
Computers and Mathematics with Applications 57 (2009) 1080–1088

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Stability of an integro-differential equationI

Chuhua Jin a,∗, Jiaowan Luo b
a Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
b School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong 510006, PR China

a r t i c l e i n f o

Article history:
Received 4 August 2007
Received in revised form 1 December 2008
Accepted 9 January 2009

Keywords:
Fixed points
Contraction
Stability
Integro-differential equation
Variable delay

a b s t r a c t

In this work we study a scalar integro-differential equation and give some new conditions
ensuring that the zero solution is asymptotically stable bymeans of the fixed-point theory.
Our work extends and improves the results in the literature.
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1. Introduction

In this work, we consider the following integro-differential equation

x′(t) = −
∫ t

t−r(t)
a(t, s)x(s)ds (1.1)

as well as the nonlinear analogue

x′(t) = −
∫ t

t−r(t)
a(t, s)g(x(s))ds (1.2)

for t ≥ 0, where r : [0,∞) → [0,∞) is differentiable with t − r(t) → ∞ as t → ∞, a : [−r0,∞) × [−r0,∞) → R,
where r0 = maxt≥0{t − r(t)}, g : R→ R are continuous functions and xg(x) > 0 if x 6= 0 is sufficiently small.
Many authors (see [1–5] and the references quoted therein) have studied the stability of the above two equations and

their special forms. Recently, Burton [1] considered the case that r(t) = r is a constant. Becker and Burton [2] investigated
(1.1) and (1.2) with the variable delay r(t) under the assumption that the function t − r(t) is strictly increasing. In the
present work, however, we rewrite (1.1) and (1.2) in a fashion different from that in [1,2] and introduce a function v(t) in
constructing a a fixed-pointmapping. Consequently, we eliminate the condition that t−r(t) be strictly increasing and obtain
less restrictive conditions for stability. For such a technique being used, our results extend and improve the results in [1,2].
We mainly use the fixed-point theory, which has been effectively employed to study the stability of functional differential
equations with variable delays [6–9].
The rest of this paper is organized as follows. In Section 2 we consider the linear equation and in Section 3 we consider

the nonlinear equation. In Section 4, we give some remarks and examples to illustrate that our results are stronger than that
in [1,2].
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2. The linear equation

In order to find a new fixed-point mapping for (1.1), we write (1.1) as

x′(t) = B(t, t − r(t))(1− r ′(t))x(t − r(t))+
d
dt

∫ t

t−r(t)
B(t, s)x(s)ds, (2.1)

where

B(t, s) :=
∫ s

t
a(u, s)du, with B(t, t − r(t)) =

∫ t−r(t)

t
a(u, t − r(t))du. (2.2)

Lemma 2.1. If x(t) is a solution of (1.1) on an interval [0, T ) and satisfies the initial condition x(t) = ψ(t) for t ∈ [−r0, 0],
then x(t) is a solution of the integral equation

x(t) = e−
∫ t
0 v(s)dsψ(0)− e−

∫ t
0 v(u)du

∫ 0

−r(0)
[v(u)+ B(0, u)]ψ(u)du

+

∫ t

t−r(t)
[v(u)+ B(t, u)]x(u)du−

∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
[v(u)+ B(s, u)]x(u)duds

+

∫ t

0
e−

∫ t
s v(u)du[v(s− r(s))+ B(s, s− r(s))](1− r ′(s))x(s− r(s))ds (2.3)

on [0, T ), where v : [−r0,∞)→ R is an arbitrary continuous function. Conversely, if a continuous function x(t) is equal toψ(t)
for t ∈ [−r0, 0] and is a solution of (2.3) on an interval [0, τ ), then x(t) is a solution of (1.1) on [0, τ ).

Proof. Multiplying both sides of (2.1) by the factor e
∫ t
0 v(u)du and integrating from 0 to any t ∈ [0, T ), we get

x(t) = e−
∫ t
0 v(s)dsψ(0)+

∫ t

0
e−

∫ t
s v(u)duv(s)x(s)ds+

∫ t

0
e−

∫ t
s v(u)du

d
ds

∫ s

s−r(s)
B(s, u)x(u)duds

+

∫ t

0
e−

∫ t
s v(u)duB(s, s− r(s))(1− r ′(s))x(s− r(s))ds.

Performing an integration by parts, we have

x(t) = e−
∫ t
0 v(s)dsψ(0)+

∫ t

0
e−

∫ t
s v(u)du

d
ds

∫ s

s−r(s)
[v(u)+ B(s, u)]x(u)duds

+

∫ t

0
e−

∫ t
s v(u)du[v(s− r(s))+ B(s, s− r(s))](1− r ′(s))x(s− r(s))ds

= e−
∫ t
0 v(s)dsψ(0)+ e−

∫ t
s v(u)du

∫ s

s−r(s)
[v(u)+ B(s, u)]x(u)du

∣∣∣∣t
0

−

∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
[v(u)+ B(s, u)]x(u)duds

+

∫ t

0
e−

∫ t
s v(u)du[v(s− r(s))+ B(s, s− r(s))](1− r ′(s))x(s− r(s))ds,

which leads to (2.3). Conversely, suppose that a continuous function x(t) is equal to ψ(t) on [−r0, 0] and satisfies (2.3) on
an interval [0, τ ). Then it is differentiable on [0, τ ). Differentiating (2.3) with the aid of Leibniz’s rule, we obtain (2.1). �

Next, we will define a mapping directly from (2.3). By Lemma 2.1, a fixed point of that map will be a solution of (2.3) and
(1.1). To obtain stability of the zero solution of (1.1), we need the mapping defined by (2.3) to map bounded functions into
bounded functions. Let (C, ‖ · ‖) be the set of real-valued bounded continuous functions on [−r0,∞) with the supremum
norm ‖ · ‖; that is, for φ ∈ C ,

‖φ‖ := sup{|φ(t)| : t ∈ [−r0,∞)}.

In other words, we carry out our investigations in the complete metric space (C, ρ), where ρ denotes the supremum
(uniform) metric: for φ1, φ2 ∈ C ,

ρ(φ1, φ2) = ‖φ1 − φ2‖.
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For a given continuous initial function ψ : [−r0, 0] → R, define the set Cψ ⊂ C by

Cψ := {φ : [−r0,∞)→ R|φ ∈ C, φ(t) = ψ(t) for t ∈ [−r0, 0]}.

Let ‖ ·‖ denote the supremum on [−r0, 0] or on [−r0,∞). Finally, note that (Cψ , ‖ ·‖) is itself a complete metric space since
Cψ is a closed subset of C .

Lemma 2.2. Let v : [−r0,∞)→ R be a continuous function and P be a mapping on Cψ as follows: for φ ∈ Cψ ,

(Pφ)(t) = ψ(t)

if t ∈ [−r0, 0], while

(Pφ)(t) = e−
∫ t
0 v(s)dsψ(0)− e−

∫ t
0 v(u)du

∫ 0

−r(0)
[v(u)+ B(0, u)]ψ(u)du+

∫ t

t−r(t)
[v(u)+ B(t, u)]φ(u)du

−

∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
[v(u)+ B(s, u)]φ(u)duds

+

∫ t

0
e−

∫ t
s v(u)du[v(s− r(s))+ B(s, s− r(s))](1− r ′(s))φ(s− r(s))ds (2.4)

if t > 0. Suppose that there exist constants k ≥ 0 and α > 0 such that

−

∫ t

0
v(s)ds ≤ k (2.5)

and ∫ t

t−r(t)
|v(u)+ B(t, u)|du+

∫ t

0
e−

∫ t
s v(u)du|v(s)|

∫ s

s−r(s)
|v(u)+ B(s, u)|duds

+

∫ t

0
e−

∫ t
s v(u)du|v(s− r(s))+ B(s, s− r(s))||1− r ′(s)|ds ≤ α (2.6)

for t ≥ 0, then P : Cψ → Cψ .

Proof. For φ ∈ Cψ , Pφ is continuous and agrees withψ on [−r0, 0] by virtue of the definition of P . For t > 0, it follows from
(2.5) and (2.6) that

|(Pφ)(t)| ≤ ek|ψ(0)| + ek
∫ 0

−r(0)
|v(u)+ B(0, u)||ψ(u)|du+ α‖φ‖.

Consequently,

‖Pφ‖ ≤ ek‖ψ‖
(
1+

∫ 0

−r(0)
|v(u)+ B(0, u)|du

)
+ α‖φ‖ <∞. (2.7)

Thus, Pφ ∈ Cψ . �

Definition 2.1. The zero solution of (1.1) is said to be stable at t = 0 if, for every ε > 0, there exists a δ > 0 such that
ψ : [−r0, 0] → (−δ, δ) implies that |x(t)| < ε for t ≥ −r0.

Theorem 2.1. Suppose that there exist constants k ≥ 0, α ∈ (0, 1) and a continuous function v : [−r0,∞) → R such that
(2.5) and (2.6) hold for t ≥ 0. Then for each continuous function ψ : [−r0, 0] → R, there is an unique continuous function
x : [−r0,∞) → R with x(t) = ψ(t) on [−r0, 0] that satisfies (1.1) on [0,∞). Moreover, x(t) is bounded on [−r0,∞).
Furthermore, the zero solution of (1.1) is stable at t = 0. If, in addition,∫ t

0
v(s)ds→∞ (2.8)

as t →∞, then x(t)→ 0 as t →∞.
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Proof. Consider the space Cψ defined by the continuous initial function ψ : [−r0, 0] → R. For φ, η ∈ Cψ ,

|(Pφ)(t)− (Pη)(t)| ≤
∫ t

t−r(t)
|v(u)+ B(t, u)||φ(u)− η(u)|du

+

∫ t

0
e−

∫ t
s v(u)du|v(s)|

∫ s

s−r(s)
|v(u)+ B(s, u)||φ(u)− η(u)|duds

+

∫ t

0
e−

∫ t
s v(u)du|v(s− r(s))+ B(s, s− r(s))||1− r ′(s)||φ(s− r(s))− η(s− r(s))|ds

≤

(∫ t

t−r(t)
|v(u)+ B(t, u)|du+

∫ t

0
e−

∫ t
s v(u)du|v(s)|

∫ s

s−r(s)
|v(u)+ B(s, u)|duds

+

∫ t

0
e−

∫ t
s v(u)du|v(s− r(s))+ B(s, s− r(s))||1− r ′(s)|ds

)
‖φ − η‖. (2.9)

For t > 0. By the definition of P and (2.6), P is a contraction mapping with contraction constant α. By Banach’s contraction
mapping principle, P has a unique fixed point x in Cψ which is a bounded continuous function. By Lemma2.1, it is a solution of
(1.1) on [0,∞). It follows that x is the only bounded continuous function satisfying (1.1) on [0,∞) and the initial condition.
Similarly to the method in [2], we can show that (1.1) does not have any unbounded continuous solutions.
It is clear that the zero solution of (1.1) is stable. If x(t) is a solution with the initial function ψ , by (2.7), we have

(1− α)‖x‖ ≤ ek‖ψ‖
(
1+

∫ 0

−r(0)
|v(u)+ B(0, u)|du

)
.

Then for each ε > 0, there exists a δ > 0 such that |x(t)| < ε for all t ≥ −r0 if ‖ψ‖ < δ.
Next we prove that the solution of (1.1) tends to zero when (2.8) holds. First we define a subset of Cψ as follows:

C0ψ := {φ : [−r0,∞)→ R|φ ∈ C, φ(t) = ψ(t) for t ∈ [−r0, 0] φ(t)→ 0 as t →∞}. (2.10)

Since C0ψ is a closed subset of Cψ and (Cψ , ρ) is complete, the metric space (C
0
ψ , ρ) is also complete. Now we show that

(Pφ)(t)→ 0 as t →∞when φ ∈ C0ψ . By (2.4) and (2.6), we have

|(Pφ)(t)| ≤ e−
∫ t
0 v(s)ds

(
|ψ(0)| +

∫ 0

−r(0)
|v(u)+ B(0, u)|du

)
+ α‖φ‖[t−r(t),t] + |I4| + |I5|

for t > 0, where I4, I5 denote the last two terms of (2.4), respectively. We can prove that each of the above terms tend to
zero as t →∞. In fact, it is easy to see that the first term tends to 0 by (2.8) and the second term approaches zero as t →∞
since t − r(t)→∞. For each ε > 0, there exists a T > 0 such that

‖φ‖[T−r(T ),∞) < ε/2α

since t − r(t)→∞ as t →∞. Thus, for t ≥ T ,

|I4| ≤
∫ T

0
|v(s)e−

∫ T
s v(u)du

∫ s

s−r(s)
|v(u)+ B(s, u)|duds‖φ‖e−

∫ t
T v(u)du

+

∫ t

T
|v(s)e−

∫ t
s v(u)du

∫ s

s−r(s)
|v(u)+ B(s, u)|duds‖φ‖[T−r(T ),∞).

By (2.8), there exists a τ ≥ T such that ‖φ‖e−
∫ t
T v(u)du < ε/2α for t > τ . Thus, for every ε > 0, there exists a τ > 0 such

that t > τ implies I4 < ε; that is, I4 → 0 as t → ∞. Similarly, we can show that I5 tends to zero as t → ∞. This yields
(Pφ)(t) → 0 as t → ∞, and hence P : C0ψ → C0ψ . Therefore, P is a contraction on C

0
ψ with a unique fixed point x. By

Lemma 2.1, x is a solution of (1.1) on [0,∞). Hence, x(t) is the only continuous solution of (1.1) agreeing with the initial
function ψ . As x ∈ C0ψ , x(t)→ 0 as t →∞. �

3. The nonlinear equation

The nonlinear equation (1.2) is written as

x′(t) = B(t, t − r(t))(1− r ′(t))g(x(t − r(t)))+
d
dt

∫ t

t−r(t)
B(t, s)g(x(s))ds. (3.1)
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Lemma 3.1. Let ψ : [−r0, 0] → R be a given continuous initial function. If x(t) is a solution of (1.2) on an interval [0, T ) with
x(t) = ψ(t) for t ∈ [−r0, 0], then x(t) is a solution of the integral equation

x(t) = e−
∫ t
0 v(s)dsψ(0)− e−

∫ t
0 v(u)du

∫ 0

−r(0)
[v(u)+ B(0, u)]g(ψ(u))du+

∫ t

t−r(t)
[v(u)+ B(t, u)]g(x(u))du

−

∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
[v(u)+ B(s, u)]g(x(u))duds+

∫ t

0
e−

∫ t
s v(u)du[v(s− r(s))

+ B(s, s− r(s))](1− r ′(s))g(x(s− r(s)))ds+
∫ t

0
e−

∫ t
s v(u)duv(s)[x(s)− g(x(s))]ds. (3.2)

where v : [−r0,∞) → R is an arbitrary continuous function. Conversely, if a continuous function x(t) is equal to ψ(t) for
t ∈ [−r0, 0] and is a solution of (3.2) on an interval [0, τ ), then x(t) is a solution of (1.2) on [0, τ ).

Proof. Multiplying both sides of (3.1) by the factor e
∫ t
0 v(u)du and integrating from 0 to any t ∈ [0, T ), we obtain

x(t) = e−
∫ t
0 v(s)dsψ(0)+

∫ t

0
e−

∫ t
s v(u)duv(s)x(s)ds+

∫ t

0
e−

∫ t
s v(u)du

d
ds

∫ s

s−r(s)
B(s, u)x(u)duds

+

∫ t

0
e−

∫ t
s v(u)duB(s, s− r(s))(1− r ′(s))x(s− r(s))ds

= e−
∫ t
0 v(s)dsψ(0)+

∫ t

0
e−

∫ t
s v(u)duv(s)x(s)ds+

∫ t

0
e−

∫ t
s v(u)du

d
ds

∫ s

s−r(s)
[v(u)+ B(s, u)]g(x(u))duds

+

∫ t

0
e−

∫ t
s v(u)duB(s, s− r(s))(1− r ′(s))g(x(s− r(s)))ds−

∫ t

0
e−

∫ t
s v(u)du

d
ds

∫ s

s−r(s)
v(u)g(x(u))duds.

Then an integration by parts yields (3.2). Conversely, suppose that a continuous function x(t) is equal to ψ(t) on [−r0, 0]
and satisfies (3.2) on an interval [0, τ ). Then it is differentiable on [0, τ ). Differentiating (3.2) with the aid of Leibniz’s rule,
we obtain (3.1). �

Define

C lψ := {φ : [−r0,∞)→ R|φ ∈ C, φ(t) = ψ(t) for t ∈ [−r0, 0], |φ(t)| ≤ l}, (3.3)

where ψ : [−r0, 0] → [−l, l] is a given continuous initial function.

Lemma 3.2. Let v : [−r0,∞)→ R be a continuous function and a mapping P be defined on C lψ as follows: for φ ∈ C
l
ψ ,

(Pφ)(t) = ψ(t) for t ∈ [−r0, 0];

while for t > 0

(Pφ)(t) = e−
∫ t
0 v(s)dsψ(0)− e−

∫ t
0 v(u)du

∫ 0

−r(0)
[v(u)+ B(0, u)]g(ψ(u))du+

∫ t

t−r(t)
[v(u)+ B(t, u)]g(φ(u))du

−

∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
[v(u)+ B(s, u)]g(φ(u))duds

+

∫ t

0
e−

∫ t
s v(u)du[v(s− r(s))+ B(s, s− r(s))](1− r ′(s))g(φ(s− r(s)))ds

+

∫ t

0
e−

∫ t
s v(u)duv(s)[φ(s)− g(φ(s))]ds. (3.4)

Suppose that:

(i) there exists a constant l > 0 such that g satisfies a Lipschitz condition on [−l, l];
(ii) v(t) ≥ 0 for t ≥ 0;
(iii) there exists a continuous function q such that |B(t, u)| ≤ q(u) for t − r(t) ≤ u ≤ t.

Then there is a metric d for C lψ such that:

(iv) the metric space (C lψ , d) is complete, and
(v) P has a contraction on (C lψ , d) if P maps C

l
ψ into itself.
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Proof. By (i) we can choose a common Lipschitz constant L for g(x) and x− g(x) on [−l, l]. For t ∈ [−r0,∞) and a constant
k > 4, define

h(t) = kL
∫ t

0
[v(u)+ q(u)+ ω(u)]du,

where

ω(u) =
{

0, if u ∈ [−r0, 0]
|v(u− r(u))+ B(u, u− r(u))(1− r ′(u))|, if u ∈ [0,∞).

Now let S be the space of all continuous functions φ : [−r0,∞)→ R such that

|φ|h := sup{|φ(t)|e−h(t) : t ∈ [−r(0),∞)} <∞.

It is clear that (S, | · |h) is a Banach space. Thus (S, d) is a complete metric space, where d denotes the induced metric:
d(φ, η) = |φ − η|h for φ, η ∈ S. Since C lψ is a closed subset of S with this metric, the metric space (C

l
ψ , d) is complete and

the proof of (iv) is complete.
As for (v), since P : C lψ → C lψ and g satisfies a Lipschitz condition on [−l, l], we can obtain, for φ, η ∈ C

l
ψ

|(Pφ)(t)− (Pη)(t)|e−h(t) ≤
∫ t

t−r(t)
|v(u)+ B(t, u)|L|φ(u)− η(u)|e−h(t)+h(u)−h(u)du

+

∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
|v(u)+ B(s, u)|L|φ(u)− η(u)|e−h(t)+h(u)−h(u)duds

+

∫ t

0
e−

∫ t
s v(u)duω(s)L|φ(s− r(s))− η(s− r(s))|e−h(t)+h(s−r(s))−h(s−r(s))ds

+

∫ t

0
e−

∫ t
s v(u)duv(s)L|φ(s)− η(s)|e−h(t)+h(s)−h(s)ds

≤

∫ t

t−r(t)
e−kL

∫ t
u [v(θ)+q(θ)]dθ |v(u)+ B(t, u)|L|φ(u)− η(u)|e−h(u)du

+

∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
e−kL

∫ s
u [v(θ)+q(θ)]dθ |v(u)+ B(s, u)|L|φ(u)− η(u)|e−h(u)duds

+

∫ t

0
e−kL

∫ t
s ω(u)duω(s)L|φ(s− r(s))− η(s− r(s))|e−h(s−r(s))ds

+

∫ t

0
e−(kL+1)

∫ t
s v(u)duv(s)L|φ(s)− η(s)|e−h(s)ds.

By (iii), we have

|v(u)+ B(t, u)| ≤ v(u)+ q(u)

for t − r(t) ≤ u ≤ t . Consequently,

|(Pφ)(t)− (Pη)(t)|e−h(t) ≤
(
1
kL
+
1
kL
+
1
kL
+

1
kL+ 1

)
L|φ − η|h ≤

4
k
|φ − η|h (3.5)

for all t > 0. Thus d(Pφ, Pη) ≤ (4/k)d(φ, η). Since k > 4, we conclude that P is a contraction on (C lψ , d). �

Theorem 3.1. Suppose g, v and B satisfy conditions (i)–(iii) in Lemma 3.2 and further suppose that:
(i) g is odd and strictly increasing on [−l, l];
(ii) x− g(x) is non-decreasing on [0, l];
(iii) there exists an α ∈ (0, 1) such that, for t ≥ 0∫ t

t−r(t)
|v(u)+ B(t, u)|du+

∫ t

0
e−

∫ t
s v(u)du|v(s)|

∫ s

s−r(s)
|v(u)+ B(s, u)|duds

+

∫ t

0
e−

∫ t
s v(u)du|v(s− r(s))+ B(s, s− r(s))||1− r ′(s)|ds ≤ α.

Then a δ ∈ (0, l) exists such that, for each continuous function ψ : [−r0, 0] → (−δ, δ), there is a unique continuous function
x : [−r0,∞) → R with x(t) = ψ(t) on [−r0, 0], which is a solution of (1.2) on [0,∞). Moreover, x(t) is bounded by l on
[−r0,∞). Furthermore, the zero solution of (1.2) is stable at t = 0.
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Proof. Since g is odd and satisfies the Lipschitz condition on [−l, l], g(0) = 0 and g is (uniformly) continuous on [−l, l].
Thus we can choose a δ that satisfies the inequality

δ + g(δ)
∫ 0

−r(0)
|v(u)+ B(0, u)|du ≤ (1− α)g(l). (3.6)

Letψ : [−r0, 0] → (−δ, δ) be a continuous function. Note that (3.6) implies δ < l since g(l) ≤ l by (ii). Thus, |ψ(t)| < l for
−r0 ≤ t ≤ 0. Now we show that for such a ψ , P : C lψ → C lψ . In fact, for an arbitrary φ ∈ C

l
ψ , it follows from conditions (i)

and (ii) that

|(Pφ)(t)| ≤ δ + g(δ)
∫ 0

−r(0)
|v(u)+ B(0, u)|du+ g(l)

∫ t

t−r(t)
|v(u)+ B(t, u)|du

+ g(l)
∫ t

0
e−

∫ t
s v(u)duv(s)

∫ s

s−r(s)
|v(u)+ B(s, u)|duds

+ g(l)
∫ t

0
e−

∫ t
s v(u)du|v(s− r(s))+ B(s, s− r(s))||1− r ′(s)|ds+ (l− g(l))

∫ t

0
e−

∫ t
s v(u)duv(s)ds

for t > 0. By (iii) and (3.6), this implies

|(Pφ)(t)| ≤ δ + g(δ)
∫ 0

−r(0)
|v(u)+ B(0, u)|du+ αg(l)+ l− g(l)

≤ (1− α)g(l)+ (α − 1)g(l)+ l = l.

Hence, |(Pφ)(t)| ≤ l for t ∈ [−r0,∞) since |(Pφ)(t)| = |ψ(t)| < l for t ∈ [−r0, 0]. Therefore, Pφ ∈ C lψ . By Lemma 3.2, P is
a contraction on the complete metric space (C lψ , d). Then P has a unique fixed point x ∈ C

l
ψ , which is a solution of (1.2) on

[0,∞) by Lemma 3.1 and |x(t)| ≤ l for all t ≥ −r0. Hence, x(t) is the only continuous function satisfying (1.2) for t ≥ 0 and
with x(t) = ψ(t) for−r0 ≤ t ≤ 0.
To obtain stability at t = 0, let ε > 0 be given and choose m > 0 so that m < min{ε, l}. Replacing l with m beginning

with (3.6), we see there is a δ > 0 such that ‖ψ‖ < δ, which implies that the unique continuous solution x agreeing withψ
on [−r0, 0] satisfies |x(t)| ≤ m < ε for all t ≥ −r0. �

Definition 3.1. The zero solution of (1.2) is asymptotically stable if it is stable at t = 0 and a δ exists such that for any
continuous function ψ : [−r0, 0] → (−δ, δ), the solution x(t)with x(t) = ψ(t) on [−r0, 0] tends to zero as t →∞.

The following theorem provides the asymptotic stability of Eq. (1.2). The proof is similar to that of Theorem 3.13 [2] and
hence, we omit it.

Theorem 3.2. Suppose that all of the conditions in Lemma 3.2 and Theorem 3.1 hold. Furthermore, suppose that g is continuously
differentiable on [−l, l] and g ′(0) 6= 0. If

∫ t
0 v(s)ds→∞ as t →∞, then the zero solution of (1.2) is asymptotically stable.

4. Remarks and examples

Remark 4.1. Thework of Becker and Burton in [2] requires that t−r(t) be strictly increasing. However, in the present work,
this condition is removed.

Remark 4.2. The conditions in [2], parallel to (2.6) and (2.8), are∫ t

t−r(t)
|G(t, u)|du+

∫ t

0
e−

∫ t
s G(u,u)du|G(s, u)|duds ≤ α (4.1)

and ∫ t

0
G(s, s)ds→∞ as t →∞, (4.2)

where G(t, s) =
∫ f (s)
t a(u, s)du, f (t) is the inverse of t − r(t). Choosing v(s) = G(s, s), Theorems 2.1 and 3.1 reduce to

Theorem 3.3 and 3.10 of [2], respectively. So our results generalize and improve those of [1,2]. See Example 4.1.

Example 4.1. Consider the equation

x′(t) = −
∫ t

0.4635t

1
s2 + 1

x(s)ds. (4.3)
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Following the notation in Remark 4.2, we have f (t) = t
0.4635 , then

G(t, s) =
∫ s/0.4635

t

1
s2 + 1

du =
s/0.4635− t
s2 + 1

for t ≥ 0 and 0.4635t ≤ s ≤ t . Consequently,

lim
t≥0

{∫ t

0.4635t
|G(t, u)|du+

∫ t

0
e−

∫ t
s G(u,u)du|G(s, s)|

∫ s

0.4635s
|G(s, u)|duds

}
= 2

(
−
ln 0.4635+ 1
0.4635

+ 1
)
= 1.003,

Then there exists some t0 > 0 such that∫ t

0.4635t
|G(t, u)|du+

∫ t

0
e−

∫ t
s G(u,u)du|G(s, s)|

∫ s

0.4635s
|G(s, u)|duds > 1.002

for t ≥ t0. This implies that condition (4.1) does not hold. Thus, Theorem 3.3 in [2] cannot be applied to Eq. (4.3).
However, By (2.2),

B(t, s) =
∫ s

t

1
s2 + 1

du =
s− t
s2 + 1

.

Choosing v(t) = t
t2+1
, clearly, condition (2.8) holds. Furthermore, we have∫ t

t−r(t)
|v(u)+ B(t, u)|du =

∫ t

0.4635t

∣∣∣∣2u− tu2 + 1

∣∣∣∣ du
=

∫ 0.5t

0.4635t

t − 2u
u2 + 1

du+
∫ t

0.5t

2u− t
u2 + 1

du

= t(2 arctan 0.5t − arctan t − arctan 0.4635t)+ ln(t2 + 1)
+ ln(0.46352t2 + 1)− 2 ln(0.25t2 + 1)

=: w(t).

Since the functionw(t) is increasing in [0,∞) and

lim
t→∞

w(t) = 1/0.4635− 3+ 2 ln 2+ 2 ln 0.927 = 0.3992,

then ∫ t

t−r(t)
|v(u)+ B(t, u)|du < 0.3992,∫ t

0
e−

∫ t
s v(u)du|v(s− r(s))+ B(s, s− r(s))||1− r ′(s)|ds = (1/0.4635− 2)

∫ t

0
e
−
∫ t
s

u
u2+1

du s
s2 + 1/0.46352

ds

< 1/0.4635− 2 = 0.1575,

and ∫ t

0
e−

∫ t
s v(u)du|v(s)|

∫ s

s−r(s)
|v(u)+ B(s, u)|duds < 0.3992.

Let α := 0.3992+ 0.1575+ 0.3992 = 0.9559 < 1, then the zero solution of (4.3) is asymptotically stable by Theorem 2.1.

5. Conclusion

In this work, a scalar integro-differential equation has been studied. Some sufficient conditions to ensure that the zero
solution is asymptotically stable have been established. These obtained results extend and improve the results in [1,2].
Moreover, an example is given to illustrate our results.
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