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Abstract

We apply techniques of microlocal analysis to the study of the transverse geometry of Riemannian fo-
liations in order to analyze spectral invariants of the basic Laplacian acting on functions on a Riemannian
foliation with a bundle-like metric. In particular, we consider the trace of the basic wave operator when the
mean curvature form is basic. We extend the concept of basic functions to distributions and demonstrate
the existence of the basic wave kernel. The singularities of the trace of this basic wave kernel occur at the
lengths of certain geodesic arcs which are orthogonal to the closures of the leaves of the foliation. In cases
when the foliation has regular closure, a complete representation of the trace of the basic wave kernel can
be computed for t �= 0. Otherwise, a partial trace formula over a certain set of lengths of well-behaved
geodesic arcs is obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let M be a compact manifold without boundary of dimension n that admits a Riemannian
foliation F of dimension p. Let q denote the codimension of the foliation. Recall that a foliation
is Riemannian if there is a metric on M with respect to which the distance between leaves is
locally constant. Such a metric is said to be bundle-like with respect to the foliation F . We will
assume that (M,F) is equipped with just such a metric. We will denote the individual leaves of
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this foliation by L, and the associated distribution by TF ⊂ TM. Note that we have the following
short exact sequence:

0 → TF → TM → Q := TM/TF → 0. (1)

If the metric is bundle-like, we have an isomorphism Q ∼= (TF)⊥ = NF , and the metric induces
a transverse metric gT on Q. Conversely, given a transverse metric gT , there exist bundle-like
metrics on M which have gT as their associated transverse metric. In this paper, we are interested
in the manner in which the leaves are glued together to form the manifold M . This is (roughly)
the transverse geometry of the foliation. Broadly speaking, the theme of this paper is to determine
to what extent one can associate geometric objects on Q∗ with analytic objects that are associated
to the transverse structure of the foliation.

An important class of functions that are associated to the transverse structure of (M,F) are
the basic functions; these are the functions on M that are constant along the leaves of the folia-
tion, denoted by C∞

B (M,F). (Note: if the foliation contains a dense leaf, or a leaf that is always
contained in the closure of any other leaf (like the Reeb foliation) then the basic functions are just
the constant functions. We will focus on the opposite case—the case where the set of basic func-
tions is infinite-dimensional.) Observe that if a function is basic, it is also constant on the closures
of the leaves. (In general, the leaves themselves may not be closed.) In fact, the dimension of the
closures of the leaves of an arbitrary foliation may vary over M . Thus, the partition of M into
leaf closures may not form another foliation of M . It does, however, have a nice structure—that
of a singular Riemannian foliation. (See [8, Chapter 6] for definitions.)

There is a similar notion of being basic that applies to forms: a form α ∈ Ωk(M) is said to be
basic if iXα = iXdα = 0 for every X ∈ C∞(TF). Of particular interest for the purposes of this
paper is the mean curvature 1-form, κ, given by:

κ(Z) =
p∑

i=1

g(∇Ei
Ei,Z), where Z ∈ C∞(NF) (2)

(see [13]). (In the above, g denotes the metric on M , and the Ei , i = 1, . . . , p, are a basis of TF .)
This notion turns out to be important in defining a version of the Laplacian on basic functions.

The ordinary Laplacian, �, with respect to an arbitrary bundle-like metric g does not, as
a general rule, preserve the space of basic functions. However, one can define an associated
operator on the space of basic functions (and also, incidentally, on the space of basic forms),
called the basic Laplacian. The basic Laplacian, �B , is equal to δBdB + dBδB where dB is
the exterior derivative restricted to basic functions (or forms) and δB is its adjoint. It has been
shown in [10] that the ordinary Laplacian � restricts to �B precisely when κ is a basic 1-
form. Thus, if κ is basic, then the spectrum of �B is contained in the spectrum of the ordinary
Laplacian, �. In fact, the authors of [10] have shown that there is a natural projection P from
C∞(M) → C∞

B (M,F), the basic projection, and that

�BP = P�. (3)

It is always possible to find a bundle-like metric for which κ is basic by the results of [1]. It
is even possible to pick a bundle-like metric for which κ is basic and the induced transverse
metric gT is prescribed, [7]. However, the spectrum of �B depends on both transverse and leaf-
wise properties of the given bundle-like metric. In particular, it has been shown in [11] that the
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eigenvalues of basic Laplacian depend on the volumes of the leaf closures, and thus, the basic
spectrum depends on the choice of the entire bundle-like metric and not just the transverse part.

The goal of this paper is to compute invariants of the basic spectrum in terms of the global
structure of the foliation. The approach we will use in this paper is via the kernel to the wave op-
erator for the basic Laplacian, in the spirit of [2]. Many of the results follow from straightforward
application of the results of [2,4,16]. Recall that the wave equation admits a fundamental solution
in the category of generalized functions. Thus, we first show that the notion of basic functions
can be extended to distributions (in the analytic sense). (Note: in what follows, we will refer to
distributions in the analytic sense as generalized functions, and reserve the term distribution for
the association of vector subspaces of TpM to points in p ∈ M in cases where confusion may
result.) We then define the basic wave kernel in an analogous manner to the basic heat kernel,
and demonstrate that the basic wave kernel exists and is related to the ordinary wave kernel via
the basic projection P . We show that the singularities of the trace of the basic wave kernel are
contained in the set of lengths of certain geodesics arcs which are orthogonal to the leaf closures.
These lengths are invariants of the basic spectrum. Furthermore, if one can localize to avoid cer-
tain particularly problematic values of T , one can derive a representation of the basic wave trace
as a sum of Lagrangian generalized functions on T ∗R. If the foliation admits regular closure
(that is, when the closures of the leaves of the foliation all have the same dimension), the trace
of the basic wave kernel has a representation as a sum of Lagrangian generalized functions near
any singularity.

The heat kernel and the basic spectrum have been widely studied by many researchers, includ-
ing [6,7,9,11,12]. In particular, in [11], the researcher showed that the basic heat kernel pulled
back to the diagonal in M × M: KB(t, x, x) admits an asymptotic expansion in t whose coef-
ficients are invariants of the basic spectrum. These coefficients depend on the codimension of
the leaf closures, the volumes of the leaf closures in M and the lifted foliation on the oriented
orthonormal transverse frame bundle, M̂ , the curvature at x ∈ M and the curvature of a related
manifold, the basic manifold, W . (See [11, Theorem 3.1] for precise statements.) One feature
of the asymptotic formula for the heat kernel is that, in general, it cannot be integrated over M

to produce a formula for the trace of the heat kernel because the coefficient functions are not
always integrable over M . In comparison, relatively little corresponding work has been under-
taken for the wave kernel on a Riemannian foliation, other than the work of Y. Kordyukov [5].
In that paper, the researcher derives a trace formula for positive self-adjoint transversally elliptic
operators whose principal symbols satisfy certain invariance properties with respect to the leaves
of the foliation, using techniques from non-commutative geometry. These techniques involve
representing operators by smooth compactly-supported kernels on the holonomy groupoid of the
foliation. However, this case does not apply to the case of the basic Laplacian, due to the complex
nature of the basic projection operator, which cannot generally be represented by such kernels.

Recall that for the ordinary Laplacian, the singularities of the trace of the wave kernel contain
many spectral invariants; in particular, the spectral invariants associated to the heat kernel can
be obtained from the singularity of the trace of the wave kernel at t = 0. It is natural to examine
the possibility of computing additional invariants of the basic spectrum by considering the trace
of the basic wave kernel at t �= 0. This study of the basic wave kernel has apparently never been
undertaken, so the application of wave trace and microlocal techniques to this setting, although
straightforward, appears to be new.

This problem is interesting from several points of view. Riemannian foliations are of interest,
both from a geometric point of view as a generalization of a space that is locally a product of
Euclidean spaces, and also as a setting for problems in mathematical physics. (See, for example,



4 M.R. Sandoval / Journal of Functional Analysis 243 (2007) 1–27
[3, the Introduction].) In addition, this topic is an extension of the microlocal point of view to
the setting of foliations: here one seeks to make connections between the global geometry of a
Riemannian foliation and analysis by associating geometric objects on Q∗ = T ∗M/T ∗F ∼= N∗F
with analytic objects like operators and generalized functions, that are in some sense “basic.” This
particular problem is also of interest from the point of view of spectral theory since the setting
allows us to study the spectrum of an operator with a large kernel, and to associate properties
of the spectrum with the global geometric structure of the foliation. Finally, one can regard this
problem as being related to the spectral analysis on the space of leaf closures, which is generally
quite singular as a space.

The paper is organized as follows. In Section 2, we examine the setting and hypotheses in more
detail and define terminology. We also extend the notion of basic functions to basic generalized
functions, and establish the existence of the basic wave kernel. In Section 3, we present the main
results about the trace of the basic wave kernel. Section 4 contains the proofs of these results, and
Section 5 contains examples of non-simple foliations defined by suspensions, which illustrate the
results.

For general background and notation on Riemannian foliations, see, for example, [8,13,14].

2. The setting and basic results

In this section, we carefully examine the setting and investigate its structure. We then interpret
the hypotheses in relation to this structure. After extending the notions of basic functions to
generalized functions, we present some elementary results, and define the basic wave kernel
on functions. In particular, we demonstrate that the basic wave kernel exists when the mean
curvature form is basic.

2.1. The stratification of (M,F) and holonomy

To study the underlying space of leaf closures, M/F , we examine the basic functions. As pre-
viously noted in the introduction, the leaves of an arbitrary non-simple foliation are not closed,
although the closure of any leaf is a union of leaves, which is an embedded submanifold of M .
In fact, each leaf closure is foliated by the leaves that it contains. In general, the leaves have
closures of variable dimension, and are defined by a variable-dimensional completely integrable
distribution TF . Furthermore, there exists a natural stratification of M [8, Section 5.4] as fol-
lows. Let d(x) be the function that assigns to a point x ∈ M the dimension of the leaf closure
containing x. This function takes its values in the positive integers {p + k} where k ranges over
0 � k1 � k � kN � q , with k1 and kN denoting the minimal and maximal values for k, re-
spectively. From [8, Chapter 5], it is known that the function d(x) is lower semi-continuous
on M . Let Σp+k denote the inverse image {d−1(p + k)}. Each of such Σp+k is the (possibly
disconnected) union of leaf closures of dimension p + k, and is, in fact, an embedded manifold,
referred to as the stratum of dimension p + k. Furthermore, each stratum Σp+k is foliated by
the (p + k)-dimensional leaf closures, by [8, Lemma 5.3]. The lower semi-continuity of d(x)

implies the stratum for which the dimension of the leaf closures is maximal is an open dense
set in M , known as the regular stratum, denoted by Σp+kN = Σmax. (The assumption that there
are no dense leaves implies that kN < q .) The strata for which the leaf closures are not of maxi-
mal dimension are often referred to all together as the singular strata. The lower semi-continuity
of d(x) implies that for each stratum Σp+k ⊂ ⋃

��k Σp+�. This partition of M into leaf closures
of variable dimension is an example of a singular Riemannian foliation.
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Recall from [15] the holonomy groupoid G(F). It has the structure of manifold of dimen-
sion n + p. Its elements α are ordered triples α = [x, y, [α]] where x and y are points belonging
to the same leaf L of (M,F) and [α] is an equivalence class of piecewise smooth curves ly-
ing entirely in L with x = α(0) and y = α(1). Its elements define local diffeomorphisms hα

of local transversals in the usual fashion, and via the infinitesimal holonomy map dhα, de-
fine a holonomy action on certain transverse covectors as follows. Let V be a distribution in
TM = TF ⊕ NF . One defines the space of covectors that are transverse to V as follows. Let the
subspace V 0 ⊂ T ∗M \ {0} be given by V 0 = {ξx | ∀X ∈ Vx, iX(ξ) = 0}. We will be interested in
the space of covectors that are transverse to the foliation (TF)0. The natural action of G(F) on
(TF)0 is defined for ξx ∈ (TxF)0 by

∀Xy ∈ NyF , (γ · ξ)y(Xy) = ξx
(
dh−1

γ (Xy)
)
, (4)

where dhγ :NxF → NyF is the differential of the holonomy map of the holonomy ele-
ment γ . A function F(ξx) on T ∗M will said to be holonomy invariant if F(γ · ξy) = F(ξx)

for all α ∈ G(F).
Later, we will need a similar notion of holonomy for the leaf closures for the leaf clo-

sures contained in the regular stratum. Observe that one can similarly define the holonomy
groupoid Gk, for each stratum Σp+k, where now we simply substitute L ⊂ Σp+k for L and TF
for TF in the discussion above where each Gk = ⋃

L⊂Σp+k
G(F) is the holonomy groupoid

associated to the foliation (Σp+k,F). Note that Gk acts on (suitable) transverse covectors
in N∗Fk := (TFk)

0 ⊂ T ∗Σp+k . Thus, for k = kN , GkN acts on (suitable) transverse covec-
tors in (TFmax)

0 ⊂ T ∗Σmax = T ∗M|Σmax . For k < kN , there is no such action on any transverse
covectors in T ∗M|Σp+k

, other than that given by G(F) holonomy.

2.2. The symplectic setting

For the purposes of performing microlocal analysis, we will be interested in the symplectic in-
terpretation with respect to T ∗M of the various geometric assumptions and structures associated
to a foliated manifold with a bundle-like metric.

For the moment, we will place no conditions on the metric. The splitting TM = TF ⊕ TF⊥,

given by the foliation induces a splitting of T ∗M = (TF)0 ⊕(NF)0 where (TF)0 = {ξx ∈ T ∗M |
∀Xx ∈ TxF , ξx(Xx) = 0}, and is naturally identified (TM/TF)∗ and (NF)0 is defined simi-
larly. Let ξx = (ξ ′

x, ξ
′′
x ) denote a decomposition of ξx with respect to the splitting. Now consider

H(ξx) = |ξx |2x . The splitting above of T ∗M implies that the function H splits, by the Pythagorean
theorem into H(ξx) = |ξ |2x = HF (ξ ′

x)+HF⊥(ξ ′′
x ). The condition that the metric on M should be

bundle-like implies that there exists a G(F) holonomy invariant function G : (TF)0 → R+ such
that with respect to the functions H(ξx), HF (ξx), and HF⊥(ξx) the following hold:

(1) (TF)0 = {ξx ∈ T ∗M | HF (ξx) = 0};
(2) HF⊥(ξx)|(TF)0 = G(ξx);
(3) the Hamiltonian vector field XF of HF is zero at all points in (TF)0; and
(4) the Hamiltonian vector field XF⊥ of HF⊥ , satisfies XF⊥ = XH and is tangent to (TF)0.

The function G is essentially just the symbol of �B . In the usual interpretation in terms of the
transverse metric gT on TM, G(ξx) = gT (ξx, ξx) where gT denotes the transverse metric induced
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by the bundle-like metric on M on N∗F . Note that the metric on M implies that N∗F , the dual
of NF can be identified with (TF)0.

Notice that N∗F is a coisotropic submanifold of T ∗M, with respect to the usual symplectic
form ω. As such N∗F is itself foliated by the directions in which the pull-back by the inclusion
map ι : N∗F → T ∗M vanishes, that is—the null foliation, which we will denote by (N∗F , F̃).
The distribution defining this foliation is precisely the distribution T F̃ , defined by the canonical
lifts of the vector fields X ∈ TF to T ∗M, which belong to the kernel of ι∗ω. The leaves of this
foliation through ξx �= 0 are

Lξx = {
ηy ∈ N∗F

∣∣ ηy = (
dh−1

α

)∗
(ξx) ∃α ∈ G(F), α(0) = x, α(1) = y

}
. (5)

Furthermore, the function G is constant along the kernel of ι∗ω by G(F)-holonomy invariance:

dGξx (X) = 0 for all X ∈ Ker
(
ι∗ω

)
, ξx ∈ N∗F \ {0}. (6)

Henceforward, we will delete the zero section from all symplectic manifolds and submanifolds
under consideration. Let NF̃ denote the transverse distribution to the foliation (N∗F , F̃) with
T (N∗F) = T F̃ ⊕ NF̃ . Let H :T (N∗F) → NF̃ denote the horizontal projection. The action
of holonomy on points in N∗F induces a lifted holonomy action on NF̃ as follows: for any
α ∈ G(F) such that α(0) = x and α(1) = y and ξx with ηy = (dh−1

α )∗(ξx):

dh̃(α,ξx) :Nξx F̃ → Nηy F̃ . (7)

Let Φt(x, ξ) denote the Hamiltonian curve associated to H(x, ξ)1/2 = |ξx |2x . Conditions (2)

and (4) above imply that the Φt(x, ξ) restricts to N∗F , where H(x, ξ)1/2 = H
1/2
F⊥ , where

Ξ |N∗F = XF⊥ . An important property of the Hamiltonian flow is the following:

Lemma 2.1. The transverse flow preserves the leaves of the null-foliation: Φt(Lξx ) = LΦt (ξx).
Furthermore, with respect to the splitting of T (N∗F) = TF̃ ⊕ NF̃ the differential of the flow
splits

dΦt :Tξx F̃ → TΦt (ξx)F̃ , (8)

dΦt :Nξx F̃ → NΦt(ξx)F̃, (9)

and this last map is preserves ω.

Proof. This is a consequence of the fact that Φt is a symplectic diffeomorphism and that the
foliation of N∗F by T F̃ is the null-foliation: Φt preserves the kernel of ι∗ω. �

The discussion of the previous paragraphs applies equally well to the connected components
of the regular stratum Σmax. Recall that the inclusion map ι :Σmax → M is an embedding, and
also that the transverse space of covectors (TF |Σmax)

0 is a subspace of T ∗Σmax = T ∗M|Σmax on
which Gmax acts. Furthermore, the bundle-like metric on M induces a metric which is bundle-like
on Σmax [8, Chapter 5.4]. The discussion of the previous paragraphs implies that N∗Fmax is a
submanifold of the symplectic manifold T ∗M|Σmax with respect to the usual symplectic form ω.
As above, N∗Fmax is a coisotropic submanifold of T ∗M|Σmax , and, as such, admits a foliation
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defined by TF̃max, the canonical lift of TFmax to T ∗M|Σmax . Let NF̃max be the corresponding
transverse space, and let Hmax :T (N∗F) → NF̃max denote the corresponding horizontal projec-
tion. The (non-zero) leaves of this foliation through ξx ∈ NF̃max are given by

Lmax
ξx

= {
ηy ∈ N∗Fmax

∣∣ ηy = (
dh−1

α

)∗
(ξx) ∃α ∈ Gmax, α(0) = x, α(1) = y

}
. (10)

The leaves Lmax
ξx

are related to the null leaves of N∗F as follows.

Lemma 2.2. For ξx ∈ N∗L ⊂ NF̃max, each Lmax
ξx

is saturated by the leaves of the null-foliation.

Proof. Let ηy ∈ Lξx . Hence, there exists a holonomy element α ∈ G(F) such that α(0) = x and
α(1) = y and ηy = (dh−1

α )∗ξx . Let T (x) a local transversal at x for (Σmax,F) and T (x) a local
transversal for (M,F) containing T (x), and similarly for T (y). It is sufficient to show that there
exists some γ ∈ Gmax such that ηy = (dh−1

γ )∗ξx . But this is a consequence of the fact that for
α ∈ G(F), α also represents a holonomy element α ∈ Gmax with α(0) = x and α(1) = y. We then
have the following commutative diagram:

T (x)
hα

ι

T (y)

ι

T (x)
hα T (y)

(11)

This yields the following commutative diagram:

NxFmax
dhα

dι

NyFmax

dι

NxF
dhα

NyF

(12)

This induces the following commutative diagram:

N∗
xF

(dh−1
α )∗

dι∗

N∗
yF

dι∗

N∗
xFmax

(dh−1
α )∗

N∗
yFmax

(13)

Hence, (dι)∗(dh−1
α )∗ = (dh−1

α )∗(dι)∗ for all α ∈ G(F). But dι is just the identity map on
NxFmax, and dι∗ is just the orthogonal projection onto N∗

xFmax. We conclude that (dh−1
α ) re-

stricts to the image of dι, which is just NxFmax and thus

ηy = (
dh−1

α

)∗
(ξx) = (

dh−1
α

)∗
dι∗(ξx), (14)

which proves the result. �
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In a similar fashion to (7), the action of holonomy on points in N∗Fmax induces a lifted
holonomy action on NF̃max as follows: for any α ∈ Gmax such that α(0) = x and α(1) = y and
dι∗(ξx) with dι∗(ηy) = (dh−1

α )∗(dι)∗(ξx):

dh̃max
(α,ξx)

:Nξx F̃max → Nηy F̃max. (15)

Finally, as a corollary to the reasoning of the previous paragraphs and of Lemma 2.1, we have
the analogous result:

Lemma 2.3. The transverse flow restricts to N∗F̃max over the connected components of Σmax,
and preserves the leaves of the foliation by Lmax

ξx
: Φt(Lmax

ξx
) = Lmax

Φt (ξx)
. With respect to the split-

ting of T (N∗Fmax) = T F̃max ⊕ NF̃max the differential of the flow splits

dΦt :Tξx F̃max → TΦt (ξx)F̃max, (16)

dΦt :Nξx F̃max → NΦt(ξx)F̃max. (17)

2.3. Basic distributions and the basic wave kernel

In what follows we assume the following for (M,F):

(1) M is equipped with a metric that is bundle-like with respect to the foliation F ;
(2) that the foliation is transversally orientable (see below);
(3) that the mean curvature form for the foliation is a basic one-form; and
(4) the maximal leaf closure satisfies kN < q , and thus, there are no dense leaf closures.

From [10], there is a natural projection P from C∞(M) → C∞
B (M,F). In fact, this projec-

tion extends to a projection from L2(M) → L2
B(M,F), the space of basic functions in L2(M).

The projection P is self-adjoint. Indeed, we can describe the operator P in terms of a series of
push-forwards and pull-backs by submersions as follows. Let π̂ : M̂ → M be the oriented trans-
verse frame bundle. (Note: the assumption that the foliation is transversally orientable is made
purely for the sake of simplicity. If the foliation is not transversally oriented, M̂ has two con-
nected components, and we replace M̂ by one of these components.) The foliation of M lifts to a
p-dimensional foliation of M̂, denoted by (M̂, F̂). Let K be a typical leaf in the lifted foliation
(M̂, F̂), and let K denote the closure of this leaf. In fact, the closures of the leaves of the lifted
foliation, K , are the fibres of a fibre bundle over a compact manifold W , called the basic mani-
fold. Let ρ : M̂ → W denote this bundle projection. We then have the following double fibration
of M̂ :

M̂

π̂ ρ

M W

(18)

where each of the fibrations is locally trivial [8]. Let f ∈ C∞(M̂). Define an operator
A :C∞(M̂) → C∞(M̂) to be the operator obtained by averaging f over the closures of the
B
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leaves of (M̂, F̂). It has been shown in [10] that A as defined above is formally self-adjoint with
respect to the L2 inner product of functions on M̂ . The basic projector can be expressed in terms
of these operations as P = π̂∗Aπ̂∗.

We can extend this projector to distributions as follows.

Lemma 2.4. Let 〈·,·〉X denote the pairing of a generalized function with a function on a man-
ifold X. Let u ∈ D′(M) and ν ∈ D′(M̂). We extend A to generalized functions, by 〈Aν,ϕ〉M̂ =
〈ν,Aϕ〉M̂ , where ϕ ∈ C∞(M̂). We similarly extend P to generalized functions similarly:
〈Pu,ϕ〉M = 〈u,Pϕ〉M , for ϕ ∈ C∞(M).

Proof. Since π̂ is a submersion, π̂∗u and π̂∗ν are a well-defined generalized functions on M̂

and M, respectively. Now consider the operator A. From [10, Lemma 1.4], for all f,g ∈ L2(M̂),
〈Ag,f 〉L2 = 〈g,Af 〉L2 , where 〈·,·〉L2 is the L2(M̂) inner product. Since this inner product
coincides with the pairing of a generalized function with functions on L2, the corresponding
statement 〈Aν,f 〉M̂ = 〈ν,Af 〉M̂ holds for ν ∈ D′(M̂). Thus, A is a well-defined operation on
any generalized function ν ∈ D′(M̂). By the usual functorial relations for generalized functions,
P is a composition of well-defined operations on generalized functions. �

We next define a notion of what it means for a generalized function to be basic.

Definition 1. A generalized function u ∈D′(M) is basic if Pu = u, or, equivalently, if 〈u,ϕ〉M =
〈u,Pϕ〉M, for all ϕ ∈ C∞(M).

Proposition 2.5. The following are equivalent:

(1) The generalized function u ∈D′(M) is basic.
(2) X(u) = 0 for every vector field X ∈ TF defined on U which contains supp(u).

Remark 1. If u is a basic generalized function such that u /∈ C∞(M), then the wave front set
of u, WF(u) ⊂ N∗F \ {0}. In fact, we will see that the wave front set of u will actually be
contained in

⋃
L⊂M N∗(L). Let N∗F denote this set.

We define the basic wave kernel on functions in an analogous manner to the basic heat kernel.

Definition 2. Let (x, y) be coordinates on M × M . Let Dt = 1
i

∂
∂t

. Define the basic wave kernel
(acting on functions), UB(t, x, y), as the solution to the system:

(
Dt + √

�Bx

)
UB(t, x, y) = 0,

UB(0, x, y) = δ(x − y) on basic functions. (19)

(Here
√
�B is can be defined via

√
� and P .)

Remark 2. Note that UB(t, x, y) is generalized function on R ×M ×M that is basic on each M

factor. This is analogous to the basic heat kernel, which is a basic function on each factor, see,
for example, [11].
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Theorem 2.6. The basic wave kernel UB(t, x, y) were exists. It is unique solution to

UB(t, x, y) = PxPyU(t, x, y) =
∞∑
j=1

e
−it

√
λB
j ej (x)ej (y), (20)

where U(t, x, y) is the wave kernel for the ordinary Laplacian on M and 0 � λB
1 � λB

2 � · · · are
the eigenvalues of �B . In the above, Px denotes the basic projector acting on the first M factor
of M ×M × R, the space on which the wave kernel is defined. Py denotes analogously the basic
projector on the second factor.

Proof. The wave kernel for the ordinary Laplacian is the unique solution to the system

(
Dt + √

�x

)
U(t, x, y) = 0, (21)

U(0, x, y) = δ(x − y). (22)

If we apply the operator PxPy to both sides of (21), we have:

(
DtPxPy + Px

√
�xPy

)
U(t, x, y) = 0. (23)

If we apply [10, Theorem 2.7] specialized to a foliation with basic mean curvature, we have that
�BP = P�. It follows that

√
�BP = P

√
�. Hence, Eq. (23) becomes

(
DtPxPy + √

�BxPxPy

)
U(t, x, y) = 0, (24)

thus proving (20). The initial condition is immediate. �
We wish to compute the basic wave trace. That is, if Π : R × M → R and � :M → M × M

is the diagonal map, then we wish to compute:

Π∗�∗UB(t, x, y) = Π∗�∗PxPyU(t, x, y). (25)

Note that

TraceUB(t) = Π∗�∗UB(t, x, y) =
∞∑
j=1

e
−it

√
λB
j , (26)

which is just the Fourier transform of the spectral distribution of
√
�B :

σ(μ) =
∞∑
j=1

δ
(
μ −

√
λB
j

)
.
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2.4. Relatively closed curves with respect to (M,F)

Of particular interest in this analysis are certain arcs of the Hamiltonian curves of the trans-
verse metric.

Definition 3. An arc of a curve ΦT in N∗F will said to be relatively closed with respect to the
(singular) foliation F with relative period T if its endpoints ξx and ηy = ΦT (ξx) belong to N∗L
for L ⊂ Σp+k and either

(1) k < kN and ΦT (ξx) ∈ Lξx ; or
(2) k = kN and ΦT (ξx) ∈ Lmax

ξx
.

The projection γ (t, x) = π(Φt (x, ξ)) of a relatively closed Hamiltonian curve in (N∗F , F̃) by
π :N∗F → M will be said to be relatively closed with respect to the singular foliation (M,F).

Note that in local distinguished coordinates, it is easily seen that γ ′(0, x) = (dπ)ξx (Ξ) ⊥
TxF . By [8, Chapter 6], it is known that if γ (t, x) is a geodesic passing through x, that is per-
pendicular to the leaf closures, then it remains perpendicular to all the leaf closures that it meets.
Thus, the projections of such relatively closed Hamiltonian curves are geodesic arcs that are
orthogonal to the leaf closures through which the geodesic passes.

Now consider the set of endpoints of relatively closed of the Hamiltonian flow ΦT restricted
to N∗F : ZT = ⋃

k Z
k
T , where for each k < kN each Zk

T is given by

Zk
T = {

ξx ∈ N∗
x L, L ⊂ Σp+k

∣∣ ΦT (ξx) ∈ Lξx

}
(27)

and for k = kN , ZkN
T = Zmax

T is given by

Zmax
T = {

ξx ∈ N∗
x L, L ⊂ Σmax

∣∣ ΦT (ξx) ∈ Lmax
ξx

}
. (28)

Note that Zmax
T ∩ S(N∗F) and Z0

T ∩ S(N∗F) are closed.
The set ZT is also a saturated by the null-leaves. First note the following lemma.

Lemma 2.7. Suppose ι :S → M is a saturated embedded submanifold. Then N∗S is saturated
by leaves of the null-foliation.

Proof. Suppose x̄, ȳ ∈ S such that ι(x̄) = x and ι(ȳ) = y, and let TS(x̄) and TS(ȳ) be local
transversals in S at x̄ and ȳ, respectively. Let T (x) and T (y) be local transversals in M contain-
ing ι(TS(x̄)) and ι(TS(ȳ)). Given any holonomy element α ∈ G(F), with α(0) = x and α(1) = y,
we have a local diffeomorphism hα :T (x) → T (y). There is a corresponding holonomy element
in G(S,F), which we also denote by α, and the corresponding diffeomorphism will be denoted
by hS

α :TS(x̄) → TS(ȳ). We then have the following commutative diagram:

TS(x̄)
hS
α

ι

TS(ȳ)

ι

T (x)
hα T (y)

(29)
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This yields the following commutative diagram:

Nx̄FS

dhS
α

dι

NȳFS

dι

NxF
dhα

NyF

(30)

where Nx̄FS is the transverse space in Tx̄S. Let N(TxF , TxS) ⊂ TxM denote the complement
of TxF in TxS regarded as a subspace of TxM . Then dι(NxFS) = N(TxF , TxS) which yields
the commutative diagram below:

Nx̄FS

dhS
α

dι

NȳFS

dι

N(TxF , TxS)
dhα

N(TyF , TyS)

(31)

Thus, the infinitesimal holonomy map restricts:

dhα :N(TxF , TxS) → N(TyF , TyS).

Now suppose ξx ∈ N∗S and let ηy ∈ Lξx with ηy = (dh−1
γ )∗ξx . For all Xx ∈ N(TxF , TxS),

ξx(Xx) = 0 by definition of N∗S. If Yy ∈ N(TyF , TyS), then there is an Xx ∈ N(TxF , TxS)

with Yx = dhγ (Xx) because the holonomy action is invertible. It then follows that ηy(Yy) =
ξx(Xx) = 0, and hence ηy ∈ N∗S, and the result follows. �

From this, we see the following.

Lemma 2.8. The set ZT is saturated by the leaves of the null-foliation, and Zmax
T is saturated by

the leaves Lmax
ξx

.

Proof. To prove the first part of the lemma, we need only show that each Zk
T is saturated. For

k < kN , the fact that Zk
T is foliated follows from Lemma 2.1. Let ξx ∈ Zk

T and let ηy ∈ Lξx . By
hypothesis, ΦT (ξx) ∈ Lξx , so

ηy ∈ ΦT (Lξx = LΦT (ξx)
= LΦT (ηy)

). (32)

For k = kN , suppose ξx ∈ N∗L and consider ηy ∈ Lξx with holonomy element β such that β(0) =
x and β(1) = y such that ηy = (dh−1

β )∗ξx . By the previous lemma, such a covector ηy is also

in N∗L by the previous lemma, and so ηy = dι∗ηy . As in the proof of Lemma 2.2, each β ∈ G(F)

represents a Gmax holonomy element β with β(0) = x and β(1) = y. Then, using the fact that
dι∗(dh−1

β )∗ = (dh−1)∗dι∗ from the proof of Lemma 2.2, it follows that

β
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ηy = dι∗(ηy) = dι∗
(
dh−1

β

)∗
ξx = (

dh−1
β

)∗
dι∗(ξx)

= (
dh−1

β

)∗(
dh−1

α

)∗
dι∗

(
ΦT (ξx)

)
,

where α(0) = π(ΦT (ξx)) and α(1) = x (since ΦT (ξx) ∈ Lmax
ξx

). Thus ηy = (dh−1
γ 1

)∗dι∗(ΦT (ξx)),

where γ 1 is α ◦ β . Now recall that ΦT (Lξx ) = LΦT (ξx)
, so dι∗ΦT (ξx) = ΦT (ξx), and, fur-

thermore, there is a γ2 ∈ G(F) with γ2(0) = π(ΦT (ξx)) and γ2(1) = π(ΦT (ηy)) such that
ΦT (ξx) = (dh−1

γ2
)∗ΦT (ηy). Then we have

ηy = (
dh−1

γ 1

)∗(
dh−1

γ2

)∗
dι∗ΦT (ηy)

= (
dh−1

γ 1

)∗(
dh−1

γ 2

)∗
dι∗ΦT (ηy)

= (
dh−1

γ

)∗
ΦT (ηy),

where γ = γ 2 ◦ γ 1. Thus, ηy ∈ Zk
T , proving the result. The second part of the lemma for Zmax

T

follows by reasoning analogous to that of the first part of the proof, using Lemma 2.3. �
The component Zmax

T of the relative fixed point set is said to be clean if the following holds.

Definition 4. Let T be the length of a relatively closed arc of the Hamiltonian flow Φt . We say
that the relative fixed point set is Zmax

T is clean if:

(1) Zmax
T is a smooth submanifold of N∗F ; and

(2) for every ξx ∈ Zmax
T with ηy = (dh−1

α )∗ξx = ΦT (ξx) then dΦT
ξx
(TξxZ

max
T ) = TηyZ

max
T for

α ∈ G(L) with α(0) = x and α(1) = y.

Note that the condition that ηy = (dh−1
α )∗ξx implies that for all ξx ∈ Zmax

T

dΦT
ξx
(Nξx F̃max) = dh̃max

(α,ξx)
(Nξx F̃max) = Nηy F̃max (33)

by Lemma 2.3. Note that the T F̃ components of T Zmax
T are also determined by 2.3.

Remark 3. The above definition of clean-ness is with respect to the holonomy of the leaf closures
in Σmax. One could define a similar notion of clean-ness for relative fixed points in the singular
strata, using the G(F ) holonomy as follows.

Definition 5. Let T be the length of a relatively closed arc of the Hamiltonian flow Φt . For
k < kN , Zk

T is clean if:

(1) Zk
T is a smooth submanifold of N∗F ; and

(2) for every ξx ∈ Zk
T with ηy = (dh−1

α )∗ξx = ΦT (ξx) then dΦT
ξx
(TξxZ

k
T ) = TηyZ

k
T for α ∈

G(F) with α(0) = x and α(1) = y.

Note that the condition that ηy = (dh−1
α )∗ξx implies that for all ξx ∈ Zk

T

dΦT
ξx
(Nξx F̃) = dh̃(α,ξx)(Nξx F̃) = Nηy F̃ . (34)
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3. Main results

In this section, we present our main results concerning the wave trace of the basic Laplacian.

Theorem 3.1. In the notation previously established,

WF
(
Π∗�∗(UB(t, x, y)

))
⊂ {

(T , τ ) | τ < 0, T = length of a relatively closed geodesic arc
}
. (35)

In the notation of [16], the lengths of curves such as these are sometimes referred to as “so-
journ times.” Let ST (M,F) denote the set of lengths of relatively closed Hamiltonian curves
corresponding to the Hamiltonian function H 1/2 = σ(

√
�). These curves project down to rel-

atively closed geodesic arcs for (M,F). For the sake of convenience, we shall denote the set
of lengths of such curves as just ST . In the analysis that follows, it will be necessary to make
a distinction between the relatively closed geodesic arcs that remain inside the regular stratum
Σmax on M and those that leave the regular stratum. Let the sojourn times T that correspond to
relatively closed geodesic arcs that remain inside the regular stratum be called regular sojourn
times, and denote the set of such T by RST (M,F). Let the sojourn times in the complement
of RST be known as singular sojourn times, and denote the set of such T by SST (M,F).

Now suppose that SST ⊂ U1 and RST ⊂ U2 where U1 and U2 are disjoint open sets in R.
Then we can pick χ ∈ C∞(R) with χ(t) = 0 on U1 and χ(t) = 1 on U2. In this case, the inter-
section of the Cmax component of the canonical relation of P and U(t, x, y) is clean, and thus,
as observed in [16], WF(χ(t)Π∗�∗(UB(t, x, y))) is a conic Lagrangian submanifold of T ∗R,

and thus must be a union of rays over the discrete set of sojourn times RST . In the notation
and terminology of [16], we let Γ T

max = {T , τ | τ < 0} denote the ray over T ∈ RST . The rel-
atively closed orthogonal geodesic arcs of a given length T make up conic submanifolds Zmax

T

whose connected components are finite in number and denoted by Zmax
T ,j . Let S(Zmax

T ,j ) be the
set {(T , τ ) ∈ Zmax

T ,j | |τ | = 1}, and let eT ,j := dim(S(Zmax
T ,j )) and let eT = max{eT ,j }. Finally, we

must assume that the set Zmax
T of relative fixed points of the Hamiltonian flow ΦT on N∗F are

clean for all T ∈RST in the sense Definition 4.

Theorem 3.2. With the above assumptions,

χ(t)Π∗�∗(UB(t, x, y)
) =

∑
T ∈RST

νT (t), (36)

where νT ∈ I−1/4−eT /2−r (R,Γ T ,R) where r = −(p + kN)/2. Furthermore, νT has an expan-
sion of the form

νT (t) = e
iπmT

4

∞∑
j=0

σj (T )(t − T + i0)−
eT −1

2 + p+kN
2 −j mod C∞(R), (37)

where mT is the Maslov index of Zmax
T , and σj (T ) = ∫

S(Zmax
T )

dμZmax
T ,j

where for each j � 0,

dμZmax
T ,j

is a density on S(Zmax
T ). Note also that the rank of N∗Fmax depends on kN in the above

formula.
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If the foliation has regular closure, then a complete expansion of the trace can be obtained.
Let k be such that all the leaf closures are of dimension p + k (k := kN ). Since the leaf closures
are all of the same dimension, M is foliated by the leaf closures, denoted by (M,F). Let TF be
the associated distribution, and let NF be the orthogonal distribution. In this notation, we have
the following.

Corollary 3.3. If (M,F) has regular closure, then

Π∗�∗(UB(t, x, y)
) =

∑
T ∈ST

νT (t), (38)

where νT ∈ I−1/4−eT /2−r (R,Γ T ,R) where r = −(p + k)/2 is the degree of K ∈ I r (M ×
M,C,Ω1/2

M×M). Furthermore, νT has an expansion of the form

νT (t) = e
iπmT

4

∞∑
j=0

σj (T )(t − T + i0)−
eT −1

2 + p+k
2 −j mod C∞, (39)

with the leading term given as in the previous theorem. Note that under these hypotheses p + k

is constant and r = −(p + k)/2 is the degree of K , which can here be represented as a single
Lagrangian distribution K ∈ I r (M × M,C,Ω1/2

M×M).

If (M,F) does not have regular closure, then clean-ness fails, since then the basic projector
P not have a nice canonical relation which is necessarily Lagrangian, and it is not clear if an
expansion like the one in (37) above exists for all T ∈ ST .

The different nature of the results for the regular closure and more general case is not entirely
unexpected. From the structure theorems for Riemannian foliation [8, Theorem 5.1, Proposi-
tion 5.2 ], it is known that if a foliation admits regular closure, then the space of leaf closures
M/F has the relatively nice structure of an orbifold. (The cone points in the orbifold structure
arise from leaf closures with non-trivial holonomy.) If the general case, by contrast, the best that
can be said about the structure of M/F is that it can be identified with the orbit space of the
inherited SO(q) action on the basic manifold W .

It is possible that a more complete wave trace result may be available using the additional
structure of the double fibration in (18), in the spirit of [11]. From the theory of Riemannian foli-
ations, we know that the foliation induced by the lifted foliation has regular closure. However, the
mean curvature form associated to the lifted foliation is not necessarily basic, and thus, the basic
wave kernel for M̂ may not exist. Nonetheless, the basic projector for the lifted foliation is the
averaging operator A [10], and by a calculation analogous to the one to follow in Proposition 4.1,
it can be shown to be an operator whose Schwartz kernel is a Lagrangian distribution. A possible
approach to the problem of analyzing the singular sojourn times is to make use of this additional
structure by representing the basic projector P as π̂∗Aπ̂∗ and understanding the behavior of the
singularities at the non-clean intersection of the canonical relations of π̂∗ and A. A further use
of the double fibration structure would be to relate the relatively closed curves on M with geo-
metrically interesting closed curves on W . The double fibration structure yields the map ρ∗π̂∗
between generalized functions on M and generalized functions on W , that we conjecture yields
a correspondence between basic generalized functions on M and some class of generalized func-
tions on W when restricted to the basic generalized functions on M . This map appears to be a
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kind of generalized version of a Radon transform, although in this case the transformation may
not be invertible. In this way, we suspect that a more general and satisfying description of the
basic wave trace in terms of the geometry of this structure may yet be forthcoming.

Finally, we have the following corollary, in the case that (M,F) has minimal stratum, Σp ,
of compact leaves of dimension p. Note that by the lower continuity of the leaf closures, this
stratum is compact.

Let MST denote the set of relative periods of Hamiltonian curves whose endpoints lie in the
minimal stratum Σp . If this set of periods lies in an open set U1 ⊂ R and the complementary set
of periods MST c ⊂ U2 where U1 and U2 are disjoint open sets, then pick, as before χ ∈ C∞(R)

with χ(t) = 0 on U1 and χ(t) = 1 on U2. In this case, the intersection of the component of the
canonical relation of P that corresponds to the minimal stratum and U(t, x, y) is clean, and thus,
as above, we may cut-off the wave trace. In this case WF(χ(t)Π∗�∗(UB(t, x, y))) will again
be a union of rays over the discrete set of sojourn times MST . If we let Γ T

0 = {T , τ | τ <

0} denote the ray over T ∈ MST . The relatively closed orthogonal geodesic arcs of a given
length T make up conic submanifolds Z0

T whose connected components are finite in number and
denoted by Z0

T ,j . Let S(Z0
T ,j ) be the set {(T , τ ) ∈ Z0

T ,j | |τ | = 1}, and let eT ,j := dim(S(Z0
T ,j ))

and let eT = max{eT ,j }. Finally, we must assume that the set Z0
T of relative fixed points of the

Hamiltonian flow ΦT on N∗F are clean for all T ∈MST in the sense Definition 5.

Corollary 3.4. With the above assumptions,

χ(t)Π∗�∗(UB(t, x, y)
) =

∑
T ∈MST

ν0
T (t), (40)

where ν0
T ∈ I−1/4−eT /2−r (R,Γ T ,R) where r = −p/2. Furthermore, ν0

T has an expansion of the
form

ν0
T (t) = e

iπmT
4

∞∑
j=0

σj (T )(t − T + i0)−
eT −1

2 + p
2 −j mod C∞(R), (41)

where mT is the Maslov index of Z0
T , and σj (T ) = ∫

S(Z0
T )

dμZ0
T ,j

, where for each j � 0, dμZ0
T ,j

is a density on S(Z0
T ).

Note that the regular closure result also follows from the above corollary, if one considers the
(p + kN )-dimensional foliation (M,F), which is non-singular under the regular closure hypoth-
esis.

4. Proof of the main results

In this section we prove the spectral results presented in the previous section. We begin by
analyzing the canonical relation of the Schwartz kernel of the basic projection operator. We are
then in a position to prove the main theorems of Section 3.

Proposition 4.1. The canonical relation of the basic projector P is given by

C =
⋃

Ck, (42)

k1�k�kN
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where

CkN = Cmax = {
(ηy, ξx)

∣∣ ξx ∈ N∗L, L ⊂ Σmax, ηy ∈ Lmax
ξx

}
(43)

and for k < kN

Ck = {
(ηy, ξx)

∣∣ ξx ∈ N∗L, L ⊂ Σp+k, ηy ∈ Lξx

}
. (44)

Proof. First consider the canonical relation over points in the maximal stratum, ΣkN = Σmax.
Localizing about some arbitrary p0 ∈ Σmax, let χ ∈ C∞(M) be such that p0 ∈ supp(χ) ⊂ U ,
where U ⊂ Σmax is such that Û , the saturation of U , by leaf closures (which is always open)
is such that Û is contained in a chain of simple distinguished open sets U0 = U,U1, . . . ,U�

covering L where the distinguished coordinates (x, y) with respect to the foliation (Σmax,F)

are valid on each Ui . Let (x, y, ξ, η) be the corresponding coordinates on open set Vi ⊂ T ∗M ,
with π(Vi) = Ui . If 〈·,·〉M denotes the distribution pairing in M , then

χ̂P (u) = 〈
P(u),χe−i(x,y)·(ξ,η)〉

M

= 〈
u,P (χ) e−i(x,y)·(0,η)〉

M
(45)

= P̂ (χ)u(0, η), (46)

where (45) follows from the definition of P on generalized functions. Then, the expression in
(46) is rapidly decreasing if and only if there exists an open conic neighborhood Γ ⊂ T ∗M
of (0, η) such that (supp(P (χ)) × Γ ) ∩ WF(u) = ∅.

Notice that supp(P (χ)) ⊂ Û is saturated by the leaf closures. Thus, if p0 = (x0, y0) ∈
supp(χ) then entire leaf closure consisting of points of the form (x, y0) in local coordinates
is in supp(P (χ)), since P(χ) cannot distinguish between points in the same leaf closure. It
follows that if (x0, y0,0, η) ∈ WF(u) and (x, y0) /∈ sing supp(u), then for any open conic neigh-
borhood Γ of (0, η) (supp(P (χ)) × V ) ∩ WF(u) �= ∅. Hence, if (x0, y0,0, η) ∈ WF(u) then
(x, y0,0, η) ∈ WF(Pu) for every x. (And hence, observe that P is not pseudolocal, although it
does not propagate the singular support beyond the saturation of the support by leaf closures.)

If we consider generalized functions with support contained in U , we have

WF(Pu) = {
(x1, y0,0, η0)

∣∣ (x0, y0,0, η0) ∈ WF(u)
}

= Cmax
(
WF(u)

)
, (47)

where

Cmax = {
(x1, y0,0, η0); (x0, y0,0, η0)

}
. (48)

The representation above must be valid in every such simple distinguished open set where the
coordinates above are valid. Following a chain of overlapping simple distinguished open sets
above defined along a curve α contained in the leaf closure with α(0) = p0 = (x0, y0) and α(1) =
p1 = (x1, y0), implies that (x1, y0,0, η0) and (x0, y0,0, η0) are related by (dh−1

α )∗ and (43)
follows.
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Consider next the canonical relation over a point in an arbitrary singular stratum, p0 ∈ Σp+k

for k < kN . Let χ ∈ C∞(M) be such that p0 ∈ supp(χ) ⊂ U, where U is a simple distinguished
open set in M with respect to F , analogously as above. Let (x, y) be distinguished coordinates on
U with respect to the original foliation F . Let (x, y, ξ, η) be the corresponding coordinates on the
corresponding Vi open in T ∗M , as above. Then, for an arbitrary u ∈D′(M) and p = (x, y) ∈ U ,
we have

χ̂P (u) = 〈
P(u),χe−i(x,y)·(ξ,η)〉

M
= 〈

u,P (χ)P
(
e−i(x,y,)·(ξ,η))〉

M
.

Note that P(e−i(x,y,)·(ξ,η)) = e−iP ((x,y)·(0,η)) = e−if where f is of the form z · ζ for some trans-
verse variables z and corresponding covectors ζ such that f is a basic function. It follows that f
must be constant on the leaf closure through p. As such, X(f ) = X(z · ζ ) = 0 for all X ∈ TF .
Consequently, ζ ∈ N∗

pL, and

χ̂P (u) = 〈
u,P (χ)e−iz·ζ 〉

M
= P̂ (χ)u(ζ ) (49)

is rapidly decreasing if and only if there exists an open conic neighborhood Γ of ζ ∈ N∗L such
that (supp(P (χ)) × Γ ) ∩ WF(u) = ∅.

Suppose ξp0 = (x0, y0; ζ ) ∈ WF(u) and p1 = (x1, y0) which does not necessarily belong to
sing supp(u). Then, since p0 and p1 belong to the same leaf and supp(P (χ)) is saturated, it
follows as above that (supp(P (χ)) × Γ ) ∩ WF(u) �= ∅ for all open conic neighborhoods Γ

of ζ . Thus if ξp0 = (x0, y0, ζ ) ∈ WF(u) then ηp1 = (x1, y0, ζ ) belongs to WF(Pu), for all x1.
Following a chain of simple distinguished opens sets defined along a curve α contained in the
leaf containing p0 and p1, we see, as before that (44) holds. �
Remark 4. Note, with respect to the “leaf diagonal”

CF = {
(ηy, ξx)

∣∣ ηy ∈ Lξx

} =
⋃

Lξx ⊂N∗F
Lξx ×Lξx , (50)

we have for all k < kN

Ck =
⋃

L⊂Σp+k

( ⋃
Lξx ⊂N∗L

Lξx ×Lξx

)
= CF ∩

⋃
L⊂Σp+k

N∗L × N∗L. (51)

Note also, that if the Σp+k1 stratum consist only of compact leaves (i.e., k1 = 0), then C0 is
Lagrangian.

Remark 5. Notice that in local coordinates it is easily seen that Cmax is an (immersed) Lagrangian
submanifold with respect to the symplectic form ω1 −ω2 on T ∗M×T ∗M . In the vicinity of a leaf
closure whose holonomy is non-trivial but finite Cmax may be immersed, rather than embedded.
(Note: from [8, Chapter 5.4], no leaf closure in Σmax can have infinite holonomy.) Note also,
that Ck is of dimension 2n− k rather than 2n and thus cannot be Lagrangian in T ∗M × T ∗M . If
k1 = 0 then C0 is a (possibly immersed) Lagrangian.
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Proof of Theorem 3.1. Let K be the Schwartz kernel of P acting on half-densities, as usual:
K ∈D′(M × M,Ω

1/2
M×M) with

P
(
f (x2)

) =
∫
M

K(x1, x2)f (x2) = (Pf )(x1). (52)

Observe that P satisfies P 2 = P, by [10], hence the corresponding Schwartz kernel satisfies the
following relation: ∫

M

K(x1, x2)K(x2, y1) = K(x1, y1). (53)

Thus,

Π∗�∗(UB(t, x2y2)
) =

∫
M

∫
M

∫
M

K(x1, x2)K(x2, y1)U(t, x1, y1). (54)

It then follows from (53) that

Π∗�∗(UB(t, x, y)
) = Π∗�∗(PxPyU(t, x, y)

) =
∫
M

∫
M

K(x,y)U(t, x, y). (55)

Note, this is exactly the situation considered in [16, (1.6)]. The Schwartz kernel K of P is
a distribution on M × M with wave front set contained in C. Hence, the wave front set of
Π∗�∗(UB(t, x, y)) is estimated by the following:

WF
(
Π∗�∗(UB(t, x, y)

)) ⊂ Λ′
t ◦ C

= {
(t, τ )

∣∣ ∃(
(x, ξ); (y, η)) ∈ Λ′

t ∩ C
}
, (56)

where Λt is the graph of the Hamiltonian flow of the metric on T ∗M :

Λt = {(
(x, ξ); (y, η)) ∣∣ Φt(x, ξ) = (y, η), τ = |ξ |}, (57)

and C is the canonical relation of the basic projector P . The result is immediate. �
In order to study the singularities of the wave trace further for the proof of Theorem 3.2, we

must investigate the clean-ness of intersection of the canonical relations of P and U(t) = eit
√
�.

Accordingly, we have the following.

Proposition 4.2. The components of Cmax of the canonical relation of P and Λ of e−it
√
� inter-

sect cleanly. If k1 = 0, then C0 intersects Λ cleanly also.

Proof. We will show the second part of the proposition, first. Let Y denote the set T ∗M ×
Δ(T ∗M × T ∗M) × T ∗M × T ∗R where Δ(T ∗M × T ∗M) denotes the diagonal in the product
space.
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In the notation of Hörmander’s clean intersection criteria [4], we consider the set

(C0 × Λ′) ∩ Y.

Observe first that as a consequence of the discussion of Section 2.2, the flow restricts to N∗F .
Hence, the canonical relation of e−it

√
�, which is just the graph of the Hamiltonian flow restricts

to N∗F × N∗F × T ∗R. Let ΛN∗F denote Λ ∩ N∗F × N∗F × T ∗R. If pr1 and pr2 denote the
projections from T ∗M × T ∗M → T ∗M onto the first and second components, then observe that
pr2(C0) = N∗F . Thus,

(C0 × Λ′) ∩ Y = (
C0 × Λ′

N∗F
) ∩ Y. (58)

Let p ∈ (C0 × Λ′
N∗F ) ∩ Y . Then p has the form

p = (
ξx;Φt(ηy);Φt(ηy);ηy; (t, τ )

)
, (59)

where (ξx;Φt(ηy)) ∈ C0 ⊂ N∗F × N∗F with ξx = (dh−1
γ )∗Φt(ηy) for some suitable γ ∈ G(F)

and τ > 0. The set of such points is a manifold because it is equal to the set C0 ×N∗F ×S where
S is the inverse image of N∗F by the restricted flow, which is a diffeomorphism.

Now consider the tangent space to the intersection C0 ×Λ′
N∗F ∩ Y . For the intersection to be

clean, then for all points p belonging to the intersection

Tp

(
C0 × Λ′

N∗F
) ∩ TpY ⊂ Tp

((
C0 × Λ′

N∗F
) ∩ Y

)
. (60)

To verify this, we first characterize the tangent space of the intersection. With respect to the
splitting given by the null-foliation on N∗F , any tangent vector X ∈ T (N∗F) splits into X′ +X′′
where X′ ∈ T F̃ and X′′ = H(X) ∈ NF̃ . Consider Tp1C0, where p1 = (ξx,Φ

t (ηy)) where p in
(59) equals (p1,p2). Then, from (7), if ((X′,X′′), (Z′,Z′′)) ∈ Tp1C0, then

X′′ = dh̃(γ,Φt (ηy))(Z
′′) (61)

for some suitable γ ∈ G(F). Recalling Lemma 2.1, dΦt splits with respect to the splitting of the
tangent space of N∗F and we see that at a point p belonging to the intersection (58), the tangent
space consists of vectors of the form:

((
X′, dh̃(γ,Φt (ηy))

(
dΦt(Y ′′)

))
,
(
dΦt(Y ′), dΦt (Y ′′),

(
dΦt(Y ′), dΦt(Y ′′), Y ′, Y ′′,W

)))
,

(62)

where (dΦt (Y ′), dΦt (Y ′′), (Y ′, Y ′′),W) ∈ Tp2Λ
′
N∗F .

Now consider a vector in Tp(C0 × Λ′
N∗F ) ∩ TpY . Such a vector must be of the form

((X′,X′′), (Y ′, Y ′′), (Y ′, Y ′′), (Z′,Z′′),W) where ((X′,X′′), (Y ′, Y ′′)) ∈ Tp1C0 and ((Y ′, Y ′′),
(Z′,Z′′),W) ∈ Tp2Λ

′
N∗F . But then Y ′ = dΦt(Z′) and Y ′′ = dΦt(Z′′) and, hence for some

γ ∈ G(F), X′′ = dh̃(γ,Φt (ηy))(dΦ
t (Z′′)), and we have a vector of the form (62), proving clean-

ness.
For the first part of the proposition, the reasoning is similar, with some modifications. As

before, observe that pr2(Cmax) = N∗Fmax ⊂ N∗F is a submanifold, and

(Cmax × Λ′) ∩ Y = (
Cmax × Λ′

N∗F
) ∩ Y. (63)
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Let p ∈ (Cmax × Λ′
N∗F ) ∩ Y . Then p has the form

p = (
ξx;Φt(ηy);Φt(ηy);ηy; (t, τ )

)
,

where (ξx;Φt(ηy)) ∈ Cmax ⊂ N∗F×N∗F with ξx = (dh−1
γ )∗Φt(ηy) for some suitable γ ∈ Gmax

and τ > 0.
The set of such points forms a manifold because it is precisely equal to the set Cmax ×

pr2(Cmax) × S where S is the inverse image via a diffeomorphism of N∗Fmax by the flow re-
stricted to N∗F . Observe that the intersection is a product of manifolds.

Next, consider Tp1Cmax, where p1 = (ξx,Φ
t (ηy)). Recall that N∗Fmax is a saturated manifold

by T F̃max and, as in Section 2.2, T (N∗Fmax) = T F̃max ⊕ NF̃max with Hmax the projection onto
the horizontal space. Then the holonomy relation (x, ξ) = (dh−1

γ )∗Φt(y, η) for suitable γ ∈ Gmax

implies that if (X,dΦt
ηy
(Y )) ∈ Tp1Cmax, then

Hmax(X) = dh̃max
(γ ,Φt (ηy))

(
Hmax

(
dΦt

ηy
(Y )

))
. (64)

Thus, at a point p belonging to the intersection (63), the tangent space consists of vectors of
the form: (

X,dΦt(Y ), dΦt (Y ), (Y,Z)
)
, (65)

where (X,dΦt(Y )) satisfies (64). The rest of the clean-ness argument goes through, as in the
first case considered above. �
Proof of Theorem 3.2 and Corollary 3.3. Note that the corollary follows immediately if
SST = ∅. However, the direct proof of the corollary is also instructive. If the foliation has regu-
lar closure, then there is only one component of the canonical relation, and thus C is a manifold,
by the previous proposition. In this case, the composition of the entire canonical relation of P

and U is clean, and we can compute the trace of the basic wave kernel at non-zero relative pe-
riods T by the standard stationary phase arguments and clean intersection arguments as in, for
example, the proof of [16, Proposition 1.10], or the corresponding result of [2].

Let Γ be the canonical relation of the Schwartz kernel of Π∗�∗, the conormal to the “di-
agonal” in T ∗(R × M × M × R), let ΛB = C ◦ Λ′

N∗F , and let F denote the fibre product
{(s, t) ∈ Γ ′ × ΛB | f (s) = ι(t)}. Let f denote the embedding f :Γ ′ → T ∗(R × M × M) with
f (t, τ, x, ξ, x,−ξ, t,−τ) = (t, τ, x, ξ). The clean intersection theory of [2] may be applied if
the fibre product diagram below is clean:

Γ ′

f

F
p1

p2

T ∗(R × M × M) C ◦ Λ′
N∗F

ι

(66)

Note that Z := ⋃
T ∈ST S(Zmax

T ) is the compact fibre of the map

F
p1−→ Γ ′ → Γ ′ ◦ ΛB,
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where the second arrow is projection onto the last component of Γ ′, T ∗R. The diagram will be
clean if each Zmax

T is a manifold and the associated diagram below is also a fibre product

TxΓ
′

dfx

TpF
dp1

dp2

T ∗
z (R × M × M) Ty(Λ

B)′
dιy

(67)

where p = (x, y) and z = f (x) = ι(y). By splitting up the tangent space to Zmax
T into horizontal

and leaf-wise parts, we see that this occurs precisely when the clean-ness condition of Defini-
tion 4 is satisfied for Zmax

T .
If the set of relative fixed points Zmax

T , is clean, then it is possible to define smooth positive
densities on T (Zmax

T ), denoted by dμZmax
T ,j

, as follows. First, recall the characteristic form of a

foliation of dimension p, χF . Let X1, . . . ,Xp be in TF , and let {Ej }nj=1 be an orthonormal
frame of M , of dimension n. Then define the canonical p-form via the metric on M :

χF (X1, . . . ,Xp) = det
(
gij (Ei,Xj )

)
. (68)

Applying this to the (p + kN )-dimensional foliation (Σmax,F), we can define a canonical
leaf-wise density on T F̃max by lifting the to (TFS)

0, via π :T ∗M → M . Thus, |dπ∗χF |
defines a positive leaf-wise density on (TF)0. Next, since the horizontal space, NF̃max

of ((TF)0, T F̃max) is a symplectic space, and ΦT and dh̃α are symplectic diffeomorphisms
of NF̃max

, one can use [2, Section 4] to construct a canonical densities on NF̃ , say dμ′
Zmax
T ,j

. One

then constructs the densities on each component of Zmax
T as follows:

dμZmax
T ,j

= dπ∗(χF ) ⊗ dμ′
Zmax
T ,j

. (69)

Once we have the canonical densities on Zmax
T , we obtain densities on S(Zmax

T ) in the usual way
(see [2, Section 4]).

To compute the order r , observe once more that P 2 = P . Furthermore, its kernel K belongs
to I r (M × M,C), hence, P 2 ∈ I r (M × M,C). By Hörmander’s composition theorem for such
distributions , P 2 ∈ I 2r+e/2(M × M,C′ ◦ C′) where e is the excess in the composition (which is
clean) C′ ◦ C′. Thus r = −e/2. The excess e is the dimension of the fibre of the projection

C × C′ ∩ (
T ∗M × �(T ∗M × T ∗M) × T ∗M

)
(70)

which is p + kN .
The calculation of the leading order part arises from the calculation of the symbol of K , which

results in

σK = pr∗|dx ∧ dy ∧ dζ |1/2, (71)

where pr :N∗(�(M × M)) → N∗F and (x, y, ξ, η) are coordinates on T ∗M defined by distin-
guished coordinates with respect to the foliation (Σmax,F). (This is just pull-back of the volume
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half-density on the conormal bundle of the leaf closure.) These coordinates can be defined on all
of T ∗M since the leaf closures have constant dimension under the hypotheses of the corollary.

To prove Theorem 3.2, observe that with the clean-ness condition of Definition 4, we can
still apply clean intersection theory to the cut-off wave trace χ(t)Π∗�∗PU(t, x, y) since this
only involves the composition of the Cmax component of the canonical relation of P with Λ

for T ∈ supp(χ). In other words, if we let ΛT = {((x, ξ); (y, η)) | ΦT (x, ξ) = (y, η), τ = |ξ |},
where Φt is the restricted flow, and let Λmax

T = Cmax ◦ Λ′
T , then the we only require clean-ness

for Cmax as follows:

Γ ′

f

F
p1

p2

T ∗(R × M × M) (Λmax
T )′ι

(72)

As before, the fibre of F
p1→ Γ ′ → Γ ′ ◦ΛB , is S(Zmax

T ), and the diagram will be clean if Zmax
T is

a manifold and the associated diagram below is also a fibre product

TxΓ
′

dfx

TpF
dp1

dp2

T ∗
z (R × M × M) Ty(Λ

max
T )′

dιy

(73)

which is satisfied when the clean-ness condition of Definition 4 holds.
Since Σmax is an open dense set in M , one can locally represent the composition of Schwartz

kernel of P and U(t, x, y) as a locally finite sum of integrals in local coordinates over Σmax. The
techniques used in the analysis of the cut-off wave trace are the usual stationary phase arguments
applied to these integral expressions. These arguments are entirely local in t, and one can simply
perform the usual stationary phase arguments locally in t on the component of the canonical
relation of P that corresponds to the fixed points corresponding to T which, by hypothesis, are
associated only to the maximal stratum. �

Finally, the proof of Corollary 3.4 follows in an analogous manner to the proof of Theo-
rem 3.2, using Definition 5 in place of Definition 4.

5. Examples

In this section we present three examples that illustrate some of the behavior of the transverse
geometry. The first example has regular closure, and the second and third do not. All of the
examples are non-simple foliations generated by suspensions, which are a bit special in the class
of foliations. They have a basic mean curvature equal to zero, a global transversal manifold, and
proper leaves, which are totally geodesic. Furthermore, the metric is a product metric, and thus
the functions HF and HF⊥ Poisson commute. Relatively closed curves, in this case, are quite
likely closed in the ordinary sense. For such examples, it seems likely that a better wave trace
formula may be possible.
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5.1. The suspension of an irrational rotation of a torus

Consider the suspension of an irrational rotation about the z-axis on the 2-torus with the
usual round metric. Let (ψ, θ, s) be coordinates on T 2 × [0,1], with 0 � ψ < 2π, 0 � θ < 2π,
0 � s � 1. Let α be irrational multiple of 2π , and define a Z = π1(S

1) action on T 2 × [0,1] by
rotation by kα about the z-axis in the T 2 component and translation by k on the [0,1] component:
k · (ψ, θ,0) = (ψ, θ + kα, s + k (mod 1)). Note that this action has no fixed points. Our foliated
manifold is M is T 2 × [0,1]/∼ where (ψ, θ,0) ∼ (ψ, θ + α,1).

The metric on this manifold will be the usual product metric on T 2 × [0,1]. The coordinates
above are orthogonal, and the facts that (1) the rotation in the θ coordinate is an infinitesimal
isometry, and (2) that the leaves are totally geodesic will imply that the metric depends only
on ψ , and the mean curvature form is zero.

The leaves of this foliation are the one-dimensional submanifolds:

L(ψ,θ) =
⋃
k∈Z

{ψ} × {θ + kα} × [0,1] (74)

and the leaf closures are the two-dimensional submanifolds:

Lψ = {
(ψ, θ, s)

∣∣ 0 � θ < 2π, s ∈ [0,1]}. (75)

Thus, none of the leaves will be closed, and so the foliation is not simple, but the leaf closures
all have the same dimension. Hence, this example will have regular closure, and the partition of
the manifold into leaf closures will be another foliation of the manifold. In fact, the foliation by
leaf closures of the original foliation is a simple foliation.

Basic functions for this example consist of the functions of ψ : if one considers a cube
in (ψ, θ, s) coordinates of the form [0,2π] × [0,2π) × [0,1] where (ψ, θ,0) ∼ (ψ, θ + α,1),
one sees that the only continuous functions that are constant on the leaves must also be constant
in θ . Thus, the smooth basic functions for this foliation are just the functions of the ψ variable
that are smooth on S1, due to the identification of the points (z, θ,0) and (z, θ + α,1).

The basic Laplacian for this example is just the Laplacian on S1, induced from the round
metric on T 2 on the longitudinal circle. Hence, the basic spectrum of the Laplacian is, of course,
just {k2} where k ∈ N.

If one considers the sojourn times for this example, they are a discrete set corresponding to
the multiples of the lengths of the meridian circles on the torus.

Note that in this example, all of the leaf closures have trivial holonomy, so here the space of
leaf closures is quite tame—it is actually a manifold, rather than an orbifold.

5.2. The suspension of an irrational rotation of a sphere

Now consider an analogous example to the one above by repeating the construction with the
sphere in place of the torus. Endow the 2-sphere S2 with the usual round metric, and cylindrical
coordinates (z, θ) for −1 � z � 1, 0 � θ < 2π . Now let α be an irrational multiple of 2π . Let
(z, θ, s) be coordinates on S2 × [0,1]. Our manifold M will be S2 × [0,1]/∼ where (z, θ,0) ∼
(z, θ + α,1). M is the orbit space of a Z = π1(S

1) action on S2 × [0,1] which is defined by a
rotation by kα on the S2 component and by translation by k on the last component. Observe that
this action has fixed points at the poles of S2. (Note: this example appears in [11, Section 4].
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There it is shown explicitly for this example that the heat kernel, K(t, x, x), is not integrable
over M .)

The leaves of this foliation, F , are the one-dimensional submanifolds, indexed by the points
on S2:

L(z ,θ) =
⋃
k∈Z

{z} × {θ + kα} × [0,1]. (76)

We observe that this foliation is not simple because the leaves are not the connected components
of the inverse images of a smooth submersion on M . In particular, the leaves are not closed,
except for the leaves in M that over the north and south poles in the S2 component (z = ±1).

Observe that here there are two types of leaf closures:

Lz = {
(z, θ, s)

∣∣ 0 � θ < 2π, 0 � s � 1
}
, for |z| < 1, (77)

Lx = {
(x, s)

∣∣ 0 � s � 1
}
, x ∈ {N,S}, (78)

where N and S refer to the north and south poles on S2. Notice that the leaf closures in (77) are
of dimension 2, while the leaf closures over the poles in (78) are of dimension 1.

In terms of the discussion of the partition of the manifold into strata, we see that kN = 0 and
kN = 1 and thus there are two strata:

Σ1 = LN ∪ LS, (79)

Σ2 =
⋃

|z|<1

Lz. (80)

The metric on M will be the usual product metric so that (z, θ, s) is an orthogonal coordinate
system, and the metric is given by

g11 = 〈∂z, ∂z〉 = 1

(1 − z2)
,

g22 = 〈∂θ , ∂θ 〉 = 1 − z2,

g33 = 〈∂s, ∂s〉 = 1,

gij = 0 for i �= j. (81)

If one considers a cube in (z, θ, s) coordinates of the form (−1,1) × [0,2π) × [0,1] where
(z, θ,0) ∼ (z, θ + α,1), one sees that the only continuous functions that are constant on the
leaves must also be constant in θ . Thus, the smooth basic functions for this foliation are just
the functions of the z variable that are smooth on (−1, 1) and continuous on the closure of this
interval, due to the identification of the points (z, θ,0) and (z, θ + α,1).

Observe from (81) that the Christoffel symbols for this metric depend only on z. Notice that
this implies that the mean curvature form κ is basic. (The vanishing of κ is related to the fact that
this foliation is, in fact, totally geodesic in this metric.) So we have a non-simple example of a
foliation whose mean curvature is basic.

Note that in this metric, the Laplacian and the basic Laplacian on C∞(M) have the following
expressions in (z, θ, s) coordinates:
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� = −(
1 − z2)∂2

z + 2z∂z − 1

1 − z2
∂2
θ − ∂2

s , (82)

�B = −(
1 − z2)∂2

z + 2z∂z. (83)

With respect to the basic Laplacian, it can be shown (see, for example, [11, Section 4]) that the
basic spectrum is just the spectrum of the Laplacian on S2: {k(k + 1)}, k ∈ N, with multiplicity
2k + 1.

To understand the different nature of the case of a foliation with leaf closures of variable
dimension, consider the lifted foliation on M̂ . Recall, that the basic projector P is defined in
terms of the operator A that averages over these leaf closures. In this example, M̂ is an SO(2)
bundle. Away from the poles, x̂ can be denoted by the coordinates (z, θ, s,φ), where φ denotes
the coordinate on SO(2) ∼= S1. There are two types of leaf closures for the lifted foliation:

K(z,φ) = {
(z, θ, s,φ)

∣∣ 0 � θ < 2π, 0 � s � 1
}
,

for |z| < 1, 0 � φ < 2π, (84)

Kx = {
(x, s,φ)

∣∣ 0 � s � 1, 0 � φ < 2π
}
, x ∈ {N,S}. (85)

Each of these leaf closures in M̂ has the structure of a principal subbundle over the corre-
sponding leaf closure in M , but the structure group varies depending on the leaf closure. For
the leaf closures in (84) the structure group is H = {e}, while in (85), the structure group
is H = SO(2).

In our applications, we are interested in the sojourn times for this foliation. In this example,
the sojourn times ST = MST and RST = ∅, and one may apply Corollary 3.4. The relatively
closed Hamiltonian curves correspond to multiples of 2π, the length of the meridian circles on
the sphere.

5.3. The suspension of an irrational rotation of the Cartesian product of an arbitrary manifold
and sphere

Let X be any compact manifold. We by repeat the construction of the previous example with
X × S2 in place of S2. Endow X with any metric and the 2-sphere S2 with the usual round
metric, and cylindrical coordinates (x, z, θ) where x are local coordinates on X, and −1 � z � 1,
0 � θ < 2π . Let α be an irrational multiple of 2π as before and let (x, z, θ, s) be coordinates on
(X × S2) × [0,1]. Our manifold M will be (X × S2) × [0,1]/∼ where (x, z, θ,0) ∼ (x, z, θ +
α,1).

This example is essentially the same as the previous one, except the codimension is greater. In
particular, there are now regular sojourn times corresponding to the lengths of closed geodesics
that remain inside the regular stratum. This includes closed geodesics in X. If X is such that
the length of these relatively closed geodesics can be separated appropriately from the singular
sojourn times of the previous example, then one can apply both Theorem 3.2 and Corollary 3.4.
However, note that the singularities arising from Corollary 3.4 will be of higher order.
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