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ABSTRACT

The concept of a singular M-matrix A with respect to a proper cone J is
extended, by replacing the usual regularity condition A = al — B for a X#nonnegative
matrix B with the weaker condition, exponential nonnegativity of — A. As in earlier
work which dealt with the nonsingular case, in the present characterizations the lack
of regularity is overcome by employing subtangentiality.

1. INTRODUCTION

Let 2 C R" be a proper cone, and let A be a real n X n matrix which is
Hregular; that is, A=al — B for some a € R and some matrix B which is
Jnonnegative. Then A is called a K-general M-matrix provided that the
eigenvalues of A all have nonnegative real parts. Our general reference
on both singular and nonsingular Jgeneral M-matrices is Berman and
Plemmons [2], which also contains further bibliographic information.

The purpose of the present work is to generalize certain results on
Hgeneral M-matrices given in [2], when the condition of Jregularity is
replaced by the weaker condition Hexponential nonnegativity of — A; that
is, e 'A% c X Vit > 0. Unlike several well- known results on M-matrices, in
the present work conditions on “extended” M-matrices involving spectral
radii are not relevant, as regularity may not hold. Also, since we will work
with general proper cones, it is not surprising that we will consider only
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“operator theoretic” properties (spectral conditions, types of monotonicity
and semipositivity, etc.) as opposed to properties involving “internal struc-
ture” such as are known in particular for #" = R" (e.g. conditions involving
diagonal dominance, principal minors, etc.).

The next section contains definitions and preliminary results. Then in
Section 3, the concept of a Hextended M-matrix is introduced. In the main
results of that section, we obtain characterizations of #extended M-matrices
which generalize results in Stern [8], which dealt with the nonsingular case.
In the present work, as in [8], the lack of regularity is overcome by making
use of the concept of subtangentiality, which is a geometric condition
imposed by exponential nonnegativity. Some further results are given in
Section 4.

2. DEFINITIONS AND PRELIMINARY RESULTS

A nonempty set " C R" is said to be a cone if a¥" C ¥ Va3 0. The
cone X" is polyhedral if it is the intersection of a finite number of closed half
spaces (or equivalently if it is generated by a finite set of vectors). A cone X
is proper if it is closed, convex, pointed (i.e. " N{ — K} = {0}), and solid
(i.e. has a nonempty interior, denoted by int 2¢").

Now we introduce some required terminology.

DerFinitioN 2.1. Let 2 C R" be a proper cone. Then for a real n X n
matrix A we denote

%= N a(am),

m=0

where Z(-) denotes range. We say that A is:

(2.1.1) SFnonnegative if AX C KA.

(2.1.2) Hregular if there exist « € R and a #nonnegative matrix B such
that A=al — B.

(2.1.3) Hexponentially nonnegative if e3¢ C X Vt > 0.

(2.1.4) Hmonotoneon &, if AxE€N, xEF ,=>x X

(2.1.5) Weakly stable if Re[Spectrum(A)] < 0.

(2.1.6) Hsemipositive on ¥, if there exists x € ¥ NS, such that
Ax € (int X'} N %,

2.1.7) (A N Fy)yzeroed if {(xEHX NS, : Axe X'} = {0).
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REMaRrk 2.2.

(2.2.1) If o = R", the nonnegative orthant, then A is Mregular if and
only if a,; <0 for i+ j.

(2.2.2) It was proven in [7] that Jregularity of A implies X exponential
nonnegativity of — A, with equivalence holding in case X" is polyhedral.

Next we review some required basic definitions and known results on
generalized inverses. (Our reference in this regard is Ben-Israel and Grenville
[1].) The index of a square matrix A is the smallest nonnegative integer k
such that rank(A**!)=rank(A¥). Then %, =Nk _,2(A™). A real nXn
matrix X which satisfies XAX = X, AX = XA, AP*1X = APX Vp > index(A)
exists uniquely and is called the Drazin inverse of A, denoted by AP. The
Drazin inverse of A is a generalized left inverse of A; that is, APAx =x for
all x € %,. We also note that

(2.3) L N(A)={0).

DerFiNiTION 2.4. Let A be an n X n matrix, and let #" C R" be a proper
cone. Then a generalized left inverse of A, say Y, is said to be Jnonnegative
on &, if (A N K.

The following result was proven in Neumann and Plemmons [6] for
X = R". (See also Theorem 5.4.24 in [2].) Since the extension to general
proper cones is straightforward, we omit the proof.

TueoreM 2.5.  For a real n X n matrix A and proper cone X" C R", the
following statements are equivalent:

(i) A has a generalized left inverse which is Xnonnegative on .

(ii) Every generalized left inverse of A is Hnonnegative on &,. In
particular AP(X" N SF)C A

(iii) A is Hmonotone on &,.

DerintTion 2.6. For an n X n real matrix A, consider the linear
autonomous differential equation

(2.7) 2(t) = Ax(t).
A set T'C R" is said to be positively invariant with respect to A if x(0)eT

implies that x(¢) =e'x(0) €T Vt > 0. (If T is a proper cone, the property is
the same as J%exponential nonnegativity of A.)
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If T € R" is closed and convex, we define the set of nonzero outward unit
normal vectors to T at a point x € dT" (the boundary) as

Np(x)={veR™(v,y—2)<0Vyel,|r|=1},
where |- || denotes the euclidean norm.
Derinrrion 2.8. For a closed convex set I' € R", a vector z € R" is

subtangential to I" at x € T if (z,v) <0 Vv € Np(x).

The following theorem characterizes positive invariance of a closed convex
set as equivalent to the velocity vector Ax being “tangent to or pointing into
the set” for each point x on the boundary of the set.

Taeorem 2.9. A closed convex set T’ C R" is positively invariant with
respect to A if and only if Ax is subtangential to x for every x € 31T

We shall require the following lemma.

LemMa 2.10. Let X" C R" be a proper cone. Then:

(2.10.1) (»,x)=0Vx € dX, Vv € Ny(x).
(2.10.2) If A is Hexponentially nonnegative and x € R" is such that
Ax € X', then the shifted cone {x + X"} is positively invariant.

Theorem 2.9 is proven in Stern [9], and is based on a result of Nagumo
[5]. The proof of the Lemma 2.10 can be found in [8]. We also shall make use
of the following.

TueoreM 2.11 (Elsner [3], Schneider and Vidyasagar [7]). Let X" C R"
be a proper cone. If et X" C X Vit > 0 then

A, =max{Re\:\ € Spectrum(A)}

is an eigenvalue of A and has an associated eigenvector in X'.

The dual cone of a set I' € R" is denoted
I*={yeR":(y,x)>0Vxel}.

The proof of the next lemma (which can be found in [8]) follows readily
from the fact that

(X*)*=2  for any proper cone .
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Lemma 2.12.  Let X C R™ be a proper cone. Then for any t € R
eAN CH o eBHrc o

Finally, we have the following lemma, which is a straightforward conse-
quence of (2.10.1).

LeEmMa 2.13. Let X C R" be a proper cone. Then

Ny(x)c —(X*) Vxedx.

3. EXTENDED M-MATRICES

In the following theorem we shall use the fact that if Re[Spectrum(A)] <0,
then the origin is a stable equilibrium of the differential equation (2.7.1);
that is, e'4x — 0 as t — oo for every x € R™.

TuroreM 3.1.  Let X C R" be a proper cone, and let A be a real n X n
matrix such that — A is Xexponentially nonnegative. Then the following are
equivalent:

(i) —Ais (H NS, )zeroed.
(ii) A is Hmonotone on S,.
(iii) — A is weakly stable.

Proof. (i) = (iii): Suppose that (i) holds but that (iii) did not hold. Then
there exists A € Spectrum(— A) such that ReA >0, whence A_,>0.
Furthermore, in view of Theorem 2.11, the X exponential nonnegativity of
— A implies that A _, is an eigenvalue of — A with an associated eigenvec-
tor x € ). Since (— A)™x =(A_,)™x for all m=0,1,2,..., we have 0 #x
e X NS, and — Ax € X, which violates (i).

(iil) = (ii): If " N &, = {0} then A is trivially #monotone on .#;. Hence
we shall assume that %" N %, # {0} and that (iii) holds. Suppose that A were
not J#monotone on %, Then there exists x € R® such that Ax€ .,
x €%, and x & X". According to Lemma 2.10, the shifted cone { — x + ¢}
is positively invariant with respect to — A. Since 0 & { —x+ X"}, the
closedness of { — x + o'} then implies that it is impossible for e~ *4x — 0 as
t — co. Now viewing )" N ¥, as a proper cone in the A-invariant subspace
,, and upon letting A denote the restriction of A to %,, Theorem 2.11
implies that there exists 0 #£ € ¥ N ¥, such that — Af=A_z%. Since
x €%, and e”*x » 0as t > 0, it follows that — A is not a stability matrix,
and since &, N A(A)= (0}, we have A_z+#0. Hence 0 <A_z<A_,,
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which implies that some eigenvalue of A has negative real part, thus violating
(iii).

(ii) = ()): If (i) does not hold, then there exists 0 # x € #" N ¥, such that

— Ax € X", Then (ii) implies — x € ", which violates the pointedness of J¢".

|

DeriniTion 3.2. Let 27 C R" be a proper cone. If A is Jexponentially
nonnegative and A satisfies any of the equivalent conditions in Theorem 3.1,
then A is called Jextended M-matrix.

ReMark 3.3. In view of Remark 2.2.2, the concepts of Sfgeneral and
Hextended M-matrices are identical in case )¢ is polyhedral. A example of a
singular #extended M-matrix which is not a J#general M-matrix is provided
by the ice-cream cone ¥ = {x € R®: xf + xZ < x2, x> 0} and

0 1 0
_1005

0 0 0

A=

since as is readily checked, — A is X exponentially nonnegative and weakly
stable, while A is not J#regular.

Tueorem 3.4. Let X CR" be a proper cone, and let — A be K
exponentially nonnegative. Assume further that

(3.5) {imtA}INnF+0.
Then A is a Hextended M-matrix if and only if A is Hsemipositive on .

Proof. First assume that A is a Jextended M-matrix. Then A is
JFmonotone on %,. In view of Theorem 2.5, the Drazin inverse A” is then
Jnonnegative on %,. Let 0#d € {int ¥ } N &,. Then

x=APdex ny, = Ax=AAPd=d.

Since x € A" N ¥, and Ax € {int X"} N &#,, we conclude that A is H#semi-
positive on .%,.

Now assume that A is Jsemipositive on %,. Let x € 4" N %, be such
that Ax € {int X"} N &,. We will show that AT is a J"*-extended M-matrix.
(In view of Lemma 2.12 and Theorem 3.1, this will suffice.) Suppose by way
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of contradiction that AT were not a )¢ *-extended M-matrix. Then because of
Theorem 3.1 [and condition (i) in particular] there would necessarily exist a
vector 0# u € X*N & such that — ATu € ™. Since x € X, it follows
that (x, A"u) < 0. But

OfucXH* AxcintX = (Ax,u)=(x,Au)>0,

which provides the required contradiction. [ ]

4. FURTHER RESULTS

We begin with a generalization of Lemma 6.4.1 of [2].

LemMa 4.1. Let X C R™ be a proper cone. Then A is a Hextended
M-matrix if and only if A + €l is a nonsingular Hextended M-matrix Ve > 0,

Proof. Let A be a Hextended M-matrix, and let ¢>0. Then the
eigenvalues of A +el all have positive real parts. Furthermore, since
e ATy — o=t~ tAy c & it follows that A + el is a nonsingular J&
extended M-matrix. This proves the “only if” part of the lemma. In order to
prove the “if,” assume that A + ¢l is a Kextended M-matrix for every e > 0,
and let € — 0. Then clearly the eigenvalues of A all have nonnegative real
parts. Furthermore, since

e_’A.){/ = e—tA-ts+tsf — etee—t(A+sI)‘){‘ cC ‘){',
it follows that A is a ¥extended M-matrix. [ |

ReMARK 4.2. Since the set of Jexponentially nonnegative matrices is
the closure of the set of J#regular matrices (see [7]), the above lemma readily
implies that every #extended M-matrix is the limit of J#general M-matrices.

The “if” part of the next result follows from Satz 1 in Elsner [4]. It
generalizes part of Theorem 6.4.7 in [2], where it was assumed that % = R",
and regularity was explicitly used. We present a proof which makes use of
subtangentiality.

THEOREM 4.3. Let X C R" be a proper cone. Then A is an extended
M-matrix if and only if A + ¢l is Hmonotone on R" Ve > 0.
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Proof. “Only if’: Let A be a Mextended M-matrix. Then according to
Lemma 4.1, A+ ¢l is a nonsingular Hextended M-matrix Ye> 0, and
consequently A + el is Jmonotone on %, = R".

“If’: Assume that A + £l is #monotone on R" for every &> 0. First we
will prove that — A is Jexponentially nonnegative. Suppose not. Then by
Theorem 2.9 there exists g€ dX¥" such that (v, — Ag) >0 for a vector
v € N, (g). For sufficiently small ¢ >0, ¢A + I is nonsingular and the second
term dominates the series expansion.

(eA+1) '=L—eA+(eA) —(cA)+ ---.

Then

1 71 _
vT(A+—I) g=e"(cA+1)"'g =¢[rg—erTAg+ A% — -+ | >0,
£

since »Tg =0 (by Lemma 2.10). In view of Lemma 2.13, this implies that
[A+(1/e)I] g & A for small &> 0, contradicting the fact that g € 2" and
the J#monotonicity of A +(1/¢)I. Hence — A is Jexponentially nonnega-
tive, and it readily follows that — ( A + €I ) is S exponentially nonnegative as
well, Ve> 0. Hence (A +¢l) is a Hextended M-matrix Ve> 0. Since
monotonicity on R" implies nonsingularity, an application of Lemma 4.1
completes the proof. |

A matrix A€ R"*" was called almost monotone in [2] if Ax=>0=
Ax = 0. The analagous property for general proper cones is given next.

DerFintTion 4.4. Let % C R" be a proper cone. Then a real nXn
matrix is said to be almost H#monotone provided that Ax€ X" = Ax=0.

TueoreM 4.5. Let X € R" be a proper cone, and let A be a singular
Hextended M-matrix such that A has no left eigenvector in (A *). Then A is
almost Hmonotone.

Proof. Since AT is a singular " *-extended M-matrix, we have A ,r = 0.
Our hypotheses imply that there exists y € int(¢"*) such that Ay = 0. Now
let x € R" be such that Ax € ). If Ax # 0 then (y, Ax)=(ATy,x) >0, a
contradiction. [ ]
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Next we generalize a result of Varga [10] (see also [2, Section 6.3]), which
was obtained for #" = R" by using analytic function methods.

LemMma 4.6. Let A be a nonsingular real n X n matrix, and let 2" C R"
be a proper cone. Then:

(4.6.1) A" e A —INH CH V>0 o X is positively invariant with
respect to A.

(462) A e — IN(X/{0) Cint X Vt>0= A s positively
invariant with respect to A, and A contains no eigenvector in 3¢ .

Proof. “ <" in (4.6.1): For g€ R" and ¢ > 0 let us define the R"-val-
ued function

x(t,g)=A"1e-1]g.

Note that %(t, g) = e**g and that x(0, g) = 0. Therefore

x(t,g)= Lte‘Agds.

Now let g € . Since e'4g € X forall ¢ > 0, we have x(t, g) = [je’“gds € X
for all ¢ > 0, by Riemann sum approximation and conicity.

“=" in (4.6.1): Suppose that /" were not positively invariant with
respect to A. Then there exists g € 3¢ such that Ag is not subtangential to
X at g; that is, there exists » € A, (g) such that (», Ag) >0, and therefore
(v, %(0,g)) =(v, Ag) >0. In view of Lemma 2.10.1 we have (v,g)=
(#(0, g)) = 0. Hence there exists T > 0 such that

<v,x(t,g)>=<u,Ltf(s,g)ds>>O forall t<(0,T].

Since x(0,g)=0, it follows that (v, x(¢,g))> >0 for all t €(0,T], and by
Lemma 2.13, x(t,g)€ X for all ¢+ €(0,T], which yields the required
contradiction.

Proof of (4.6.2): From (4.6.1) we already know that X is positively
invariant with respect to A. Suppose by way of contradiction that the
(nonsingular) matrix A had an eigenvector in the boundary of #". That is,
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suppose that there exists 0 # A€ R and 0+ g € 0¥ such that Ag =Ag.
Then

1
x(t,g)=x[e'k—1]geaf forall ¢>0,

which violates the left hand side of (4.6.2). [ ]

The following two results are immediate consequences of Lemma 4.6.

THEOREM 4.7. Let X C R" be a proper cone, and suppose that A is a

noneingular Wertended Momatric Th
nonsinguwar X-extenaea s-matrix. Tnen

(4.8) A7HI—e ") (o \{0}) c '\ {0} forall t>0.
Furthermore, we have
(4.9) A MI-e A (\{0})Cint X"  forall t>0

only if A has no eigenvector in 94",

THEOREM 4.10. Let X" C R be a proper cone, and let A be a real n X n
nonsingular matrix. Assume that all the eigenvalues of A have nonnegative
real parts. Then (4.8) holds if and only if A is a nonsingular X extended
M-matrix. Furthermore, (4.9) holds only if A is a nonsingular Hextended
M-matrix which has no eigenvector in dX".

As a concluding comment we have the following.

Remark 4.11. It is possible to prove singular versions of Theorems 4.7
and 4.10 in which AP replaces A~L In the expressions (4.8) and (4.9) one
replaces ¥ with )" N .%,, which is then treated as a proper cone in .%,. (It
is then required to work with boundary and interior relative to .%,).
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