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Restricted Regression Quantiles
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Regression quantiles can be used as prediction intervals for the response variable.
But such applications are often hampered by the problem of quantile crossing in
finite sample cases. This article examines the efficiency properties of restricted
regression quantiles that are proposed by X. He (1997, Amer. Statist. 51, 186�192)
to overcome the crossing problem of the usual regression quantiles of R. Koenker
and G. Bassett (1978, Econometrica 46, 33�50) for linear models. An example using
esterase assay data is presented to illustrate the use of restricted regression quantiles
in constructing calibration intervals. � 2000 Academic Press
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1. INTRODUCTION

Regression quantile (RQ) planes for linear models, analogous to the
sample quantiles for the location model, provide distribution-free predic-
tion intervals for the response variable (cf. Koenker and Bassett (1978) and
Zhou and Portnoy (1996)). As an extension of the sample quantiles for the
location model, RQ planes, however, do not inherit all the characteristics
of the sample quantiles in its first place. Quantile plane crossing is a common
problem in finite sample case. For example, the 800 quantile plane may lie
above the 900 quantile plane for a given design point. The crossing of the
two quantile planes causes a prediction interval with a high confidence
level to be narrower than that with a low confidence level and contradicts
the common probability theory. To avoid the quantile plane crossing
problem, Koenker (1984) considers restricted regression quantiles (RRQ)
by computing multiple parallel regression quantiles simultaneously for
linear models. He (1997) uses a multi-step strategy and defines restricted
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regression quantile for a broad class of models including linear hetero-
scedastic models and nonlinear regression quantile models. In this article,
we adopt the definitions of He (1997) for both linear models and linear
heteroscedastic models. We will study the asymptotic properties of the
RRQs with comparison to the RQs.

For linear models with i.i.d. innovations, restricting RQs to a subclass,
for instance the parallel planes as suggested by Koenker (1984), can avoid
the quantile plane crossing problem. For linear models, we will show that
the RRQs can be more efficient than RQs for certain type of unimode error
distributions. Consider the linear model

yi=xi$;+=i , i=1, 2, ..., n, (1.1)

where the =i's are i.i.d. random errors with a c.d.f. F and the xi's are either
nonrandom or random but independent of =i . Without loss of generality,
we assume that the model includes an intercept term. Therefore the vector
xi has its first component to be a constant one, i.e., xi$=(1, x$1i ) and the
parameter vector is ;$=(;0 , ;$1). The theoretical { th (0<{<1) regression
quantile is therefore ;({)=(;0+F&1({), ;$1)$, of which only the first com-
ponent depends on { and the slope part is independent of {, implying that
the slope can be estimated separately. Koenker and Bassett (1978) show
that the asymptotic covariance of the RQ estimator is proportional to
{(1&{)�f 2(F&1({)), which is large when { is either close to zero or one for
certain error distributions. The slope parameter is often estimated poorly at
the lower or upper tails, where the regression quantile planes are often used
to construct prediction intervals.

The inefficient slope estimates at the tail quantiles seem to be the main
cause of the quantile plane crossing problem for linear models. Restricting
conditional quantiles to a subclass as suggested by Koenker (1984) and He
(1997) is a straightforward solution. In this article, we adopt the two-step
approach of He (1997). First, we estimate the slope parameter by the least
absolute deviation (LAD) estimator, ;� 1 . This common slope estimate
guarantees that all the quantile planes will be parallel with no crossing.
Second, we estimate the intercept at different quantiles by the sample quan-
tile ;� 0({) of the residuals obtained from the first step

r̂i= yi&x$1i ;� 1 &;0+= i . (1.2)

The combined estimate ;� ({)=(;� 0({), ;� $1)$ serves as a consistent estimator
of the theoretical regression quantile ;({), and is so-called the restricted
regression quantile (RRQ) in this article. The definition of the RRQ assures
that it may be more efficient than the RQ for certain type of error distribu-
tion such as Gaussian and Student's t.
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The theoretical quantile planes for a linear model with heteroscedastic
errors are not necessarily parallel, but they should retain the noncrossing
property at observed design points. For the linear heteroscedastic model

y=x$;+(x$#) = (1.3)

studied by Gutenbrunner and Jurec� kova� (1992) and Koenker and Zhao
(1994), the RQs are defined as

;� ({)=arg min
b

:
n

1

\{( yi&x i$b), (1.4)

for observations [(xi , yi), i=1, 2, ..., n], where \{(u)={u+max[&u, 0],
0<{<1. The estimated RQ planes y=x$;� ({) are not parallel in nature,
but often cross at some design points x, with x$#>0 where the quantile
planes should not cross in theory (cf. He (1997)).

To eliminate the troublesome quantile plane crossing problem, He
(1997) proposes a three-step RRQ definition. Suppose x$#>0 for all x
values in the interior of its domain, = has median zero and |=| is normalized
to have a median of one. The three step definition is explained as follows:

(i) Regress [ yi] on [xi] to obtain coefficient estimate ;� and
residuals r̂i= yi&xi$ ;� ;

(ii) Regress the absolute residuals [ |r̂i |] on [xi]'s to obtain the
LAD regression coefficient #̂ with the fitted values being si=xi$ #̂;

(iii) Find quantile factor ĉ{ by minimizing �i \{( r̂i&c si) over c, and
obtain the { th quantile plane y=x$;� +ĉ{x$#̂=x$(;� +ĉ{ #̂). The vector
;� ({)=;� +ĉ{ #̂ is the so-called RRQ estimator.

He (1997) shows that ĉ{ is monotonously nondecreasing in {. Therefore,
the quantile planes do not cross at any design point xi with xi$ #̂>0, since
the monotone property of ĉ{ assures that xi$ (;� +ĉ{1

#̂)�x i$ (;� +ĉ{2
#̂) for any

{1 and {2 (0<{1�{2<1). Similar to the linear model case, the RRQ
estimator may be more efficient than the unrestricted RQs for the linear
heteroscedastic model with unimode symmetric error distributions, while it
may be less efficient for certain other types of error distribution. The
problem we are interested in is the magnitude of efficiency gain or loss in
avoiding quantile plane crossing.

In this article, we investigate the efficiency properties of the RRQ
estimators in comparison with the unrestricted RQ estimators. In Section 2,
we present a Bahadur-type representation of the RRQs for both linear and
linear heteroscedastic models under mild regularity conditions. Asymptotic

80 QUANSHUI ZHAO



normality and asymptotic covariance matrices of the RRQs are obtained.
In Section 3, a relative efficiency measure based on the mean square predic-
tion error (MSPE) of quantile planes is defined and used to compare the
performance of the RRQ and RQ estimators. For linear models, the
relative efficiency measure leads to an explicit expression that shows clearly
the outstanding performance of the RRQs. For linear heteroscedastic
models, since the relative efficiency depends on design matrix, performance
is assessed by Monte Carlo simulation. An example is presented to
illustrate how RRQs are used in constructing calibration confidence inter-
vals in biometrical experiment. A short conclusion is given in Section 4 and
the proofs of the theorems are given in the Appendix.

2. ASYMPTOTIC DISTRIBUTIONS

In this section, we investigate the asymptotic distributions of the RRQ
estimators for linear and linear heteroscedastic models. The asymptotic
results will be used in Section 3 to evaluate the performance of RRQ
estimators in comparison with the RQ estimators.

2.1. Linear Model

Suppose [(xi , yi), i=1, 2, ..., n] are observations from the linear model

yi=xi$;+=i , (2.1)

where the =i are i.i.d. random variables with a density function f and a c.d.f.
F, and x i is a design vector in k-dimensional space. Without loss of
generality, we assume that the model contains an intercept term.

Following the discussion in the Introduction, we assume that ;� 1 is a
- n-consistent estimator of the slope vector ;1 used in the first stage of the
RRQ definition, i.e., - n(;� 1&;1)=Op(1). Define

;� 0({)=arg min
c

:
n

1

\{(r̂ i&c),

as the sample quantile of the residuals [r̂i], where r̂i= yi&x$1i ;� 1 and x1i

is a k&1 dimensional vector. Then the RRQ estimator is in the form
;� ({)=(;� 0({), ;� $1)$, which is an estimator of the theoretical regression
quantile ;({)=(;0+F&1({), ;$1)$. Compared with the unrestricted RQ
estimator of Koenker and Bassett (1978), defined as

;� ({)=arg min
b

:
n

1

\{( yi&x i$b),
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the RRQ estimator has the merit of obtaining parallel, noncrossing quan-
tile planes. The following theorem gives the asymptotics of the RRQ
estimator.

Theorem 2.1. Suppose that f (x) is continuous and finite at F&1({),
0<{<1, and

(i) - n (;� 1&;1)=Op(1);

(ii) n&1 �n
1 x1i&+1=op(1) and n&1�2 maxi &xi&=op(1);

(iii) E &xi &
2<�.

Then

- n (;� 0({)&;0&F&1({))=
1

f (F&1({))
n&1�2 :

n

1

�{(=i&F&1({))

&+$1 - n (;� 1&;1)+op(1),

where �{(u)={&I[u<0] .

Remark. The design vectors xi 's can be random or nonrandom. When
they are random, we basically assume they are i.i.d. distributed and satisfy
conditions (ii) and (iii). When the design matrix is nonrandom, condition
(ii) should be n&1 �n

1 x1i&+1=o(1) and n&1�2 maxi &xi &=o(1), and
condition (iii) should be n&1 �n

1 &xi &
2<�.

The theorem shows that the intercept estimator at the second step, ;� 0({),
depends on the initial estimator ;� 1 through the linear relationship shown
in the theorem. In fact, if +1=0, the dependence would disappear and the
distribution of ;� 0({) would be easy to obtain. In fact, if one centers the
predictor x1i 's before estimating ;1 , the above-mentioned condition can be
achieved. Then we have the following result.

Corollary 2.1. Suppose +1=0. Then

- n (;� 0({)&;0&F&1({))w�L N \0,
{(1&{)

f 2(F&1({))+ .

The intercept estimator is as efficient as that of the unrestricted RQ
estimator (cf. Koenker and Bassett, 1978) and is asymptotically normal
distributed when x1i 's are centered. The asymptotic distribution does not
depend on the first step slope estimator, which can be chosen as efficient
as possible (e.g., an L-estimator). The RRQ estimator can in general be
designed to be more efficient than its unrestricted counterpart. This point
will be strengthened in Section 3 by using an overall efficiency measure.
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In this subsection, we have used a model with the strong assumption
that the errors are i.i.d. distributed, what happens when the model admits
different slope parameters for distinct quantiles?

2.2. Linear Heteroscedastic Model

For the linear heteroscedastic model (1.3), the RRQ estimator is defined
by the three-step method proposed by He (1997) as described in the intro-
duction section. First, the median regression quantile estimator ;� (0.5),
as shown in Koenker and Zhao (1994), consistently estimates ; and
has asymptotic normal distribution under mild regularity conditions. This
estimator is a natural choice for estimating ;. If the error distribution type
is known, L-estimators, such as the average of several regression quantiles,
can be used to estimate ; more efficiently.

In general, suppose we have a - n-consistent initial estimator ;� such that
- n (;� &;)=Op(1). Denote r̂i= yi&x i$ ;� (i=1, 2, ..., n) and define

#̂=arg min
b

:
n

1

| |r̂i |&xi$b|,

following He (1997). The heteroscedastic scale components can be
estimated by _̂i=xi$ #̂, (i=1, 2, ..., n). Finally, the quantile factor can be
estimated by ĉ{ , as solved by the minimization problem,

ĉ{=arg min
c

:
n

1

\{(ri&c_̂i).

He (1997) shows that ĉ{ is a monotonously nondecreasing function of {,
which assures that the quantile plane y=x$(;� +ĉ{ #̂) is monotonous in { at
any design point x with x$#̂>0. Quantile plane crossings at such design
points can therefore be avoided.

For the RRQ estimator defined as, ;� ({)=;� +ĉ{ #̂, we have the following
result.

Theorem 2.2. Suppose

(i) f (x) is continuous at F&1({) for 0<{<1 and is normalized such
that med(=)=0 and med( |=| )=1.

(ii) n&1 �n
1 x i&+=op(1) and n&1�2 maxi &xi&=op(1).

(iii) E &xi &
2<�;

(iv) n&1 �n
1 _&1

i xix i$&Q1=op(1), where _ i=xi$#>0 for all i and Q1

is positive definite.
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Then

- n (#̂&#)=
Q&1

1

f (1)+ f (&1)
n&1�2 :

n

1

xi�1�2( |=i |&1)

&
f (1)& f (&1)
f (1)+ f (&1)

- n (;� &;)+op(1),

(2.2)

- n (ĉ{&F&1({))=
#$

f (F&1({))(+$#)
n&1�2 :

n

1

xi �{(= i&F&1({))

&
+$
+$#

(- n (;� &;)+F&1({) - n (#̂&#))+op(1)

and

- n (;� ({)&;({))

=
##$

f (F&1({))(+$#)
n&1�2 :

n

1

xi�{(=i&F&1({))

+\I&
#+$
+$#+

F&1({) Q&1
1

f (1)+ f (&1)
n&1�2 :

n

1

xi�1�2( |=i |&1)

+\I&
#+$
+$#+\1&

f (1)& f (&1)
f (1)+ f (&1)

F&1({)+ - n (;� &;)+op(1). (2.3)

Corollary 2.2. Under the conditions of Theorem 2.2,

- n (;� ({)&;({))w�L N(0, 7),

where

7={(1&{) AQA$+ 1
4 (b2+c2) BQB$

+[b(F(1) 7 {&F (&1) 7 {&{�2)+c({ 7 0.5&{�2)](AQB$+BQA$)

A=
##$

f (F&1({))(#$+)
, B=\I&

#+$
#$++ Q&1

1

b=
F&1({)

f (1)+ f (&1)
, c=

1
f (0) \1&

f (1)& f (&1)
f (1)+ f (&1)

F&1({)+
and Q=lim n&1 �n

1 xixi$ in probability.

The asymptotic covariance of the RRQ estimator is in a complicated
form, and may be simplified when the density function f (x) is symmetric
about zero. As both the RQ and RRQ estimators are consistent and
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asymptotically normal distributed, it is plausible to find out which
estimator is more efficient. A detailed discussion based on an efficiency
measure is given in the next section.

3. ASYMPTOTIC EFFICIENCY

Asymptotic variance is commonly used to assess one-dimensional esti-
mators. For vector estimators such as regression quantiles, it may be plausible
to compare the asymptotic covariance matrices if there are any ways to do
so. In this section, a universal measure, the mean square prediction error
(MSPE), is proposed. The efficiency of the RRQ estimator relative to the
RQ estimator can be evaluated based on this measure.

The MSPE is a natural performance measure for vector estimators that
emphasizes the predictability of the model, rather than the estimation
accuracy of the estimator itself. For both linear and linear heteroscedastic
models, RRQ and RQ estimators are mainly used to estimate quantile
planes, y({)=x$;({), with which prediction intervals or calibration inter-
vals can be constructed. The overall estimation errors of the quantile planes
over all the observed design points seems to be a natural performance
measure for the estimation method.

We define the mean square prediction error of a quantile plane as

MSPE=n&1 :
n

1

( ŷ i ({)& yi ({))2,

where ŷi ({)=xi$;� ({) and yi ({)=xi$;({). The MSPE is the average square
prediction errors over all the observed design points of the regression quan-
tile plane, a measure also used by He (1997). Since ;({) is not observable,
MSPE can not be assessed unless Monte Carlo simulation approach is
used. In fact, the MSPE can be approximated by the large sample proper-
ties developed in Section 2 as

MSPE=(;� ({)&;({))$ n&1 :
n

1

xixi$ (;� ({)&;({))

& (;� ({)&;({))$ Q(;� ({)&;({)),

where Q=limn n&1 �n
1 x ix i$ in probability. Since ;� ({)&;({) has an asymp-

totic normal distribution, the MSPE defined above is a quadratic form of
a normal vector. Suppose ;� ({)&;({)tN(0, n&17), the the expected value
of MSPE is easily obtained to be

E(MSPE)tn&1 trace(Q7),

85RESTRICTED REGRESSION QUANTILES



which converges to zero as n goes to infinity. But trace(7Q) is a constant,
which depends only on the asymptotic covariance of the estimator and Q,
and measures the accuracy of the quantile plane estimation.

In this section, we are specially interested in the gain or loss in efficiency
of the RRQ estimators relative to the RQ estimators. This relative
efficiency measure is defined as

RE(RRQ, RQ)=
trace(Q7RRQ)
trace(Q7RQ)

, (3.1)

where 7RRQ and 7RQ are the asymptotic covariances of the RRQ and the
RQ estimators, respectively. For a particular model, if RE(RRQ, RQ) is
less than one, the RRQ is more efficient; otherwise, the RQ is more
efficient.

3.1. Linear Models

The relative efficiency measure has an explicit formula for linear models,
and makes evaluating the performance of the RRQs straightforward. In
this subsection we compare the performance of the RRQ and RQ
estimators for several error distributions.

For model (2.1), Theorem 2.1 shows that the RRQ estimator has an
asymptotic normal distribution. Further, if +1=0, which is realized by
centering the regressors, the intercept and the slope estimators are
uncorrelated. The asymptotic covariance of the RRQ estimator is

7RRQ=\{(1&{) f &2(F &1({))
0

0
(2f (0))&2 Q&1

11 + ,

where Q11=limn n&1 �n
1 x1i x$1i is the diagonal element of

Q=\1
0

0
Q11+ .

Thus, for k-dimensional x,

trace(Q7RRQ)=
{(1&{)

f 2(F &1({))
+

k&1
4f 2(0)

.

The asymptotic distribution of the unrestricted RQs defined by Koenker
and Bassett (1978) is known to satisfy

- n (;� ({)&;({)) �L N(0, 7RQ),
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under similar regularity conditions, where

7RQ=
{(1&{)

f 2(F &1({))
Q&1.

It follows that

trace(Q7RQ)=
k{(1&{)

f 2(F &1({))
.

The relative efficiency of the RRQ estimator with respect to the RQ
estimator follows as

RE(RRQ, RQ)=
trace(Q7RRQ)
trace(Q7RQ)

=
1
k

+
(k&1) f 2(F &1({))

4k{(1&{) f 2(0)
. (3.2)

This explicit expression shows that the RQ and RRQ estimators are
equally efficient at the median, F &1(0.5)=0. However, there is no clear
answer for other quantiles, where the relative efficiency depends on error
distribution.

The relative efficiency of the RRQ estimators with respect to the RQ
estimators varies for different error distributions and different quantile
levels. Table I tabulates the relative efficiency for three unimode symmetric
distributions, normal, double exponential and Cauchy, and two asym-
metric distributions, exponential and lognormal, where the asymmetric
distributions are rescaled to meet the assumptions in Theorem 2.1. In the
case of symmetric distributions, since the median regression estimator is
more efficient than the quantile regression estimator for the slope, the RRQ
is more efficient than the RQ, as shown in Table I.

When asymmetric error distributions are concerned, the RRQ estimator
cann't dominate for all quantile levels. Since the first step estimator, the
LAD, may not be the most efficient one in the RQ family. The combined
RRQ estimator should in general inherit this property. The results in Table I
for the exponential and lognormal error distributions show exactly what is
expected. It can be seen that the RRQ estimator is more efficient than the
RQ estimator for quantile levels at one tail, but less efficient at the other,
depending on error distribution. To achieve a high efficiency for the RRQ
estimator, L-estimators, which may incorporate more information of the
error distribution, can be used in the first step.

3.2. Linear Heteroscedastic Models

The relative efficiency measure of the RRQ with respect to the RQ for
linear heteroscedastic models is in the form of a complicated formula.
Evaluation of the efficiency of the RRQs is not straightforward. We will use
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TABLE I

The Relative Efficiency RE(RRQ, RQ) for Linear
Models (k=1)

{ Normal D-Expa Cauchy Exponential Lognormal

0.05 0.6759 0.5263 0.5016 10.0000 5.2197
0.10 0.7688 0.5556 0.5127 5.0000 3.9877
0.20 0.8847 0.6250 0.5933 2.5000 2.5711
0.30 0.9521 0.7143 0.7550 1.6667 1.7905
0.40 0.9885 0.8333 0.9261 1.2500 1.3107
0.50 1.0000 1.0000 1.0000 1.0000 1.0000
0.60 0.9885 0.8333 0.9261 0.8333 0.7943
0.70 0.9521 0.7143 0.7550 0.7143 0.6584
0.80 0.8847 0.6250 0.5933 0.6250 0.5715
0.90 0.7688 0.5556 0.5127 0.5555 0.5207
0.95 0.6759 0.5263 0.5016 0.5263 0.5066

a D-Exp means double exponential distribution.

both a special case and Monte Carlo simulation in this subsection to assess
the relative performance.

For linear heteroscedastic models (1.3), Koenker and Zhao (1994) show
that the RQ estimator ;� ({) has asymptotic normal distribution

- n (;� ({)&;({)) �L N(0, 7RQ),

where

7RQ=
{(1&{)

f 2(F &1({))
Q&1

1 QQ&1
1 .

It follows that

trace(Q7RQ)=
{(1&{)

f 2(F &1({))
trace(Q&1

1 QQ&1
1 Q). (3.3)

The MSPE of the RQ estimator can be obtained. Corollary 2.2 shows that
the RRQ estimator ;� ({) also has an asymptotic normal distribution. As a
matter of fact, the asymptotic covariance depends on the design matrix X,
tabulating the relative efficiency for all different designs is impossible.

We first consider a case when heteroscedasticity is not in existence. Since
the MSPE is a continuous function of the heteroscedasticity parameter #1 ,
we hope that the case #1=0 is representative for cases where #1 is close to
zero. Without loss of generality, we assume that the design vectors are
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centered before regression is conducted such that +=(1, 0)$. Under these
assumptions, it is known that Q1=#&1

0 Q, and

trace(Q7RRQ)=#2
0 _ {(1&{)

f 2(F &1({))
+

(k&1)(F &1({))2

4( f (1)+ f (&1))2

+
k&1
4f 2(0) \1&

f (1)& f (&1)
f (1)+ f (&1)

F &1({)+
2

& . (3.4)

In this case, we have an explicit formula of the relative efficiency, which is
independent of the design matrix. Table II lists the relative efficiencies for
the same error distributions considered in Table I at various quantile levels.
we expect that the RRQ estimator would still be more efficient than the
RQ estimator for unimode symmetric distributions such as the linear
models. While the efficiency gain should be decreased because the three
step method introduces more variations to the estimates.

Table II reports the relative efficiency of the RRQ estimator with respect
to the RQ estimator for the special case of the linear heteroscedasticity
model when #1=0. The relative efficiency measure is computed using (3.3)
and (3.4). Similar to the linear models, the relative efficiency in this case is
independent of the design matrix and has exactly the same feature shown
in Table I. Since the three-step approach introduces extra variation to the
RRQ estimator, the relative efficiency of the RRQ estimator is affected as
can be clearly seen from a comparison of Table I and Table II. Since the
relative efficiency measure is a continuous function of #1 , we expect that the
RRQ estimator has similar performance when #1 is close to zero.

TABLE II

The Relative Efficiency RE(RRQ, RQ) for Linear Heteroscedastic
Models (k=1, #1=0)

{ Normal D-Exp Cauchy Exponential Lognormal

0.05 1.0880 0.8167 0.5644 5.4259 2.8006
0.10 1.1511 0.8551 0.6326 2.7693 2.1222
0.20 1.1208 0.8434 0.7699 1.5161 1.4736
0.30 1.0598 0.8307 0.8896 1.1652 1.1946
0.40 1.0156 0.8679 0.9711 1.0389 1.0389
0.50 1.0000 1.0000 1.0000 1.0000 1.0000
0.60 1.0156 0.8679 0.9711 1.0046 0.9638
0.70 1.0598 0.8307 0.8896 1.0143 0.9312
0.80 1.1208 0.8434 0.7699 1.0192 0.8812
0.90 1.1511 0.8551 0.6326 0.9703 0.7836
0.95 1.0880 0.8167 0.5644 1.0910 0.6940
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Efficiency comparison becomes difficult when heteroscedasticity is in
existence, because the relative efficiency formula depends on the design
matrix. Table III lists the relative efficiency of the RRQ estimator with
respect to the RQ estimator for a small-scale Monte Carlo simulation. In
the simulation, we used the linear heteroscedastic model

yi=xi+(1+#1x i) ei ,

where xi is sampled from N(3,2) distribution and #1 takes five values, i.e.,
0, 0.1, 0.3, 0.5, 0.8. Two error distributions, i.e., normal distribution and
double exponential distribution, are used in the simulation. For each error
type, the ei 's are rescaled such that the median is zero and the median of
their absolute value is one. The Monte Carlo simulation replicates 1000
times for relative small sample sizes, N=20 and N=50, respectively.
Table III shows that for most of the parameter combinations, the RRQ
estimator is less efficient than the RQ estimator, although the efficiency loss
is only a few percent and therefore minor. When sample size increases from
20 to 50, the relative efficiency of the RRQ estimator improves sharply,
showing the sensitivity of efficiency to sample sizes. Overall, the simulation
results show that the cost of avoiding quantile plane crossing is low in
these simulated cases.

3.3. Application

In this subsection, we present an application of the RRQ estimators in
constructing calibration intervals using the esterase assay data from Carroll
and Ruppert (1988, pp. 46�47). The data set has two variables, the concen-
tration of an enzyme esterase and the number of bindings counted in
binding experiments. A total of 113 observations were collected in the data
set and are plotted in Fig. 1, with two quantile lines (75th and 90th)
crossed.

Carroll and Ruppert (1988) studied this data set using a simple linear
model

E(count | esterase)=;0+;1[esterase].

Since the counts have large variations when the concentration of esterase
is large, the spread of the error term is assumed to be linear in concentra-
tion. The data set may be modeled into the linear heteroscedastic model

counti=;0+;1[esterase]i+(#0+#1[esterase]i) = i ,

where the =i 's are treated as i.i.d. random variables.
The main objective of fitting this data set is to construct calibration

confidence intervals, i.e., finding the confidence interval for the regression
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TABLE III

The Relative Efficiency RE(RRQ, RQ) for Linear Heteroscedastic
Models (k=1, #1>0)

#1

N { 0.0 0.1 0.3 0.5 0.8

I. Normal error distribution

20 0.60 1.0752 1.0709 1.0855 1.0901 1.0678
20 0.70 1.0218 1.0281 1.0539 1.0477 1.0817
20 0.80 1.0378 1.0422 1.0678 1.0653 1.0756
20 0.90 1.0323 1.0462 1.0520 1.0539 1.0782
20 0.95 1.0114 1.0280 1.0105 1.0167 1.0050

50 0.60 1.0316 1.0392 1.0456 1.0482 1.0530
50 0.70 1.0057 1.0131 1.0078 1.0272 1.0187
50 0.80 1.0184 1.0198 1.0324 1.0304 1.0379
50 0.90 1.0098 1.0105 1.0121 1.0306 1.0203
50 0.95 0.9973 1.0026 1.0093 1.0056 1.0075

II. Double exponential error distribution

20 0.60 1.0314 1.0490 1.0526 1.0606 1.0654
20 0.70 1.0108 1.0186 1.0174 1.0126 1.0252
20 0.80 1.0204 1.0298 1.0277 1.0388 1.0383
20 0.90 1.0166 1.0205 1.0325 1.0360 1.0389
20 0.95 1.0172 1.0200 1.0168 1.0148 1.0137

50 0.60 1.0125 1.0200 1.0187 1.0197 1.0239
50 0.70 1.0012 0.9982 1.0043 0.9986 1.0014
50 0.80 1.0085 1.0082 1.0097 1.0094 1.0164
50 0.90 1.0075 1.0104 1.0086 1.0148 1.0138
50 0.95 1.0024 1.0025 1.0024 1.0061 1.0031

variable given the response variable. The calibration interval can be used
to estimate the concentration of a new enzyme esterase. To construct the
calibration confidence intervals, one needs to estimate the quantile lines (or
curves). Because of the heteroscedasticity in the response variable, the
ordinary least squares method does not provide satisfactory results. Carroll
and Ruppert (1988) used the generalized least squares method under the
assumption of normal errors. In this section, the RRQ and RQ estimators
are used to build the calibration intervals without assumption of specific
error distributions.

First, we compute a median regression of the count on concentration,
including an intercept term. The estimator is ;� =(&27.4893, 17.8997)$.
Then we compute the residuals r̂i and regress the absolute residuals on the
concentration. The estimated #̂ is #̂=(14.0057, 1.9287)$. The third step is to
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FIG. 1. The unrestricted 0.10, 0.25, 0.5, 0.75, and 0.90th regression quantile lines for the
esterase count data from Carroll and Ruppert (1988). The 0.75th and 0.90th regression
quantiles cross once.

estimate the ĉ{ 's for different {'s as suggested by He (1997). The estimates
and the final RRQs, ;� ({), are listed in Table IV. RQ estimators, ;� ({), are
also tabulated in the same table for comparison purposes.

Table IV shows the difference between the RQ an RRQ estimators. The
RRQ estimator ;� ({) is increasing in {, which assures that the regression
quantile lines do not cross each other at all observed xi 's, as is shown in
Fig. 2. These quantile lines can be used to construct calibration intervals in
the whole range responses. In contrast, the unrestricted RQ lines cross at
least once occurs at the point when the esterase concentration is about 9

TABLE IV

RRQ and RQ Estimators for the Esterase Assay Data

{ ĉ{ ;� ({)$ ;� ({)$

0.10 &2.1679 (&57.8527, 13.7185) (&46.1789, 13.1301)
0.25 &1.1904 (&44.1622, 15.6038) (&42.7151, 15.5271)
0.50 0.0000 (&27.4893, 17.8997) (&27.4893, 17.8997)
0.75 0.7747 (&16.6385, 19.3940) (&0.1485, 18.9032)
0.90 2.2227 (3.6415, 22.1867) (&49.9043, 25.1304)
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FIG. 2. The restricted 0.10, 0.25, 0.5, 0.75, and 0.90th regression quantile lines for the
esterase count data from Carrol and Ruppert (1988). No quantile line crossing in the interior
domain of the design points is observed.

units, which corresponds to the 25th quantile of the response variable. This
makes the concentration prediction inaccurate for all bindings counts that
are less than 200. Weighted regression quantiles may help to shift the cross-
ing point, but cann't completely eliminate it. The RRQ estimation shows as
a natural solution for the quantile line crossing problem.

4. CONCLUSION

In this article, we examine the properties of the RRQ estimators
proposed by He (1997) in comparison with the RQ estimators of Koenker
and Bassett (1978). As a natural extension of the sample quantiles of the
location model, the regression quantiles somehow do not inherit the
properties owned by the sample quantile in the sense that the predicted
quantile planes are likely to cross each other in finite sample cases. The
RRQs are designed to overcome this troublesome quantile plane crossing
problem.

We studied the RRQ estimator for two models, the linear model and the
linear heteroscedastic model. For the first model, we found that RRQs have
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an important characteristic, in addition to the ability to overcome quantile
plane crossing. They are in general more efficient than the RQ estimators
for unimode distributions, such as normal, double exponential, Cauchy and
Student's t-distributions, although this property does not hold for asym-
metric error distributions. For heteroscedastic linear models, we show that
the RRQ estimators perform quite well for small sample cases, even for
small sample size of 20 or 50. An application of the RRQs to construct
calibration intervals is illustrated by an example using the esterase assay
data from Carroll and Ruppert (1988).

5. APPENDIX. PROOFS

The proof of all the theorems are based on the following two lemmas
organized by Koenker and Zhao (1996). Details for showing each theorem
will be given later.

Lemma A.1. Let

Vn(2)=n&1�2 :
n

1

zi �{(u i&F &1({)&n&1�2xi$2),

where �{(u)={&I[u<0] , 0<{<1, zi and xi are i.i.d. and independent of ui .
Suppose

(i) ui are i.i.d. random variables with continuous density;

(ii) n&1�2 maxi�n &x i&=op(1).

(iii) E &z1&2<� and E &x1&2<�.

Then

sup
&2&�L

&Vn(2)&Vn(0)&EVn(2)+EVn(0)&=op(1),

for any 0<L<�.

The proof of this lemma adopts ideas from Bickel (1976) and Ruppert
and Carroll (1980). The details of the proof are given in Koenker and Zhao
(1996).

Lemma A.2. Suppose Vn(2) satisfies

(i) 2$Vn(*2)�2$Vn(2), For *�1;

(ii) sup&2&�L &Vn(2)&An+G2&=op(1) for a random vector An ,
nonrandom matrix G and any 0<L<�;
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(iii) 2n is a random vector satisfying &Vn(2n)&=op(1).

Then &2n&=Op(1) and 2n has the representation

2n=G&1 An+op(1).

The proof of this lemma uses ideas from Jurec� kova� (1975) and is refined
by Koenker and Zhao (1994, 1996), where details of the proof can be
found. Now by using the above two lemmas, we will prove Theorem 2.1
and Theorem 2.2.

Proof of Theorem 2.1. First of all, let's construct a function Vn(2)
which satisfies the conditions of Lemma A.1. Given

r̂i&;� 0({)==i&F &1({)&(;� 0({)&;0&F &1({))&x$1i (;� 1&;1).

Denote 21n=- n (;� 1&;1), 22n=- n (;� 0({)&;0&F &1({)) and define

Vn(2)=n&1�2 :
n

1

�{(=i&F &1({)&n&1�2(x$1i 21+22)),

which satisfies the conditions of Lemma A.1. Hence

sup
&2&�L

&Vn(2)&Vn(0)&EVn(2)+EVn(0)&=op(1).

Now, it is easy to verify that EVn(0)=0 and

EVn(2)=n&1�2 :
n

1

({&F (F &1({)+n&1�2(xi21+22))

=&f (F &1({))(+$1 21+22)+o(1).

Combined with condition (i) of Theorem 2.1, we have

sup
&2&�L

&Vn(21 , 22)&Vn(0)+ f (F &1({))(+$1 21+22)&=op(1).

By the definition of ;� 0({), it follows the Ruppert and Carroll (1980) and
Koenker and Zhao (1996) that Vn(21n , 22n)=op(1). Here the argument is
that

n&1�2 :
n

1

x i�{( yi&xi;� )=op(1)

if ;� is the minimizer of �n
1 \{( y i&xi$b).
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Further, using the monotone property of �{(u), one can easily show that
the first condition of Lemma A.2 is valid. Therefore by Lemma A.2

f (F &1({))(+$1 21n+22n)=Vn(0)+op(1),

or

22n=
1

f (F &1({))
n&1�2 :

n

1

�{(= i&F &1({))&+$1 21n+op(1).

Theorem 2.1 is thus proved. K

Proof of Corollary 2.1. Suppose +1=0, then ;� 0({) has a Bahadur-type
representation which has nothing to do with the preliminary estimator ;� 1 .
By using the central limit theorem, one can easily obtain the asymptotic
distribution. K

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1. First
we are going to define a function Vn(2) as done in the proof of
Theorem 2.1. let _i=xi$#>0, 21n=- n (;� &;) and 22n=- n (#̂&#). Thus

|r̂i |&xi$ #̂=|_i =i&n&1�2x i$ 21n |&xi$ #̂

=_i ( |=i |&1)&n&1�2xi$(sgn(=i) 21n+22n)+op(n&1�2),

where the op(n&1�2) part can be combined into Op(n&1�2). Define

Vn(2)=n&1�2 :
n

1

xi �1�2( |= i |&1&n&1�2_&1
i xi$(sgn(=i) 21+22)),

which satisfies the conditions of Lemma A.1. Now

E[�1�2( |=i |&1&n&1�2_&1
i x i$(sgn(=i) 21+22)) | x i]

= 1
2&|

1+n&1�2_i
&1xi

$ (21+22)

&1&n&1�2_i
&1xi

$ (&21+22)
f (u) du

=&n&1�2_&1
i xi$( f (1)(21+22)+ f (&1)(&21+22))+o(n&1�2).

Thus

E[Vn(2) | xi]=&n&1 :
n

1

x i xi$
_i

( f (1)(21+22)+ f (&1)(&21+22))+o(1)

=&Q1(( f (1)& f (&1)) 21+( f (1)+ f (&1)) 22)+o(1).
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By Lemma A.1 and the first condition (i) of Theorem 2.2, we have

sup
&22&�L

&Vn(21n , 22)&Vn(0)+Q1( f (1)& f (&1)) 21n

+( f (1)+ f (&1)) 22)&=op(1).

Similarly, by using Lemma A.2, we have the representation

22n=
Q&1

1

f (1)+ f (&1)
n&1�2 :

n

1

x i �1�2( |=i |&1)

&
f (1)& f (&1)
f (1)+ f (&1)

21n+op(1).

This proves the first part of the theorem.
Now let's show the second part, i.e., the representation of ĉ{ . Set

21n=- n (;� &;), 22n=- n (#̂&#) and 23n=- n (ĉ{&F &1({)) #̂. Then

r̂i& ĉ{xi$ #̂=(xi$ #)(=i&F &1({))&n&1�2x i$ (21n+F &1({) 22n+23n).

Define

Vn(2)=n&1�2 :
n

1

(xi$ #) �{(=i&F &1({)&n&1�2_&1
i xi$ (21+F &1({) 22+23)).

We can get

EVn(2)=&f (F &1({)) +$(21+F &1({) 22+23)+o(1).

By Lemma A.1 we have

sup
&23&�L

&Vn(21n , 22n , 23)&Vn(0)

+ f (F &1({)) +$(21n+F &1({) 22n+23)&=op(1).

Then by applying Lemma A.2, we get the Bahadur-type representation

+$ 23n=
#$

f (F &1({))
n&1�2 :

n

1

xi �{(=i&F &1({))

&+$(21n+F &1({) 22n)+op(1).
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If we note that 22n=Op(1), i.e., #̂=#+Op(n&1�2) and the definition of 23n ,
it follows that

- n (ĉ{&F &1({))=
#$

f (F &1({))(+$#)
n&1�2 :

n

1

xi �{(= i&F &1({))

&
+$
+$#

(- n (;� &;)+F &1({) - n (#̂&#))+op(1).

Finally, for the RRQ estimator ;� ({), if the initial estimator ;� is the least
median estimator as suggested by He (1997), it should have a Bahadur
representation

- n (;� &;)=
1

f (0)
Q&1

1 n&1�2 :
n

1

xi�1�2(=i)+op(1).

The representation of ;� ({) thus follows from the previous results. This
proves Theorem 2.2. K

Proof of Corollary 2.2. The proof can be obtained using the central
limit theorem. K
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