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Abstract

In [G. Gabadadze, Y. Shang, hep-th/0506040] we discussed a classically constrained model of gravity. This theory contains known solutions
of General Relativity (GR), and admits solutions that are absent in GR. Here we study cosmological implications of some of these new solutions.
We show that a spatially-flat de Sitter universe can be created from “nothing”. This universe has boundaries, and its total energy equals to zero.
Although the probability to create such a universe is exponentially suppressed, it favors initial conditions suitable for inflation. Then we discuss
a finite-energy solution with a nonzero cosmological constant and zero space–time curvature. There is no tunneling suppression to fluctuate into
this state. We show that for a positive cosmological constant this state is unstable—it can rapidly transition to a de Sitter universe providing a new
unsuppressed channel for inflation. For a negative cosmological constant the space–time flat solutions is stable.
 2006 Elsevier B.V. Open access under CC BY license.
1. Introduction

In Ref. [1] a classically constrained General Relativity
(CGR) was discussed. The gravitational part of the Lagrangian
density consists of the conventional Einstein–Hilbert (EH) term
amended by a term that enforces a constraint

(1.1)L= −
√−g

2
(R + 2Λ) − √−ggνµ∂νλµ + · · · .

Here λµ is a nondynamical Lagrange multiplier field, and we
introduced a cosmological constant Λ. In most of the appli-
cations discussed below, Λ can be replaced by a “slow roll”
inflationary potential V (φ), as Λ → V (φ) (we put MPl = 1).

The Lagrangian (1.1) is a part of the action used in path-
integral quantization of GR.1 The Lagrange multiplier term
usually enforces the gauge fixing condition. For consistent
quantization of small fluctuations this Lagrangian should be
amended by appropriate boundary conditions for the fluctua-
tions, and by the Faddeev–Popov (FP) ghosts. The main point

* Corresponding author.
E-mail address: gg32@nyu.edu (G. Gabadadze).

1 GR is not a renormalizable theory, however, it can be regarded as a low-
energy effective quantum field theory with a cutoff. For an exposition of this
point of view, see Ref. [2].
0370-2693  2006 Elsevier B.V.
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of the approach of Ref. [1], which we follow here, was to allow
for the boundary conditions on which the determinant of the
FP operator has a zero-mode. This would make the path inte-
gral ill-defined, unless the zero-mode is treated separately from
the fluctuations. The zero-mode is regarded as a classical back-
ground solution, and the small fluctuations are then quantized
about that background. In Ref. [1] we considered only the back-
ground solutions on which the FP ghosts vanish, although they
are present as quantum fluctuations.

The above approach, when it comes to classical solutions,
reduces to the following simple algorithm. Considering (1.1)
as a classically constrained theory. In this theory, Einstein’s
equations are modified due to the λµ field. The modified equa-
tions could allow for new solutions [1] that are absent in GR.
To discuss those solutions we consider spaces with bound-
aries where the Gibbons–Hawking term [3] is implied and the
following boundary conditions are imposed: δgµν |boundary =
δλµ|boundary = 0. Then, the equations of motion take the form:

(1.2)Gµν + (∂µλν + ∂νλµ) − gστ ∂σ λτ gµν = Λgµν,

(1.3)∂µ

(√−ggµν
) = 0.

The above equations can admit solutions that are not present in
GR. For instance, a theory with Λ �= 0 has a solution with zero
space–time curvature [1]: gµν = ηµν , ∂µλν + ∂νλµ = −Ληµν .
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The solution ends on a fixed boundary where the value of λµ,
which is defined up to a constant, is adjusted to be zero so that
the space is geodesically complete. We will call this a new flat
solution below. On the other hand, putting λµ = 0, the theory
yields a conventional (anti)de Sitter solution written in a gauge
(1.3) [1]. There are also other solutions, one of them being a
zero-energy spatially-flat de Sitter (dS) space with a boundary,
that we will discuss below in some detail.

The goal of the present work is to study these solutions and
their relevance to cosmology. As a first example, we will look
at a new possibility to create a universe into a state described
by the spatially-flat dS solution. That quantum creation of a
spatially-flat universe is possible if it has nontrivial topology,
was first found by Zel’dovich and Starobinsky [4]. In our case,
the spatially-flat universe that is being created has trivial topol-
ogy, but comes with a fixed boundary on which the boundary
conditions preserving completeness of the space are imposed.
We calculate the probability of creation of such a universe
out of “nothing”, i.e., out of an initial state with no classical
space–time. Linde’s [5] and Vilenkin’s (first reference in [6])
approaches give the same results in this case. We will find that
the probabilistic arguments favor initial conditions needed for
inflation, as opposed to the conditions that would favor universe
sitting at the bottom of the potential. However, the probability
itself is still exponentially small. This is somewhat similar to the
emergence of a closed dS universe in a conventional approach
[5,6].

Then we turn to a new flat solution described above. We
study a process of producing a small region of primordial uni-
verse in a state of a nonzero energy described by the new flat
solution. As we will see, in the minisuperspace approximation,
there is no potential barrier to be penetrated in order to fluctuate
into this state. Interestingly enough, if Λ is positive, this state is
unstable—it can either collapse or with an almost equal prob-
ability, can rapidly transition into a spatially-flat dS universe
with H 2 = Λ/3. The latter can be used to describe the required
inflationary epoch. The above sequence of events, represents a
new channel for obtaining an inflationary region in a primor-
dial universe. The probability of these events to take place is
not suppressed by the exponential factors. In that regard, the ef-
fect is similar to the one emphasized by Linde [7], in the context
of the solution of [4].2

On the other hand, if Λ < 0, then the new flat solution is
stable. Can this be used at late times for the adjustment of the
cosmological constant? One could be contemplating a scenario
in which a small region in a primordial universe first fluctuates
into a state described by the new flat solution with a positive
potential (positive Λ), then undergoes inflation as described
above, and after that the potential drops to a negative value
Λ < 0. One could use the new flat solution with Λ < 0 to ob-
tain an (almost) flat universe today via this sequence. We will
briefly comment on what it takes to have such a scenario.

Before we turn to quantum cosmology of CGR, we would
like to make a few comment concerning the consistency of the

2 We thank A. Vilenkin for bringing these references to our attention.
theory (1.1) itself (this was discussed in detail in [1], here we
just briefly summarize some main results):

• The Lagrangian (1.1) is not reparametrization invariant—
the new term completely restricts the symmetry. Never-
theless, the equivalence principle is preserved. The gauge
condition (1.3) allows local, point-dependent gauge trans-
formations, that can be used to eliminate a nontrivial metric
and connection in an infinitesimal neighborhood of any
space–time point.

• The linearized theory has two propagating physical polar-
izations of a graviton. No negative-norm states or tachyons
appear in the quadratic action.

• Bianchi identities enforce an additional condition on the
Lagrange multiplier: gµν∂µ∂νλα = 0. The latter has to be
respected by all solutions of the theory.

• Conventional solutions of GR (the Schwarzschild solution,
etc.) are also solutions of CGR. This is because the above
solutions can be transformed to a gauge where (1.3) is ful-
filled, and putting λµ = 0, Eq. (1.2) is also satisfied.

• The structure of the Lagrangian (1.1) is not ruined by quan-
tum loop corrections since for small fluctuations on a given
background it can be completed to a BRST invariant form
introducing the Faddeev–Popov ghost. The latter do not af-
fect the classical solutions that we discuss.

2. Minisuperspace for constrained gravity

Computations in quantum cosmology are primarily per-
formed in a minisuperspace approximation (for a review see,
e.g., [8]). In this section we develop a minisuperspace approach
to CGR. The metric for a spatially-flat universe in this approach
takes the form:

(2.1)ds2 = N2(t) dt2 − a2(t)δij dxi dxj .

Here both N and a are functions of t only, and i, j = 1,2,3.
One difference from the conventional approach is that we will
be working with general N not necessarily equal to the unity.
We will show that N is determined by a because of the con-
straint.

The corresponding Lagrangian density (1.1) takes the form:

(2.2)

L= −a3N

[
6

1

N2

(
ȧ

a

)2

+ 2Λ

]
− 2

(
a3

N

)
λ̇0 + 2aN∇ · �λ,

where �λ = (λ1, λ2, λ3), and ∇ · �λ ≡ δij ∂iλj . As a part of the
rules of the minisuperspace reduction we require that λi ’s are
time independent functions of spatial coordinates xi only. This
rule is justified by the complete Hamiltonian description of the
theory (1.1) which is given in Appendix A. One can check that
solutions to such a theory only exist when λ0 is a function of
the time coordinate t alone, and ∇ · �λ is a space–time constant.

It is straightforward to find the Hamiltonian density. For
the canonical momentum conjugate to a, we obtain πa =
−12aȧ/N . Moreover,

(2.3)πλ0 = −2a3

N
,
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(2.4)πN = 0.

The above relations represent two primary constraints of the
Hamiltonian formalism. Note that we are not introducing a con-
jugate momentum for �λ, since it is assumed to be time indepen-
dent, and, therefore nondynamical. A more rigorous treatment
is given in Appendix A. The total Hamiltonian density takes the
form:

Htotal = − N

24a
π2

a + 2a3N

(
Λ − ∇ · �λ

a2

)

(2.5)+ α

(
πλ0 + 2a3

N

)
+ βπN,

where α and β are Lagrange multipliers enforcing the primary
constraints. Due to the Hamiltonian equations of motion α = λ̇0
and β = Ṅ . Requiring that the time variation of the two primary
constraints vanishes, we obtain the equations of motion for the
inexpressible velocities Ṅ and λ̇0

(2.6)
d

dt

(
a3

N

)
= 0,

(2.7)λ̇0 = N2

2a3

[
− π2

a

24a
+ 2a3

(
Λ − ∇ · �λ

a2

)]
.

As it could be checked directly, no further constraints emerge.
On the surface of the existing constraints we can simplify the
Hamiltonian density

(2.8)H = − N

24a
π2

a + 2a3N

(
Λ − ∇ · �λ

a2

)
.

Let us discuss classical solutions of such a theory first. From
(2.7) we find that a3/N = b, where b is an arbitrary constant.
As we discussed already ∇ · �λ ≡ 3k is also a constant. From
Eq. (2.7) we find

(2.9)λ̇0 = N

2a3
H.

Since both a3/N and H itself commute with H, so does λ̇0.
Hence, for b �= 0 we get that λ̇0 = E/2b, which is a constant if
E is an eigenvalue (energy density) of H.

For further convenience we introduce the “conformal time”

(2.10)η =
t∫
N(t ′)dt ′.

Then, the equations of motion can be expressed in the following
familiar form:

(2.11)

(
a′

a

)2

+ k

a2
= Λ

3
− bE

6a6
,

(2.12)
a′′

a
= Λ

3
+ bE

3a6
,

where ′ ≡ d/dη = d/N dt . Interestingly, in these equations the
quantity ∇ · �λ ≡ 3k plays the role similar to a three-dimensional
spatial curvature of GR. Additional terms on the r.h.s. are also
due to the λµ field. These terms act as a fluid with the equation
of state ρ = p = −bE/2a6. Unlike other dynamical fields, there
are no fluctuations of λµ.
We will consider the following three solutions of the equa-
tions of motion:

(1) E = 0, k �= 0, one finds a spatially flat inflating solution,
where the scale factor a, as a function of conformal time η,
is identical to that of a closed dS universe;

(2) −bE = 2k = Λ and a = 1, one finds a flat Minkowski
space–time in spite of the fact that Λ �= 0. This is the new
flat solution described in the previous section. We consider
two physically different cases: Λ > 0 and Λ < 0;

(3) E = k = 0, gives a conventional, spatially-flat inflating
de Sitter space–time.

Below we will study physical consequences of these solu-
tions.3

3. Wave-function and creation probability

We now turn to the quantum mechanics of the Hamiltonian
density given by (2.8). To do so we promote all the fields
in (2.8) to operators with the prescription πa = −iδ/δa and
πλ0 = −iδ/δλ0. The Lagrangian is an integral of the density
L over the entire space on each time slice. To make the inte-
gral converge, we will be discussing a three-dimensionally flat
space with a finite-size spatial boundary. Then, the integral

(3.1)v =
∫

d3x,

is finite, and v denotes a spatial “comoving volume” on each
time slice and is a fixed number. The physical 3-volume is
vp(t) = ∫ √

γ d3x = a3(t)v. So far we have ignored the fac-
tor vM2

Pl in the action. Restoring this factor, the Hamiltonian
(2.8) reads

(3.2)H = − N

24vM2
Pla

π2
a + 2vM2

Pla
3N

(
Λ − ∇ · �λ

a2

)
.

Let us now suppose that |ψ〉 is an eigenstate of H with an en-
ergy eigenvalue E. As we discussed in the previous section,
both πλ0 ∼ a3/N and ∇ · �λ commute with H . Therefore, one
can always choose |ψ〉 to be an eigenstate of the above two op-
erators with eigenvalues b and 3k, respectively. On such a state,
one can replace the operator N by a3/b, and ∇ · �λ by 3k. There-
fore, most generically, we are looking for states

(3.3)|ψ〉 =
∫

da′ ψ(a′)|a′〉a ⊗ ∣∣a′3/b
〉
N

⊗ |3k〉∇·�λ,

where |a′〉a represents the eigenstate of the operator a with
eigenvalue a′, and, etc. The “wave-function” ψ is determined
by the Wheeler–De Witt equation

(3.4)

[
− d2

da2
+ 2A

(
3ka2 − Λa4) + AbE

a2

]
ψ(a) = 0,

3 Note that a negative sign of the product bE corresponds to a positive energy
density of the fluid. In general, on certain solutions bE could also take a positive
sign producing a negative energy density fluid. However, this should not be a
concern since the λµ field, that give rise to this fluid, is not dynamical and does
not fluctuate.
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Fig. 1. The potential U(a).

where A ≡ 24M4
Plv

2, and we have ignored the operator order-
ing ambiguity. The solution of this equation is equivalent to the
wave-function of a particle with zero energy moving in a one-
dimensional potential.

Let us look now at a probability of creation of the universe
“from nothing”, i.e., from a state with no classical space–time
[6]. The solution describing this state should have zero energy
E = 0. In this case the minisuperspace potential U(a) is shown
in Fig. 1. It has a classically forbidden region 0 � a �

√
3/Λ,

and a de Sitter region a �
√

3/Λ.
To calculate the probability of tunneling of the system from

a = 0 to a = √
3/Λ we follow Vilenkin’s tunneling wave-

function approach (first reference in [6] and [8]). Linde’s ap-
proach [5], although conceptually different, gives the same an-
swer in this case. Taking the trace of equation (1.2) we easily
find the action on the tunneling solutions

(3.5)L= −M2
Pl

2

√−g
(
R + 2Λ + 2gµν∂µλν

) = 2M2
PlΛ

√
g,

and, introducing the euclidean time τ , we find

(3.6)SE = −2vM2
PlΛ

√
3/Λ∫

0

∣∣N(τ)a3(τ )
∣∣dτ.

Although this looks similar to the result in conventional quan-
tum cosmology for the action of a closed dS universe, there is
an essential difference. The comoving volume v is not fixed by
the value of the cosmological constant Λ. As a result, if we are
to maximize the probability of tunneling by creating a small-
est size universe, then v is only to be bounded by the Planck
scale. However, there is the following consideration to be taken
into account. The fate of the universe after creation will depend
on the boundary conditions chosen. For the universe created
out of “nothing” we assume simple ones that the boundary sur-
face has no tension, and that there is no exterior space–time.4

Moreover, we adjust the value of the λj field on the bound-
ary so that the space is complete (this is possible because the
λµ field enters only linearly trough its first derivative in the
Lagrangian (1.1)). Such a universe, to continue its inflationary
expansion, should have a size bigger or equal to the scale of its
dS horizon

√
3/Λ, otherwise it would collapse [10–13]. This

puts a lower bound on the size of an acceptable initial universe

4 This space can be “glued” to its own copy past the boundary.
vp � 1/Λ3/2. For Λ � M2
Pl we get that |SE | 
 1 and the quasi-

classical arguments are well applicable. For a given value of Λ,
the tunneling probability can be calculated using a conserved
“Klein–Gordon” current ja = i(ψ+∂aψ − ψ∂aψ

+)/2 [6], and
takes the form PT ∝ exp(−2|SE |). The latter will be maximized
by a smallest acceptable value of vp ∼ 1/Λ3/2. This gives a
results similar to the probability of creation of a closed dS uni-
verse in the tunneling approach PT ∼ exp(−3π2M2

Pl/Λ) [5,6].
However, as was emphasized above, in the present context the
created universe has zero spatial curvature, while in the conven-
tional approach only a closed dS universe can be materialized
“from nothing”.

The subsequent evolution of the created universe is clear. It
will inflate and redshift away the contribution of the λj field
that played the role of the spatial-curvature during the creation.

Note that if we instead followed a naive Euclidean contin-
uation of the partition function, we would have obtained for
the probability lnP ∝ M2

PlΛvp . In such a case, largest values
of Λ and vp would have been preferred. This would favor a
creation of an inflationary universe of a huge size. The above
prescription is similar to the Hartle–Hawking (HH) approach
[9] because of the euclidean continuation (it also somewhat dif-
fers from the HH no-boundary proposal since our solution has a
boundary). However, it is not clear whether the obtained result
has an interpretation of a probability of creation of a universe
form “nothing”.

4. Inflation through flat space

As it was discussed in Ref. [1], by choosing ∂µλν + ∂νλµ =
−Λgµν we find a Minkowski solution even though Λ is
nonzero. We will examine the properties of this solution more
closely in the present section. Some results of the present sec-
tion are similar to those of [7] obtained for topologically non-
trivial compact universes [4].

In the minisuperspace approach the above solution is de-
scribed by k = Λ/2, bE = −Λ, a = 1. Hence, the total energy
of the solution is non-zero. Let us look at the mini-superspace
potential U with the above values of k and E:

(4.1)U(a) = AΛ

(
3a2 − 2a4 − 1

a2

)
.

Here, as before, A = 24M4
Plv

2, and we put back MPl = 1 in
this section. This potential is illustrated in Fig. 2. The new
Minkowski solution is described by the point a = 1. Such a uni-
verse cannot be created out of “nothing” since it has a nonzero
energy. However, during some stage of the primordial evolu-
tion, for instance at the Planck scale, a part of space can fluctu-
ate into this state with an unsuppressed probability.

What is the cosmological evolution of such a state? Fluctu-
ations in the system will destabilize this state. It will either roll
down toward a = 0 corresponding to a contracting universe,
or, with an almost equal probability, will roll toward a → ∞
corresponding to an inflating de Sitter space. It is easy to esti-
mate the time scale of this instability. Given any perturbation
around a = 1, the time scale it takes for a to change signif-
icantly is determined by (

√|U ′′(1)|/12A)−1 = √
2/Λ. There-
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Fig. 2. Potential U(a) with an unstable space–time flat solution.

fore, the process of obtaining dS universe through the above flat
solution, provides a new channel for the inflationary phase.

Let us now discuss quantum mechanics of this model in
more detail. The Wheeler–De Witt equation reads

(4.2)

[
d2

da2
+ AΛ

(
2a4 − 3a2 + 1

a2

)]
ψ = 0.

When a → +∞, the term 2AΛa4 dominates over the other
terms in the potential. Therefore, the solution always asymp-
totes to a de Sitter universe and can be approximated by

(4.3)

ψ ∼ C1
√

aJ+1/6

(√
2AΛ

3
a3

)
+ C2

√
aJ−1/6

(√
2AΛ

3
a3

)
,

where J±1/6 are Bessel functions of the first kind. The two lin-
early independent solutions are both oscillating and decaying.

The value of AΛ, however, can change the asymptotic be-
havior of ψ in the region of small a. There are two possibilities.

(1) If we assume that Λ ∼ O(1) and the volume of the universe
at a = 1 is ∼ O(1), we find AΛ ∼ 24 (this is not a realis-
tic case since the absence of observed gravitational waves
suggests that H ∼ √

Λ has to be about 5 orders of magni-
tude below the Planck scale, nevertheless, we consider this
as a theoretical example). Near this region it’s typical that
1 − 4AΛ < 0. In such a case the asymptotic behavior of ψ

near a = 0+ is given by

ψ ∼ C1
√

a cos

(√
4AΛ − 1

2
lna

)

(4.4)+ C2
√

a sin

(√
4AΛ − 1

2
lna

)
.

These are oscillating solutions. The amplitude scales as√
a, and their frequencies increase to infinity toward the

origin at a = 0. Close to the origin the wave-function has
an infinitely many zeros. Since the amplitude of ψ vanishes
at the origin, this behavior should not be a concern.
The above two solutions differ only by a pure phase, and,
therefore, there is no physical reasons to favor one over
the other. With both solutions allowed, one can smoothly
interpolate the wave-function and its first derivative from
a ∼ 0+ to the region a ∼ +∞. Typical solutions for ψ

in this case are shown in Figs. 3 and 4, with the cos- and
Fig. 3. Solution with AΛ = 24 and the cos-like initial condition.

Fig. 4. Solution with AΛ = 24 and the sin-like initial condition.

sin-like initial conditions near a = 0 respectively. The blue
lines denote the potential U(a).

(2) If Λ is much smaller, for example it is protected by super-
symmetry at a scale much lower than the Planck scale, then
the product AΛ can be a very small number. In this case it
is typical that 1 − 4AΛ > 0 and the asymptotic behavior of
ψ at a = 0+ changes to

(4.5)ψ ∼ C1a
1−√

1−4AΛ
2 + C2a

1+√
1−4AΛ
2 .

The wave-function vanishes at a = 0 since both exponen-
tials are positive and perfectly regular. Again, solutions that
covers the entire region must exist since both solutions
above are physically allowed.
In the limit where the quantity AΛ is tiny one can ig-
nore the existence of the potential U(a) for a fairly long
time, until a grows and AΛa4 becomes comparable with 1.
When this happens, a is already so large that all the terms in
the potential, besides 2AΛa4, can be neglected. The wave
function ψ should quickly turn into the Bessel functions
described above. Before that happens, the Schrödinger
equation takes a simple form ψ(a)′′ = 0. As a result

(4.6)ψ ∼ C1 + C2a.

In the present case, the contribution of the 1/a2 term in
the potential is mostly ignorable except for the region very
close to the origin. It becomes important there only to fix
the initial value of ψ . Due to this term ψ(0) can only be
zero.
Typical properties of ψ are show in Figs. 5 and 6. One can
see that the potential is extremely flat until a 
 1, after
which it quickly takes a form of −2AΛa4.
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Fig. 5. Solution with A = 10−4; ψ tends to 0 near a = 0 too fast to be shown
in this figure.

Fig. 6. Nearly linear solution with A = 10−4.

5. Conclusions

Inflation provides a rather effective solution to the problems
of the hot big-bang cosmology and successfully accounts for
the observations (for a review and references, see [14]). Un-
der reasonable physical conditions, inflationary universe is not
past-eternal [15], and one would like to specify the past bound-
ary of an inflating region of space–time. Quantum cosmology
is one framework in which this issue can be addressed (for a
review, see [8]). In this approach a closed dS universe can
be materialized from “nothing”, providing the initial conditions
for inflation. The creation probability for such a state is expo-
nentially suppressed, nevertheless, it favors inflationary initial
conditions over the conditions for a universe sitting at the bot-
tom of the potential [5,6]. On the other hand, if a compact
spatially-flat dS universe of nontrivial topology is created [4,
7], the exponential suppression can go away.

In the present work we discussed classically constrained
gravity [1]. This theory arises upon path-integral quantization
of gravity as a low-energy field theory with certain boundary
conditions (see discussions in Section 1 and in Ref. [1]). This
approach gives rise to new solutions of equations of motion,
some cosmological implications of which we studied in the
present work. We showed that a spatially-flat dS universe with
a boundary can be created form “nothing”. With simple bound-
ary conditions that we choose, the probability for creation of
such a universe is exponentially suppressed, nevertheless, it fa-
vors inflationary initial conditions. This is similar to the result
for a closed dS universe in the conventional approach [5,6].

Furthermore, we found a new interesting channel in which
the probability for the inflationary initial conditions is not ex-
ponentially suppressed. The universe can fluctuate into a state
with zero space–time curvature and then rapidly transitions to
the inflating spatially-flat dS state. The fact that the probabil-
ity is not exponentially suppressed in this case is similar to the
finding of Ref. [7], however, the context in which our results
are obtained, and the details of the dynamics are different.

There are a few questions that we left out for future detailed
studies. It would be interesting to consider similar solutions in
the presence of other dynamical fields, scalars, fermions, etc.
For instance, if the cosmological constant in the Lagrangian
(1.1) is negative, then the new flat solution is stable. One could
imagine a scenario, in which the original inflationary universe
eventually ends up in a state with a negative value of the po-
tential. In that case, the Lagrange multiplier field can neutral-
ize the negative potential energy and gives rise to a stable flat
space–time. In general, however, it is hard to maintain this state
intact during the course of cosmological evolution since any
cosmological expansion of the universe redshifts the λ terms
rather quickly. Under these circumstances fine-tuning might be
needed to obtain a present-day universe in a state of the space–
time flat solution with Λ < 0. The question of how severe this
fine-tuning should be, and related issues will be discussed else-
where.
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Appendix A. Hamiltonian formalism for CGR

To find the Hamiltonian we express the metrics in the ADM
formalism:

gµν =
(

N2 − hijN
iNj −hijN

j

−hjiN
i −hij

)
,

(A.1)gµν =
( 1

N2 − Ni

N2

−Nj

N2 −hij + NiNj

N2

)
.

The Lagrangian density becomes (an overall factor of 2 is ig-
nored below)

L= √
γN

(
R(3) + KijK

ij − K2 − 2Λ
)

− 2

[(√
γ

N

)
λ̇0 −

(√
γNi

N

)
∂iλ0

]

(A.2)

+ 2

[(√
γNi

N

)
λ̇i +

(
N

√
γ hij −

√
γNiNj

N

)
∂jλi

]
,

where “ · ” ≡ ∂0. Here we have defined γ = dethij and the ex-
trinsic curvature
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(A.3)Kij = 1

2N
(ḣij − DiNj − DjNi).

D denotes the spatial covariant derivative defined w.r.t. hij .
In order to simplify the formalism we introduce the follow-

ing new variables

(A.4)Ñ =
√

γ

N
, Ñ i =

√
γNi

N
.

In terms of these new fields the Lagrangian density reads

L= γ

Ñ

(
R(3) + KijK

ij − K2 − 2Λ
) − 2

(
Ñ λ̇0 − Ñ i∂iλ0

)
(A.5)+ 2

[
Ñ i λ̇i +

(
γ hij

Ñ
− Ñ iÑ j

Ñ

)
∂jλi

]
.

The conjugate momenta are:

(A.6)πij = √
γ (Kij − Khij ),

(A.7)πλ0 = −2Ñ,

(A.8)πλi
= 2Ñ i,

(A.9)πÑ
= π

Ñi = 0.

Eqs. (A.7) through (A.9) are to be understood as eight pri-
mary constraints to be imposed on physical states. The total
Hamiltonian density, including all the inexpressible velocities,
is given by

Htotal = − γ

Ñ
R(3) + 1

Ñ

(
πijπ

ij − 1

2
π2

)
+ 2πij Di

(
Ñj

Ñ

)

+ 2γ

Ñ
Λ − 2Ñ i∂iλ0 − 2

(
γ hij

Ñ
− Ñ iÑ j

Ñ

)
∂jλi

+ π
Ñ

β + π
Ñi γ

i + (πλ0 + 2Ñ)α + (
πλi

− 2Ñ i
)
δi

(A.10)

≡ H0 + π
Ñ

β + π
Ñi γ

i + (πλ0 + 2Ñ)α + (
πλi

− 2Ñ i
)
δi .

The definition of H0 can easily be read off the expression
above, and the Lagrange multipliers β , γj , α, δi , are determined

by the Hamilton equations in terms of the velocities β = ˙̃
N ,

γj = ˙̃
Nj , α = λ̇0, δi = λ̇i . All the eight inexpressible velocities

are resolvable:

(A.11)˙̃
N = ∂iÑ

i ,

(A.12)˙̃
Ni = −∂j

(
γ hij

Ñ
− Ñ iÑ j

Ñ

)
,

(A.13)λ̇0 = −1

2

δH0

δÑ
,

(A.14)λ̇i = 1

2

δH0

δÑ i
.

These results are very different from what one finds in GR.
After eliminating the inexpressible velocities, the Hamiltonian
density reads

H = − γ

Ñ
R(3) + 1

Ñ

(
πijπ

ij − 1

2
π2

)
+ 2πij Di

(
Ñj

Ñ

)

(A.15)+ 2γ

Ñ
Λ − 2Ñ i∂iλ0 − 2

(
γ hij

Ñ
− Ñ iÑ j

Ñ

)
∂jλi,
where Ñ and Ñ i must be identified with −πλ0/2 and πλi
/2 re-

spectively while taking Poisson brackets. We have thrown away
terms that are proportional to π

Ñ
and π

Ñi , which necessarily
vanish in any case.

Upon quantization one should impose the constraints
π

Ñ
|ψ〉 = π

Ñi |ψ〉 = 0 on physical states and proceed with the
usual canonical procedure using the Hamiltonian density given
above. Notice that since −2Ñ ≡ πλ0 and 2Ñ i ≡ πλi

, and they
both appear in H, λ0 and λi do not commute with the Hamil-
tonian and therefore are not conserved in general. However,
Eq. (A.14) can be expressed as

(A.16)λ̇i = − 1

Ñ
Djπ

j
i + Ñj

Ñ
(∂jλi + ∂iλj ),

therefore λ̇i = 0 as long as Ni = 0, and πi
j depends on time

t only. In such a case, λi do commute with the Hamiltonian
density. It is because of this reason that we have imposed this
condition in the minisuperspace formalism.

Mathematically such a constraint can be enforced more rig-
orously by introducing a term Aiλ̇i in the Lagrangian density
with Lagrange multipliers Ai . Using this Lagrangian density
one can work out Htotal in a similar fashion as we did above.
After all the constraints are taken into account consistently, one
finds that the Hamiltonian density is exactly the same as (2.8)
with extra constraints πAi

= 0. In the quantum mechanics of
such a theory one must then impose the constraints πAi

|ψ〉 = 0
on physical states |ψ〉. This says that any physical state must be
independent to the Lagrange multipliers Ai , which is what one
should have expected.

Appendix B. Equations for λµ from Hamiltonian

In the Hamiltonian formalism for CGR, time derivatives
of some of the primary constraints give rise to Eqs. (A.11)
and (A.12). We will be using these conditions in the following
derivations without mentioning them explicitly. Time deriva-
tives of the rest of the primary constraints generate the equa-
tions of motion for the Lagrange multipliers λµ (up to a surface
term) as we will illustrate in this appendix.

From (A.13) and (A.14) we have

(B.1)λ̇0 = −1

2

∂H0

∂Ñ
= H0 + 2Ñ i∂iλ0

2Ñ
,

(B.2)

λ̇i = ∂H0

2∂Ñ i

= −
√

γ

Ñ
Dj

[
(
√

γ )−1π
j
i

] − ∂iλ0 + Ñj

Ñ
(∂jλi + ∂iλj ).

From the first equation above one immediately finds that up to
a surface term

(B.3)H0 = 2(Ñ λ̇0 + λ0
˙̃
N) = 2∂0(Ñλ0).

Notice that ∂0H0 = 0, and further time derivative of this equa-
tion gives
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(B.4)

0 =
∫

d3x
[
Ñ λ̈0 + 2 ˙̃

Nλ̇0 + λ0∂i
˙̃
Ni

]
=

∫
d3x

[
Ñ λ̈0 − 2Ñ i∂i λ̇0 −

(
γ hij

Ñ
− Ñ iÑ j

Ñ

)
∂i∂jλ0

]
,

which, up to a surface term, reproduces gµν∂µ∂νλ0 = 0.
To make further use of Eq. (B.2) we first notice that up to a

surface term

(B.5)2
∫

d3x
√

γ Dj

[
(
√

γ )−1π
j
i

] =
∫

d3x hjk∂iπ
jk.

Therefore, using the identities πλ0 = −2Ñ and πλi
= 2Ñ i , the

spatial integral of (B.2) can be simplified as

−2
∫

d3x
[
Ñ λ̇i − Ñj ∂jλi

]
(B.6)=

∫
d3x

[
hjk∂iπ

jk + λ0∂iπλ0 + λj∂iπλj

]
.

Likewise, we find that the time derivative of the l.h.s. of this
equation gives

(B.7)

−2
∫

d3x

[
Ñ λ̈i − 2Ñj ∂j λ̇i −

(
γ hjk

Ñ
− Ñj Ñk

Ñ

)
∂j ∂kλi

]
.

To compute the time derivative of the r.h.s. of Eq. (B.6) one
only needs to notice that (up to a surface term)∫

d3x
[
ḣjk∂iπ

jk − ∂ihjkπ̇
jk

]
(B.8)=

∫
d3x

[
∂H

∂πjk
∂iπ

jk + ∂H
∂hjk

∂ihjk

]
.

If we apply this same trick to the last two terms on the r.h.s. of
Eq. (B.6) we find that its time derivative is simply∫

d3x

[
∂H

∂πjk
∂iπ

jk + ∂H
∂hjk

∂ihjk + ∂H
∂πλ0

∂iπλ0

(B.9)

+ ∂H
∂λ0

∂iλ0 + ∂H
∂πλj

∂iπλj
+ ∂H

∂λj

∂iλj

]
=

∫
d3x ∂iH.
Here H is the Hamiltonian density given by (A.15) in which
Ñ and Ñ i are understood as conjugate momenta to λ0 and λi ,
respectively. Therefore, we find

(B.10)Ñ λ̈i − 2Ñj ∂j λ̇i −
(

γ hjk

Ñ
− Ñj Ñk

Ñ

)
∂j ∂kλi = 0,

which is indeed equivalent to gµν∂µ∂νλi = 0.
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