
Extended M-Matrices and Subtangentiality 

Ronald J. Stem* and Michael Tsatsomeros’ 

Department of Mathematics 
Concordia University 
Montreal, Canada 

Submitted by Richard A. Brualdi 

ABSTRACT 

The concept of a singular M-matrix A with respect to a proper cone X is 
extended, by replacing the usual regularity condition A = al - B for a Xnonnegative 
matrix B with the weaker condition, exponential nonnegativity of - A. As in earlier 
work which dealt with the nonsingular case, in the present characterizations the lack 
of regularity is overcome by employing subtangentiality. 

1. INTRODUCTION 

Let X c R” be a proper cone, and let A be a real n X n matrix which is 
S&g&r; that is, A = aI - B for some OL E R and some matrix B which is 
Xnonnegative. Then A is called a K-general M-matrix provided that the 
eigenvalues of A all have nonnegative real parts. Our general reference 
on both singular and nonsingular Sgeneral M-matrices is Berman and 
Plemmons [2], which also contains further bibliographic information. 

The purpose of the present work is to generalize certain results on 
Xgeneral M-matrices given in [2], when the condition of Xregularity is 
replaced by the weaker condition &rponential nonnegativity of - A; that 
is e- “*X c X V t > 0. Unlike several well-known results on M-matrices, in 
tie present work conditions on “extended” M-matrices involving spectral 
radii are not relevant, as regularity may not hold. Also, since we will work 
with general proper cones, it is not surprising that we will consider only 

*This author was supported by NSERC grant A4641. 
’ Presently at the Department of Mathematics, University of Connecticut, Storrs. 

LINEAR ALGEBRA AND ITS APPLICATIONS 97:1-11 (1987) 1 

0 Elsevier Science Publishing Co., Inc., 1987 
52 Vanderbilt Ave., New York, NY 10017 00243795/87/$3.50 



2 RONALD J. STERN AND MICHAEL TSATSOMEROS 

“operator theoretic” properties (spectral conditions, types of monotonicity 
and semipositivity, etc.) as opposed to properties involving “internal struc- 
ture” such as are known in particular for X = R: (e.g. conditions involving 
diagonal dominance, principal minors, etc.). 

The next section contains definitions and preliminary results. Then in 
Section 3, the concept of a Xextended M-matrix is introduced. In the main 
results of that section, we obtain characterizations of sextended M-matrices 
which generalize results in Stem [8], which dealt with the nonsingular case. 
In the present work, as in [8], the lack of regularity is overcome by making 
use of the concept of subtangentiality, which is a geometric condition 
imposed by exponential nonnegativity. Some further results are given in 
Section 4. 

2. DEFINITIONS AND PRELIMINARY RESULTS 

A nonempty set X c R” is said to be a cone if arX c .V Va >, 0. The 
cone X is polyhedral if it is the intersection of a finite number of closed half 
spaces (or equivalently if it is generated by a finite set of vectors). A cone _x? 
is proper if it is closed, convex, pointed (i.e. X n { - K } = {0}), and solid 
(i.e. has a nonempty interior, denoted by int X). 

Now we introduce some required terminology. 

DEFINITION 2.1. Let X c R" be a proper cone. Then for a real n X n 
matrix A we denote 

YA= fi 9?(Am), 
m=O 

where .%‘( 0) denotes range. We say that A is: 

(2.1.1) Swnnegative if AX c Z. 

(2.1.2) .%reguZur if there exist 1y E R and a Xnonnegative matrix B such 
that A = a1 - B. 

(2.1.3) .%xporwntially nonnegative if efAX c _W Vt > 0. 
(2.1.4) Snorwtow on YA if Ax E X, x E YA - x E X. 
(2.1.5) Weakly stubb if Re[Spectrum(A)] 6 0. 
(2.1.6) .%emipositive on Y, if there exists x E X n 9, such that 

AXE {intX}nyA. 
(2.1.7) (.X n YA>zeroed if {X E X n Sp, : Ax E X} = (0). 
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REMARK 2.2. 

(2.2.1) If x = R’J+, the nonnegative orthant, then A is Segular if and 
onlyif aij&Ofori#j. 

(2.2.2) It was proven in [7] that Zregularity of A implies Sexponential 
nonnegativity of - A, with equivalence holding in case .%- is polyhedral. 

Next we review some required basic definitions and known results on 
generalized inverses. (Our reference in this regard is Ben-Israel and Grenville 
[l].) The index of a square matrix A is the smallest nonnegative integer k 
such that rank(Ak”)= rank(Ak). Then sP,=fl~=e%‘(A”‘). A real n X r~ 

matrix X which satisfies XAX = X, AX = XA, AP+‘X = APX Vp >, index(A) 
exists uniquely and is called the Drazin inverse of A, denoted by AD. The 
Drazin inverse of A is a generalized left inverse of A; that is, ADAx = x for 
all x E yA. We also note that 

(2.3) y*fM(A) = (0). 

DEFINITION 2.4. Let A be an n X n matrix, and let x c R” be a proper 
cone. Then a generalized left inverse of A, say Y, is said to be .%wnnegative 
on 9, if Y(xn9a)Cx. 

The following result was proven in Neumann and Plemmons [6] for 
x = R:. (See also Theorem 5.4.24 in [2].) Since the extension to general 
proper cones is straightforward, we omit the proof. 

THEOREM 2.5. For a real n x n matrix A and proper cone X c R”, the 
following statements are equivalent: 

(i) A has a generalized left inverse which is .%wnnegative on Ya, 
(ii) Every generalized left inverse of A is Xizonnegative on Ya. In 

particular AD( Z- n 9,) c .%?. 
(iii) A is Hnorwtone on YA. 

DEFINITION 2.6. For an n x n real matrix A, consider the linear 
autonomous differential equation 

(2.7) f(t) = Ax(t). 

A set r c R” is said to be positively invariant with respect to A if x(O) E r 
implies that x(t) = e”*x(O) E r V t > 0. (If I is a proper cone, the property is 
the same as xexponential nonnegativity of A.) 
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If r c R” is closed and convex, we define the set of mnzero outward unit 
normal vectors to IT at a point x E 8 r (the boundary) as 

N,(x) = {v E Rn: (v, y - x) 6 0 VY E r> llvll = 117 

where I] - 11 denotes the euclidean norm. 

DEFINITION 2.8. For a closed convex set r c R”, a vector z E R” is 
subtangential to r at x E ar if (z, Y) G 0 VV E N,(X). 

The following theorem characterizes positive invariance of a closed convex 
set as equivalent to the velocity vector Ax being “tangent to or pointing into 
the set” for each point x on the boundary of the set. 

THEOREM 2.9. A closed convex set r c R” is positively invariant with 
respect to A if and only if Ax is subtangential to x for every x E al?. 

We shall require the following lemma. 

LEMMA 2.10. Let X c R” be a proper cone. Then: 

(2.10.1) +, r) = 0 ax E ax-, vv E iqx). 
(2.10.2) If A is Xexponentiully nonnegative and x E R” is such that 

Ax E X, then the shified cone {x + X} is positively invariant. 

Theorem 2.9 is proven in Stem [9], and is based on a result of Nagumo 
[5]. The proof of the Lemma 2.10 can be found in [8]. We also shall make use 
of the following. 

THEOREM 2.11 (Elsner [3], Schneider and Vidyasagar [7]). Let X c R” 
beapropercone. Zfe’*XcX t/t>0 then 

X,=max{ReX:XESpectrum(A)) 

is an eigenvalue of A and has an associated eigenvector in X. 

The dual cone of a set r c R” is denoted 

r*= {yER”:(y,x)>,OVxEr}. 

The proof of the next lemma (which can be found in [8]) follows readily 
from the fact that 

(Y*)* = X for any proper cone X. 
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LEMMA 2.12. Let .X c R” be a proper cone. Then for any t E R 

etAXCX a etATX* C X*. 

Finally, we have the following lemma, which is a straightforward conse- 
quence of (2.10.1). 

LEMMA 2.13. Let X c R” be a proper cone. Then 

3. EXTENDED M-MATRICES 

In the following theorem we shall use the fact that if Re[Spectrum( A)] < 0, 
then the origin is a stable equilibrium of the differential equation (2.7.1); 
that is, etAX -+ 0 as t + 00 for every x E R”. 

THEOREM 3.1. Let X c R” be a proper cone, and let A be a real n x n 
matrix such that - A is .%exponentially nonnegative. Then the following are 
equivalent: 

(i) - A is (-Xr n S,>zeroed. 
(ii) A is %nomtone on S,. 
(iii) - A is weakly stable. 

Proof. (i) * (iii): Suppose that (i) holds but that (iii) did not hold. Then 
there exists A E Spectrum( - A) such that Reh > 0, whence A_, > 0. 
Furthermore, in view of Theorem 2.11, the .%exponential nonnegativity of 
- A implies that h_ A is an eigenvalue of - A with an associated eigenvec- 
tor x~3tr. Since (-A)“x=(X_,)“x for all m=0,1,2,..., we have 0+x 
E x I-I YA and - Ax E 9’“, which violates (i). 

(iii) j (ii): If .V n YA = (0) then A is trivially .%monotone on YA. Hence 
we shall assume that .z? n YA # (0) and that (iii) holds. Suppose that A were 
not Zmonotone on 9,. Then there exists x E R” such that Ax E Z, 
x E 9*, and x @ .Y. According to Lemma 2.10, the shifted cone { - x + .Y } 
is positively invariant with respect to - A. Since 0 e { - x + x }, the 
closedness of { - x + x } then implies that it is impossible for e- LAx + 0 as 
t + CO. Now viewing x n YA as a proper cone in the A-invariant subspace 
YA, and upon letting A denote the restriction of A to YA, Theorem 2.11 
implies that there exists 0 # x^ E .W n YA such that - AZ = A _#. Since 
x E Y* and e- “Ax + 0 as t + co, it follows that - x is not a stability matrix, 
and since YA nJlr(A)= {0}, we have A-,-+0. Hence O<X_,-GX_~, 
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which implies that some eigenvalue of A has negative real part, thus violating 
(iii). 

(ii) * (i): If (i) does not hold, then there exists 0 # x E X n Y* such that 
- Ax E Y. Then (ii) implies - x E .X, which violates the pointedness of .Z”. 

n 

DEFINITION 3.2. Let Y c R” be a proper cone. If A is Xexponentially 
nonnegative and A satisfies any of the equivalent conditions in Theorem 3.1, 
then A is called %xtended M-matrix. 

REMARK 3.3. In view of Remark 2.2.2, the concepts of .%general and 
Xextended M-matrices are identical in case X is polyhedral. A example of a 
singular Xextended M-matrix which is not a Xgeneral M-matrix is provided 
by the ice-cream cone 2 = {x E R3: X: + ~2” < x& x3 > 0} and 

since as is readily checked, - A is Xexponentially nonnegative and weakly 
stable, while A is not Xregular. 

THEOREM 3.4. LetXcR”beapropercone,andbt -Abe% 
exponentially nonnegative. Assume further that 

(3.5) {intX}nYA#O. 

Then A is a Zxxtended M-matrix if and only if A is Xkmipositive on 9,. 

Proof. First assume that A is a sextended M-matrix. Then A is 
Xmonotone on 9*. In view of Theorem 2.5, the Drazin inverse A” is then 
Xionnegative on 9*. Let 0 # d E {int X } f~ 9*. Then 

x=ADd~.O-W” =c. Ax=AADd=d. 

Since x E X n 9” and Ax E {int X} n YA, we conclude that A is Xsemi- 
positive on Y*. 

Now assume that A is Xsemipositive on 9,. Let x E X n Y’ be such 
that Ax E {int X} n YA. We will show that AT is a X*-extended M-matrix. 
(In view of Lemma 2.12 and Theorem 3.1, this will suffice.) Suppose by way 
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of contradiction that AT were not a Y*-extended M-matrix. Then because of 
Theorem 3.1 [and condition (i) in particular] there would necessarily exist a 
vector 0 # u E X* n 9”~ such that - ATu E X*. Since x E X, it follows 
that (x, ATu) < 0. But 

O#UE.%?*, AxEintX * (Ax,u)=(x,AT~)>O, 

which provides the required contradiction. n 

4. FURTHER RESULTS 

We begin with a generalization of Lemma 6.4.1 of [2]. 

LEMMA 4.1. Let X c R” be a proper cone. Then A is a sextended 
M-matrix if and only if A + EI is a nonsingular sextended M-matrix V’E > 0. 

Proof. Let A be a Xextended M-matrix, and let E > 0. Then the 
eigenvalues of A + EZ all have positive real parts. Furthermore, since 
e-t(A+el)x = e- 

‘Ee-“AX c X, it follows that A + ~1 is a nonsingular X 
extended M-matrix. This proves the “only if” part of the lemma. In order to 
prove the “if,” assume that A + eZ is a Xextended M-matrix for every E > 0, 
and let E -+ 0. Then clearly the eigenvalues of A all have nonnegative real 
parts. Furthermore, since 

e -tAx=,- tA-te+tex = etEe-t(A+&Z)x c x, 

it follows that A is a sextended M-matrix. n 

REMARK 4.2. Since the set of Xexponentially nonnegative matrices is 
the closure of the set of Xregular matrices (see [7]), the above lemma readily 
implies that every Xextended M-matrix is the limit of Xgeneral M-matrices. 

The “if” part of the next result follows from Satz 1 in Elsner [4]. It 
generalizes part of Theorem 6.4.7 in [2], where it was assumed that .Y = R: 
and regularity was explicitly used. We present a proof which makes use of 
subtangentiality. 

THEOREM 4.3. Let X c R” be a proper cone. Then A is an extended 
M-matrix if and only if A + ~1 is .%mrwtone on R” VE > 0. 
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Proof. “Only if”: Let A be a xextended M-matrix. Then according to 
Lemma 4.1, A + EZ is a nonsingular sextended M-matrix V’E > 0, and 
consequently A + EZ is %monotone on Ya = R”. 

“If”: Assume that A + EZ is smonotone on Rn for every E > 0. First we 
will prove that - A is .%exponentially nonnegative. Suppose not. Then by 
Theorem 2.9 there exists g E 6’x such that (v, - Ag) > 0 for a vector 
v E N,(g). For sufficiently small E > 0, EA + Z is nonsingular and the second 
term dominates the series expansion. 

(EA+~)-1=~-EA+(EA)2-(EA)3+ . . . . 

Then 

-1 g = EV*( EA + Z) - ‘g = s[ v’g - sv*Ag + s2vTA2g - . . . ] > 0, 

since v’g = 0 (by Lemma 2.10). In view of Lemma 2.13, this implies that 
[A + (l/s)Z] ~ ‘g 4 Y for small E > 0, contradicting the fact that g E x and 
the smonotonicity of A + (l/s)Z. Hence - A is xexponentially nonnega- 
tive, and it readily follows that - (A + &I) is %exponentially nonnegative as 
well, V(E > 0. Hence (A + EZ) is a .Kextended M-matrix VE > 0. Since % 
monotonicity on R” implies nonsingularity, an application of Lemma 4.1 
completes the proof. n 

A matrix A E R”‘” was called almost monotone in [2] if Ax 2 0 3 
Ax = 0. The analagous property for general proper cones is given next. 

DEFINITION 4.4. Let x c R” be a proper cone. Then a real n X n 
matrix is said to be almost Xinorwtone provided that Ax E .Y * AX = 0. 

THEOREM 4.5. Let .W E R” be a proper cone, and let A be a singular 
Sextended M-matrix such that A has rw left eigenvector in a( .%‘*). Then A is 
almost 33nonotone. 

Proof. Since AT is a singular x*-extended M-matrix, we have XAr = 0. 
Our hypotheses imply that there exists y E int(x*) such that Ary = 0. Now 
let x E R” be such that Ax E x. If Ax # 0 then (y, Ax) = (A*y, x) > 0, a 
contradiction. n 
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Next we generalize a result of Varga [lo] (see also [2, Section 6.3]), which 
was obtained for X = RT by using analytic function methods. 

LEMMA 4.6. Let A be a nonsingular real n X n matrix, and kt y C R" 

be a proper COW. Then: 

(4.6.1) A-'[ et* - I] Y c ST t/t > 0 w .X is positively invariant with 
respect to A. 

(4.6.2) A-‘[e’* - Z](X/{O}) C int X V t > 0 * .Y is positively 
invariant with respect to A, and A contains rw eigenvector in 132. 

Proof. “ e ” in (4.6.1): For g E R” and t >, 0 let us define the R”-val- 
ued function 

x(t,g)=A-‘[et*-Z]g. 

Note that i(t, g) = e’*g and that ~(0, g) = 0. Therefore 

x( t, g) = JgkSAgdS. 

Now let g E X. Since e’*g E X for all t > 0, we have x(t, g) = j,‘e”*gd.s E .X? 
for all t > 0, by Riemann sum approximation and conicity. 

“ * ” in (4.6.1): Suppose that Y were not positively invariant with 
respect to A. Then there exists g E c?X such that Ag is not subtangential to 
X at g; that is, there exists Y E J$(g) such that (Y, Ag) > 0, and therefore 
(Y, %(O, g)) = (v, Ag) > 0. I n view of Lemma 2.10.1 we have (v, g) = 
(z(O, g)) = 0. Hence there exists T > 0 such that 

Since x(0, g) = 0, it follows that (v, x(t, g)) > 0 for alI t E (O,T], and by 
Lemma 2.13, x(t, g) E X for aU t E (O,T], which yields the required 
contradiction. 

Proof of (4.6.2): From (4.6.1) we already know that .W is positively 
invariant with respect to A. Suppose by way of contradiction that the 
(nonsingular) matrix A had an eigenvector in the boundary of X. That is, 
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suppose that there exists 0 # X E R and 0 # g E aX such that Ag = Xg. 
Then 

x(t,g)=$e~"-l]gEax forall t>O, 

which violates the left hand side of (4.6.2). 

The following two results are immediate consequences of Lemma 4.6. 

THEOREM 4.7. Let X c R” be a proper cone, and suppose that A is a 
nonsingular sextended M-matrix. Then 

V-8) ~-‘[z-~-tA ](X\{O}) c X\(O) forall t > 0. 

Furthermore, we have 

(4.9) A~‘[Z-e-fA](X\{O})CintX for all t > 0 

only if A has no eigenvector in 8X. 

THEOREM 4.10. Let X c R be a proper cone, and let A be a real n X n 
nonsingular matrix. Assume that all the eigenvalues of A have nonnegative 
real parts. Then (4.8) holds if and only if A is a nonsingulur .%%xtended 
M-matrix. Furthermore, (4.9) holds only if A is a nonsingular sextended 
M-matrix which has rw eigenvector in a_%?. 

As a concluding comment we have the following. 

REMARK 4.11. It is possible to prove ,ingular versions of Theorems 4.7 
and 4.10 in which AD replaces A - l. In the expressions (4.8) and (4.9) one 
replaces .X? with X 0 yA, which is then treated as a proper cone in YA. (It 
is then required to work with boundary arid interior relative to YA). 
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