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INI-FOCUS: STENT TECHNOLOGY

ormulation of Nanoparticle-Eluting Stents by a
ationic Electrodeposition Coating Technology

fficient Nano-Drug Delivery via Bioabsorbable Polymeric Nanoparticle-Eluting
tents in Porcine Coronary Arteries

aku Nakano, PHD,* Kensuke Egashira, MD, PHD,* Seigo Masuda, MD,* Kouta Funakoshi, MD,*
ang Zhao, MD, PHD,§ Satoshi Kimura, MD,† Tetsuya Matoba, MD, PHD,*
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iroyuki Tsujimoto, PHD,# Ryuji Tominaga, MD, PHD,† Kenji Sunagawa, MD, PHD*

ukuoka, Aichi, Kyoto, and Osaka, Japan; and Shanghai, China

bjectives The objective of this study was to formulate a nanoparticle (NP)-eluting drug delivery
tent system by a cationic electrodeposition coating technology.

ackground Nanoparticle-mediated drug delivery systems (DDS) are poised to transform the devel-
pment of innovative therapeutic devices. Therefore, we hypothesized that a bioabsorbable poly-
eric NP-eluting stent provides an efficient DDS that shows better and more prolonged delivery
ompared with dip-coating stent.

ethods We prepared cationic NP encapsulated with a fluorescence marker (FITC) by emulsion sol-
ent diffusion method, succeeded to formulate an NP-eluting stent with a novel cation electrodepo-
ition coating technology, and compared the in vitro and in vivo characteristics of the FITC-loaded
P-eluting stent with dip-coated FITC-eluting stent and bare metal stent.

esults The NP was taken up stably and efficiently by cultured vascular smooth muscle cells in vitro. In a
orcine coronary artery model in vivo, substantial FITC fluorescence was observed in neointimal and me-
ial layers of the stented segments that had received the FITC-NP-eluting stent until 4 weeks. In contrast,
o substantial FITC fluorescence was observed in the segments from the polymer-based FITC-eluting
tent or from bare metal stent. The magnitudes of stent-induced injury, inflammation, endothelial recov-
ry, and neointima formation were comparable between bare metal stent and NP-eluting stent groups.

onclusions Therefore, this NP-eluting stent is an efficient NP-mediated DDS that holds as an innova-
ive platform for the delivery of less invasive nano-devices targeting cardiovascular disease. (J Am Coll
ardiol Intv 2009;2:277–83) © 2009 by the American College of Cardiology Foundation
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n the 3 years since they were introduced for clinical use,
olymer-based drug-eluting stents (DES) that carry anti-
roliferative drugs such as sirolimus or paclitaxel, have been
sed extensively in percutaneous coronary interventions for
he prevention of restenosis (1–3). Through the effects of
hese antiproliferation agents on vascular smooth muscle
ells (VSMCs) and inflammatory cells, DES can reduce the
ate of restenosis and target-vessel revascularization to
elow 10%. However, the increased risk of late in-stent
hrombosis (resulting in acute myocardial infarction and
eath) associated with use of the first-generation DES
evices has become a major issue (4). In particular, the
ff-label use of DES for complex coronary lesions (long and
iffuse lesions, left main lesions, culprit lesion of acute
oronary syndrome, and so forth) increases the risk of late
n-stent thrombosis (5,6). These adverse effects are thought
o result mainly from the antiproliferative effects of the
rugs on the endothelial cells, leading to impaired arterial
ealing processes (impaired endothelial regeneration, exces-
ive inflammation, proliferation, and fibrin deposition) and

partly from the use of non-
biocompatible polymers in stent
construction (7–9). Clearly, a novel
DES system with fewer associated
adverse effects is needed.

Current DES polymer-coating
technology uses dip- and/or spray-
coating methodology. These
methods are useful for coating
stents with strongly lipophilic
drugs such as sirolimus but not for
water-soluble drugs or deoxyribo-
nucleic acid (DNA). Recently, we
and others reported the formu-

ation of plasmid DNA- or oligonucleotide-coated stents
ith a water-soluble polymer, which showed limited deliv-

ry efficacy and nonoptimal therapeutic effects for clinical
pplication (10–13). The application of nanotechnology-
ased drug delivery system (DDS) is expected to have a
ajor impact on the development of efficient and safe
DS.(14) Previously, we reported the development of such
DDS, a polymeric nanoparticle (NP) formulated from the
iodegradable polymer poly (DL-lactide-co-glycolide)
PLGA) (15,16) that can entrap hydrophilic agents (pro-
ein, oligonucleotide, DNA, and the like), penetrate cellular
embrane via endocytosis, and deliver the encapsulated

herapeutic agents into the cellular cytoplasm. The PLGA
ydrolyzes slowly, is metabolized, and is eliminated from
he body. The PLGA NP offers the advantages of efficient
ntracellular delivery of different classes of therapeutic
gents and the capacity for sustained intracytoplasmic re-
ease (17). Until now, no existing technology could produce

bbreviations
nd Acronyms

DS � drug delivery system

ES � drug-eluting stent(s)

ITC � fluorescein
sothiocyanate

P � nanoparticle(s)

LGA � poly
DL-lactide-co-glycolide)

SMC � vascular smooth
uscle cell
n active coating of NP on the surface of metallic stents. n
We have formulated a bioabsorbable polymeric NP-eluting
tent with a novel cation electrodeposition coating technology.

e hypothesized that this NP-eluting stent system would be
n efficient innovative platform for in vivo drug delivery. The
ims of this study were to: 1) formulate a bioabsorbable
olymeric NP-eluting metallic stent with cation electrodepo-
ition NP coating technology; 2) characterize the in vitro
inetics of drug release from NP and the cellular uptake and
ocalization of NP; and 3) evaluate the feasibility of using

P-eluting stents in vivo in porcine coronary arteries.

ethods

reparation of cationic PLGA NP with chitosan-mediated
urface modification. Cationic PLGA NP encapsulated with
uorescein-isothiocyanate (FITC) were prepared by a previ-
usly reported emulsion solvent diffusion method in purified
ater (15,16). Additional details are provided in the Online
ppendix.
reparation of NP-eluting stents by cationic electrodeposi-
ion coating technology. Cationic electrodeposition coating
as prepared in NP solution at a concentration of 50 mg/ml in
istilled water and deposited on cathodic, 15-mm stainless-
teel, balloon-expandable stents (Multilink, Guidant, India-
apolis, Indiana) with current maintained at 2.0 mA by a direct
urrent power supply (Nippon Stabilizer Co., Tokyo, Japan)
or different periods under sterile conditions (Online Fig. III).
his electrodeposition coating procedure produced a coating of

pproximately 654.0 � 167.5 �g (n � 12) of NP/stent and 31
2 �g of FITC/stent (n � 12). Additional details are

rovided in the Online Appendix.
easurement of in vitro NP release kinetics. To measure
ITC release kinetics, FITC-NP (n � 8) was immersed in
ris-EDTA buffer, and the released FITC from NP was
easured. The FITC-NP–eluting stents (n � 8) were also

mmersed in Tris-EDTA buffer, and the eluted FITC-
ontaining NP was measured.
ellular uptake and intracellular distribution of NP. Human
oronary artery smooth muscle cells (SMCs) were used to
erform this study. Additional details are provided in the
nline Appendix.
ytotoxicity assay. The cytotoxicity of PLGA NP on hu-
an coronary artery SMCs was determined with an MTS

ssay (Promega, Dojin, Japan). Additional details are pro-
ided in the Online Appendix.
nimal preparation, stent implantation, and coronary an-
iography. Domestic male pigs (weighing 25 to 30 kg) were
nesthetized and divided into 3 groups that received non-
oated bare metal stents (1 week, n � 3; 2 week, n � 3; 4
eek, n � 8; 6 week, n � 3), FITC-incorporated NP-

luting stents (2 week, n � 3; 2 week, n � 3; 4 week, n �
; 6 week, n � 3), or dip-coated stents with thin layers of
LGA polymer containing FITC (1 week; n � 3, 2 week;

� 3, 4 week; n � 3), to either the left anterior descending
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r the left circumflex coronary artery. Animals were killed
fter 1, 2, 4, or 6 weeks, and the stented arterial sites and
ontralateral non stented sites were excised for biochemical,
mmunohistochemical, and morphometric analyses. Left
oronary angiography was performed before, immediately
fter, and 4 weeks after stent implantation. Additional
etails are provided in the Online Appendix.
istopathological studies. The stented arterial segment at 4
eeks after stent implantation was divided into 2 parts at

he center of the stent, and the proximal part was embedded
n resinoid. The distal part of the stent was used for either
uorescence or pathological analysis after the stent struts
ere gently removed with micro-forceps. Additional details

re provided in the Online Appendix.
tatistical analysis. Data are expressed as mean � SEM. The
tatistical analysis of differences between 2 groups was performed
ith the unpaired t test. The analysis of differences among 3
roups was compared by 1-way analysis of variance. Values of p
0.05 were considered to be statistically significant.

esults

abrication of NP-eluting stent and NP release kinetics in
itro. The cationic electrodeposit coating formed a thin and
niform layer of NP on the surface of stents without
ebbing between the struts (Fig. 1A). Interestingly, amount
f coating of NP on the stent surface increased with period
f electricity (Online Fig. III).
Light and fluorescence microscopy analysis revealed that the

olymer stretched after balloon expansion, but no fragmenta-
ion was observed (Fig. 1A). Scanning electron microscopy
nalysis revealed that NP was structurally intact and cohesive
Fig. 1B). An analysis of the in vitro FITC release kinetics
rom FITC-NP showed an early burst of FITC release such
hat approximately 40% of the total amount ultimately released
as present on day 1, followed by sustained release of the

emaining FITC over the next 30 days (Fig. 1C). The in vitro
ITC release kinetics from NP-eluting stents also showed a
imilar release pattern (Fig. 1D).
n vitro cell uptake and intracellular distribution of NP. In-
ubation of human coronary artery SMCs with FITC-
oaded NP (0.1 mg/ml PLGA) showed highly efficient and
table intracellular delivery of NP (Fig. 2A). In contrast, no
uorescence was detected when the SMCs were incubated
ith blank NP or FITC only. Fluorescence confocal mi-

roscopy revealed that: 1) the SMCs took up the NP
apidly, and NP remained stable in the cell for at least 24 h
f incubation; and 2) NP was seen in both the nuclei and the
ytoplasm (Figs. 2B and 2C). Transmission electron mi-
roscopy of the cellular cross-sections revealed the intracel-
ular localization of NP at 24 h of incubation (Fig. 2D).
urthermore, NP eluted from the FITC-NP-eluting stent
as added to human coronary artery SMCs and incubated
or 1 h, resulting in prominent cellular FITC positivity
Figure 1. Formulation of FITC-Encapsulated NP-Eluting Stents by a
Cationic Electrodeposition Coating Technology

(A) Light and fluorescence stereomicroscopy photograph of balloon-
expanded fluorescein-isothiocyanate (FITC)-incorporated nanoparticle
(NP)-eluting stent. Scale bar � 1 mm. (B) Scanning electron microscopy
photograph (left: low magnification, scale bar � 1 �m; right: high magni-
fication; scale bar � 100 nm) of balloon-expanded NP-eluting stent. (C, D)
In vitro time course of cumulative FITC release from the FITC-incorporated
NP and FITC-incorporated NP release from the NP-eluting stents (n � 8
each). The percentage of incremental quantities of released FITC was plot-
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Online Fig. IV A). In contrast, scarce FITC fluorescence
as observed in the SMCs 1 h after addition of FITC-
LGA matrix eluted from PLGA polymer-based FITC-
luting stent (Online Fig. IV B).

Results of a cytotoxicity assay showed that human coro-
ary artery SMCs incubated with PLGA NP for 48 h at
oncentrations of 0.1, 0.3, and 1 mg/ml remained 100%
iable relative to control (data not shown).
eployment of FITC-NP–eluting stent in porcine coronary
rteries in vivo. After 1 week of stent deployment, a thin
ayer of platelets and fibrin deposition formed around the
tent strut. Strong FITC fluorescence was detected in the
tented coronary arterial segments that had received the
ITC-NP–eluting stent (Fig. 3).
After 2 weeks, when a thin neointima associated with mono-

yte infiltration had formed mainly around stent struts, intense
ITC fluorescence was detected in the stented coronary arterial
egments from the NP-eluting stented groups (Fig. 4).

No substantial FITC fluorescence was observed in coro-
ary segments from the non-NP polymer-based FITC stent
ite (Figs. 3 and 4) or from the bare metal stent sites (data
ot shown) 1 and 2 weeks after stenting.
After 4 weeks, when a significant in-stent neointima formed in

tent sites and the neointima consisted mainly of VSMCs, FITC

A light microscopy fluorescence microscopy
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Figure 3. Localization of FITC Fluorescence After Deployment of FITC-NP–
Eluting Stent in Porcine Coronary Arteries 1 Week After Stenting

(A) En-face light and fluorescence stereomicroscopic pictures of the intralumi-
nal surface of an isolated stented segment of coronary artery taken from the
FITC-NP–eluting and the polymer-based FITC-eluting stent sites. Scale bar � 1
mm. (B) Fluorescence microscopic pictures of cross-sections from the FITC-NP–
eluting stent and polymer-based FITC-eluting stent sites. Microscopic settings
(exposure condition, filter, intensity of excitation light, and so forth) are the
same between 2 pictures. Scale bar � 100 �m. *Site of stent strut. Abbrevia-
A
Non-encapsulated 

FITC
Blank PLGA NP FITC-PLGA NP

B

ZY

X
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Figure 2. Cellular Uptake and Intracellular Distribution of NP in Human
Coronary Artery SMCs In Vitro

(A) Fluorescence microscopy photographs of human coronary artery
smooth muscle cells (SMCs) incubated with FITC only, blank NP, or FITC-NP
(0.1 mg/ml) for 1 h. (B) Confocal fluorescence microscopy photographs
(left: an XY-axis image; right: a Z-axis image of cross-sections from yellow
dashed line displayed on an XY-axis image) of human coronary artery
SMCs incubated with FITC-NP at 0.1 mg/ml. The FITC fluorescence is green;
nuclei are red. Scale bar � 10 �m. (C) In vitro time course of the percent-
age of cellular uptake of FITC-incorporated NP by human coronary artery
SMCs (n � 6 to 8 at each time point). (D) Transmission electron micros-
copy photograph of a cross-section of human coronary artery smooth mus-
cle incubated with NP for 60 min. Arrows indicate NP in the cellular
cytoplasm. Scale bar � 500 nm. N � nucleus; PLGA � poly (DL-lactide-
tions as in Figure 1.
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uorescence was noted only in cross-sections from the NP-eluting
tent site but not from bare metal stent sites (Fig. 5A). No
ubstantial FITC fluorescence was observed in cross-sections from
he non-NP polymer-based FITC stent site (data not shown).
utofluorescence of the internal and external elastic laminas made

ssessing the FITC distribution in the neointima and media
ossible. The neointima and media around the stent strut ex-
ressed intense fluorescence, whereas a discrete and circular-
haped fluorescence was noted in cells of either layer distal to the
tent strut (Fig. 5B). Fluorescence-positive cell counts revealed

A light microscopy fluorescence microscopy
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Figure 4. Localization of FITC Fluorescence After Deployment of FITC-NP–
Eluting Stent in Porcine Coronary Arteries 2 Weeks After Stenting

(A) En-face light and fluorescence stereomicroscopic pictures of the intralumi-
nal surface of an isolated stented segment of coronary artery taken from the
FITC-NP–eluting and the dip-coated FITC stent sites. Scale bar � 1 mm. (B)
Expanded images of boxed area in A. Expanded images reveal that a number
of discrete patterns of fluorescence can be seen, indicating local retension of
FITC in the form of NP. (C) Fluorescence microscopic pictures of cross-sections
from the FITC-NP–eluting stent and polymer-based FITC-eluting stent sites.
Microscopic settings (exposure condition, filter, intensity of excitation light, and
so forth) are the same between 2 pictures. Scale bar � 100 �m. Abbreviations
as in Figure 1.
hat cellular FITC positivity was 90 � 12% and 76 � 10% (n �
A
Bare metal stent FITC-NP-eluting stent

media

* * ** * *
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Figure 5. Localization of FITC Fluorescence and Histopathology in
Porcine Coronary Artery 4 Weeks After Stenting

(A) Fluorescence microscopy photographs of cross-sections from bare-metal stent
(BMS) and NP-eluting stent sites. Scale bar � 100 �m. (B) Expanded images of
neointima and media from boxed areas in (A). (C) Representative low- (upper
panels), middle- (middle panels), and high-magnification (lower panels) pho-
tomicrographs of hematoxylin-eosin stained sections of coronary arteries after 4
weeks from coronary artery segments that received BMS and the NP-eluting
stents. (D) The neointimal area and the area within the internal elastic lamina (IEL)
at the BMS and the NP-eluting stent sites (n � 6 each). *Site of stent strut. Abbre-

viations as in Figure 1.
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), in the neointima and the media, respectively. Adventitial
elivery was more difficult to quantify, due to the presence of
utofluorescence. After 6 weeks, cellular FITC signal declined
pontaneously (cellular FITC positivity was �10% in the neoin-
ima and media, data not shown).

In hematoxylin-eosin stained sections, there were no
ignificant differences in the degrees of inflammation among
he 3 groups after 4 weeks (Fig. 5C, Online Fig. V, and
nline Table). A significant in-stent neointima was formed

n the non-coated bare metal stent and NP-eluting stent
ites, and the neointima consisted mainly of VSMC. Quan-
itative analysis of the neointima after 4 weeks revealed no
ignificant differences in neointima formation, stent area, or
edial area between the 2 groups (Fig. 5D). In addition,

ngiographically examined in-stent stenosis was comparable
etween the 2 groups (Fig. 6).

iscussion

e present the first NP-eluting stent formulated with a newly

A Bare metal stent NP-eluting 
stent

LAD

LCX

LAD

LCX

B Angiographical in-stent stenosis (%)

BMS NP-eluting stent
0

10

20

30

40

50
NS

Figure 6. Coronary Arteriography and In-Stent Stenosis

(A) Representative coronary arteriographic images 4 weeks after nanopar-
ticle (NP)-eluting stent and bare-metal stent (BMS) implantation. White
bars in the images denote stent segment sites. (B) Angiographic in-stent
stenosis 4 weeks after NP-eluting stent site (n � 8) and BMS site (n � 8).
LAD � the left anterior descending coronary artery; LCX � left circumflex
coronary artery.
nvented cation electrodeposition coating technology as an i
xcellent drug delivery platform. Importantly, this NP-
ediated DDS is able to carry hydrophilic agents such as
ITC (15,17), which offers advantages over the current stent-
oating technology (see also introductory text). The PLGA is
bioabsorbable polymer with a long history of safe use in
edical applications. For clinical use, PLGA-NP can be
anufactured in pyrogen-free form under the good manufac-

ure practice guidelines.
haracteristics of NP-eluting stent. To create a cationic elec-
rodeposition coating, NP surface was rendered cationic with
hitosan-mediated surface-modification (16). This cationiza-
ion offers several advantages. Firstly, compared with anionic
P, cationic NP increases the intracellular incorporation rate

f NP. Secondly, it accelerates the escape of entrapped NP
rom the endosomal compartment to cytoplasmic compart-
ent. This escape is important, because therapeutic agents

drug, protein, DNA, and the like) are prone to destabilize in
he endosomal compartment. Thirdly, NP retained in the
ytoplasm or extracellular spaces released encapsulated drug
lowly in conjunction with the hydrolysis of PLGA-NP and
iffusion from NP. The slow intracellular release might result

n sustained intracellular drug delivery. It is likely that these
dvantages contribute to the highly efficient delivery of NP
luted from the NP-eluting stent into the neointima and media
n vitro (Fig. 2, Online Fig. IV) and in vivo (Figs. 3 to 5).
ecause FITC is hydrophilic and free FITC released from
ITC-encapsulated NP must be washed out rapidly, a consid-
rable part of small circular shaped fluorescence might come
rom NP still containing FITC within the cell or in extracel-
ular spaces. The FITC release kinetics from the NP-eluting
tent supports this notion. In contrast, prior reports showed
hat the intracellular drug/gene delivery capacity of stents
oated with polymer and water-soluble drug/gene is limited
10,11); drug/gene delivery persisted for up to 7 days, and the
ercentage of positive cells ranged from 1% to 2%. Therefore,
ur present NP-eluting stent system is a more efficient DDS
han those created with non-NP polymeric DES coating
echnology. Recently, we found that NP-eluting stents could
eliver other water-soluble agents such as oligonucleotide or
lasmid DNA into porcine coronary arteries (Drs. K. Nakano
nd K. Egashira, unpublished observations, May 2007).
herefore, our NP-eluting stent system provides an innovative
latform for delivering therapeutic agents in the future treat-
ent of cardiovascular diseases.
linical implication. Evidence of impaired arterial healing process

s a major histopathological feature in the arteries of experimental
nimals (18,19) and humans (8,9) exposed to DES in current use.
herefore, it is important to consider potential toxicities associated
ith the delivery of PLGA NP from an NP-eluting stent system.
f a number of polymer matrix materials evaluated for stent

oating, it has been shown that PLGA do not increase the
ncidence of thrombosis in a porcine coronary artery model (18).

ur NP-eluting stents had no apparent effect on stent-induced

njury, inflammation, or endothelial regeneration in vivo, suggest-



i
a
v
P
s

p
p
o
a
c
d
i
f
l
r
m
c
f
e
f

C

T
e
t
a
F
d
p
i
t
s

A
T
f

R
D
M
k
m

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

K
r

F

J A C C : C A R D I O V A S C U L A R I N T E R V E N T I O N S , V O L . 2 , N O . 4 , 2 0 0 9

A P R I L 2 0 0 9 : 2 7 7 – 8 3

Nakano et al.

Nanoparticle-Eluting Stent

283
ng that PLGA NP transfer to the arterial wall does not impair the
rterial healing process in this model. Overall, these data of
ascular compatibility support the notion that this bioabsorbable
LGA NP-eluting stent system could be applied to human
ubjects without vascular toxicity.

Efficacy studies in animals are needed to determine the thera-
eutic potential of this NP-eluting stent system. Potential thera-
eutic strategies for this stent-based platform include the delivery
f proteins or genes that inhibit inflammation, SMC proliferation,
nd thrombosis. We plan to examine the effects of antimonocyte
hemoattractant protein-1 (13,20–22) or nuclear factor �-B (12)
elivered via the NP-eluting stent. Furthermore, it would be

nteresting to deliver multiple agents with different time courses
rom 1 NP-eluting stent. The bioabsorbtion time of PLGA in
iving body is controlled by molecular make-up of PLGA (the
atio of D,L-lactic acid and glycolic acid) (23), allowing us to
odulate the time course of intracellular drug delivery. Finally,

ell-specific delivery of NP into VSMC to suppress neointima
ormation or into endothelial cells to accelerate endothelial regen-
ration might be attractive strategies. Future studies will test the
easibility of each of these innovative approaches.

onclusions

hese data suggest that this bioabsorbable polymeric NP-
luting stent system has unique aspects in novel elec-
rodeposition coating technology, vascular compatibility,
nd an efficient DDS (better and more prolonged delivery of
ITC into the stented coronary artery), compared with
ip-coated polymer-eluting stent. This system might hold
romise as an innovative platform for the delivery of less
nvasive nano-devices targeting cardiovascular disease. Fur-
her efficacy and good laboratory practice-compliant safety
tudies are needed to prove this notion.
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