the results in [1,2].
We mainly use the fixed-point theory, which has been effectively employed to study the stability of functional differential
equations with variable delays [6-9].

The rest of this paper is organized as follows. In Section 2 we consider the linear equation and in Section 3 we consider
the nonlinear equation. In Section 4, we give some remarks and examples to illustrate that our results are stronger than that
in[1,2].
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2. The linear equation

In order to find a new fixed-point mapping for (1.1), we write (1.1) as
d t
X () =B, t —r)(1 —=r'(t)x(t —rt)) + I / B(t, s)x(s)ds, (2.1)
t—r(t)

where

s t—r(t)
B(t,s) = / a(u, s)du, withB(t,t —r(t)) = / a(u, t —r(t))du. (2.2)
t t

Lemma 2.1. If x(t) is a solution of (1.1) on an interval [0, T) and satisfies the initial condition x(t) = ¥ (t) for t € [—rg, 0],
then x(t) is a solution of the integral equation

0

X(t) = e~ Jov©dsy, () — = Jo vwdu / [v(u) + B(O, u)]y (u)du

—r(0)

t t S
+ / [v(u) + B(t, u)]x(u)du — / e Js vduy () [v(u) + B(s, u)Jx(u)duds
t

—r(t) 0 s—r(s)
t
+ / e 5 Y&y (s r(s)) + B(s, s — r(s))](1 — ' (5))x(s — r(s))ds (2.3)
0

on [0, T), where v : [—rg, 00) — Ris an arbitrary continuous function. Conversely, if a continuous function x(t) is equal to V (t)
for t € [—rg, 0] and is a solution of (2.3) on an interval [0, T), then x(t) is a solution of (1.1) on [0, 7).

Proof. Multiplying both sides of (2.1) by the factor elo v@du gpg integrating from O to any t € [0, T), we get

t t d s
x(t) = e~ Jo vy (o) +/ e ks l’“’”‘“v(s)x(s)ds+/ e ks “(”)d”—/ B(s, u)x(u)duds
0 0 s—r(s)

ds
t
+ / e vWdups s — r(s))(1 = r'(s))x(s — r(s))ds.
0

Performing an integration by parts, we have

d

t t t s
x(t) = e JovOdy0) + / e Js ”(”)d”£ / [v(u) + B(s, u)]x(u)duds
0 s—r(s)

t
* / e vy (s — 1 (5)) + B(s. s — 1(5)](1 — F'())x(s — r(s))ds
0

s t

= e Jo vy (0) 4 e s v / [v(u) + B(s, ) x(u)du

s—r(s) 0

t . s
_ / e Js vduy gy [v(u) + B(s, u)]x(u)duds
0

s—r(s)
t
+ / e~ 5 YWy (s — 1 (5)) + B(s, s — r()](1 — F'()x(s — r(s))ds,
0

which leads to (2.3). Conversely, suppose that a continuous function x(t) is equal to ¥ (t) on [—rg, 0] and satisfies (2.3) on
an interval [0, 7). Then it is differentiable on [0, 7). Differentiating (2.3) with the aid of Leibniz’s rule, we obtain (2.1). O

Next, we will define a mapping directly from (2.3). By Lemma 2.1, a fixed point of that map will be a solution of (2.3) and
(1.1). To obtain stability of the zero solution of (1.1), we need the mapping defined by (2.3) to map bounded functions into
bounded functions. Let (C, || - ||) be the set of real-valued bounded continuous functions on [—rp, c0) with the supremum
norm | - ||; thatis, for ¢ € C,

¢l := sup{lg(t)] : t € [—1o, 00)}.

In other words, we carry out our investigations in the complete metric space (C, p), where p denotes the supremum
(uniform) metric: for ¢¢, ¢, € C,

(b1, ¢2) = llgp1 — @2l
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For a given continuous initial function v : [—rg, 0] — R, define the set C;, C C by
Cy = {¢ : [—10,00) = Rl¢p € C, ¢(t) = ¥ (t) fort € [—To, 0]}.

Let || - || denote the supremum on [—Tg, 0] or on [—79, 00). Finally, note that (Cy, || - ||) is itself a complete metric space since
Cy is a closed subset of C.

Lemma 2.2. Let v : [—1g, 00) — R be a continuous function and P be a mapping on Cy, as follows: for ¢ € Cy,

Pe)(®) =¥ ()
if t € [—rg, 0], while

t

[v(w) + B(O, )]y (u)du + / [v(w) + B(t, u)]p(u)du

t—r(t)

0
(P¢)(t) = e fot U(S)dS,‘//(O) — e fot u(u)du/

—1(0)

t S
- / e~ Js vwduy g [v(w) + B(s, u)]p(u)duds

0 s—r(s)
t
- / e K YWy (s — 1(5)) 4 B(s, s — r(s)](1 = ' (5))(s — r(5))ds (2.4)
0
if t > 0. Suppose that there exist constants k > 0 and o > 0 such that
t
—/ v(s)ds <k (2.5)
0
and
t t ¢ N
/ lv(u) + B(t, u)|du +f e Js v}y ()| lv(u) + B(s, u)|duds
t—r(t) 0 s—r(s)
t
+ / e K vy 5 r(s)) 4+ B(s, s — 1(s))|[1 — 1 (s)|ds < « (2.6)
0

fort >0, thenP : Cy — Cy.

Proof. For ¢ € Cy, P¢ is continuous and agrees with ¥ on [—r, 0] by virtue of the definition of P. For t > 0, it follows from
(2.5) and (2.6) that

0
|(Pp)(0)] < ey (0)] + ek/ ( )Iv(U) + B0, W[y (w)|du + |||
—r(0
Consequently,
0
IPg]l < e || (1 +/ lv(u) + B(O, u)ldu> +afoll < oo. (2.7)
—r(0)

Thus, P$ € Cy. O

Definition 2.1. The zero solution of (1.1) is said to be stable at t = 0 if, for every ¢ > 0, there exists a § > 0 such that
Y 1 [—r9, 0] — (=6, &) implies that |x(t)| < € fort > —ry.

Theorem 2.1. Suppose that there exist constants k > 0, « € (0, 1) and a continuous function v : [—rp, 00) — R such that
(2.5) and (2.6) hold for t > 0. Then for each continuous function \ : [—rg, 0] — R, there is an unique continuous function
X : [—rg,00) — Rwith x(t) = ¥ (t) on [—rg, O] that satisfies (1.1) on [0, co). Moreover, x(t) is bounded on [—rg, 00).
Furthermore, the zero solution of (1.1) is stable at t = 0. If, in addition,

t
/ v(s)ds — oo (2.8)
0

ast — oo, thenx(t) - 0ast — oo.
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Proof. Consider the space Cy, defined by the continuous initial function v : [—rg, 0] — R.For ¢, n € Cy,

t

|(P@)(t) — (Pn)(D)] S/ ( lv(w) + B(t, w)||¢p ) — n(w)|du
t—r(t)

t t
* / e fs Wy ()| [v(u) 4 B(s, u)|[¢ (1) — n(u)|duds
0

s—r(s)

t t
* / e Js VA |y (s — r(5)) + B(s, s — T(&)||1 — 1'(5)||p(s — 1(5)) — n(s — r(s))|ds
0

X

t t
+ / e Js MWWy (s — r(s)) + B(s, s — r(s)|[1 — T'(S)|d5> i —nll (2.9)
0

N

t t ¢
/ |v(u)—|—B(t,u)|du+/ e~ Js vduy gy [v(u) + B(s, u)|duds
t 0

—r(t) s—r(s)

For t > 0. By the definition of P and (2.6), P is a contraction mapping with contraction constant «.. By Banach’s contraction
mapping principle, P has a unique fixed point x in Cy, which is a bounded continuous function. By Lemma 2.1, it is a solution of
(1.1) on [0, 00). It follows that x is the only bounded continuous function satisfying (1.1) on [0, o0) and the initial condition.
Similarly to the method in [2], we can show that (1.1) does not have any unbounded continuous solutions.

It is clear that the zero solution of (1.1) is stable. If x(t) is a solution with the initial function v, by (2.7), we have

(1= a)xll < v (1+/

—r(0)

0

|v(u) + B(0, u)|du> .

Then for each ¢ > 0, there exists a§ > 0 such that |[x(t)| < e forallt > —ryif ||¥| < 4.
Next we prove that the solution of (1.1) tends to zero when (2.8) holds. First we define a subset of C;, as follows:

Cg = {¢ : [—19,00) = R|p € C, ¢p(t) = ¥ (t) fort € [—ry,0] p(t) — Oast — oo}. (2.10)
Since C,?f is a closed subset of Cy, and (Cy, p) is complete, the metric space (C, p) is also complete. Now we show that

(Pg)(t) —> 0ast — cowhen ¢ € Cg. By (2.4) and (2.6), we have

0

[(Pp)(1)] < e Jo v <|w(0>| + /

[v(u) + B(O, u)|du) +allole—re.q + sl + |s]
—r(0)

fort > 0, where I4, I5 denote the last two terms of (2.4), respectively. We can prove that each of the above terms tend to
zeroast — oo. In fact, it is easy to see that the first term tends to 0 by (2.8) and the second term approaches zero as t — oo
since t — r(t) — oo. For each ¢ > 0, there existsa T > 0 such that

o llir—rr),00) < /2t
sincet —r(t) - ooast — oo.Thus, fort > T,

T § s
L] < / u(s)e v / v(u) + B(s, u)|duds|j|e /i v
0 s—r(s)

t ¢ S
+ / (s)e s v / () + B(s, w)[duds]¢ | —r) o0
T s—r(s)

By (2.8), there exists a T > T such that ||¢|e” frvwde &/2a fort > t.Thus, for every & > 0, there exists a 7 > 0 such
that t > t implies I, < ¢; thatis,I; — 0ast — ooc. Similarly, we can show that I5 tends to zero as t — oo. This yields
(Pp)(t) — O0ast — oo, and hence P : C‘?j — Cg. Therefore, P is a contraction on C‘?, with a unique fixed point x. By
Lemma 2.1, x is a solution of (1.1) on [0, co). Hence, x(t) is the only continuous solution of (1.1) agreeing with the initial
function ¢. Asx € sz,x(t) —0ast—o00. O

3. The nonlinear equation

The nonlinear equation (1.2) is written as

d t
X () =B, t —r)(1 =1 (t)gkxt —r())) + @ / ( )B(t, $)g(x(s))ds. (3.1)
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Lemma 3.1. Let ¢ : [—ro, 0] — R be a given continuous initial function. If x(t) is a solution of (1.2) on an interval [0, T) with
x(t) = Y (t) for t € [—ry, 0], then x(t) is a solution of the integral equation

t

[v(u) + B0, u)]g (v (u))du + / [v(w) + B(t, u)]g(x(u))du

t—r(t)

0
x(t) = e~ jot v(s)dsw(o) — e fot v(u)du/

—r(0)
t t
_ / e7f5 v(u)duv(s)

0 s—r(s)

t
[v(u) + B(s, u)]g (x(u))duds + / ek Wiy (s — r(s5))
0

t
+B(s, s = r(s)N](1 —1'(s)g (s — r(5)))ds + / e Iy () [x(s) — g (x(5)) ds. (3.2)
0

where v : [—rp, 00) — R is an arbitrary continuous function. Conversely, if a continuous function x(t) is equal to y(t) for
t € [—rp, 0] and is a solution of (3.2) on an interval [0, T), then x(t) is a solution of (1.2) on [0, 7).

Proof. Multiplying both sides of (3.1) by the factor elo v@du gng integrating from O to any t € [0, T), we obtain
d

ds

t t s
xX(t) = e~ o vy o) + f e Js vduy 6y (5)ds + f e~ Js vwdu / B(s, u)x(u)duds
0 0 s—r(s)

¢ ot
+ f e Js v@dup(e o r(s))(1 — r'(s)x(s — r(s))ds
0

't t ot t + s
= e Jo Oy 0y + / e~ s v@duy (9)x(s)ds + / e I vwa 4 / [v(u) + B(s, u)]g (x(u))duds
s—r(s)

0 0 ds
t t S
+ / e~ K v@dup(s s 1 (s))(1 = r'(s)g (x(s — r(s)))ds — / e*ffv(u)d"% / v(u)g (x(u))duds.
0 0 s—r(s)

Then an integration by parts yields (3.2). Conversely, suppose that a continuous function x(t) is equal to ¥ (t) on [—rg, 0]
and satisfies (3.2) on an interval [0, 7). Then it is differentiable on [0, 7). Differentiating (3.2) with the aid of Leibniz’s rule,
we obtain (3.1). O

Define

Cy =10 : [-10, 00) = Rip € C, p(t) = (1) for t € [-10, 0], |¢(1)| <1}, (3.3)

where  : [—r1g, 0] — [—1, [] is a given continuous initial function.

Lemma 3.2. Let v : [—r1g, 00) — R be a continuous function and a mapping P be defined on C,’/f as follows: for ¢ € C.,,

(Pe)(t) =y (t) fort €[—ro,0];
while for t > 0

0 t

[v(u) + B(0, u)]g (¥ (u))du +/ [v(u) + B(t, u)]g(¢(u))du

t—r(t)

(PH)(t) = e~ o %y () — e~ fo v [

—1(0)

t s
_ / e Js vduy () [v(u) + B(s, u)]g (¢ (u))duds

0 s—r(s)

t t
* / e Js VA [y (s —r(s)) 4 B(s, s — r(s))](1 — '(5))g (¢ (s — 1(5)))ds
0

t t
+ / e Js VOdiy (5)[h(s) — g(¢p(5))]ds. (3.4)
0

Suppose that:

(i) there exists a constant | > 0 such that g satisfies a Lipschitz condition on [—I, I];
(i) v(t) = 0fort > 0;
(iii) there exists a continuous function q such that |B(t, u)| < q(u) fort —r(t) <u <t.

Then there is a metric d for Cf/, such that:

(iv) the metric space (Cf/[, d) is complete, and
(v) P has a contraction on (CI’#, d) if P maps C{b into itself.
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Proof. By (i) we can choose a common Lipschitz constant L for g(x) and x — g(x) on [—1, []. For t € [—rg, 00) and a constant
k > 4, define

t
h(t) = kL/ [v(u) + q(u) + w(u)]du,
0

where

_ 0, ifu e [—rg, 0]
O =3 1w — rw) + B u — r)(1 — F'@)|.  ifu € [0, 00).

Now let § be the space of all continuous functions ¢ : [—rg, 00) — R such that
|61n = sup{|p(D)|e ™" : t € [-r(0), 00)} < 0.

It is clear that (4, | - |p) is a Banach space. Thus (4, d) is a complete metric space, where d denotes the induced metric:
d(¢,n) = |¢ — n|, for ¢, n € 4. Since Ciﬁ is a closed subset of § with this metric, the metric space (C]’/,, d) is complete and
the proof of (iv) is complete.

As for (v), since P : C"// — Cx’// and g satisfies a Lipschitz condition on [—, [], we can obtain, for ¢, n € C"/,

t

|(Pg)(t) — (Pn)(t)|e ™0 < / lu(u) + B(¢, w)|L|p(u) — n(u)|e”"OFThW=h gy

t—r(t)

t s
i f e W) [ () + B(s, ILIG (W) — n(wle ™" OO duds
0

s—r(s)

t o]
" / ek VWU S\ (s — (5)) — (s — r(s)) eI g
0
t
+ / e N v(u)duv(S)L|¢(s) _ n(s)|e—h(t)+h(s)—h(s)ds
0

t
< / e RLATVO a0 1y 1) 1 Bt u)[Lip(u) — n(uw)le "V du
t—r(t)

t s
- / e vty () [ e RAOTAON ) - B(s, u)[Ligy () — n(u)le”"Pduds
0

s—r(s)

t "
- / e Ml UG($)LIg (s —1(5) — n(s — r(s)le”"TTds
0

t
+ [ e 6o — e s,
0

By (iii), we have
lv(w) + B(t, w)| < v(u) + q(u)

fort — r(t) < u < t.Consequently,

|(P¢)<r>—(Pn)(me*’“”s(l LI

4
KL kL Lo =nln = 710 = 35
i Tk Ty 1) & = nln = 16 =l (3.5)

forall t > 0. Thus d(P¢, Pn) < (4/k)d(¢, n). Since k > 4, we conclude that P is a contraction on (CII/I’ d. 0O

Theorem 3.1. Suppose g, v and B satisfy conditions (i)-(iii) in Lemma 3.2 and further suppose that:
(i) g is odd and strictly increasing on [—I, I];

(ii) x — g(x) is non-decreasing on [0, I];

(iii) there exists an o € (0, 1) such that, for t > 0

t t ¢ S
f |v(u) + B(t, u)|du + / el %y (s)| lv(u) + B(s, u)|duds
t 0

—r(t) s—r(s)

t
+ f e 5 V@) (s r(5)) + B(s, s — r())||1 — F'(s)|ds < a.
0

Then a § € (0, ) exists such that, for each continuous function ¢ : [—rq, 0] — (=34, 8), there is a unique continuous function
X : [—rg, 00) — R with x(t) = ¥ (t) on [—rp, 0], which is a solution of (1.2) on [0, co). Moreover, x(t) is bounded by | on
[—rg, 00). Furthermore, the zero solution of (1.2) is stable at t = 0.
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Proof. Since g is odd and satisfies the Lipschitz condition on [—, [], g(0) = 0 and g is (uniformly) continuous on [—I, I].
Thus we can choose a § that satisfies the inequality

0

J+g(@5) [v(u) + B0, w)|du < (1 — a)g(D). (3.6)

—r(0)
Let ¥ : [—r19, 0] — (=6, &) be a continuous function. Note that (3.6) implies § < [ since g(I) < I by (ii). Thus, [y (t)| < [ for
—r19 < t < 0. Now we show that for sucha, P : C"/f — C‘l/j. In fact, for an arbitrary ¢ € Cf//, it follows from conditions (i)
and (ii) that
0 ¢
[(PP)(E)| < §+g(5) [v(u) + B(0, w)|du + g(l) [v(u) + B(t, u)|du

—r(0) t—r(t)
s

¢ t
+2() / e s vy ) v (u) + B(s, u)|duds
0

s—r(s)
t t
+g() / e vy (s r(5)) + B(s, s — r(s)||T — r'(s)|ds + (I — g(I)) / e s vy (6 g
0 0

for t > 0. By (iii) and (3.6), this implies

0

|(PEY(®)] = 6 +2(5) [v(w) + B0, w)|du + ag(h) +1—g(0)
-r(0)

S(A-—a)g+(@—Dg)+I=1
Hence, |(P¢)(t)| < Ifort € [—rg, 00) since |(P¢p)(t)| = | (t)| < Ifort € [—rg, O]. Therefore, P¢ € C"zf. By Lemma 3.2, P is
a contraction on the complete metric space (C., d). Then P has a unique fixed point x € C., which is a solution of (1.2) on
[0, co) by Lemma 3.1 and |x(t)| < Iforallt > —ry. Hence, x(t) is the only continuous function satisfying (1.2) for t > 0 and
with x(t) = ¢ (t) for —rp <t <0.
To obtain stability at t = 0, let ¢ > 0 be given and choose m > 0 so that m < min{e, [}. Replacing [ with m beginning

with (3.6), we see there isa é > 0 such that ||{|| < &, which implies that the unique continuous solution x agreeing with
on [—ro, 0] satisfies [x(t)] <m < e forallt > —r. O

Definition 3.1. The zero solution of (1.2) is asymptotically stable if it is stable at t = 0 and a § exists such that for any
continuous function ¥ : [—rg, 0] — (=46, §), the solution x(t) with x(t) = ¥ (t) on [—rg, 0] tends to zero as t — oo.

The following theorem provides the asymptotic stability of Eq. (1.2). The proof is similar to that of Theorem 3.13 [2] and
hence, we omit it.

Theorem 3.2. Suppose that all of the conditions in Lemma 3.2 and Theorem 3.1 hold. Furthermore, suppose that g is continuously
differentiable on [—1, I] and g'(0) # 0. If fot v(s)ds — oo ast — oo, then the zero solution of (1.2) is asymptotically stable.

4. Remarks and examples

Remark 4.1. The work of Becker and Burton in [2] requires that t —r(t) be strictly increasing. However, in the present work,
this condition is removed.

Remark 4.2. The conditions in [2], parallel to (2.6) and (2.8), are

t t
/‘ |Qnuwm+:/e_ﬁa”MﬂG&uNmMSfa (4.1)
t—r(t) 0

and
t
/ G(s, s)ds — oo ast — 00, (4.2)
0

where G(t,s) = ftf(s) a(u, s)du, f(t) is the inverse of t — r(t). Choosing v(s) = G(s, s), Theorems 2.1 and 3.1 reduce to
Theorem 3.3 and 3.10 of [2], respectively. So our results generalize and improve those of [1,2]. See Example 4.1.

Example 4.1. Consider the equation

t 1
ﬂ0=—/ ———x(s)ds. (4.3)
0

4635t 52+ 1
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Following the notation in Remark 4.2, we have f (t) = m, then
s/04635 4 5/0.4635 — t
G(t,s) = du =
‘ 241 241
fort > 0and 0.4635t < s < t. Consequently,
t t s In0.4635 + 1
lim [/ |G(t, u)|du +/ e~ s Cwwdu s )| |G(s, u)ldudS} =2 (— + l) = 1.003,
t20 | Jo.4635¢ 0 0.46355s 0.4635

Then there exists some to > 0 such that

N

t t ¢
/ |G(t, u)|du + f e~ s Cwwdygig )| |G(s, u)|duds > 1.002
0 0

4635t 0.4635s

fort > to. This implies that condition (4.1) does not hold. Thus, Theorem 3.3 in [2] cannot be applied to Eq. (4.3).
However, By (2.2),

B(t. 5) /5 1 d s—t
,8) = u= )
;241 s2+1
Choosing v(t) = ﬁ clearly, condition (2.8) holds. Furthermore, we have
t t 2u—t
v+ B widu = [ ‘
/t.—r(t) 0.4635¢ | U2 + 1

0.5¢ t
t—2u 2u—t
/ ———du +/ 3 du
04635t U+ 1 o5 U”+1
= t(2arctan 0.5t — arctant — arctan 0.4635t) + In(t* + 1)

+ In(0.4635%t? 4+ 1) — 21n(0.25t% + 1)
= w(t).

Since the function w(t) is increasing in [0, c0) and

tlim w(t) = 1/0.4635 —3+2In2+ 21In0.927 = 0.3992,
—00
then

t
/ [v(u) + B(t, u)|du < 0.3992,
t—r(t)

t t ot _u
~ [todup, e . o _ _ / g S
e Js v(s —1(s)) +B(s,s —r(s))||1 —r'(s)|ds = (1/0.4635 — 2 e u2+1 ds
fo [0(s — 1)) + BGs, s — FsDIT = F(5)]ds = (1/ )| e
< 1/0.4635 — 2 = 0.1575,

and

¢ s
/ e S vdu) () lu(u) + B(s, u)|duds < 0.3992.
0 s=r(s)

1087

Let @ := 0.3992 + 0.1575 4 0.3992 = 0.9559 < 1, then the zero solution of (4.3) is asymptotically stable by Theorem 2.1.

5. Conclusion

In this work, a scalar integro-differential equation has been studied. Some sufficient conditions to ensure that the zero
solution is asymptotically stable have been established. These obtained results extend and improve the results in [1,2].

Moreover, an example is given to illustrate our results.
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