Extended \boldsymbol{M}-Matrices and Subtangentiality

Ronald J. Stern* and Michael Tsatsomeros ${ }^{\dagger}$
Department of Mathematics
Concordia University
Montreal, Canada

Submitted by Richard A. Brualdi

Abstract

The concept of a singular M-matrix A with respect to a proper cone \mathscr{K} is extended, by replacing the usual regularity condition $A=\alpha I-B$ for a \mathscr{K}-nonnegative matrix B with the weaker condition, exponential nonnegativity of $-A$. As in earlier work which dealt with the nonsingular case, in the present characterizations the lack of regularity is overcome by employing subtangentiality.

1. INTRODUCTION

Let $\mathscr{K} \subset R^{n}$ be a proper cone, and let A be a real $n \times n$ matrix which is \mathscr{K}-regular; that is, $A=\alpha I-B$ for some $\alpha \in R$ and some matrix B which is \mathscr{K}-nonnegative. Then A is called a K-general M-matrix provided that the eigenvalues of A all have nonnegative real parts. Our general reference on both singular and nonsingular \mathscr{K}-general M-matrices is Berman and Plemmons [2], which also contains further bibliographic information.

The purpose of the present work is to generalize certain results on \mathscr{K}-general M-matrices given in [2], when the condition of \mathscr{K}-regularity is replaced by the weaker condition \mathscr{K} exponential nonnegativity of $-A$; that is, $e^{-t A} \mathscr{K} \subset \mathscr{K} \quad \forall t \geqslant 0$. Unlike several well-known results on M-matrices, in the present work conditions on "extended" M-matrices involving spectral radii are not relevant, as regularity may not hold. Also, since we will work with general proper cones, it is not surprising that we will consider only

[^0]"operator theoretic" properties (spectral conditions, types of monotonicity and semipositivity, etc.) as opposed to properties involving "internal structure" such as are known in particular for $\mathscr{K}=R_{+}^{n}$ (e.g. conditions involving diagonal dominance, principal minors, etc.).

The next section contains definitions and preliminary results. Then in Section 3, the concept of a \mathscr{K}-extended M-matrix is introduced. In the main results of that section, we obtain characterizations of \mathscr{K} extended M-matrices which generalize results in Stern [8], which dealt with the nonsingular case. In the present work, as in [8], the lack of regularity is overcome by making use of the concept of subtangentiality, which is a geometric condition imposed by exponential nonnegativity. Some further results are given in Section 4.

2. DEFINITIONS AND PRELIMINARY RESULTS

A nonempty set $\mathscr{K} \subset R^{n}$ is said to be a cone if $\alpha \mathscr{K} \subset \mathscr{K} \forall \alpha \geqslant 0$. The cone \mathscr{K} is polyhedral if it is the intersection of a finite number of closed half spaces (or equivalently if it is generated by a finite set of vectors). A cone \mathscr{K} is proper if it is closed, convex, pointed (i.e. $\mathscr{K} \cap\{-K\}=\{0\}$), and solid (i.e. has a nonempty interior, denoted by int \mathscr{K}).

Now we introduce some required terminology.

Definition 2.1. Let $\mathscr{K} \subset R^{n}$ be a proper cone. Then for a real $n \times n$ matrix A we denote

$$
\mathscr{S}_{A}=\bigcap_{m=0}^{\infty} \mathscr{R}\left(A^{m}\right)
$$

where $\mathscr{R}(\cdot)$ denotes range. We say that A is:
(2.1.1) \mathscr{K}-nonnegative if $A \mathscr{K} \subset \mathscr{K}$.
(2.1.2) \mathscr{K}-regular if there exist $\alpha \in R$ and a \mathscr{K}-nonnegative matrix B such that $\Lambda=\alpha I \quad B$.
(2.1.3) \mathscr{K} exponentially nonnegative if $e^{t A} \mathscr{K} \subset \mathscr{K} \forall t \geqslant 0$.
(2.1.4) \mathscr{K}-monotone on \mathscr{S}_{A} if $A x \in \mathscr{K}, x \in \mathscr{S}_{A} \Rightarrow x \in \mathscr{K}$.
(2.1.5) Weakly stable if $\operatorname{Re}[\operatorname{Spectrum}(A)] \leqslant 0$.
(2.1.6) \mathscr{K}-semipositive on \mathscr{S}_{A} if there exists $x \in \mathscr{K} \cap \mathscr{S}_{A}$ such that $A x \in\{\operatorname{int} \mathscr{K}\} \cap \mathscr{S}_{A}$.
(2.1.7) $\left(\mathscr{K} \cap \mathscr{S}_{A}\right)$-zeroed if $\left\{x \in \mathscr{K} \cap \mathscr{P}_{A}: A x \in \mathscr{K}\right\}=\{0\}$.

Remark 2.2.

(2.2.1) If $\mathscr{K}=R_{+}^{n}$, the nonnegative orthant, then A is \mathscr{K}-regular if and only if $a_{i j} \leqslant 0$ for $\boldsymbol{i} \neq \boldsymbol{j}$.
(2.2.2) It was proven in [7] that \mathscr{K}-regularity of A implies \mathscr{K} exponential nonnegativity of $-A$, with equivalence holding in case \mathscr{K} is polyhedral.

Next we review some required basic definitions and known results on generalized inverses. (Our reference in this regard is Ben-Israel and Grenville [1].) The index of a square matrix A is the smallest nonnegative integer k such that $\operatorname{rank}\left(A^{k+1}\right)=\operatorname{rank}\left(A^{k}\right)$. Then $\mathscr{S}_{A}=\bigcap_{m=0}^{k} \mathscr{R}\left(A^{m}\right)$. A real $n \times n$ matrix X which satisfies $X A X=X, A X=X A, A^{p+1} X=A^{p} X \forall p \geqslant \operatorname{index}(A)$ exists uniquely and is called the Drazin inverse of A, denoted by A^{D}. The Drazin inverse of A is a generalized left inverse of A; that is, $A^{D} A x=x$ for all $x \in \mathscr{S}_{A}$. We also note that

$$
\begin{equation*}
\mathscr{S}_{A} \cap \mathscr{N}(A)=\{0\} . \tag{2.3}
\end{equation*}
$$

Definition 2.4. Let A be an $n \times n$ matrix, and let $\mathscr{K} \subset R^{n}$ be a proper cone. Then a generalized left inverse of A, say Y, is said to be \mathscr{K}-nonnegative on \mathscr{S}_{A} if $Y\left(\mathscr{K} \cap \mathscr{S}_{A}\right) \subset \mathscr{K}$.

The following result was proven in Neumann and Plemmons [6] for $\mathscr{K}=R_{+}^{n}$. (See also Theorem 5.4.24 in [2].) Since the extension to general proper cones is straightforward, we omit the proof.

Theorem 2.5. For a real $n \times n$ matrix A and proper cone $\mathscr{K} \subset R^{n}$, the following statements are equivalent:
(i) A has a generalized left inverse which is \mathscr{K}-nonnegative on \mathscr{S}_{A}.
(ii) Every generalized left inverse of A is \mathscr{K}-nonnegative on \mathscr{S}_{A}. In particular $A^{D}\left(\mathscr{K} \cap \mathscr{S}_{\mathrm{A}}\right) \subset \mathscr{K}$.
(iii) A is \mathscr{K}-monotone on \mathscr{S}_{A}.

Definition 2.6. For an $n \times n$ real matrix A, consider the linear autonomous differential equation

$$
\begin{equation*}
\dot{x}(t)=A x(t) \tag{2.7}
\end{equation*}
$$

A set $\Gamma \subset R^{n}$ is said to be positively invariant with respect to A if $x(0) \in \Gamma$ implies that $x(t)=e^{t A} x(0) \in \Gamma \forall t \geqslant 0$. (If Γ is a proper cone, the property is the same as \mathscr{K}-exponential nonnegativity of A.)

If $\Gamma \subset R^{n}$ is closed and convex, we define the set of nonzero outward unit normal vectors to Γ at a point $x \in \partial \Gamma$ (the boundary) as

$$
N_{\Gamma}(x)=\left\{\nu \in R^{n}:\langle\nu, y-x\rangle \leqslant 0 \forall y \in \Gamma,\|\nu\|=1\right\},
$$

where $\|\cdot\|$ denotes the euclidean norm.
Definition 2.8. For a closed convex set $\Gamma \subset R^{n}$, a vector $z \in R^{n}$ is subtangential to Γ at $x \in \partial \Gamma$ if $\langle z, \nu\rangle \leqslant 0 \forall \nu \in N_{\Gamma}(x)$.

The following theorem characterizes positive invariance of a closed convex set as equivalent to the velocity vector $A x$ being "tangent to or pointing into the set" for each point x on the boundary of the set.

Theorem 2.9. A closed convex set $\Gamma \subset R^{n}$ is positively invariant with respect to A if and only if $A x$ is subtangential to x for every $x \in \partial \Gamma$.

We shall require the following lemma.

Lemma 2.10. Let $\mathscr{K} \subset R^{n}$ be a proper cone. Then:
(2.10.1) $\langle\nu, x\rangle=0 \forall x \in \partial \mathscr{K}, \forall \nu \in N_{\mathscr{H}}(x)$.
(2.10.2) If A is \mathscr{K}-exponentially nonnegative and $x \in R^{n}$ is such that $A x \in \mathscr{K}$, then the shifted cone $\{x+\mathscr{K}\}$ is positively invariant.

Theorem 2.9 is proven in Stern [9], and is based on a result of Nagumo [5]. The proof of the Lemma 2.10 can be found in [8]. We also shall make use of the following.

Theorem 2.11 (Elsner [3], Schneider and Vidyasagar [7]). Let $\mathscr{K} \subset R^{n}$ be a proper cone. If $e^{t A} \mathscr{K} \subset \mathscr{K} \quad \forall t \geqslant 0$ then

$$
\lambda_{A}=\max \{\operatorname{Re} \lambda: \lambda \in \operatorname{Spectrum}(A)\}
$$

is an eigenvalue of A and has an associated eigenvector in \mathscr{K}.
The dual cone of a set $\Gamma \subset R^{n}$ is denoted

$$
\Gamma^{*}=\left\{y \in R^{n}:\langle y, x\rangle \geqslant 0 \forall x \in \Gamma\right\}
$$

The proof of the next lemma (which can be found in [8]) follows readily from the fact that

$$
\left(\mathscr{K}^{*}\right)^{*}=\mathscr{K} \quad \text { for any proper cone } \mathscr{K} .
$$

Lemma 2.12. Let $\mathscr{K} \subset R^{n}$ be a proper cone. Then for any $t \in R$

$$
e^{t A} \mathscr{K} \subset \mathscr{K} \quad \Leftrightarrow \quad e^{t A^{T}} \mathscr{K}^{*} \subset \mathscr{K}^{*}
$$

Finally, we have the following lemma, which is a straightforward consequence of (2.10.1).

Lemma 2.13. Let $\mathscr{K} \subseteq R^{n}$ be a proper cone. Then

$$
N_{\mathscr{K}}(x) \subset-\left(\mathscr{K}^{*}\right) \quad \forall x \in \partial \mathscr{K}
$$

3. EXTENDED M-MATRICES

In the following theorem we shall use the fact that if $\operatorname{Re}[\operatorname{Spectrum}(A)]<0$, then the origin is a stable equilibrium of the differential equation (2.7.1); that is, $e^{t A} x \rightarrow 0$ as $t \rightarrow \infty$ for every $x \in R^{n}$.

Theorem 3.1. Let $\mathscr{K} \subset R^{n}$ be a proper cone, and let A be a real $n \times n$ matrix such that $-A$ is \mathscr{K} exponentially nonnegative. Then the following are equivalent:
(i) -A is $\left(\mathscr{K} \cap \mathrm{S}_{\mathrm{A}}\right)$-zeroed.
(ii) A is $\not \mathscr{K}$-monotone on S_{A}.
(iii) $-A$ is weakly stable.

Proof. (i) \Rightarrow (iii): Suppose that (i) holds but that (iii) did not hold. Then there exists $\lambda \in \operatorname{Spectrum}(-A)$ such that $\operatorname{Re} \lambda>0$, whence $\lambda_{-A}>0$. Furthermore, in view of Theorem 2.11, the \mathscr{K} exponential nonnegativity of - A implies that λ_{-A} is an eigenvalue of $-A$ with an associated eigenvector $x \in \mathscr{K}$. Since $(-A)^{m} x=\left(\lambda_{-A}\right)^{m} x$ for all $m=0,1,2, \ldots$, we have $0 \neq x$ $\in \mathscr{K} \cap \mathscr{S}_{A}$ and $-A x \in \mathscr{K}$, which violates (i).
(iii) \Rightarrow (ii): If $\mathscr{K} \cap \mathscr{S}_{A}=\{0\}$ then A is trivially \mathscr{K}-monotone on \mathscr{S}_{A}. Hence we shall assume that $\mathscr{K} \cap \mathscr{S}_{A} \neq\{0\}$ and that (iii) holds. Suppose that A were not \mathscr{K}-monotone on \mathscr{S}_{A}. Then there exists $x \in R^{n}$ such that $A x \in \mathscr{K}$, $x \in \mathscr{S}_{A}$, and $x \notin \mathscr{K}$. According to Lemma 2.10, the shifted cone $\{-x+\mathscr{K}\}$ is positively invariant with respect to $-A$. Since $0 \notin\{-x+\mathscr{K}\}$, the closedness of $\{-x+\mathscr{K}\}$ then implies that it is impossible for $e^{-t A} x \rightarrow 0$ as $t \rightarrow \infty$. Now viewing $\mathscr{K} \cap \mathscr{S}_{A}$ as a proper cone in the A-invariant subspace \mathscr{S}_{A}, and upon letting \bar{A} denote the restriction of A to \mathscr{S}_{A}, Theorem 2.11 implies that there exists $0 \neq \hat{x} \in \mathscr{K} \cap \mathscr{S}_{A}$ such that $-A \hat{x}=\lambda_{-\bar{A}} \hat{x}$. Since $x \in \mathscr{S}_{A}$ and $e^{-t A} x \nrightarrow 0$ as $t \rightarrow \infty$, it follows that $-\bar{A}$ is not a stability matrix, and since $\mathscr{S}_{A} \cap \mathscr{N}(A)=\{0\}$, we have $\lambda_{-\bar{A}} \neq 0$. Hence $0<\lambda_{-\bar{A}} \leqslant \lambda_{-A}$,
which implies that some eigenvalue of A has negative real part, thus violating (iii).
(ii) \Rightarrow (i): If (i) does not hold, then there exists $0 \neq x \in \mathscr{K} \cap \mathscr{S}_{A}$ such that $-A x \in \mathscr{K}$. Then (ii) implies $-x \in \mathscr{K}$, which violates the pointedness of \mathscr{K}.

Definition 3.2. Let $\mathscr{K} \subset R^{n}$ be a proper cone. If A is \mathscr{K}-exponentially nonnegative and A satisfies any of the equivalent conditions in Theorem 3.1, then A is called \mathscr{K}-extended M-matrix.

Remark 3.3. In view of Remark 2.2.2, the concepts of \mathscr{K}-general and \mathscr{K}-extended M-matrices are identical in case \mathscr{K} is polyhedral. A example of a singular \mathscr{K}-extended M-matrix which is not a \mathscr{K}-general M-matrix is provided by the ice-cream cone $\mathscr{K}=\left\{x \in R^{3}: x_{1}^{2}+x_{2}^{2} \leqslant x_{3}^{2}, x_{3} \geqslant 0\right\}$ and

$$
A=\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

since as is readily checked, $-A$ is \mathscr{K} exponentially nonnegative and weakly stable, while A is not \mathscr{K}-regular.

Theorem 3.4. Let $\mathscr{K} \subset R^{n}$ be a proper cone, and let - A be $\not \mathscr{K}$ exponentially nonnegative. Assume further that

$$
\begin{equation*}
\{\text { int } \mathscr{K}\} \cap \mathscr{S}_{A} \neq \varnothing \text {. } \tag{3.5}
\end{equation*}
$$

Then A is a \mathscr{K} extended M-matrix if and only if A is \mathscr{K}-semipositive on \mathscr{S}_{A}.

Proof. First assume that A is a \mathscr{K} extended M-matrix. Then A is \mathscr{K}-monotone on \mathscr{S}_{A}. In view of Theorem 2.5 , the Drazin inverse A^{D} is then \mathscr{K}-nonnegative on \mathscr{S}_{A}. Let $0 \neq d \in\{$ int $\mathscr{K}\} \cap \mathscr{S}_{\mathrm{A}}$. Then

$$
x=A^{D} d \in \mathscr{K} \cap \mathscr{S}_{A} \quad \Rightarrow \quad \Lambda x=\Lambda A^{D} d=d
$$

Since $x \in \mathscr{K} \cap \mathscr{S}_{A}$ and $A x \in\{$ int $\mathscr{K}\} \cap \mathscr{S}_{A}$, we conclude that A is \mathscr{K}-semipositive on \mathscr{S}_{A}.

Now assume that A is \mathscr{K}-semipositive on \mathscr{S}_{A}. Let $x \in \mathscr{K} \cap \mathscr{S}_{A}$ be such that $A x \in\{$ int $\mathscr{K}\} \cap \mathscr{S}_{A}$. We will show that A^{T} is a \mathscr{K}^{*}-extended M-matrix. (In view of Lemma 2.12 and Theorem 3.1, this will suffice.) Suppose by way
of contradiction that A^{T} were not a \mathscr{K}^{*}-extended M-matrix. Then because of Theorem 3.1 [and condition (i) in particular] there would necessarily exist a vector $0 \neq u \in \mathscr{K}^{*} \cap \mathscr{S}_{A^{T}}$ such that $-A^{T} u \in \mathscr{K}^{*}$. Since $x \in \mathscr{K}$, it follows that $\left\langle x, A^{T} u\right\rangle \leqslant 0$. But

$$
0 \neq u \in \mathscr{K}^{*}, \quad A x \in \operatorname{int} \mathscr{K} \quad \Rightarrow \quad\langle A x, u\rangle=\left\langle x, A^{T} u\right\rangle>0
$$

which provides the required contradiction.

4. FURTHER RESULTS

We begin with a generalization of Lemma 6.4.1 of [2].

Lemma 4.1. Let $\mathscr{K} \subset R^{n}$ be a proper cone. Then A is a \mathscr{K}-extended M-matrix if and only if $A+\varepsilon I$ is a nonsingular \mathscr{K}-extended M-matrix $\forall \varepsilon>0$.

Proof. Let A be a \mathscr{K}-extended M-matrix, and let $\varepsilon>0$. Then the eigenvalues of $A+\varepsilon I$ all have positive real parts. Furthermore, since $e^{-t(A+\varepsilon I)} \mathscr{K}=e^{-t \varepsilon} e^{-t A} \mathscr{K} \subset \mathscr{K}$, it follows that $A+\varepsilon I$ is a nonsingular $\mathscr{K}-$ extended M-matrix. This proves the "only if" part of the lemma. In order to prove the "if," assume that $A+\varepsilon I$ is a \mathscr{K} extended M-matrix for every $\varepsilon>0$, and let $\varepsilon \rightarrow 0$. Then clearly the eigenvalues of A all have nonnegative real parts. Furthermore, since

$$
e^{-t A} \mathscr{K}=e^{-t A-t \varepsilon+t_{\varepsilon} \mathscr{K}}=e^{t_{\varepsilon}} e^{-t(A+\varepsilon I)} \mathscr{K} \subset \mathscr{K},
$$

it follows that A is a \mathscr{K}-extended M-matrix.

Remark 4.2. Since the set of \mathscr{K}-exponentially nonnegative matrices is the closure of the set of \mathscr{K}-regular matrices (see [7]), the above lemma readily implies that every \mathscr{K}-extended M-matrix is the limit of \mathscr{K}-general M-matrices.

The "if" part of the next result follows from Satz 1 in Elsner [4]. It generalizes part of Theorem 6.4.7 in [2], where it was assumed that $\mathscr{K}=R_{+}^{n}$ and regularity was explicitly used. We present a proof which makes use of subtangentiality.

Theorem 4.3. Let $\mathscr{K} \subset R^{n}$ be a proper cone. Then A is an extended M-matrix if ard only if $A+\varepsilon I$ is \mathscr{K}-monotone on $R^{n} \forall \varepsilon>0$.

Proof. "Only if": Let A be a \mathscr{K}-extended M-matrix. Then according to Lemma 4.1, $A+\varepsilon I$ is a nonsingular \mathscr{K}-extended M-matrix $\forall \varepsilon>0$, and consequently $A+\varepsilon I$ is $\mathscr{\mathscr { } \text { -monotone on } \mathscr { S } _ { A } = R ^ { n } \text { . }}$
"If": Assume that $A+\varepsilon I$ is \mathscr{K}-monotone on R^{n} for every $\varepsilon>0$. First we will prove that $-A$ is \mathscr{K} exponentially nonnegative. Suppose not. Then by Theorem 2.9 there exists $g \in \partial \mathscr{K}$ such that $\langle\nu,-A g\rangle>0$ for a vector $\nu \in N_{\mathscr{X}}(\mathrm{g})$. For sufficiently small $\varepsilon>0, \varepsilon A+I$ is nonsingular and the second term dominates the series expansion.

$$
(\varepsilon A+I)^{-1}=L-\varepsilon A+(\varepsilon A)^{2}-(\varepsilon A)^{3}+\cdots .
$$

Then
$\nu^{T}\left(A+\frac{1}{\varepsilon} I\right)^{-1} g=\varepsilon \nu^{T}(\varepsilon A+I)^{-1} g=\varepsilon\left[\nu^{T} g-\varepsilon \nu^{T} A g+\varepsilon^{2} \nu^{T} A^{2} g-\cdots\right]>0$,
since $\nu^{T} \mathrm{~g}=0$ (by Lemma 2.10). In view of Lemma 2.13, this implies that $[A+(1 / \varepsilon) I]^{-1} g \notin \mathscr{K}$ for small $\varepsilon>0$, contradicting the fact that $g \in \mathscr{K}$ and the \mathscr{K}-monotonicity of $A+(1 / \varepsilon) I$. Hence $-A$ is \mathscr{K}-exponentially nonnegative, and it readily follows that $-(A+\varepsilon I)$ is \mathscr{K}-xponentially nonnegative as well, $\forall \varepsilon>0$. Hence $(A+\varepsilon I)$ is a \mathscr{K}-extended M-matrix $\forall \varepsilon>0$. Since $\mathscr{K}=$ monotonicity on R^{n} implies nonsingularity, an application of Lemma 4.1 completes the proof.

A matrix $A \in R^{n \times n}$ was called almost monotone in [2] if $A x \geq 0 \Rightarrow$ $A x=0$. The analagous property for general proper cones is given next.

Definition 4.4. Let $\mathscr{K} \subset R^{n}$ be a proper cone. Then a real $n \times n$ matrix is said to be almost \mathscr{K}-monotone provided that $A x \in \mathscr{K} \Rightarrow A x=0$.

Theorem 4.5. Let $\mathscr{K} \in R^{n}$ be a proper cone, and let A be a singular \mathscr{K}-extended M-matrix such that A has no left eigenvector in $\partial\left(\mathscr{K}^{*}\right)$. Then A is almost \mathscr{K}-monotone.

Proof. Since A^{T} is a singular \mathscr{K}^{*}-extended M-matrix, we have $\lambda_{A^{T}}=0$. Our hypotheses imply that there exists $y \in \operatorname{int}\left(\mathscr{K}^{*}\right)$ such that $A^{T} y=0$. Now let $x \in R^{n}$ be such that $A x \in \mathscr{K}$. If $A x \neq 0$ then $\langle y, A x\rangle=\left\langle A^{T} y, x\right\rangle>0$, a contradiction.

Next we generalize a result of Varga [10] (see also [2, Section 6.3]), which was obtained for $\mathscr{K}=R_{+}^{n}$ by using analytic function methods.

Lemma 4.6. Let A be a nonsingular real $n \times n$ matrix, and let $\mathscr{K} \subset R^{n}$ be a proper cone. Then:
(4.6.1) $A^{-1}\left[e^{t A}-I\right] \mathscr{K} \subset \mathscr{K} \forall t \geqslant 0 \Leftrightarrow \mathscr{K}$ is positively invariant with respect to A.
(4.6.2) $A^{-1}\left[e^{t A}-I\right](\mathscr{K} /\{0\}) \subset$ int $\mathscr{K} \quad \forall t>0 \Rightarrow \mathscr{K} \quad$ is positively invariant with respect to A, and A contains no eigenvector in $\partial \mathscr{K}$.

Proof. " \Leftarrow " in (4.6.1): For $g \in R^{n}$ and $t \geqslant 0$ let us define the R^{n}-valued function

$$
x(t, g)=A^{-1}\left[e^{t A}-I\right] g
$$

Note that $\dot{x}(t, g)=e^{t A} g$ and that $x(0, g)=0$. Therefore

$$
x(t, g)=\int_{0}^{t} e^{s A} \mathrm{~g} d s
$$

Now let $g \in \mathscr{K}$. Since $e^{t A} g \in \mathscr{K}$ for all $t \geqslant 0$, we have $x(t, g)=\int_{0}^{t} e^{s A} g d s \in \mathscr{K}$ for all $t \geqslant 0$, by Riemann sum approximation and conicity.
" \Rightarrow " in (4.6.1): Suppose that \mathscr{K} were not positively invariant with respect to A. Then there exists $g \in \partial \mathscr{K}$ such that $A g$ is not subtangential to \mathscr{K} at g; that is, there exists $\nu \in \mathscr{N}_{\mathscr{K}}(g)$ such that $\langle\nu, A g\rangle>0$, and therefore $\langle\nu, \ddot{x}(0, g)\rangle=\langle\nu, A g\rangle>0$. In view of Lemma 2.10 .1 we have $\langle\nu, g\rangle=$ $\langle\dot{x}(0, g)\rangle=0$. Hence there exists $T>0$ such that

$$
\langle\nu, \dot{x}(t, g)\rangle=\left\langle\nu, \int_{0}^{t} \ddot{x}(s, g) d s\right\rangle>0 \quad \text { for all } \quad t \in(0, T] .
$$

Since $x(0, g)=0$, it follows that $\langle\nu, x(t, g)\rangle>0$ for all $t \in(0, T]$, and by Lemma 2.13, $x(t, g) \notin \mathscr{K}$ for all $t \in(0, T]$, which yields the required contradiction.

Proof of (4.6.2): From (4.6.1) we already know that \mathscr{K} is positively invariant with respect to A. Suppose by way of contradiction that the (nonsingular) matrix A had an eigenvector in the boundary of \mathscr{K}. That is,
suppose that there exists $0 \neq \lambda \in R$ and $0 \neq g \in \partial \mathscr{K}$ such that $A g=\lambda g$. Then

$$
x(t, g)=\frac{1}{\lambda}\left[e^{t \lambda}-1\right] g \in \partial \mathscr{K} \quad \text { for all } \quad t \geqslant 0
$$

which violates the left hand side of (4.6.2).
The following two results are immediate consequences of Lemma 4.6.

Theorem 4.7. Let $\mathscr{K} \subset R^{n}$ be a proper cone, and suppose that A is a nonsingular \mathscr{K} extended M-matrix. Then

$$
\begin{equation*}
A^{-1}\left[I-e^{-t A}\right](\mathscr{K} \backslash\{0\}) \subset \mathscr{K} \backslash\{0\} \quad \text { for all } t>0 \tag{4.8}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\mathrm{A}^{-1}\left[I-e^{-t A}\right](\mathscr{K} \backslash\{0\}) \subset \operatorname{int} \mathscr{K} \quad \text { for all } \quad t>0 \tag{4.9}
\end{equation*}
$$

only if A has no eigenvector in $\partial \mathscr{K}$.

Theorem 4.10. Let $\mathscr{K} \subset R$ be a proper cone, and let A be a real $n \times n$ nonsingular matrix. Assume that all the eigenvalues of A have nonnegative real parts. Then (4.8) holds if and only if A is a nonsingular \mathcal{K}-extended M-matrix. Furthermore, (4.9) holds only if A is a nonsingular \mathcal{K}-extended M-matrix which has no eigenvector in $\partial \mathscr{K}$.

As a concluding comment we have the following.

Remark 4.11. It is possible to prove ingular versions of Theorems 4.7 and 4.10 in which A^{D} replaces A^{-1}. In the expressions (4.8) and (4.9) one replaces \mathscr{K} with $\mathscr{K} \cap \mathscr{S}_{A}$, which is then treated as a proper cone in $\mathscr{S}_{A^{\prime}}$. (It is then required to work with boundary and interior relative to \mathscr{S}_{A}).

REFERENCES

1 A. Ben-Israel and T. Grenville, Generalized Inverses: Theory and Applications, Wiley, New York, 1973.
2 A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, 1979.

3 L. Elsner, Monotonie und Randspektrum bei vollstetigen Operatoren, Arch. Rational Mech. Anal. 36:356-365 (1970).
4 L. Elsner, Quasimontonie und Ungleichungen in halbgeordneten Raumen, Linear Algebra Appl. 8:249-261 (1974).
5 M. Nagumo, Über die Lage der Integralkurven gewohnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan 24:551-559 (1942).
6 M. Neunann and R. Plemmons, Generalized inverse positivity and splittings of M-matrices, Linear Algebra Appl. 23:21-26 (1979).
7 H. Schneider and M. Vidyasagar, Cross-positive matrices, SIAM J. Numer. Anal. 7:508-519 (1970).
8 R. Stern, Generalized M-matrices, Linear Algebra Appl. 41:201-208 (1981).
9 R. Stern, A note on positively invariant cones, Appl. Math. Optim. 9:67-72 (1982).

10 R. S. Varga, Nonnegatively posed problems and completely monotonic functions, Linear Algebra Appl. 1:329-347 (1968).

Received 30 April 1986; revised 18 January 1987

[^0]: *This author was supported by NSERC grant A4641.
 ${ }^{\dagger}$ Presently at the Department of Mathematics, University of Connecticut, Storrs.

