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Then and now: use of 16S rDNA gene sequencing for bacterial
identification and discovery of novel bacteria in clinical microbiology
laboratories
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ABSTRACT

In the last decade, as a result of the widespread use of PCR and DNA sequencing, 165 rDNA sequencing
has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel
bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is
particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-
growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided
insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in
determining the duration of treatment and infection control procedures. With the use of 165 rDNA
sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from
human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel
species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of
novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral
cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important
sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus
sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly
characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkong-
ensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 165 rDNA
sequencing into routine use in clinical microbiology laboratories is automation of the technology. The
only step that can be automated at the moment is input of the 165 rDNA sequence of the bacterial isolate
for identification into one of the software packages that will generate the result of the identity of the
isolate on the basis of its sequence database. However, studies on the accuracy of the software packages
have given highly varied results, and interpretation of results remains difficult for most technicians, and
even for clinical microbiologists. To fully utilize 16S rDNA sequencing in clinical microbiology, better
guidelines are needed for interpretation of the identification results, and additional/supplementary
methods are necessary for bacterial species that cannot be identified confidently by 165 rDNA
sequencing alone.
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INTRODUCTION

One and a half centuries after the 22-year-old
Charles Darwin’s 5-year voyage on HMS Beagle,
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the analysis of small TDNA gene sequences is
another important landmark in the study of the
evolution and classification of living organisms.
Traditionally, living organisms were classified,
according to similarities and differences in their
phenotypic characteristics, into prokaryotes and
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eukaryotes, and these were in turn further clas-
sified into various kingdoms, phyla, classes,
orders, families, genera and species. However,
objective taxonomic classification by these meth-
ods can be difficult because of variations in
phenotypic characteristics. Three decades ago,
Carl Woese and others started to analyse and
sequence the 165 rDNA genes of various bacteria,
using DNA sequencing, a state-of-the-art technol-
ogy at that time, and used the sequences for
phylogenetic studies [1,2]. The invention of PCR
and automated DNA sequencing two decades
ago, and subsequent work on 16S rDNA sequenc-
ing of bacteria, as well as 185 rDNA sequencing of
eukaryotes, has led to the accumulation of a vast
amount of sequence data on the rDNA genes of
the smaller subunit of the ribosomes in a large
number of living organisms. Comparison of these
sequences has shown that the rDNA gene
sequences are highly conserved within living
organisms of the same genus and species, but
that they differ between organisms of other
genera and species. Using these rDNA gene
sequences for phylogenetic studies, three
domains of life, Archaea, Bacteria and Eukarya,
as opposed to the traditional classification of
living organisms into prokaryotes and eukaryotes
only, were described [3].

Among the three domains of life, the largest
amount of rtDNA gene sequencing work concerns
bacteria. Using 16S rDNA sequences, numerous
bacterial genera and species have been reclassi-
fied and renamed, classification of uncultivable
bacteria has been made possible, phylogenetic
relationships have been determined, and the
discovery and classification of novel bacterial
species has been facilitated. In the last decade,
sequencing of various bacterial genomes and
comparison between genome and 165 rDNA gene
phylogeny has confirmed the representativeness
of the 165 rDNA gene in bacterial phylogeny [4].

As a result of the increasing availability of PCR
and DNA sequencing facilities, the use of 16S
rDNA sequencing has not been limited to
research purposes, but has also been exploited
in clinical microbiology laboratories. Accurate
identification of bacterial isolates is one of the
most important functions of clinical microbiology
laboratories. On a patient-to-patient basis, accu-
rate identification is crucial in determining
whether the isolate is causing genuine infection
or is simply a colonizer or contaminant, the choice

© 2008 The Authors

and duration of antibiotic treatment, and the
appropriate infection control procedures. On a
population scale, accurate identification is impor-
tant in analysing the epidemiology, antibiotic
resistance patterns, treatment plans and outcomes
of infections associated with a particular bacte-
rium. Traditionally, identification of bacteria in
clinical microbiology laboratories was performed
using phenotypic tests, including Gram smear
and biochemical tests, taking into account culture
requirements and growth characteristics. How-
ever, these methods of bacterial identification
have major limitations. First, organisms with
biochemical characteristics that do not fit into
the patterns of any known genus and species are
occasionally encountered. Second, they cannot be
used for uncultivable organisms. Third, identifi-
cation of some particular groups of bacteria, such
as anaerobes and mycobacteria, would require
additional equipment and expertise, which are
not available in most clinical microbiology labo-
ratories. Using 165 rDNA sequencing, these prob-
lems can be overcome by a single technology,
which also facilitates the discovery of novel
genera and species.

In this article, the use of 165 rDNA sequencing
in clinical microbiology laboratories for bacterial
identification, the discovery of novel bacterial
genera and species, the detection of uncultivable
bacteria and the diagnosis of culture-negative
infections are reviewed. Automation of 16S rDNA
sequencing and the usefulness and limitations of
165 rDNA sequencing in clinical microbiology
laboratories are also discussed. The technological
aspects of 165 rDNA sequencing are not included
in this review.

METHODS

In the section on ‘Novel bacterial genus and species discovery’,
novel species discovered from human specimens that were
reported during the first 7 years of the 21st century (2001-
2007) in the English literature are reviewed. For initial
screening, ‘gen. nov.” and ‘sp. nov.” were used as the key
words for a Medline search. The results were manually
screened for novel bacterial species isolated from human
specimens, regardless of the criteria used for their definition.
Bacteria that were discovered only in non-human specimens
were excluded. Bacteria that were discovered, characterized
and named before 2001, but were renamed after 2001 (e.g.
Streptococcus lutetiensis and S. pasteurianus [5]), and those that
were further subclassified (e.g. S. pseudopneumoniae [6])
because of acquisition of new information such as 16S rDNA
sequences or phenotypic test results, were also not included.
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Additional reports on infections associated with each of the
novel species isolated from human specimens, as well as those
concerning their isolation from non-human specimens, were
searched. All novel species that have been found in four or
more subjects are presented.

USE OF 16S RDNA SEQUENCING IN
CLINICAL MICROBIOLOGY
LABORATORIES

Bacterial identification

Rapid and accurate identification of bacterial
isolates is a fundamental task in clinical microbi-
ology, and provides insights into aetiologies of
infectious disease and appropriate antibiotic treat-
ment. Although conventional phenotypic meth-
ods are relatively inexpensive and allow
identification of most commonly encountered
bacteria, certain groups of bacteria are difficult
to identify, and special equipment and expertise
may be required, e.g. gas chromatography—-mass
spectrometry for anaerobes. These methods also
fail in cases of rare bacteria or bacteria with
ambiguous profiles. Moreover, phenotypic meth-
ods rely on the availability of pure culture and are
dependent on subsequent growth characteristics
and biochemical profiling. Therefore, consider-
able time is required for slow-growing bacteria to
be identified. 165 rDNA sequencing represents a
universal technology that, theoretically, provides
solutions to these problems, yielding unambigu-
ous data, even for unusual and slow-growing
isolates, often within 48 h, which are reproducible
among laboratories.

Identification of rare bacteria and bacteria with unusual
phenotypic profiles. 165 rDNA sequencing is partic-
ularly useful in identifying unusual bacteria that
are difficult to identify by conventional methods,
providing genus identification in >90% of cases,
and identification of 65-83% of these at the species
level [7,8]. The MicroSeq 500 165 rDNA-based
identification system was also able to identify 81%
of clinically significant bacterial isolates with
ambiguous biochemical profiles and 89.2% of
unusual aerobic Gram-negative bacilli to the
species level [9,10].

In many situations, 165 rDNA sequencing is the
ultimate solution to identification of aetiological
agents of infectious diseases caused by rarely
encountered bacteria [11-22]. This not only allows
correct identification and selection of appropriate

treatment, but also contributes to a better under-
standing of the epidemiology and pathogenic role
of these bacteria, which has not been possible in
the past. For example, using 165 rDNA sequenc-
ing, cases of invasive Streptococcus iniae infections,
which had previously been reported only in
North America, have been recognized in Asia
[23-27].

Unlike phenotypic identification, which can be
affected by the presence or absence of non-
housekeeping genes or by variability in expres-
sion of characters, 165 rDNA sequencing provides
accurate identification of isolates with atypical
phenotypic characteristics. Using the technique, it
has been possible to identify thermotolerant
Campylobacter fetus strains as important causes of
bacteraemia in immunocompromised patients
[28]. Similar applications have also been shown
to have significant impacts on the decision of
whether to prescribe antibiotic treatment [29-31]
and on the choice of specific antibiotic regimen
[32-34], which could lead to improved clinical
outcomes [10].

Mistakes in identifying rarely encountered or
phenotypically aberrant isolates are probably
quite common in clinical microbiology laborato-
ries. Sometimes, it is even difficult to know
whether a bacterium has been incorrectly identi-
fied. For example, using phenotypic methods,
Francisella tularensis subsp. novicida was consis-
tently misidentified twice, as Neisseria meningitidis
or Actinobacillus actinomycetemcomitans [35]. 165
rDNA sequencing will continue to play a major
role in the identification of rare bacteria and
bacteria with ambiguous characteristics in clinical
microbiology laboratories.

Identification of slow-growing bacteria. 165 rDNA
sequencing and similar molecular identification
methods have the additional advantage of
reducing the time required to identify slow-
growing bacteria such as mycobacteria, which
may take 6-8 weeks to grow in culture
sufficiently for phenotypic tests to be performed.
Even for rapidly growing mycobacteria, some
biochemical reactions may take up to 28 days to
complete. As for whole cell fatty acid analysis by
gas chromatography, this requires special equip-
ment and expertise that are often not available
in clinical microbiology laboratories. Therefore,
16S rDNA sequencing has been used for iden-
tification of Mycobacterium species isolated from
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clinical specimens, making clinical diagnosis
more rapid and guiding prompt antibiotic treat-
ment [29,36]. Using this technique, we were able
to describe a novel clinical syndrome, acupunc-
ture mycobacteriosis, caused by relatively alco-
hol-resistant mycobacteria in patients receiving
acupuncture [37,38]. However, a limited number
of mycobacterial species could not be differen-
tiated from one another by 165 rDNA sequenc-
ing, e.g. Mycobacterium avium intracellulare and
M. paratuberculosis, M. chelonae and M. abscessus,
and members of the M. tuberculosis complex.
Therefore, other gene targets, sometimes supple-
mented by phenotypic results, have to be
used for differentiation of these species, e.g.
hsp65 and rpoB for those that grow rapidly, and
165-23S rRNA internal transcribed spacer
or gyrB for the mycobacteria that grow slowly
[39-42].

Routine identification. Several studies have been
conducted to compare the usefulness of 165
rDNA sequencing with conventional or commer-
cial methods for the identification of various
groups of medically important bacteria. In gen-
eral, 165 rDNA sequencing results in a higher
percentage of species identification than conven-
tional or commercial methods. The success rate of
species identification by 165 rDNA sequencing
ranged from 62% to 92%, depending on the
group of bacteria and the criteria used for species
definition [43-49]. However, there are ‘blind
spots” within some major genera, in which 165
rDNA sequences are not sufficiently discrimina-
tive for the identification of certain species. In
these circumstances, alternative targets have to be
investigated. For example, groEL is a commonly
used essential gene other than 165 rDNA which is
useful for classification and identification of many
groups of bacteria, e.g. staphylococci and Burk-
holderia species [50,51]. In particular, it has been
shown to be useful in differentiating Burkholderia
pseudomallei from B. thailandensis, the 16S rDNA
sequences of which are indistinguishable [52,53].
Similarly, 165 rDNA sequencing has limited
discriminatory power for closely related Staphy-
lococcus species. Therefore, sequencing of groEL
and tuf has been proposed as being more reliable
for identification of coagulase-negative staphylo-
cocci [47,54].

As simple conventional methods are often
available for commonly encountered bacteria,

© 2008 The Authors

16S rDNA sequencing for identification of ‘rou-
tine’ bacterial strains is most useful in the context
of bacterial species that are often difficult to
identify with phenotypic tests. This has led to a
better understanding of the epidemiology and
pathogenicity of these clinically ‘unidentifiable’
bacteria. One remarkable example is provided by
anaerobic Gram-positive rods, where conven-
tional methods are simply not reliable, even for
genus identification; with the use of 165 rDNA
sequencing, many previously undescribed or
ignored anaerobic bacterial species were found
to contribute to cases of bacteraemia [55-59]. With
regard to streptococci, cases of [B-haemolytic
Lancefield group G streptococcus bacteraemia
have been found to be almost exclusively caused
by S. dysgalactine subsp. equisimilis using 16S
rDNA sequencing, although S. canis infections in
dog owners have been reported rarely [60,61]. In
another study, six cases of ‘S. milleri’ endocarditis
were attributed to S. anginosus, suggesting that
S. anginosus had the highest propensity to cause
infective endocarditis among the three species
of the ‘S. milleri group’ [62]. Using this ‘state-of-
the-art’ technique, it was also found that Haemo-
philus segnus is an important cause of non-H.
influenzae bacteraemia [19,63,64]. In addition, the
use of 16S rDNA sequencing for clinically ‘un-
identifiable’ bacteria could have clinical signifi-
cance regarding the choice of antibiotic regimen
as well as the duration of treatment. For example,
we have previously reported a case of empyema
thoracis caused by Enterococcus cecorum that was
unidentified by conventional methods and three
commercial identification systems. Unlike other
Enterococcus species, the organism is known to be
susceptible to cefotaxime and ceftriaxone. In this
case, the use of 165 rDNA sequencing not only
allowed continuation of cefotaxime as treatment
for the patient, who responded very well, but also
suggested that the bacterium’s cephalosporin
susceptibility could well be explained by its
unique phylogenetic position, it being the ances-
tor of other Enterococcus species and more closely
related to Streptococcus species [65]. In other
instances, 16S rDNA sequencing has been partic-
ularly useful in differentiating between Actino-
myces and non-Actinomyces anaerobic Gram-
positive bacilli, which is often difficult in clinical
microbiology laboratories [66-68]. A definitive
diagnosis of actinomycosis is important, as
a prolonged course of appropriate antibiotic
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treatment (weeks to months) is indicated to
prevent relapse.

Novel bacterial genus and species discovery

During the process of bacterial identification,
potential novel species will be encountered
when there is a significant difference between
the phenotypic characteristics and/or 165 rDNA
sequences of the unknown bacterium and those
of the most closely related ones. As no single
test or gene sequence is ideal for the definition
of new species in all groups of bacteria, a
polyphasic approach is usually used when a
novel species is defined. Depending on the
group of bacteria, this involves various combi-
nations of phenotypic characteristics, 165 rDNA
sequences, sequences of other housekeeping
genes, and DNA-DNA hybridization results. In
this section, we review the novel species dis-
covered from human specimens in the first
7 years of the 21st century (2001-2007) in the
English literature.

According to the inclusion and exclusion crite-
ria used in the present article, 215 novel species,
29 of which belonged to novel genera, have been
discovered from human specimens in the past
7 years. Among these 215 novel species, 100 (15 of
novel genera) have been found in four or more
subjects (Table 1). Among these 100 novel species,
there were four (4%) aerobic Gram-positive cocci,
30 (30%) aerobic Gram-positive rods, three (3%)
aerobic Gram-negative cocci, 24 (24%) aerobic
Gram-negative rods, four (4%) anaerobic Gram-
positive cocci, ten (10%) anaerobic Gram-positive
rods, one (1%) anaerobic Gram-negative coccus,
22 (22%) anaerobic Gram-negative rods, and two
(2%) spirochaetes. The largest numbers of novel
species discovered and isolated from four or more
subjects were of the genera Mycobacterium (n = 12)
and Nocardia (n =6). The oral cavity/dental-
related specimens (17 = 19) and the gastrointesti-
nal tract specimens (n =26) were the most
important for discovery and/or the most impor-
tant reservoirs of novel species. This is in line with
the huge diversity of potential novel bacterial
species in the human oral cavity and gastrointes-
tinal tract [69,70]. Among the 100 novel species,
S. sinensis, Laribacter hongkongensis, Clostridium
hathewayi and Borrelia spielmanii have been most
thoroughly characterized, with the reservoirs
and routes of transmission documented, and

S. sinensis, L. hongkongensis and C. hathewayi have
been found globally [71-89], although most No-
cardia and Mycobacterium species were probably
from the environment, and most anaerobes were
probably from the oral cavity and/or gastrointes-
tinal tract.

In our opinion, novel bacterial species recov-
ered from human specimens should be re-
ported, even if only one well-characterized
strain is available. Despite extensive investiga-
tions, a microbiological cause cannot be deter-
mined in approximately half of the patients
with infectious disease. For some clinical syn-
dromes, such as neutropenic fever, no microbi-
ological cause can be found in up to 80% of
patients who are believed to be suffering from
infective causes [90,91]. For some other syn-
dromes, e.g. acute gastroenteritis and commu-
nity-acquired pneumonia, the cause was
undetermined in c. 40% of patients [92,93]. Over
the years, tremendous efforts have been made
to determine the microorganisms associated
with these ‘unexplained infectious disease syn-
dromes’. The discovery of novel aetiological
agents responsible for ‘unexplained infectious
disease syndromes’ relies quite heavily on the
description of novel microbes. Although stan-
dard or unusual forms of known microbes are
sometimes considered to be novel causes of
‘unexplained infectious disease syndromes’
[94,95], most of the novel causes are indeed
previously undescribed microbes. There has
been much debate on the number of strains of
a particular bacterium required for description
of a novel bacterial species, but our experience
with the discovery and characterization of
L. hongkongensis and S. sinensis suggests that
any well-characterized strain of a novel bacterial
species recovered from human specimens
should be reported. Concerning L. hongkongensis,
when the bacterium was first discovered, only
one strain was obtained [76]. The description of
the novel bacterium and the wide availability of
molecular techniques, sophisticated databases
and bioinformatics tools have made discovery
of additional strains from other countries and
rapid sharing of information possible [77]. This
has led to rapid confirmation of its association
with gastroenteritis and the determination of
its reservoir [79]. In retrospect, if the first strain
of L. hongkongensis had not been described,
the demonstration of its association with

© 2008 The Authors
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Bacteria

Year of first
publication

References

Associated
diseases

Source of isolation

Human

Non-human

Patients

Asymptomatic
individuals

Reservoir/
source of
infection

Aerobic and facultative anaerobic Gram-positive cocci

Kytococcus schroeteri

Streptococcus
oligofermentans
S. pseudoporcinus

S. sinensis

Infective endocarditis,
pneumonia

Infective endocarditis

Aerobic and facultative anaerobic Gram-positive rods

Actinomyces
cardiffensis

A. funkei

Bifidobacterium
scardovii

Brevibacterium
lutescens

Brevibacterium
paucivorans

Corynebacterium
aurimucosum
(= Corynebacterium
nigricans)

Corynebacterium
freneyi

Corynebacterium
resistens

Lactobacillus
coleohominis
Microbacterium
paraoxydans
Mycobacterium

arupense

M. bolletii
M. canariasense

M. colombiense
M. florentinum

M. holsaticum

M. immunogenum

M. massiliense

2002 [159-162]
2003 [163]
2006 [164]
2002 [71-75]
2002 [165]
2002 [166,167]
2002 [168]
2003 [169]
2001 [170]
2002 [171-173]
2001 [174,175]
2005 [176]
2001 [177]
2003 [178]
2006 [1791
2006 [42]

2004 [180]
2006 [181]
2005 [182]
2002 [183,184]
2001 [185-1901
2004 [191-193]

Postmastoidectomy
brain and ear
abscesses, jaw abscess,
pericolic abscess,
sinusitis, pelvic
actinomycosis

Peritonitis

Meningitis, uterine
infection, UTI, vagini-
tis, placental infection,
vulval ulcer, female
urogenital tract infec-
tion

Bacteraemia

Bacteraemia, nosoco-
mial pneumonia,
cellulitis

Catheter-related bac-
teraemia

Chronic pneumonia
Catheter-related
bacteraemia
Lymphadenopathy,
pneumonia

Disseminated cutane-
ous infection, keratitis,
catheter-related infec-
tion, septic arthritis,
chronic pneumonia,
pacemaker-related
sepsis, hypersensitiv-
ity pneumonitis,
chronic leg ulcer,
peritonitis
Pneumonia, post-
intramuscular injec-
tion abscess, pace-
maker pocket
infection

Blood, BAL, prosthetic valve,
abscess pus

Female genitourinary tract
Blood

Abscess pus, pleural fluid, antral
washout, [IUCD

Blood, sternum, abdominal incision,
neck—face, thorax, pelvis, IUCD,
vagina/penis, brain/CSF, superfi-
cial soft tissue lesion

Blood, urine, hip

Peritoneal fluid, infected ear dis-
charge, peritoneal dialysate fluid
CSF, groin abscess, blood, ear dis-
charge, intravascular catheter,
wound, groin swab

Cervix, bartholin gland, vagina,
CSF, endometrium, placenta, urine,
vulva, amniotic fluid, blood, vaginal
swab, vaginal ulcer, vaginal-rectal
swab

Pus from toe, varicose ulcer, sub-
cutaneous abscess fistula, blood
Blood, bronchial aspirate, cellulitis
aspirate

Blood, bronchial aspirate

Respiratory specimen, gastrointes-
tinal tract, various sterile sites, e.g.
tendon, lymph node, lung biopsy,
pleural fluid, surgical tissue, urine
Sputum, stomach aspirate

Blood

Sputum, blood

Sputum, stool, lymph node, gastric
aspirate, BAL

Sputum, urine, gastric fluid

Skin, cornea, urine, intravenous
catheter site, joint fluid, BAL, blood,
broviac site, leg biopsy, corneal
scraping, peritoneal fluid of patients
receiving IPD

Sputum, BAL, pus, tissue debris,
specimen from surgical debride-
ment, blood

Dental plaque,

S,

Vagina, urine,

saliva

aliva

cervix

Peptone
preparation

Vegetable

Lymph node
of cattle with
evidence of bovine
tuberculosis

Hospital environment,
metalworking fluid,
environment, tap
water, water in
IPD machines

Oral cavity

Possibly
environ
mental

Probably
tap water

© 2008 The Authors
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Table 1. (continued)

Source of isolation

Human Non-human
Reservoir/
Year of first Asymptomatic source of
Bacteria publication References Associated diseases Patients individuals infection
M. monacense 2006 [194] Post-traumatic wound Biopsy, sputum, BAL — - Possibly
infection environmental
M. nebraskense 2004 [195,196] Respiratory infection Sputum, BAL - - -
M. palustre 2002 [184,197] Lymphadenitis Submandibular - Submandibular -
lymph node biopsy lymph node of
pig, stream
water, lymph
node of cattle
with evidence
of bovine
tuberculosis
M. saskatchewanense 2004 [198] Pneumonia inbron-  Sputum, pleural fluid,— - -
chiectasis patients respiratory sample
Nocardia africana 2001 [199,200] Pulmonary Sputum - Subcutaneous -
nocardiosis nodule of cat
N. aobensis 2004 [201] - - - - -
N. arthritidis 2004 [202,203] Thigh abscess, Sputum, thigh inflam-— - -
pulmonary matory swelling dis-
nocardiosis, keratitis charge, cornea
N. asiatica 2004 [203-205] Pulmonary nocardio- Sputum, granuloma, - - Possibly
sis, skin infection, transtracheal aspirate, environmental
keratitis, ocular cutaneous ulcer, cor-
nocardiosis nea, vitreous body
N. ignorata 2001 [206-208] Pulmonary Sputum, BAL, blood, — Soil Probably soil
nocardiosis tracheal aspirate
N. veterana 2001 [209-215] Pulmonary BAL, subcutaneous — - -
nocardiosis, myce- nodule biopsy, spu-
toma, bacteraemia,  tum, open lung biopsy
peritonitis tissue, fine-needle
transthoracic biopsy
and aspirate, blood,
peritoneal fluid
Olsenella profusa® 2001 [216-218] Periodontitis, acute ~ Subgingival plaque, - - -
periradicular abscess carious dental lesion,
root canal, pus
Weissella cibaria 2002 [219-225] - Gall Stool Ear of dog with -
(= Weissella kimchii) otitis, cheese whey,

sugar cane, canary
liver, chili bo, tapai,
wheat sourdough,
blood sausage,
faecal swab of
healthy dog,
plaa-som (fermented
fish product from
Thailand),
fermented kimchii,
whole crop paddy
rice silage

Aerobic and facultative anaerobic Gram-negative cocci

Achromobacter 2003 [226] - Urine, wound - Laboratory sink -
insolitus

Achromobacter 2003 [226] - Blood - - -
spanius

Kerstersia gyiorum® 2003 [227] - Stool, leg and ankle — - -

wounds, sputum
Aerobic and facultative anaerobic Gram-negative rods

Acinetobacter parvus 2003 [228] Catheter-related Ear, eye, forehead, - Ear of dog with -
bacteraemia skin, blood refractory otitis
media
Acinetobacter 2001 [229,230] Cystitis, bacteraemia Urine, vagina, throat, — - -
schindleri ear, nasal swab, con-

junctiva, skin, pleural
effusion, liquor,
blood, central catheter

Acinetobacter ursingii2001 [229-231] Infective endocarditis, Blood, intravenous  — - -
bacteraemia, UTI, line, pus, ulcer, eye,
postneurosurgical wound, urine, hairy
meningitis, skin, toe, abscess, cen-
cholangitis, cervical tral catheter, ganglion
adenopathy biopsy, CSF
Advenella incenata® 2005 [232] - Sputum, blood - Horse blood -

© 2008 The Authors
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Table 1. (continued)

Source of isolation

Human Non-human
Reservoir/
Year of first Asymptomatic source of
Bacteria publication References Associated diseases Patients individuals infection
Averyella 2005 [233] Catheter-related ‘Wound, stool, blood, — - -
dalhousiensis® bacteraemia, intestinal fluid
cellulitis, wound
infection
Burkholderia 2001 [234,235] Keratitis Sputum and respira- — Biocontrol strains; —
ambifaria tory tract of CF pa- corn roots; corn,
tients, corneal culture pea, snap bean
and sedge
rhizosphere; forest
soil, leaves of
Sesbania exaltata,
commercial soil
B. fungorum 2001 [236,237] Septic arthritis Vaginal secretion of — White-rot fungus -
pregnant woman, Phanerochaete
CSF, blood chrysosporium,
mouse nose,
haemoglobin
solution
Campylobacter 2001 [88,238,239] Bacteraemia Blood Stool - Gastrointestinal
hominis tract
Cardiobacterium 2004 [240-244] Infective Blood, noma lesion — - Probably oral
valvarum endocarditis, cavity
prosthetic valve
endocarditis
Cupriavidus 2003 [245-247] - Sputum and respira- — - -
respiraculi tory tract of CF pa-
(= Wautersia tients
respiraculi
= Ralstonia
respiraculi)
Enterobacter ludwigii 2005 [248] Nosocomial UTIT Urine, trachea, fat tis- — - -
sue of left thigh, ve-
nous line, sputum,
blood, stool, BAL,
biopsy, throat, skin,
swab
Escherichia albertii 2003 [249] Diarrhoea Stool - - Probably
gastrointestinal
tract
Granulibacter 2006 [250,251] Lymphadenitis in Lymph node - - -
bethesdensis® CGD patients
Haematobacter 2003 [252,253] Bacteraemia, wound Nose, blood, wound - - -
massiliensis® infection
(= Rhodobacter
massiliensis)
Halomonas 2007 [254] Fresh frozen plasma Blood - - Probably
phocaeensis transfusion-associated environmental,
bacteraemia/pseudo- e.g. water
bacteraemia
Helicobacter 2001 [255,256] - Stool of patients with — Stool of gerbils Probably
winghamensis gastroenteritis gastrointestinal
tract
Inquilinus limosus® 2002 [257-261] Acute respiratory Respiratory secretion — Roots of grass Possibly
exacerbation and pro- and sputum of CF environmental
gressive loss of pul- patients
monary function in CF
patients?
Laribacter 2001 [76-84, Bacteraemia, empy- Blood, empyema pus, — Freshwater fish, ~ Freshwater fish
hongkongensis” 262-265] ema thoracis, stool drinking water
community-acquired reservoir
gastroenteritis, travel-
lers’” diarrhoea
Neisseria bacilliformis 2006 [266] Wound infection, Ear, blood, oral fistula,— - Possibly

bronchitis, lung ab-
scess

submandibular
wound, sputum, lung
abscess

oral cavity

gastroenteritis would have been hampered.
Therefore, in the context of pathogenic mi-
crobes, we think that even one strain of a novel

© 2008 The Authors

species should be described, so that global,
concerted efforts can be made to identify more
cases associated with that pathogen.
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Table 1. (continued)

Source of isolation

Human Non-human
Reservoir/
Year of first Asymptomatic source of
Bacteria publication References Associated diseases Patients individuals infection
Paracoccus yeei 2003 [267] CAPD peritonitis, wound infection, Abdominal dialysate, wound, bile, — - -
biliary tract infection, bacteraemia CSF, blood
Pseudomonas mosselii2002 [268,269] - Tracheal aspirate, bronchial aspi- — Mineral -
rate, blood, venous catheter, stool, water
drainage liquid
P. otitidis 2006 [270] Acute otitis externa, acute otitis Ear of patients with acute otitis - - -
media, chronic suppurative otitis ~externa, acute otitis media, chronic
media suppurative otitis media
Ralstonia taiwanensis2001 [271] - Sputum of CF patients - Root nodule—
of Mimosa
species
Wautersiella falsenii* 2006 [272] - Blood, wound, pus, respiratory - - -
tract, ear discharge, vaginal swab,
pleural fluid, oral cavity
Anaerobic Gram-positive cocci
Anaerococcus 2007 [273] Infected foot ulcer, Wound, abscess - - -
murdochii infected sternal wound, soft tissue
neck infection, post-traumatic
thumb abscess
Peptoniphilus 2007 [273] Infected dry gangrene, cellulitis, =~ Wound - - -
gorbachii infected diabetic foot ulcer
Peptoniphilus olsenii 2007 [273] Osteomyelitis, infected dry gan-  Bone, wound - - -
grene, infected diabetic foot ulcer,
toe infection
Peptostreptococcus 2006 [274,275] Dento-alveolar abscess, endodontic Specimen from infected structure of— - Possibly oral
stomatis infection, pericoronal infection, ~ oral cavity, oropharyngeal speci- cavity and
bacteraemia men, appendix, stool, blood gastrointestinal
tract
Anaerobic Gram-positive rods
Alloscardovia 2007 [276] - Urine, blood, urethra, oral cavity, — - -
omnicolens® tonsil, abscesses of lung and aortic
valve
Anaerostipes caccae® 2002 [277,278] - - Stool - Probably
gastrointestinal
tract
Catabacter 2007 [59] Bacteraemia Blood - - Probably
hongkongensis® gastrointestinal
tract
Clostridium bolteae 2003 [279-281] Bacteraemia, intra-abdominal ab- Blood, intra-abdominal abscess, ab-Stool - Probably
scess, necrotizing fasciitis, pelvic ~ scess, wound gastrointestinal
abscess, wound infection tract
C. hiranonis 2001 [282,283] - - Stool - Probably
gastrointestinal
tract
Eggerthella 2004 [55] Perianal abscess, infected rectal tu- Blood - - Probably
hongkongensis mour, liver abscess, appendicitis gastrointestinal
tract
Lactobacillus 2005 [284-286] - Carious dentine Gastric Stool -
ultunensis mucosa of pigs
biopsy
Roseburia intestinalis 2002 [287] - - Stool - Probably
gastrointestinal
tract
Shuttleworthia 2002 [288] Periodontitis Periodontal pocket, subgingival - - Probably oral
satelles® plaque cavity
Varibaculum 2003 [289] Facial abscess, otogenic cerebral ~ Abscess, [UCD - - Possibly oral
cambriensis” abscess cavity
Anaerobic Gram-negative cocci
Veillonella 2004 [290,291] Infective endocarditis Gastric fluid, amniotic fluid, blood - - -
montpellierensis
Anaerobic Gram-negative rods
Alistipes onderdonkii 2006 [292] Intra-abdominal infection Appendix, abdominal abscess, Stool - Probably
stool, urine gastrointestinal
tract
Alistipes shahii 2006 [292] Intra-abdominal infection Intra-abdominal Stool - Probably
fluid and appendix gastrointestinal
tract
Bacteroides 2006 [293] - - Stool - Probably
intestinalis gastrointestinal
tract

© 2008 The Authors
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Table 1. (continued)

Source of isolation

Human Non-human
Reservoir/
Year of first Asymptomatic source of
Bacteria publication References Associated diseases  Patients individuals infection
Bacteroides plebeius 2005 [294] - - Stool - Probably
gastrointestinal
tract
Cetobacterium 2003 [295] - - Stool - Probably
somerae gastrointestinal
tract
Clostridium 2001 [85-88] Bacteraemic acute Blood, liver abscess Stool - Gastrointestina
hathewayi® cholecystitis and liver tract
abscess, bacteraemic
acute gangrenous
appendicitis, bactera-
emia
Desulfomicrobium 2001 [296] Periodontitis Subgingival plaque - - Probably oral
orale cavity
Dialister invisus 2003 [128, Endodontic and peri- Dental root canal, - - -
297-299] odontal infections, deep periodontal
UT], acute periradicu- pocket, urine of renal
lar abscess, acute per- transplant recipients,
iradicular periodonti- abscess pus, abscess
tis, acute apical aspirate
abscess
Dialister 2005 [300,301] Anal, buttock, breast, Amniotic fluid, blood, - - -
micraerophilus perinephric abscess,  pilonidal cyst, abscess
bacteraemia, wound  pus, bone, bartholin
infection gland, wound, phleg-
mon, skin and soft
tissues, vagina
Dialister 2005 [300] Groin abscess, wound Pressure ulcer, semen, — - -
propionicifaciens infection abscess pus, wound
Dysgonomonasmossii 2002 [302,303] - Biliary drainage, - - -
abdominal drain,
intestinal juice
Leptotrichia amnionii 2002 [304-307] Septic arthritis, cho- ~ Amniotic fluid, joint - - Possibly female
rioamnionitis, renal fluid, blood, renal ab- genital tract
abscess scess pus
Parabacteroides gold- 2005 [308,309] Peritonitis, appendici- Peritoneal fluid, - - Probably
steinii (= Bacteroides tis, intra-abdominal  appendix tissue, intra- gastrointestinal
goldsteinii) abscess abdominal abscess tract
Porphyromonas 2005 [310] Chronic skin and soft Skin and soft tissues, — - -
somerae tissue infections, oste- bone
omyelitis
Porphyromonas 2004 [311] Appendicitis, perito-  Stool - - Probably
uenonis nitis, pilonidal ab- gastrointestinal
scess, infected sacral tract
decubitus ulcer
Prevotella baroniae 2005 [312] Endodontic and peri- Oral cavity Dental - -
odontal infections, plaque
dentoalveolar abscess
Prevotella bergensis 2006 [313] Skin and soft tissue Wound, decubitus - - -
abscesses, wound ulcer
infection
Prevotella copri 2007 [314] - - Stool - Probably
gastrointestinal
tract
Prevotella marshii 2005 [312] Endodontic and peri- Oral cavity Subgingival - -
odontal infections dental
plaque
Prevotella multiformis 2005 [315] Chronic periodontitis Subgingival plaque - - -
Prevotella 2005 [316] Chronic periodontitis Subgingival plaque - - -
multisaccharivorax
Sneathia 2001 [317,318] Postpartum bactera-  Blood, amniotic fluid - - Probably female
sanguinegens® emia genital tract
Spirochetes
Borrelia spielmanii 2004 [89] Lyme disease Erythema migrans le- - Ticks Garden dormice
(= Borrelia spielmani) sion
Treponema parvum 2001 [319] Periodontitis, acute ~ Subgingival plaque, - - -

necrotizing ulcerative
gingivitis, acute and
chronic apical peri-
odontitis

acute necrotizing
ulcerative gingivitis
lesion, root canal

?Also a novel genus.

The isolates discovered by Steer et al. were Gram-positive, but those found in the subsequent studies were Gram-negative.
BAL, bronchoalveolar lavage; IUCD, intrauterine contraceptive device; CSF, cerebrospinal fluid; UTI, urinary tract infection; CGD, chronic granulomatous disease; CF, cystic
fibrosis; CAPD, continuous ambulatory peritoneal dialysis; IPD, intermittent peritoneal dialysis.
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Detection of uncultivable bacteria and diagnosis
of culture-negative infections

Bacterial culture had been the most important
technique for diagnosing bacterial infections since
the first days of microbiology. Indeed, Koch's
original postulates explicitly required that the
pathogen be grown in a pure culture. This specific
requirement has since been updated, and the
clinical importance of “uncultivable” bacteria, e.g.
Treponema pallidum, is now well recognized.
Nonetheless, given the central role of bacterial
culture in most clinical laboratories, the diagnosis
of culture-negative infections and those caused by
uncultivable bacteria remains a somewhat ardu-
ous task. Direct microscopy and immunology-
based assays have been the culture-independent
methods traditionally used. The sensitivities and
specificities of these methods can vary greatly,
depending on the implementation and the organ-
isms concerned. Direct microscopic examination
demands a significant microbial presence in the
specimen for positive identification, and serolog-
ical tests suffer from cross-reactivities and may be
affected by a patient’s immunocompromised
status. The introduction of molecular diagnostics
significantly enhanced the ability to diagnose
culture-negative infections. Among the various
molecular assays available, 165 rDNA sequencing
stands out as a useful technique for detecting
uncultivable bacteria. The universal presence and
sequence conservation of the gene allows broad-
range PCR primers to be readily designed. This
characteristic is of great importance, as it would
be impractical to perform multiple specific assays
to rule out individual bacteria associated with the
disease.

An important use of 165 rDNA sequencing is
the identification of clinical syndromes caused by
uncultivable bacteria. These relate to infections
caused by bacteria that could not be cultured
reliably by known methods at the time of discov-
ery. For example, Whipple’s disease was known
only as a systemic disorder of unknown aetiology
when first described in 1907. Since then, gradual
progress towards better diagnosis and treatment
of the disease has been made, although the classic
method of periodic acid-Schiff staining for diag-
nosis lacks both sensitivity and specificity when
used alone. The first breakthrough in the under-
standing of Whipple’s disease arrived with the
identification of Tropheryma whippeli as the caus-

ative agent. This was accomplished by the PCR
amplification and sequencing of its 165 rDNA
gene [96,97]. The 165 rDNA sequence allowed the
phylogenetic position of T. whippeli to be defined
immediately, and enabled the later development
of molecular diagnostic tests [97-100]. The defin-
itive identification of the aetiological agent greatly
accelerated research into the pathophysiology of
the disease. In 2003, the genome sequences of two
T. whipplei strains were completed [101,102],
marking another milestone in medical history.
Similar successes were seen in the context of
bacillary angiomatosis (caused by Bartonella hense-
lae and Bartonella quintana) [103,104] and human
ehrlichiosis (caused by bacteria of the genera
Ehrlichia and Anaplasma) [105-107].

16S rDNA sequencing has also been used for
diagnosing culture-negative infections, the best
example being culture-negative endocarditis. Up
to one-third of all cases of infective endocarditis
are culture-negative [108], and diagnosis has
relied mainly upon clinical and ultrasonographic
findings. Goldenberger ef al. reported one of the
earliest situations in which 16S rDNA PCR ampli-
fication and sequencing were performed on DNA
extracted from infected valves [109]. Many sub-
sequent studies confirmed the usefulness of the
method [110-119]. In general, the sensitivity was
found to be comparable to that of serological
testing and histopathological examination. An
interesting and important result of these studies
is the recognition that many culture-negative
cases were caused by cultivable Gram-positive
bacteria, but the blood culture results might have
been negative due to previous antibiotic usage.
Other factors that may contribute to the false-
negative blood culture results include inadequate
microbiological techniques, e.g. use of an insuffi-
cient volume of blood, or infection by a fastidious
organism [120].

Diagnosis of other culture-negative infec-
tions, including meningitis [121-125], brain ab-
scess [126], keratitis [127], urinary tract infections
[128], empyema [129,130], septic arthritis [131,132]
and septicaemia [120,133,134], also benefits from
the use of 165 rDNA sequencing. The encourag-
ing results from these studies reinforced the idea
that 165 rDNA sequencing is broadly applicable
as a diagnostic technique in the context of clinical
microbiology. Future developments should in-
volve further optimization of universal primer
sets and attempts to discriminate between
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Table 3. Studies on the usefulness of commonly used software pachages for bacterial identification using 165 rDNA

sequencing

References

Bacterial isolates tested

Methods for determination of real identity of the isolates

Accuracy of software

Tang et al. [10]

Tang et al. [143]

Patel et al. [142]

Turenne et al.
[321]

Cloud et al. [148]

Mellmann et al.
[149]

Woo et al. [9]

Hall et al. [43]

Cloud et al. [150]

Becker et al. [151]

Lau et al. [48]

Patel et al. [322]

Fontana et al.
[152]

Simmon ef al.
[147]

65 unusual aerobic Gram-negative
bacilli from clinical specimens

52 coryneform Gram-positive bacilli
(42 Corynebacterium species and 10
Corynebacterium-related species)
from clinical specimens

113 Mycobacterium clinical isolates
(18 different species)

79 non-tuberculous mycobacterial
isolates (ATCC type strains)

119 Mycobacterium isolates (94 clin-
ical isolates and 25 ATCC strains)

81 Nocardia clinical isolates

37 (15 aerobic or facultative anaer-
obic Gram-positive; 11 aerobic, mi-
cro-aerophilic or facultative
anaerobic Gram-negative, seven
anaerobic; three mycobacterial; and
one mycoplasma) clinical isolates
with ambiguous biochemical pro-
files

387 Mycobacterium isolates (59
ATCC strains and 328 clinical iso-
lates)

94 Nocardia clinical isolates (ten
separate species)

55 clinical Staphylococcus isolates

20 anaerobic Gram-positive bacilli
isolated from blood cultures

99 aerobic actinomycetes (28 refer-
ence strains and 71 clinical isolates,
including members of the genera
Streptomyces, Gordonia, and Tsukam-
urella, and ten taxa of Nocardia)

83 (25 Gram-positive and 58 Gram-
negative) clinical isolates not iden-
tifiable by conventional systems
300 (158 Gram-positive and 142
Gram-negative) clinical isolates

Conventional phenotypic methods

Conventional phenotypic methods®

Combination of phenotypic methods, 165 rDNA sequenc-
ing using the MicroSeq database, and other methods, e.g.
standard biochemical assays, hsp65 gene sequencing,
AccuProbe rRNA hybridization, HPLC of mycolic acids.
Identifications were counted as correct if two methods
provided the same answer

Not described, but all were ATCC strains

Combination of conventional phenotypic methods, 165
rDNA sequencing using MicroSeq and RIDOM databases,
and additional tests on problematic isolates

Combination of conventional phenotypic methods, 165
rDNA sequencing using MicroSeq and RIDOM databases

Combination of phenotypic methods and full 16S rDNA
sequencing

Combination of conventional phenotypic methods, HPLC,
PCR restriction analysis of 65-kDa heat shock protein
region, 165 rDNA sequencing using MicroSeq 500 data-
base

Combination of conventional phenotypic methods, 165
rDNA sequencing using expanded MicroSeq 500 data-
base, restriction endonuclease assay for portions of 16S
rDNA and hsp65 genes, sequencing of a 999-bp fragment of
the 165 rDNA gene

Combination of phenotypic methods, 165 rDNA sequenc-
ing using RIDOM and NCBI databases and additional tests
(chemotaxonomy and riboprinting) on isolates with
ambiguous or below the-threshold RIDOM results
Preliminary phenotypic methods and full 165 rDNA
sequencing

Phenotyping, PRA, drug susceptibility testing

Not mentioned

Combination of conventional phenotypic methods and 165
rDNA sequencing using SmartGene IDNS and MicroSeq
500 databases

MicroSeq 500: 89.2% (72% of 25 fermenters
and 100% of 40 non-fermenters; 97.2% to
genus level)

MicroSeq 500: 66.7% (100% to genus level)

MicroSeq 500 (version 1.36): 92.8%"

BLAST (GenBank and EMBL databases,
dated 30 March 2001): 38%°

RDP-II (dated 30 March 2001): 41%°¢
RIDOM (dated 8 March 2001): 100%°
MicroSeq 500 (version 1.36) in conjunction
with RIDOM database: 96.6% (100% of 25
ATCC strains and 95.7% of 94 clinical iso-
lates)

RIDOM (version 1.1): 100%°

MicroSeq 500 (version 1.4.3, library version
500-0125): 44.4%°

MicroSeq 500 (version 1.0): 81.1% (86.5% to
genus level)

MicroSeq 500 (version 1.4.2): 68% (98.3% of
59 ATCC strains and 62.5% of 328 clinical
isolates)

Expanded MicroSeq 500 (version 1.4.3,
library version 500-0125)": 82%

RIDOM (version 1.2): 90.9%°8
GenBank (dated 12 January 2004): 65.5%%

MicroSeq 500 (version 1.0): 65% (80% to
genus level)

Microseq 500: 70.3%"

BLAST (GenBank): 70.3%'

Not determined

SmartGene IDNS (version 3.2.3r8): 87%
(98% to genus level) MicroSeq 500 (version
1.4.3): 74% (90% to genus level)

hsp65, heat shock protein 65; ATCC, American Type Culture Collection; BLAST, Basic Local Alignment Search Tool; EMBL, European Molecular Biology Laboratory; JCM,
Japan Collection of Microorganisms; PRA, PCR-restriction endonuclease analysis.
“Four of the 52 isolates not identified by conventional phenotypic methods were not included.
"Two of the 113 isolates not identified by phenotypic methods were not included.

“Identification was considered correct if it was the best matched species, although not a perfect match. Over 1400 bp of the 16S gene was aligned in BLAST and RDP-II,
whereas Escherchia coli bp 54-510 was used in RIDOM.

dSequences resulting in distance score of <0.8%.

Similarity 299.12% reported by either RIDOM or MicroSeq.

fAn expanded portion of the database was developed from partial 5’ 165 rDNA sequences derived from 28 reference strains (from ATCC and JCM); samples with 99-100%
similarity to a species in the expanded MicroSeq 500 library were assigned that species designation, provided that the colony morphology and growth characteristics were
consistent.

8Partial 165 rDNA fragment (corresponding to E. coli positions 54-510); classification is based on percentage similarity 298.5 to the 16S rDNA sequence of the type and
reference strain.

"Eight of the 99 isolates not identified by phenotypic methods were not included. Eighty per cent of 30 Actinomadura, Gordona, Rhodococcus, Streptomyces and Tsukamurella
species, and 65.6% of 61 Nocardia species.

'Eight of the 99 isolates not identified by phenotypic methods were not included. Fifty per cent of 30 Actinomadura, Gordona, Rhodococcus, Streptomyces and Tsukamurella species,
and 80.3% of 61 Nocardia species.

JGenus-level and species-level identifications were assigned using the following criteria: 299% identity to a reference entry identified a bacterium to the species level, 97.0~
98.9% identity identified a bacterium to the genus level, and <97% identity to any sequence was considered to be unable to provide a definite identification.
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bacterial isolates from different sources (reference
strains vs. clinical strains, identifiable strains vs.
unidentified strains), different reference stan-
dards and different criteria for ‘correct’ identifi-
cation were used in the different studies. In some
studies, the identities of the isolates were deter-
mined by a combination of phenotypic and
genotypic methods [43,142,147-151]. In others,
such as a recent one on a heterogeneous group of
clinical isolates, no reference standard was men-
tioned, except whether the isolates were ‘identi-
fied” by MicroSeq [152]. As there are intrinsic
problems with MicroSeq, e.g. inclusion of bacte-
rial species with 165 rDNA sequences with
minimal differences from those of some other
species, it would be difficult for readers to assess
the usefulness of MicroSeq from this study. As the
intrinsic problems of the software packages may
not be fully addressed in the publications, some of
the reported accuracies of the software packages
described may be overestimated.

USEFULNESS AND LIMITATIONS OF
USING 16S RDNA SEQUENCING IN
CLINICAL MICROBIOLOGY
LABORATORIES

Although 165 rDNA sequencing is being used
increasingly for bacterial identification in clinical
microbiology laboratories, there are no widely
accepted guidelines for using the technique or for
the interpretation of sequence data. Given the
limitations of the technique for some taxa, the
ever-expanding sequence databases and taxo-
nomic complexity, and the inaccuracies in some
databases, some recommendations have been
suggested for the use of 16S rDNA sequencing
for bacterial identification [7,153]. For indications
for the use of 165 rDNA sequencing, the strains
most often chosen are those that cannot be
accurately identified with phenotypic tests in
clinical microbiology laboratories. However, as
certain groups of bacteria are known to present
difficulties in identification by 16S rDNA sequen-
cing, these bacteria should be excluded, and other
housekeeping gene targets, e.g. rpoB, if available,
are required [39-42,47,50-54,153]. Regarding the
interpretation of sequence data, this involves
requirements concerning the length and quality
of sequences, the choice of appropriate programs
for analysis, and the final species assignment
based on similarity search results. Although a

© 2008 The Authors

minimum of 500-525 bp that includes the more
variable 5’-region may be adequate for identifica-
tion of some groups of bacteria, Drancourt et al.,
according to their several recommendations con-
cerning the criteria for 165 rDNA sequencing as a
reference method for bacterial identification, pro-
posed that full 16S rDNA sequences with <1%
ambiguities should be used [7]. The comparison
should be made using at least 1500 positions in all
sequences, of the same length, included in the
similarity search, and an ungapped program
should be used. In a recent review by Janda and
Abbott, the use of full 165 rDNA sequences,
whenever possible, and in particular for groups
such as Campylobacter species [153], was con-
firmed as a viable technique.

The major difficulties and controversies in the
interpretation of sequence data concern the
assignment of bacterial species according to sim-
ilarity search results, as no threshold values are
available, as in the case of DNA-DNA hybridiza-
tion [154]. Although a 97% similarity level has
been proposed for bacterial speciation using 165
rDNA sequences [155], a >0.5% difference may be
indicative of a new species [156]. In fact, as
different bacterial species are likely to evolve at
different rates, it is impossible to determine a
universal cut-off for bacterial genus and species
delineation. Although, in the study by Drancourt
et al., >99% and >97% sequence similarities were
used as the cut-offs for species and genus iden-
tification, respectively, the authors indicated that
these sharp values were set mainly for practical
purposes, for interpretation of their large
sequence dataset, and it may be necessary to use
different cut-off values, depending on the bacte-
rial genus under investigation [7]. On the other
hand, Janda and Abbott, in their recommended
guidelines, suggested that a minimum of >99%,
and ideally >99.5%, sequence similarity be used
as the criteria for species identification [153]. They
also proposed that for matches with distance
scores <0.5% to the next closest species, other
properties, e.g. phenotype, should be considered
in final species identification. However, using
these criteria, it is difficult to determine the
species identity with sequences that have very
similar distances to the closest and next closest
matches, especially those within 0.5-1%.
Although different studies have identified groups
of bacteria for which 165 rDNA sequences are not
sufficiently discriminative and for which other
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gene targets have to be used, very few studies
have addressed and attempted to solve this
problem in a systematic way.

The use of 165 rDNA sequencing for bacterial
identification depends on significant interspecies
differences and small intraspecies differences in
16S rDNA sequences. Therefore, one of the major
limitations is that when two different bacterial
species share almost the same 16S rDNA
sequence, this technique would not be useful for
distinguishing between them. In our experience,
clinical microbiologists and technicians with lim-
ited experience in 16S rDNA sequencing often
find interpretation of 16S rDNA similarity search
results difficult. As a result of the large number of
unvalidated 165 rDNA sequences in GenBank, it
is not a straightforward task for inexperienced
users to decide whether the ‘first hit’ or ‘closest
match’ represents the actual identity of a bacterial
isolate.

Regarding the software packages described
above, the usefulness is further limited by the
choice of bacterial species in the database. If a
bacterial species is not included in the database, it
would never be given as the identity of an isolate,
and if the database also includes bacterial species
with minimal differences in their 165 rDNA
sequences and which, therefore, cannot be iden-
tified confidently by 16S rDNA sequencing, this
may also give rise to incorrect identification.

In view of these limitations, we initiated a
systematic evaluation of the potential usefulness
of full and 527-bp 165 rDNA sequencing and
the existing MicroSeq databases for identifica-
tion of medically important bacteria 2 years ago.
The species of medically important bacteria
included in this analysis comprise all species
of medically important bacteria listed in the
Manual of Clinical Microbiology [157]. The most
representative 165 rDNA sequence for each
species was chosen from the GenBank database.
The percentage differences of the 165 rDNA
sequences among the different species in the
same group/genus were determined by pairwise
alignment.

The study first involved medically important
anaerobic bacteria, and the results were published
in 2007 [158]. Each medically important bacterial
species is classified as one of the following: (i) the
bacterium can be confidently identified by 165
rDNA sequencing (V in Table 4 and Supplemen-
tary Tables 2-4 of reference [158]), meaning that

Table 4. An example of guidelines for interpretation of
usefulness of full 165 rDNA sequencing and MicroSeq full
16S rDNA bacterial identification system database for
identification of medically important Actinomyces species
(adapted from Supplementary Table 2 of reference [158]
with permission)

Medically
important
bacteria with
similar (<3%

Usefulness of
existing MicroSeq
full 16S rDNA

Usefulness difference) bacterial

Actinomyces for species full 16S rDNA identification
species identification gene sequences system database
A. bovis ? A. urogenitalis 2
A. bowdeni ? A. viscosuis x?
A. canis \/ x?
A. catuli \/ x*
A. denticolens V x*
A. europaeu v x*
A. funkei ? A. hyovaginalis x*
A. georgiae ? A. meyeri x?
A. gerencseriae V x?
A. graevenitzii x?
A. hordeovulneris N x*
A. howellii v v
A. hyovaginalis ? A. funkei x*
A. israelii V x*
A. meyeri ? A. georgiae, ?°

A. odontolyticus,

A. turicensis
A. naeslundii A. viscosus x?
A. neuii N N
A. odontolyticus x A. meyeri, x?

A. turicensis
A. radicidentis N x*
A. radingae N N
A. slackii N N
A. turicensis X A. meyeri, x*

A. odontolyticus
A. urogenitalis ? A. bovis x?
A. viscosus X A. bowdenii, xP

A. naeslundii

N, >3% difference between the 16S rDNA gene sequence of the species and those of
other medically important bacteria; ?, 2-3% difference between the 16S rDNA gene
sequence of the species and that of a closely related medically important bacterium;
%, <2% difference between the 165 rDNA gene sequence of the species and that of a
closely related medically important bacterium.

“The species is not included in the existing MicroSeq full 165 rDNA bacterial
identification system database.

®Although the species is included in the existing MicroSeq full 165 rDNA bacterial
identification system database, the high 165 rDNA gene sequence similarity (>98%
nucleotide identity) between the species and a closely related species does not allow
them to be distinguished confidently.

€Although the species is included in the existing MicroSeq full 165 rDNA bacterial
identification system database, a 2-3% difference is observed between the 165
rDNA gene of the species and a closely related species.

there is a >3% difference between the 165 rDNA
sequence of the species and those of other
medically important bacteria; (ii) the bacterium
cannot be confidently identified by 16S rDNA
sequencing (x in Table 4 and Supplementary
Tables 2—4 of reference [158]), meaning that there
is a <2% difference between the 165 rDNA
sequence of the species and that of a closely
related medically important bacterium; and (iii)
the bacterium can only be doubtfully identified by
165 rDNA sequencing (? in Table 4 and Supple-
mentary Tables 2—4 of reference [158]), meaning
that there is a 2-3% difference between the 165

© 2008 The Authors
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rDNA sequence of the species and that of a
closely related medically important bacterium.
According to our guidelines for 165 rDNA
sequence analysis, if the bacterium belongs to
the 2" or X' category (e.g. Actinomyces meyeri;
Table 4 and Supplementary Tables 2-4 of refer-
ence [158]), the bacterial species with similar 16S
rDNA sequences will also be known (i.e. A. geor-
giae, A. odontolyticus and A. turicensis; Table 4
and Supplementary Tables 2-4 of reference
[158]). If further species differentiation is neces-
sary, one can look for additional/supplementary
methods, which may be key phenotypic tests
or sequencing of additional gene loci, to distin-
guish among these species with similar 165
rDNA sequences. It should be noted that the
cut-offs mentioned are not meant to be used as
criteria for defining new species, but to provide
a clearer meaning for the search results.
Concerning MicroSeq database analysis, a
supplementary note is given to indicate whether
the reason for the inability of the database to
identify the bacterium is due to the species being
not included in the existing database (x* in
Table 4 and Supplementary Tables 2-4 of refer-
ence [158]), or high 165 rDNA sequence similar-
ity (>98% nucleotide identity) to a closely related
species (x’ in Table4 and Supplementary
Tables 2-4 of reference [158]). In the study on
anaerobes, full and 527-bp 165 rDNA sequencing
were capable of identifying 52-63% of 130
anaerobic Gram-positive rods, 72-73% of 86
anaerobic Gram-negative rods, and 78% of
23 anaerobic cocci. Surprisingly, the MicroSeq
databases (version 1.0) were able to identify only
19-25% of 130 Gram-positive anaerobic rods,
38% of 86 Gram-negative anaerobic rods, and
39% of 23 anaerobic cocci. This represents only
45-46% of those that should be confidently
identified by full-length and 527-bp 165 rDNA
sequencing, indicating that, in order to improve
the usefulness of MicroSeq, bacterial species that
should be confidently identified by full-length
and 527-bp 16S rDNA sequencing but are not
included in the MicroSeq databases (version 1.0)
should be included. Recently, there has been an
expansion of the MicroSeq databases (ver-
sion 2.0) to include more bacterial species, which
has led to some improvement. At present, we are
performing further studies of aerobic and facul-
tative anaerobic Gram-positive and Gram-nega-
tive bacteria, and the results will be available in

© 2008 The Authors

the near future for the development of similar
guidelines.

Despite the extensive analysis, there are still
limitations in these guidelines. First, intraspecies
variation in 165 rDNA sequences was not taken
into account in the analysis. In the evaluation,
only whether there was a significant difference
between the 165 rDNA sequence of a particular
species and those of other species was deter-
mined, and a 3% difference was chosen as the
cut-off. Whether there is a high similarity among
the 16S rDNA sequences in different strains of
the same species is difficult to study, because: (i)
16S rDNA sequence information is available for
multiple strains of the same species in only a
minority of species; and (ii) even when 165
rDNA sequence information is available for
multiple strains of the same species, the strains
are often not well characterized phenotypically,
so the reliability of the sequence information is
difficult to judge. However, despite this limita-
tion, a high degree of conservation of 165 rDNA
sequences for the same species is often assumed,
because most existing results do not indicate
otherwise. On the other hand, for some genera,
the intraspecies variation in 16S rDNA
sequences may be so small that a difference of
3% in the 165 rDNA sequences between two
species may not be necessary for confident
identification. Second, the present study
included only the bacterial species that are
known to be associated with infections. This
was deliberate, because, if those bacterial species
that have never been reported to cause infections
had also been included, some species may have
been classified as ‘not confidently identified by
16S rDNA sequencing’ because of the sequence
similarity between a bacterium and another that
has never been reported to cause infection. One
must bear in mind that those species that have
never been reported to be associated with
infections may still have the potential to do so.
Owing to these limitations, we suggest that, in
order to increase the accuracy of 165 rDNA
sequencing for identification of pathogenic bac-
teria, it would be necessary to interpret the
results of 165 rDNA sequencing with prelimin-
ary phenotypic test results. Nevertheless, our
data not only facilitate interpretation of sequence
data by inexperienced wusers in the clinical
microbiology laboratories, but also provide clues
to the potential usefulness of 165 rDNA
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sequencing for different groups of bacteria
before they are chosen for such analysis.

CONCLUDING REMARKS

Not only has 165 rDNA sequencing contributed to
answering some of the most fundamental ques-
tions in biology, but during the last decade this
technology has evolved beyond the research realm
and matured into clinical applications. For the
management of individual patients, accurate and
objective identification of clinical isolates, espe-
cially ‘unidentifiable bacteria’, rarely encountered
bacteria, slow-growing bacteria and uncultivable
bacteria, has assisted clinicians in the choice of
antibiotics and in determining the duration of
treatment, as well as in infection control measures.
On a population scale, accurate identification has
greatly improved our understanding of the epide-
miology of clinical syndromes, and hence has
improved empirical treatment of these. Our under-
standing of all these aspects is further improved by
the discovery of novel genera and species of
bacteria, which has been greatly facilitated by
using 16S rDNA sequencing. Nevertheless, auto-
mation of 165 rDNA sequencing is not yet available
and, despite the wide range of software packages
and databases available, interpretation of results is
often difficult for inexperienced users, due to their
limitations. Hopefully, the generation of guidelines
for the interpretation of 165 rDNA sequences can
make this technology an even more user-friendly
tool in clinical microbiology laboratories in the
coming years.
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