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Abstract

We define a filtration indexed by the integers on the tensor product of a simple highest
weight module and a loop module for a quantum affine algebra. We prove that such a filtration
is either trivial or strictly decreasing and give sufficient conditions for this to happen. In the
first case we prove that the tensor product is simple and in the second case we prove that the
intersection of all the modules in the filtration is zero, thus allowing us to define the completed
tensor product. In certain special cases, we identify the subsequent quotients of filtration.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

This paper was motivated by an effort to understand the representation theoretic
meaning of the results dfi4,15,21]on realizations of (pseudo-)crystal bases of certain
guantum loop modules in the framework of Littelmann's path model. These papers
showed in particular, that one could write the tensor product of a crystal basis of a
highest weight integrable module with a (pseudo-)crystal basis of such a quantum loop
module as a union of highest weight crystals. The obvious and natural interpretation
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would be that the decomposition of the crystals gave rise to a direct sum decomposition
of the tensor product of the corresponding modules for the quantum affine algebra. It
is however, not very difficult to see that such a tensor product never contains a copy
of a highest weight module. In addition, the corresponding classical situation which
was studied iff7] and more recently ifil,18] did not exclude the possibility that such
tensor products might in fact be irreducible.

In this paper, we are able to show that the tensor product of an integrable highest
weight representation with the quantum loop module associated to the natural represen-
tation admits a filtration such that the successive quotients are highest weight integrable
modules with multiplicity and highest weight given by the path model.

We now describe the main results of the paper. In SecZiame recall some well-
known properties of highest weight modules and modules of level zero. We also es-
tablish several new results on the structure of an irreducible finite-dimensional module
V, and in particular introduce a function: V. — N which plays an important role in
Section7. In Section3 we establish (Theorert) the quantum analogue of one of the
main results of7] (Theorem 4.2). Namely, we prove that the tensor product of a simple
highest weight module with a finite-dimensional module is simple. In this situation, we
work over the smaller version of the quantum affine algebra which does not contain
an analogue of the Euler operator. The result is the same as the classical one proved
in [7] but, the absence (in general) of the evaluation map and the non-cocommutativity
of the comultiplication in the quantum case makes it harder to establish.

In the rest of the paper we study the more complicated and interesting situation of the
tensor product of a highest weight modutg 1) with a quantum loop modulé. (V).

We begin by introducing (Sectio#) a filtration 7", 2 7,11, n € Z on V(A) Q L(V).
We prove that this filtration is either strictly decreasing, it€,27 ,+1 for all n € Z,
and (,ez ¥'» = 0, or trivial, i.e. ¥, = v, for all n,m € Z. Furthermore, for
all n € Z the quotientsy”, /7,41 are modules in the categoxy for Uq. In the case
when V (A4) is the Verma module, the filtratiort”, is always strictly decreasing. If
V(A) is irreducible, thenV (A) ® L(V) is irreducible if and only if the filtration is
trivial.

In the next two sections we study the filtratichy,, n € Z, of X(A) ® L(V) where
X (A) is the irreducible integrable module with highest weight We give sufficient
conditions for the filtration to be trivial or strictly decreasing. In the latter case, the
quotientsZ’, /% ,+1 are integrable modules in the categdfyand hence isomorphic to
finite direct sums of irreducible highest weight integrable modwég).

A particularly interesting family of quantum loop modules are the loop spaces of the
so-called Kirillov—Reshetikhin representations (cf. for exanigl¢. These modules are
indexed by multiplesi@; of fundamental weights af. A consequence of Theorebis
that the tensor product of a highest weight module of level one with the affinization of
the Kirillov—Reshetikhin modulew; is irreducible ifn > 1. If n = 1, then Theoren3
shows that the filtration is strictly decreasing.

In the last section, we leL (V) be the loop module associated to the natural rep-
resentation of the quantum affine algebra of classical type and study the filtration on
X(A) ® L(V). This case is not covered by either of the sufficient conditions given



298 V. Chari, J. Greenstein/Advances in Mathematics 194 (2005) 296-331

in the previous sections. We are still able to show gD % 1 if dim X (A) > 1.
We also identify the highest weight and multiplicities of the irreducible modules in
X X ns1-

It follows from our results that one can complete the modulest) ® L(V) (and
X(A) ® L(V) if Z,2%,+1) with respect to the topology induced by the filtration.
Further, M(A) ® L(V) (resp. X(A) ® L(V)) embeds canonically intdZ (A)QL(V)
(resp. X (A)®L(V)). This should be compared with the results[d2,13] The referee
has pointed out to us that there are several natural questions arising from the results
of this paper, for instance the results of Section 7 together with Theorem 3.11P]of
indicate that a similar result on the decompositionf/Z ,+1 should be true in a
more general situation.

1. Preliminaries

Throughout this papeN (respectivelyN*) denotes the set of non-negative (respec-
tively, positive) integers.

1.1. Let g be a complex finite-dimensional simple Lie algebra of rdnkith a Cartan
subalgebrd). Setl ={1,2,...,¢} and letA = (d;a;;); je;, Where thed; are positive
co-prime integers, be théx ¢ symmetrized Cartan matrix af. Let {o; : i € I} C h*
(respectively{w; : i € I} C h*) be the set of simple roots (respectively, of fundamental
weights) ofg with respect td). Let 6 be the highest root of. As usual,Q (respectively,
P) denotes the root (respectively, weight) latticegofLet P™ = )", , Nw; be the set
of dominant weights and se@* =Y, _; No;. Giveny = >, _, kiz; € O, set hty =
Y icr ki. Let W be the Weyl group ofy and lets, € W denote the reflection with
respect to the root. It is well-known thath* admits a non-degenerate symmetrie
invariant bilinear form which will be denoted by|-). We assume that; | o;) = da;;
for all i, j € I. Given a rootf of g, denote bys" e ) the corresponding co-root.

1.2. Let

3=g®C[r,r @ CcmCd

be the untwisted extended affine algebra associated gvidmd letA = (dl‘d,’j)i’jef,
where7 = I U {0} be the extended symmetrized Cartan matrixflﬁeib@ Ceop Cd.

From now on we identifyh* with the subspace dAlj’k consisting of elements which
are zero orc and d. Defined € 5* by

dh®Cc) =0, ) =1

Setog=0—0. Then{w; : i € 7} is a set of simple roots fo with respect toﬂ,
ay =c— 0¥ and § generates its imaginary roots.

Let W be the Weyl group ofy. The bilinear form onh* extends to aW-invariant
bilinear form onﬁ* which we cgntinue to denote by |-). One has(d|a;) = 0 and
(o |oj) = djaij, for all i, j € 1. Define a set of fundamental weights); : i €
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I} - [) of § by the COhdItIOﬂS(wl|fx]) = d;d;; and w;(d) = 0 for all i, € 1.
Let P = Y iciZw; ® Z0 (respectively,PT™ = Y, 7Nw; & ZJ) be the corresponding
set of integral (respectively, dominant) weights. We haye= w; —a,’wo wherea,” is
the coefficient ofe,” in 0v. Identify P with the free abelian subgroup at generated
by thew;, i € I. Denote byQ the root lattice ofj and setQ* = Y, 7No;. Givenj =
Yictkii € e OF, set hfy‘ Y iciki. Given A, u e Pt (respectively,, i € PT) we
say thati<pu if p—7e O (respectivelyu— 4 e QF). For all . € P set); = = M),
iel.

1.3. Let q be an indeterminate and I€t(g) be the field of rational functions ig with
complex coefficients. For,m € N, m >r, define

q" —q™" m

|
—g 1 [mly! = [mly[lm — 1, ...[2]4[1],, [ [m],!

inly = = T
Fori e 7 setg; = ¢% and[m]; = [m],i

The quantum affme algebl‘d (9) (cf [2,3,11,16] associated tay, which will be
further denoted a$Jq, is an associative algebra ov€xg) with generatoerZ o hik,
KF, c*/2, p*! wherei € 1, k,r € Z, k # 0, and the following defining relations:

C*Y2 are central
K; K[fl — KiilKi =1, Cl/ZC—l/Z — C_l/2C1/2 =1, DD—l — D—lD =1,
KiK;j =K;K;, DK;=K;D,
K'herhj)rKi, Dher_]‘:qrhjr,
Kx K_l qilLa"jxji’r, Dx D™ l_q’x]ir,
1 Cr —-Cc7
[Air, hj,s] = 5r,—s _[Vaij]i D
qj =4
(hir, x ]_i[mﬂcwwiﬂ,
+ + +aij + + +aij + + :t +
Xir+1Xjs — i Ixj sYir41 = qz le s+l T X s+t
C(V $)/2 —Cc (= S)/Zlﬁ
lr )

-1 _ s i,r+s
[ Xi Xj 1 =0ij - ,
q; — qi
+ + _+ + _ o .
Z Z( o [ ] Kirz = Kirnay X josMirmgarn T Kiram T 0. i)
neX,, k=0
for all sequences of integers, ..., r,, wherem = 1—a;;, 2,, iS the symmetric grou
J

on m letters, and thq//fr are determined by equating powerswin the formal power
series

o0 0
Z ‘//,-itruir = Kl.il exp (:l:(qi - qi_l) Zhi,isuis> .
r=0

s=1
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The subalgebra oﬂq generated by the eIemenr,;Fol, Kl.il, i € I is isomorphic to
the quantized enveloping algebtg (g) of g.

Let Gq(>>) (respectiverUq(<<)) be the subalgebra deJq generated by thec,.fs
(respectively, by thecl.fs) foralliel, seZ Givenr € Z, let G(’](>>) (respectively
Gf[(<<)) be the subalgebra dﬁq(>>) (respectively, oqu(<<)) generatedAby thecifs
(respectively, by thex; ) for all i € I and for alls>r. Furthermore, letU, (0) (re-
spectively,U{I (0)) be the subalgebra @q generated Ey the; , for all i € I and for
all s € Z (respectively, for alls >r), s # 0. Finally, letUy be the subalgebra generated
by the K, i € I, D*! and C*V/2.

1.4. Define aZ-grading oan by setting deqf; =r, degh; =k for all i € I and for
all r €Z, k e Z\ {0} and degk; = degD = degC*¥/2 =0 for all i € I. Equivalently,
we say thatx € U, is homogeneous of degrée= degx if DxD~1 = gkx. Givenz e
C(g)*, let ¢, be the automorphism oﬁ,, defined by extendingp,(x) = 74egr x
for x € Uq homogeneous.

On the other hand, the algebi:\a] is graded by the root Iatticé, the elementafr,
i €1, r eZ being of weightro+o;, theh; ¢, i € I, k € Z\ {0} being of weightké and
the other generators being of weight zero. Givea Q we denote the corresponding
weight subspace obl, by (U,),. Observe also that it € (Uy),515, v € Q, 7 € Z
then degr = r.

1.5. We will also need another presentation’LE),j. Namely, aftef2,16], the algebrqu

is isomorphic to an associativ@(g)-algebra generated b¥;, F;, Kl.il . iel, D¥
and central element§*%/2 satisfying the following relations:

C = KOHKf",WhereQ = Zaifxi,ai e N*,

iel iel
-1 ajj 1 —aj;
KiEjK;"=q,"Ej,  KiFjK;"=gq; "Fj,
DE;D™'=¢%E;  DF;D™'=q %F,,
Ki— Kt
[Ei, Fjl =0ij —»
q; — 4;
1-a;j
r 1—aij r 1—aji—r P .
2N T Y EYEENTYT =0 i,
r=0 i
1—aij

>y [1_‘”]} (F) Fj(F)Y %" =0 if i # .
r=0 " i

The element E; (respectively,F;), i € I corresponds tchfo (respectivelyx; ). In

particular, the element%;, F;, Kl.il : i € I generate a subalgebra Elq isomorphic
to U, (g).
g\t
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Let Gj]f (respectivelyﬁ;) be theC(g)-subalgebra oﬁq generated by thé&; (respec-
tively, by the F;), i € I. Let U; be the subalgebra df, generated by th&;, F;, K1,
i e and byCc*Y/2,

We will need the following result which was established[3}.

Proposition. We haveU\; C US(<<)US(O)US(>>) and U;(<<), Uf,(>>) C 0; for all
reNT, s eN.

1.6. It is well-known thath is a Hopf algebra oveC(q) with the co-multiplication
being given in terms of generatofs, F;, K?El : i € I by the following formulae:

AE)=E®1+K ®E, AF)=F®K '+1QF,

the K1, D, C*Y/2 being group-like. Notice thaﬂ; is a Hopf subalgebra of),.
Let @; (respectively,@;) be the subalgebra o@q and U; generated by theE;
(respectively, by theF;) and by theKiﬂ, iel. Obviously, the@: are Hopf algebras
~y ~4
andU; Cc %,
AIthough epr|C|t formulae for the co-multiplication on generat016§'.iE hi, are not
known, we have the following partial resulf$0] which are enough for this paper.

Lemma. Fori eI, r € N, s € NT, we have
Ahig) =hiy ® 14+ 1® hi s+ terms in 00((0+)+ ® (G+)+), (1.1)
Ax ) =x, @1+ K ®@x, + terms inU° ((u+)+®(u°(>>))+) (1.2)

AGy) =x, @ Ki +1@x;, + terms inUS (U4 ® Uh(<«))4),  (1.3)

where (U;;)+ denotes the augmentation ideal Gg.

Fori eI, set

g hi 1
Pii(u)zexp( Z 0 k)

Let P; . be the coefficient ol in Pii(u). It is easy to see that the elemeriis,

belong to the subalgebra (Bi, generated by the element,, i € I, r € Z. Further,
one can deduce from Lemma 1.6 as[8)} that, for alls € N,

S
APig) =Y Pis—r ® Py + terms inUg (U ) ® (US) ¢ (1.4)
r=0
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2. The modulesM(A), X(A), V(xn) and L(V (%))

In this section we recall the definition and some properties of several families of
integrable modules foU and U’ For modules of level zero we also establish some
results which we need |n later sections.

21.A Gq-moduIeM is said to be of type 1 i =, 5 M, where

,ueP

\/
My={meM : Km_ql#( )

m,Yiel, Dm= g Dmy.
Type 1-modules foﬁ’ are defined in the obvious way. #f € M, \ {0}, we say tham

is of weight 1 and wnte wim = pu. SetQ(M) = {v e P: M, # 0}.
A U -ora U’ -module M of type 1 is said to be integrable if the elemerits,

F;, i eT act IocaIIy nilpotently onM. Evidently, aU -module M can be viewed as a
U,-module M" and My = B, Mys.

2.2. Let O be the category oﬁq-modules satisfying the following properties. @,,1
moduleM is an object inC if and only if

(i) M is a module of type 1 and din¥, < oo for all u e P.
(i) The setQ(M) is contained in the sdt);_;{4 —7 : 7 € 0T} for somer e N*
and for somel; € P.

GivenA € P, let M(A) denote the Verma module of highest weightlt is generated
as aU,-module by an elementz, of weight A4 with defining relation

(O;)er/l =0.

It is well-known thatM (A) has a unique simple quotient which we denote X§1).
Let v be the canonical image ofi 4 in X (A).
The next result is well-known and follows immediately frddi7,19].

Proposition.

(i) Forall A€ P, M(A) e O and is a freeU -module. In parucularAnnA_mA =0
and Q(M(A)) C A — o+,

(i) Forall A e Pt, X(A)is an mtegrabIqu -module in the category and is gener-
ated as dJ,-module by the element;. Moreover Anng. vy = 3,7 Uy FOOT

(iii) Let M € O be integrable. Then M is isomorphic to a finite direct sum of modules
of the formX(A), A € PT. In particular/,\if M € O is simple and integrablethen
it is isomorphic toX (A) for someA € P+,

Regarded as modules f(ﬁ’q, the X(A) remain simple, although they no longer
have finite-dimensional weight spaces. Indeed, f[iy] if 4 € Q(X(A)) then
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A—nd € Q(X(A)) for all n € N and we can write

X =P PxMDayns (2.1)

yeQt neN

Obviously, fory € O fixed, @, X(A) g—y—ns is @ weight space oK (A1) viewed
as anI—moduIe. Observe also that

M(A)=M(A+r0), X=X (A+rd)

as U;-modules for allr € Z.

2.3. The next important family of modules we consider is that of the irreducible finite-
dimensional representatioi&(n) of U;. Let® = (7; (u));e; be ane-tuple of polynomi-

als with coefficients irC(¢) and with constant term 1. Sef, =, _,(degn;)w; € P.

Let W(n) be therI-moduIe generated by an elemant satisfying

+ — \Ag()+1
.Xi’rl)n = 0, (xi’r)’“"(“z )+ Vg = O,

In(@))
i

Kivzg =g¢q vz, Cug =y,

+
Pi t5vn = T sUn

foralliel, reZseNwheren ) =Y, = u’ and

s i,

=1
) = m (), T (u) = udeg“"%.

ni,degn,—
The following proposition was proved if9].
Proposition.

(i) The U\;—modulesW(n) are finite-dimensional

@iy W(mn) = Gq(<<)vn. In particular, Q(W(m)) C iz — Q7.

(i) dim W(n), = dimW(n),, ,, = 1, wherew, is the longest element of the Weyl
group ofg. Let v; be a non-zero element iW(n),, ,; . Then

— 07 (xifr)_(UJo}.n)(a;/)'Flv; — O’ W(TC) — Gq (>>)U;,

and Q(W(n)) C woln + Q7.
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(iv) W(rm) has a unique simple quotierit(z) and all simple finite dimensiona’ll\j]-
modules are obtained that way
(v) Denote the images of the elements v in V(rn) by the same symbols. Then

V(n) = Gq(<<)v,,, x,-Jf,vn =0, (x;r)/lm,y)ﬂvn =0,
QV(m) Ciz— Q7

and analogous statements hold faj.

Given z € C* gnd an{-tuple of polynomialsmt = (7;(1));c;, One can introduce
on V(m) anotherU;-module structure by twisting the action by automorphigm
Then ¢V (m) =V (n;) wheren, = (m;(zu))ies.

2.4. We now establish some facts abdtitr) which will be needed later.

Lemma. Let = be an ¢-tuple of polynomials with coefficients i@(g) and constant
term 1. Let ; (respectivelyk;f), i, j €I, be the dimension oV (n), _, (respectively
of V(1) w,1,+4;). Suppose thak;, kj > 0. Then

() {x; v, ... x4y qvn} IS @ basis ofV(m);,,, for all s € Z.
i + % + ) i i
(ii) {xjysv,,,...,xjﬁkj_lvﬂ} is a basis ofV(n)wognﬂj for all s € Z.

Proof. We prove only (i), the proof of (ii) being similar. Sincé(rn) = Uq(<<)v,,, the
elementsx; vz, k € Z spanV(m);, . Next, observe that; vz # 0 for all k € Z.
Indeed, ifxifnv,, = 0 for somen € Z then, sincev, is an eigenvector for thé; i,

s € Z we get, using the defining relations of,

(2

XintsVn-

0 = hy X, v = —

It follows that x; v, = O for all k € Z. Therefore,V(n); ,_,, = 0, which is a
contradiction.
It remains to prove that the s¢t; vx,...,x; ., qvz} is linearly independent for

all s € Z. If k; =1 then, sincex; vy # 0 for all s € Z, there is nothing to prove.

Assume that; > 1 and thath’;()l arX;, Vn = 0 for somea, € C(q), r =1,...,k
and for somes € Z. Applying 4, , as above we conclude that

ki—1
Z arxifrﬂvn =0, Vs € Z. (2.2)
r=0
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Let r1 (respectively,rp) be the minimal (respectively, the maximal) 0<r <k; — 1
such thata, # 0. Then, using (2.2) with =0 ands = 1, we obtain

r2 r2
X vg = —at E arXx; v X Vg = —at E ar_1X; .V
irg"® T r1 i U i,rp+1°7% — r2 r—14; ,Un-

r=r1+1 r=r1+1

Observe that both sums contain at least one non-zero term. Then it follows by induction
on r1 — k (respectively, onk —rz) from the above formulae and (2.2) that thg, vy

lie in the linear span of vectors; ., 1V, ..., X, Un for all k < r1 (respectively, for

> Mir

all k > rp). Therefore, diW(ﬂ)An;xi < k; which is a contradiction. [

2.5.

Lemma. Define

k(m) = mip{dim V(r) o + V(@) )0 # O}
e

Then

k(m) = Eip{dimv(“)woifra,- : V(n)wo).,,+oc,~ # O}

Proof. Let k* = minic;/{dimV (n), ;.45 : V(®)y, ;4o 7 0. Choosei € I such
that k(n) = dimV(n); _, for somei € I. Since V(n) is an integrablelAJ’q-module,
its character isW-invariant (cf. say[20]). Since w,o; = —a; for some j € I we
conclude that difTV(ﬂ)woa,,Jra, = k(n) and sok*<k(m). A similar argument shows
that k(m) <k*. O

2.6.

o y
Lemma. For any v € V(n), ES"(O "+l o= Fé-n(() 1

Proof. Since V(n) is finite dimensional, it decomposes, uniquely, as a direct sum of
simple finite dimensional highest weight modulgs/) over U, (g) with A € i, — Q.
Therefore, in order to prove the assertion it is sufficient to show that—if), y € O
is a weight of V(A), thenu = A —y — (A(0") + 1)0 is not a weight ofV(4). Indeed,
otherwise, since the formal characteriof) is W-invariant, sou = 2—7+ (7(0%) + 1)0
is also a weight ofV (A). It follows thaty =y — (y(0¥) + 1)0 € Q+.

Let J ={i el : o;(0") > 0} and observe thal is not empty. Writey = Dier it
Suppose first thap(0¥) = 0. Thenn; =0 for all i € J. Yet 0 = Y icraioi anda; > 0
for all i € I. It follows that thes;, i € J occur iny =y — 0 with strictly negative
coefficients. Thereforey’ ¢ O which is a contradiction.
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Finally, suppose that(0¥) > 0. Then there exists € J such thats; # 0. It follows
that o; occurs in(y(0") + 1)0 with the coefficient at least; (n; + 1) > n;. Thus, o;
occurs iny’ with a negative coefficient and s6 ¢ Q.

A similar argument shows tha‘FO_w”"(e Hly—0forallve V(m). It remains to
observe that-wy1;(0") = 2-(0¥). O

2.7.
Proposition. For all r € N, V(m) = U} (<)vg = U} ()v}.

Proof. It is sufficient to prove the statement fog, the proof of the other one being
similar. Recall that all weights o¥ (x) are of the formi, —y, y € 0. We prove by
induction on hty that

V), C U(Que,  ¥YreN.

If ht y = 0 then there is nothing to prove. Assume thap kbt 1, that isy = o; for
somei € I. Thenk = dimV(n), _, > 0 and by Lemma 2.4y (n),__,, is spanned
by x;  vn, ... X, _qva for all >0. In particular,

V(n)i,,fa,- - U; (KL)vg

for all » >0. R

Suppose thav € V(n),,, with hty>1 and thatv € U (K)vn for aﬂ r € N. Fix
somer € N. For the inductive step, it suffices to prove theﬁkv € U, (g for
all k € Z and for alli € I. We may assume, without loss of generality, that X W
for somew € OZH(«)U“' j el andn > r. It follows from the defining relations of

the algebraUAq that

- = G - aj - - - —
XidXjnW =i X X W TG X 1 X W = X % W

If k>r—1 then all terms in the right-hand side Iie@j&(«)v7t by the assumption ow
and by the induction hypothesis. Then it follows from the above formula by induction
onr — k that X pXj W € Uy (KL)vg for all k < r and the proposition is proved.[]

Corollary. We haveV (n) = Ojvn = G;v;.
Proof. This follows immediately from the above and Proposition 1.5]

2.8. As a consequence of Proposition 2.7, we can define a mapV(nr) — N in
the following way. Givenv € V(n), v # 0 let n(v) be the minimalr € N such
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that v can be written as a linear combination of homogeneous elemen@; obf
degree<r applied tov;. Such a number is well-defined siné&n) = 02(<<)v,, by
Proposition 2.7. Set(0) = —oo with the convention that-co < n for all n € Z.
Finally, setn(n) = max{n(v) : v e V(n)}.

Lemma. We havefor all v € V(n),

n(Eiv)s<n(), iel

n(Eou) <n(v) + 1,

n(Fiv)<n@) +dmV(n); _,, iel
n(Fov)<n() — 1.

Proof. The first two statements are obvious. For the next two, observe that Bimoe
is spanned by vectors of thg forkiv, where X is a monomial in thek;, i € I,
it suffices by the relations itJ, to prove the assertion for = v,. If i = 0, then
Fovr = 0 and there is nothing to prove. So assume ihgt0, and thatF;v, # O (if
Fjv, = 0, there is again nothing to prove). Then, by Lemma Z4, is contained in
the linear span of the; vz, s =1,....dimV(n),, . U

2.9.Letm = m(n) € Nt be maximal such that € (C(¢)[u™])¢. Thenzn can be written

uniquely aSnon? ...n% _, wheren® is an ¢-tuple of polynomials with constant term 1,

‘:m
{ is anmth primitive root of unity and the product is taken component-wise.[&y
Vi) 2V(rn) e --® V(ngm_l). It follows that dimV (z);,, = mdim V(z°); ,_,, for
aliel. R
Denote byt, the unique isomorphism dﬂ/q-modules

VA ®- - ® V(ngm_o — V(ngm_a VA ®---® V(ngm_z)

which sendsv; = v0 ® ---v,0 . to the corresponding permuted tensor product of

highest weight vectors. Serl,: = (¢;f)®m o 1z, where ¢; is the pull-back by the

automorphismp; of Gq. Thenn, (xv) = (%% xy_(v) andn, (ve) = v, whencen” =
id and

m—1
Vvimy =P vm®, where V(m)® = (v e V(n) : n,(v) = *o).
k=0

Notice also that, since d&g = 0, n,, preserves weight spaces Uf(x).

Lemma. Letv € V(m)® and suppose that = 3" | X v, with X, € GZI homogeneous.
Then X;v, # 0 only if degX; + k = 0(modm). In particular, n(v) + k = 0 (modm).
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Proof. This is immediate sincé/(r) = @Z:OlV(n)(” and X;v; € V(m)" where
| = —degX; (modm). O

2.10.Let L(V(m)) = V(M) ®c(y) Clg)lt, t~1] be the loop space df (). Define theGq-
module structure orL(V (r)) by

x(v®t”)=xv®t"+deg", Dv®i") =q"vet", CHlPh et =v®t"

for all x € Gq homogeneousy € V(n) andn € Z. Henceforth we writevt" for the
elementv ® ", v e V(n), n € Z of L(V(n)).

Let m = m(n). By [6], L(V(m)) is a direct sum of simple submodulds (V (r)),
r=0,...,m—1whereL"(V(m) = U, (vpt") = Uy (vzt").

Define 7, (vi") = ('n.(v)t". Then by [6], 1, € Endqu(V(n)) and the
simple submodule.*(V (n)) is just the eigenspace of, corresponding to the eigen-
value (°.

Lemma. Forall s =0,...,m—1, the C(q)-subspac@;(v,,té‘) is spanned by elements

of the formvrs " W+k y e V(m), k € N.

Proof. The statement follows immediately from Corollary 2.7 and from the definition
of n(v) in 2.8. O

3. Irreducibility of X (A) ® V(n)
In this section we prove the following:

Theorem 1. Let A € P and let V(n) be a finite dimensional simpl@lj—module cor-
responding to an¢-tuple = of polynomials in one variable with constant terin
ThenX(A) ® V(n) is a simpIerZ-moduIe

This result is a quantum version §f, Theorem 4.2]
3.1. By Proposition 1.5,0;(>>), r>0 andG;(<<), r > 0 are contained inj;r which
is in turn contained in the Hopf subalge@ of 0;.
Proposition. Let A4 € P.

(i) As Og—module we have

M) ® V(m) =U,(my ® ve) = U, (my @ v})
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and
X(A) @ V(m) = U, (v ® ve) = U} (01 ® v).
(i) AsU,-moduleswe have

MW@ L (V(m) =Y Ugmg @ var™*) = 3" Ugmg @ vir"™*)

nez nez
and
X ®L'(Vm) = Y Uy(vg ® vat™ ) = 3 Uy (vg ® vt )
nez nez
forall s =0,...,m — 1.

Proof. The argument repeats that of the proof[6f Lemma 2.1Jand is included here
for the reader’s convenierlcs R
Observe first that, sinc#, is a Hopf subalgebra af’ , we have by Lemma 2.7

@;(WM ® vg) =my ®0:]rvn =myQ® V(m).
We prove by induction on Bt that
M) 45 ® V(m) € U, (mg @ V(m)).

If hty = 0 then there is nothing to prove. Suppose thaf &t 1 that is7 = o; for
somei € I. Since M(A) 4, is spanned byFim 4, we have

Fimg® V(m) = Fimy @ V(m) +my ® V(m),
whence
Fims® V(@) C Uymy @ V(m)).

The inductive step is proved similarly.

Thus,M(A)®V (rn) C U;(mA®vn) and we conclude tha¥ (A1) ® V(=) is generated
by m 4 ® vz. To see that it is also generated fy; ® v; one proceeds as above using
an observation that, by Proposition 23)(>)v; = V(x) and thatU9(>)m, = 0.
This proves (i) for the moduled/(A1) ® V(n) and hence for the quotient module
X(A) @ V(n).
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The proof of (ii) is similar. To see that induction starts, notice that by Corollary 2.7
and Lemma 1.6, we have

> Uy ma ® vat™ ) =3 U (mg @ Uf (™)) =Y Uy m g @ L*(V ().

neZ neZ nezZ

The inductive step is now completed as beforgl

3.2.Let A € PT. Recall from (2.1) that when we regaxi(A1) as aU/ -module, any
weight vectoru € X (A) of weight 4 —7 can be written uniquely as a sum > ok Uk
of linearly independent elements, € X (A)4—y, —n.0, Wherey, € o%, ny € N and
¢ + nxoo =7. Denote by deg the maximal value of they.

Given a weight vectow € V (=), set hi(v) := ht(1; —wtv). Let w € X(A) ® V()
be a weight vector and write

,
w = Zuk X vg,
k=1

where theu; are linearly independent weight vectors ¥ A) and thev; are weight
vectors inV(m). Fix an integerjo(w) = jo, 1< jo<r such that the following two
conditions hold:

degu j, > degu;, V1< j<r, (3.1)
degu j, = degu; = htz(vj,) > htz(v;). 3.2)

Proposition. Let w = Y j_jux ® vx € X(4) ® V(m) be a weight vector and let
Jjo = jo(w) be as above

(i) Assume thav;, ¢ C(q)vs. Then there exist$ € 7, s >0 such that

Wtu (O( )
o7gx;;w= Z g ]®x”vj)+S (3.3)
J: degulfdegu
htn(L )=htz (v

o’
JO)

where S is a sum of terms of the foup ® v; with eitherdegu’j < degu j, or
degu’; = degu, and htz(v}) < htz (x;fvjo).- R

(i) Suppose thatlegu j, =9. Then for all s > 0 there existx € U;(>>) such that
xw=v4Qug andy e U;(<<) such thatyw = v ® v}. R

(i) Suppose thatleguj, = N. Then tﬁere existss > 0 and x € U3 (>>) such that
xw =v, 4 ® vy and an elemeny € Uf](<<) such thatyw = v @ vj.
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Proof. By 2.2 and Proposition 2.7 there exist I ands € NT such thatx[_:l/tj =0
for all j and x;";v;, # 0. Observe that by (1.2),

Wt u (oc)
xm(”1®”1)— " u J®xmvj)+2”;<®vl/a
k

where hi(v;) < htz(v;) and degy, < degu;. It follows that we can WritexJr w as

in (3.3). Notice that the terna j, ® x;"vj, occurs with a non-zero coefficient on the
right-hand side of (3.3) and is cIearIy linearly independent from the other terms in this
equation. Henceﬁr w # 0 and (i) is proved.

To prove (||) not|ce that if deg;, = 0, then deg; = O for all j and hencexu; =0
for all x € U(}L which are homogenous of positive degree. It follows from (1.2) that

for all x U;(>>) we have

xw = Zuk X xXvg.
k

Choosek such that hi(vy) is maximal andx € 0(}(>>) such thatxvy = vg. Then
for all j we havexv; = a;v, for somea; € C(g). It follows thatxw = u ® v, for
someu € X(A) and degt = 0. Since deg = 0 and | X (A1) is irreducible it follows
thatu € U,(g)v,4 and hence there exists € U,(g) N U+ such thatx’'u = v, and so

we getx’'xw = vy ® vg. Furthermore, there exists € U;(<<) such thatyv, = v;. It
follows that y(v4 ® vz) = v4 ® vz+ Which completes the proof of (ii).

We prove (iii) by induction orN. Notice that (ii) proves that induction starts. Consider
first the case whem;, = av, for somea € C(g)*. Then we can write

wW=uQuvg+w,

where w’ = Zj:deg”jd\, uj ® v;. Chooses > 0 so thatxjfsu =0 foralliel By
(1.2), x:rs(u ® vy) = 0. The induction hypothesis applies i@ and so there exists

X € U;(>>) such thatxw’ = v4 ® v,. It follows thatxw = v4 ® v, and we are done.
Suppose then that fvj,) = M and that (iii) is established for ptv,,) < M.
By part (i) there existi € 7 ands > O such thatw’ = x;"w # 0. Furthermore
write w’ = 3~ u ® vj and setj; = jo(w’). Observe that deg, = deguj, and

htn(v},) =M-1. Hence the induction hypothesis &h applies and we conclude that
0

there existst’ € Of]'(>>), s'> s with (v w) = vy ® ve. O

Corollary. Let W be a non-zero submodule &fA) ® V(r) with 4 € P dominant.
Then W contains both ® v, and v, ® v}.

Theoreml follows immediately from the above Corollary and Proposition 3.1.
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4. A filtration of M(A) ® L(V(rn)) and X(A) ® L(V (n))

4.1.Let M be aUq-moduIe

Definition. We call a collection{.#,},cz of Oq-submodules ofM a decreasingZ-
filtration of M if M = 3" . %, and 7, 2 F,41 for all n € Z. We say that the
filtration {Z ,},cz is strictly decreasindgf %, # 7,41 for all n € Z and istrivial if
Fm=F, foral m,neZ.

In this section we prove that for=0, ..., m(n) —1, the modulesVf (A1) ® L*(V (r))
and X (4) ® L*(V(m)) admit a Z-filtration .#" (respectively,2'"), n € Z, whose
successive quotients are in the categdryand are isomorphic abl,-modules. We
prove that.#, 2.4 ,+1 for all n € Z and that(),.; -#% = 0 We also show that the
filtration 2, n € Z is either trivial or strictly decreasing. In the first case we prove
that this implies thatX (A) ® L*(V (n)) is irreducible and in the second case we prove
that(),.; 2 = 0.

neZ

4.2. Setm = m(m).

Proposition. Let A € P. Givenn € Z, let M, be theﬁq-submodule oM (A)QRL(V (r))
generated by the vectors 4 ® v,t"™" ™, s =0, ..., m — 1. Then the modules#, form
a Z-filtration of M(A) ® L(V(w)). Moreover for all n € Z, the modules#,, /4 y+1
are in the category® and are isomorphic ay;-modules

Further, if 2, is the submodule ofX (A1) ® L(V (n)) generated by the vectoiis; ®
vet™ s = 0,...,m — 1, then the modules?, form a Z-filtration of X(A) ®
L(V(m)). Moreovey for all n € Z the modules?’,/Z,+1 are in the category¥ and
are isomorphic asU/q-moduIes

Proof. We prove only the statement for the Verma modules, the proof of the one
for X(A) being similar. Letn = (m;(u))ic;, where m;(u) = >, miu* € C(g)ul.

By the choice ofm, there existsi € I such thatrn;, = 0,0<r <m and m; ,, # O.
Then P; vy = T vg and SOP; , (m 4 @ vpt™ ) = m 4 @ (M yg)t" TS by (1.4).
Therefore,.#,, > M 1. SinceM(A) Q@ L(V(n)) =), .7 -#, by Proposition 3.1(ii),

it follows that {.#,}, <z is a Z-filtration on M (A) @ L(V (w)).

To show that#,/.#,+1 is in the category?, it suffices to prove that the subspaces
‘@;(m/l ® vpt™ ), s =0,...,m — 1 of .#, are finite-dimensional modulo#,, ;1.
Equivalently, it is sufficient to prove that the subsp&}(vntm”) is finite-dimensional
modulo the subspac'@;“(v,,t’"(”“)). Now, by Proposition 1.5,

U (wat™) € U2(<)U2(0) (™) = U (<) vnt™ (MOdU vyt D)
since P; v, = 0 unlessr is divisible by m. Since V(m) is finite dimensional, by

Lemma 2.7 there exist homogeneoly, ..., Xy € U;(<<) for some r>0 such
that X1vg, ..., Xyvr form a basis of V(n). Let x ¢ 02(<<). Then there exist
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aj € C(g), j=1,..., N such that

N
XVp = Zajva"'
j=1

We may assume thatis homogeneous of degré&eThenxv, € V(n)™® and soa; =0
unless de; = k (modm) by Lemma 2.9. Then we can write

j=1 j=1

N N
X(Untmn) — (Xvn)tmn+k — (Z ClejUn) tmn+k — ZGJX] (vntmn+k—deng)’

the only non-zero terms being those with deg = k(modm). It follows that
x(vgt™) = 0(modU+(v,,t”'("+1))) if kis sufficiently large. Therefore, the dimension of
U+(v ) (modU+(v m+Dy) is bounded above by the dimension of the
subspace 0U0(<<) spanned by homogeneous elements whose degree does not exceed
max;{degX ;}. Evidently, such a subspace U£(<<) is finite-dimensional.

To prove that#,/ H 1= M1/ M, &S aU/q -module for alln, consider the map

M) L(V(m) — M(A)Q L(V(n)),

v@wth > v wiktm

for all ve M(A), we V(n) andk € Z. This is obviously a map oﬁg—modules (but,

of course, noﬁq-modules) which takes#,, isomorphically onta# 1. Moreover, this
operation corresponds to tensoring, with the 1-dimensional highest weight integrable
module X (md). Thus we have#, =.#,+1 ® X(-md) and so in fact#,/ M1 is
isomorphic to(.#,-1 ® X (md))/ (M, ® X (md)) as aU’ -module. O

43.Fors =0,...,m—1, let./® (respectivelyZ’®) be theU,-submodule o/ (1)®
L(V(m)) (respectively, ofX (1) ® L(V(n))) generated byn 4 @ v,t""* (respectively,
by v, ® vt ).

Lemma. For all n € Z, we have
My = @ %(S)

and

M = My N (M(A) ® L (V(m))).
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Further, the .#%), n € Z form a decreasing filtration ofM/(A4) ® L*(V(n)), s =

n

0,...,m — 1. Analogous statements hold faf'®.

Proof. This follows immediately from the trivial observation that for aﬁg-module
M we haveM @ L(V (n)) = @' ¢ M ® L*(V(n)). O

4.4. Fix an ordered basis oV (n) of weight vectorsvg = vg, v1,..., vy = v} such
that ht; (v;) <htg(v;41) foralli =0, ..., N—1. Furthermore, we may assume, without
loss of generality, thab; € V(m)*/) for some O<k;<m — 1. It is clear thatF;v;

is a linear combination ob;; with j* > j if i € I and with j’ < j if i = 0. Let
J%f) be the@;—submodule ofM(A) ® L(V(m)) generated by the sding ® v;t" :
remn+s, j=0,...,N, r=s—k;(modm)} and sety"" " .7 © _ 7, Similarly,
let 32”,(:) be the@;-submodule ofX (A1) ® L*(V(n)) generated by the s¢b @ v;1" :
rzmn+s, j=0,...,N, r =5 —k; (modm)}.

Lemma. For 0<s<m — 1, andn € Z, we have

aca, a»cal

Proof. Immediate. O

4.5. The following proposition plays a crucial role in the reminder of the paper.

Proposition.

(i) Letv e V(n), n € N and suppose that there exist elemeRts, (0;)+, r=0,
j=0,...,N such that inM(A) ® L(V(r)) we have

N
myQ vt" ZZZXj,r(m/l@vjtr)' (4.2)

j=0r=n

Thenv = 0.
(i) Letw € M(A) ® L(V(m)), w # 0. Then there exista € Z such thatw ¢ J%Hl.
(i) Let v € V(m) and suppose that there exist elements, e U+, r20,j =
0,..., N such that inX(A) ® L(V (%)) we have

N
vy @ vt :ZZX,/,r(mA®vjtr)- 4.2)

j=0r=n
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Let R be the maximal>n such that there exis8< j <N with X; (v, Qu;t") #
0 and let jo be the minimal j such tha¥; z(vq ® vth) # 0. ThenX;, r €
AnnO;UA-

Proof. To prove (i), suppose for a contradiction that 0. Let R be the maximal >n
such that there existswith X; .(m4 ® v;t") # 0 and letjo be the minimal & j <N
such thatX ; g(m 4 ®v;t®) # 0. ThenX j, r(m 4 ®v;,t*) contains a term(X j, km 1) ®
vj,t® for somec € C(g)*. SinceA(G;) C @q_ ®522;, it follows that all other elements
in (4.1) are terms of the formm’ ® v;t" where eitherr < R or r = R and j' > jo.
If R > n, then this forcesX;, r € Anng-m 4 and henceX;, g = 0 which is a
contradiction. IfR = n, then (4.1) reduces to

N
myQvt" = ZXj,n(m/l ® vjt").
j=0

Letk =#{j: X;,(mq ®v;1") #0}. If k =0 then we are done. Suppose that 1.
Thenm ®@vt" = X ,(m1®v;t") for some 0<j<N. If X;,m, # 0 thenX; ,(m,®
vjt") contains a non-zero term lying @ye§+\{0} M(A) 1—,®L(V (m)) which is clearly
impossible. HenceX ; ,m 4 = 0 and we get a contradiction. Suppose then that we have
proved that eithek = 0 ork >s for somes € NT. If k = s then Xjr’n(ff’l/]®vjr[jr) #0
for some O<j1 <--- < jy<N. If X; ,m, # 0 for any j,, then again the right hand
side of (4.1) contains a non-zero term @ye§+\{0} M(A) 41—y ® L(V () which is a
contradiction. Thust = 0 or k > s. Since V(n) Is finite-dimensional it follows that
k =0 and we are done.

To prove (i), write w = >>%_ym; ® w;t"/, wherem; € M(A), w; € V(m) and
rj € Z. Letng = max{r; : 1< j<s} and suppose thab A, for somen > ng. This
means that we can write

N
w = Z ZXj,r(m/l ®vjtr)

j=0r=n

for some choice ofX; , € U;. But now arguing exactly as in th® > n case of (i),
we see thatw = 0 which is a contradiction.
The proof of (iii) is an obvious modification of the argument in (i}

4.6.

Proposition. The Z-filtration . of M(A) ® L*(V(n)), s =0,...,m — 1 is strictly
decreasing anq),., -#% = 0.
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Proof. In view of Proposition 4.2 for the first statement it is sufficient to prove that
M # .48 Assume for a contradiction that/’ = .#\". Thenm 4 ® vt® € 4
and hence it follows from Lemma 4.4 that there exist, Uq— such that

N
m Q vot’ :Z Z Xj’r(mA®vjtr). (4.3)
Jj=0r=>m+s

Since X, € (fJ\;)Jr we get a contradiction by Proposition 4.5(i).
Furthermore, letw € (,on-#%. If w # 0, then by Proposition 4.5(ii) we can

chooseng € Z such thatw ¢ %ffo) contradicting./#{) c %,(fo) O

4.7. To analyse the filtration orX(A) ® L(V(n)), A € P+, we need the following
analogue of Proposition 3.2.

Proposition. Let w = Y} _; ux ® vt € X(A) ® L(V(m)) be a weight vector and let
Jjo = jo(w) be the integer associated with the elem@nf_; ux ® vx € X(A) ® V(m)
as in 3.2.

(i) Assume thav;, # vs. There exists € I, s >0 such that

+ Wt j (o) + oS
O#Fxfw= > g G ®xiu i)+, (4.4)
J :deguj=degu
htn(uj)=htn(v

Jo’
o

where S is a sum of terms of the fow?@ v}tr-;' where eitherdegu’j < degu,
or degu’; = degu;j, and htz(v}) < hu,(x:rsvjo).

(i) Suppose thatlegu;, = 0. Thenr; = R for all j for some R € N. Furthermorg
for all s > 0 there existsy € U;(>>) and an integer L such thatw = v ® v’

and an elemeny € Uy (<) and an integerL’ such thatyw = v ® vj;t”.

(iii) Suppose thatlegu j, = N. Then there exists > 0 andx € U; (>>) and an integer
K such thatxw = v ® vztX and an elemeny ¢ U§(<<) and an integerK’ such
that yw = vy ® vk’

Proof. The first statement in part (ii) is an obvious consequence of the facttlisit
a weight vector. The proposition is now proved in exactly the same way as Proposition
3.2 and we omit the details..d

Corollary. Let W be a non-zero submodule ¥fA) ® L(V (%)) with A € P dominant.
Then W containg 4 ® vgt* for somes € Z and v ® vit" for somer € Z.
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4.8. We note the following consequence of Corollary 4.7

Proposition. The Z-filtration 2 of X(A) ® L*(V(n)), s =0,...,m — 1 is either

(i) trivial and X (A) ® L*(V(m)) is irreducible or
(ii) strictly decreasing and

(2 =o.

nezZ

Proof. Suppose tha?’) = 2 for somem > n € Z. Then ) = 2], and it

follows from Proposition 4.2 tha??) = 2 for all m,n € Z. This proves that the
filtration is either trivial or strictly decreasing.

Let W be a non-zero submodule of(A) ® L*(V(n)). By Corollary 4.7,v4 ®
vt € W for somer € Z and soZ®) c W. If the filtration is trivial, then
this implies thatZ®) ¢ W for all n € Z. It follows from Proposition 3.1(ii) that
W = X(A) ® L*(V(x)) and (i) is proved.

Suppose that the filtration is strictly decreasing and Wet= ()., %’ff’. Suppose
that W # 0. Then it follows from Corollary 4.7 that, ® v,t"™"+5 € W for somer € Z
and henceZ® ¢ W. ThenZ'® ¢ 2}, and so2'®) = 2, which is a contradiction
whence (ii). O

4.9. The results of this section allow us to complete the tensor producty ® L(V ()
andM(A)® L(V (m)). We restrict ourselves to the first case, the second one being sim-
ilar. Let A € P and suppose that the filtratioﬁ'ﬁ”, r € Z is strictly decreasing.

Let X (A)®L*(V () be the completion of (1) ® L*(V (m)) with respect to the topol-
ogy induced by the filtratiorﬁ’,(.‘). It is well-known that then there exists a canonical
map ¢ : X(A) @ L*(V(m) — X(DBL*(V(m) and kerpy = ),z 2 = 0 by
Proposition 4.8(ii). ThereforeX(A) ® L*(V (n)) embeds into the completion. On the
other hand,

X(DBL (V (m) = lim (X () ® L*(V(m))/ 2.

Furthermore, Ieél?,(f) be the completion oﬁl’fj),
75 . (s
Ay =limaD/ap.

Then ét\”ff) is a Z-filtration on X (A)®L*(V(x)) and %’,S‘)/%f:llgﬁ?f)/@”ﬂl and so

the associated graded space XfA) ® L*(V(n)) with respect to the filtratiorﬁl'ff)
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is isomorphic to the associated graded spaceX 6fl)\@L*(V (z)) with respect to the
filtration 2. One also hagX (DL (1)))/Zn = (X (A) ® L(V (1)))/ L.

5. An irreducibility criterion for X (A) ® L(V (%))

In this section we establish a sufficient condition for the simplicity ofa;)emodules
XML (V(m),s=0,...,mm -1, 4e€ PT.

Theorem 2. Let A € P+ and letn = (m;(u))ic; be an¢-tuple of polynomials with
constant terml. Suppose that either

(k(m) + m(m)(A, 0) < (A + g, %),
for somei € I satisfyingk(n) = dimV(n);, _, or
k(m)(A, 0) < —(A + Woln, %),

for somei € I satisfyingk(n) = dimV (n),, ; 1. Then for alls =0,...,m(n) — 1,
the filtration 2, n € Z of X(A) ® L*(V(m)) is trivial and henceX (4) ® L*(V (m))

is an irreducibleU,-module

Proof. It suffices by Proposition 4.8 to show that the filtration is trivial. lftbe as
defined in 2.9, and sét = k(zn°), clearly k(r) = mk wherem = m(n). Fix i € I so
that k(n) = dimV(n), __,,. By Lemma 2.4,

mk
X me+nVn = Za,xi’rv,,
r=1

for somea, € C(g), r =1, ..., mk. Applying (1.3) we see that

mn+S) mn+k+1)+s

x;m(k+l)(v/1 & vgt =y ® (x;m(kﬂ)vn)t

mk
Vg ® (Z aﬂﬂ'}”ﬂ:) tm(n+k+l)+s
r=1

mk
Zarx;r(vA ® vntm(n+k+l)+s—r)’
r=1

which proves thaki‘m(kﬂ)(v/l@v,,t’”"“) is contained irﬂfff]rl. Consider the subalgebra

= - DA
of U, generated byE = x., 1, F = x_, .y and K = C"**D K which is
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isomorphic toUy, (slz) with standard generators, F, K*1. Note that mfl(‘)/%“)
we have

E(g®@vat"™) =0, K(vg® vgt""™) = g (vg ® vat™" ™),

where dir = m(k + 1)(A, 8) — (A + g, 04) < 0. Since ¥ /") ), is an integrable
module foqu and hence for this copy dil, (sl), this forces

VA ® vt € LA N X (A) @ LY (V(m) = A1),

and o2 = 20),.
The second assertion is proved similarly. We work with the elemeqt® v} +s
andx;,, and we omit the details.]

6. A reducibility criterion for X(A) ® L(V (%))

In this section we analyze the structure ¥{A1) ® L(V(r)) and give a sufficient
condition for the tensor product to be reducible.

Theorem 3. Let A € P be dominant and suppose that, 5) > (A+7,)(0")+m(n)—1
or, equivalently /(o) > 2(0Y) +m(m) — 1. Then the moduleX (1) ® LS (V (%)), s =
0,...,m(m) — 1 are reducible

The theorem is proved in the rest of the section.
6.1.

Lemma. Let A be a dominant weight. Take € V (r). Then

/11+1
F' P ws@un =Y a7 s (Flor o)
k=1

wherec; € C(g).

A;+1

Proof. Recall thatF; vs = 0. One has

FA g @ vi") = F (c1Fivg @ vi" + vy ® (Fo)i'—%0).
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The second term has the desired form/if = 0 then the first term equals zero and
we are done. Otherwise, we can write

FY(Fog@vi") = FA 7 FPog @ vi" + Fiog @ (Fiv) ~%0).

Clearly, the elemenF;v, ® F;vt’ %0 is a linear combination of; (v4 ® (F;v)t"~9.0)
and v, ® (F?v)t"~2%0 which are both of the required form.

Now suppose that, forat =1,...,s—1, we can WriteFiA"*l’k(E"vA ®ut") as a
linear combination of terms which have the required form af;fh_k(Fi"“vA ® vt").

Then

F~Ai+1_s

) Ai— ) -6

, (Ffoy@ut") = F 7 (F oy @ ui” 4 Ffog © For" ~%0).

Now, the second term can be written as a linear combination of terms which have the
required form by the induction hypothesis. Hence we can repeat the process until we
get tos = A; in which casel’?f+l annihilatesv4 and we are done.[J

6.2. Setm = m(m). By Proposition 4.2, the modul&'(4) ® L*(V(n)) admits aZ-
filtration %«gs) = Uy (vg @ vat™ ™). Let vo, ..., vy be the basis ofV (n) introduced
in 4.4,

Lemma. Let v € V(n), s,n € N. Suppose that there exis®& € N and X, € U,
j=0,...,N, n+s<r<R such that

N R
vA®vt”=Z Z Xjr(vg®v;t"). (6.1)
Jj=0r=n+s

Let Rg be the minimal value of R for which such an expression exists. Haer
@) +n +5.

Proof. Assume for a contradiction thao>/.(0") + n + s. Let jo be minimal such
that X j, gy (v4 ® vj,1%°) # 0. By Proposition 4.5(ii) and Proposition 2.2(i§ j, g, =
ZieyyiFiA"“ for somey; € Oq—. If i € I, then by Lemma 6.]yl~FiA"+l(vA ® vjt R0y

is a linear combination of the elememsF.A"_k’Ll(vA ® FikijtRO), k=1 ...,4;+1.

L

But these terms are all of the form},,RO(vA ® vj/tRO) with ;' > jo and X;/,RO € Oq‘.

By Lemma 6.1 and Lemma 2.6 we conclude tbzaFgloJrl(vA ® ijtRO) is a linear

combination of terms of the forryoFOAOH’k(vA®F(§vj0tR0_") where 1<k < min{Ag+

1, 2z(0)}. Observe thaiRg— k> Ro— /-(0") >n+s. Thus, we have obtained another
expression of form (6.1) where eith& < Rg or R = Rg and the minimal value of
such thatX; g,(vs ®v;1R0) # 0 is strictly greater thago. The former situation cannot
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occur by the choice oRg. On the other hand, sincg(n) is finite-dimensional, using
the above argument repeatedly we must eventually reach a stage mvher€ R < Rg
which is a contradiction. [J

6.3. Theorem3 is an immediate consequence of the following.

Proposition. Suppose thatl (o) > 2z(0")+m—1. Then thezfiltration 2% on X (1)®
L*(V(m)) is strictly decreasing

Proof. Assume for a contradiction thm”g) = %’f). Then, as in Proposition 4.6, we
can write

R N
vg Qvott = Z ZXj,r(UA®thr) (6.2)
r=m+s j=0

for someR>m +s5 and X, € (U;); with X; r(vs ® v;tR) # 0 for some G<j <N.
Assume thatR is minimal such that the expression of form (6.2) exists. Thes
s<R < Az(0Y) + m + s by Lemma 6.2. Furthermore, lgip be the minimal value
of j, such thatX; g(v4 ® v;t®) # 0. Then by Proposition 4.5(ii) and Proposition
2.2(i1), Xjor = D icr y,»FiA"+1 for somey; e Uq—. Furthermore,X , r is of weight

—(R—s)0+Wtvg—Wtvj € —(R—s)ap+Q". On the other hand, the weight %FOAOH

is contained in the Se{-(/lo+1)oto—§+. SinceR—s < Az(0")+m < Ag+1 we conclude
that yoFy " (v @vjor®) = 0. It follows that X j, g (04 @vjot®) = X, vi F H(wa®
vjot®). Thus, by Lemma 6.1X j, g(v4 ® vj,t®) is a linear combination of terms of
the form X ;s r(v4 ® vj/tR) with j’ > jo. Since V(n) is finite-dimensional, repeating
this process we obtain an expression of form (6.2) withg(vs ® v;t%) = 0 for
all 0<j <N which contradicts the minimality oR. [

7. Structure of %, /% w+1 In Some special cases

In this section we analyze the quotient modutEs/Z ,+1 in the special case when
g is of type Ay, By, Cy, Dy and V(m) is isomorphic as d/,(g)-module to the natural
representation ot/, (g).

7.1. Assume that the nodes of the Dynkin diagram ¢fare numbered as ifil7,

Section 4.8] Then V(wy) is the natural representation &f,(g) and for the rest of
the section we sets = w1. Moreover, it is known (cf. say4]) that if we define an
¢-tuple of polynomialsws = (m; (u))ic; by i (v) = 6;1(1 — u), then V(o) =V (w) as

U, (g)-modules.
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Lemma. We havedim V(w), = 1 for all u € Q(V(w)) and hencé(w) = 1. Moreover
forall ve V(w),iecl,

E*v=0=Fhv

if g is of typeAy, C; or Dy, and

2+9; 2+9;
i"l‘(t,(v: 0= Fwi+ I‘KU

E
if g is of typeB,.

Proof. To prove the first statement, it is enough to note thaf19j the corresponding
statements hold for th&, (g)-module V(w). If i € I, then the second statements also
follow for the same reason. if= 0, then the result follows from Lemma 2.6[]

Notice that the conditions of Theorethare not satisfied for the module(V (m))
and 4 € P* which is not a multiple ofé. Indeed, the first condition of Theoreth
reads 24,9) < (A,a1) + 1 or, equivalently,(A4,d — «1) + (A4,0) < 1 which is a
contradiction unlesst € Zo. On the other handw,w; = —w,» for somer’ € I and
so the second condition of Theore2ryields (A, §) + (A, /) < 1 which is impossible
if A¢Z6.

Recall the functionn : V(z) — N defined in Sectior2. Since the weight spaces
of V(w) are one-dimensional, it is convenient to think of this as a function from
Q(V(w)) — N. We continue to denote this function loy

The main result of this section is the following.

Theorem 4. Let A € P+ and assume thatl is not a multiple ofé. Then the filtra-
tion 2, on X(A) ® L(V(w)) is strictly decreasing. Further
(i) suppose that is of typeA,, C; or D,. Then

To/Twir= P XA+ p+(0+n)d).
HeQ 4 (m)

where Q4 (@) = {u € QV(@)) : A+ pue Pt}
(i) If g is of typeBy, set

{ e QV(@®) : A+pue Pt} A@)) >0
QA(W) = . D+ V2

(He Q@) \ {0} : A+ue P}, A@))=0.
Then

Tn/Twi1= P XA+ p+ (0 +n()d).
ueQ 1 (m)
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We prove this theorem in the rest of the section. By Proposition 4.2 it is enough to
consider the case = 0.

7.2. We will need the following.

Lemma. Suppose that there exist a sequence of integréhlemodulesv/‘o DY D
-++ 2 Y7k such that7"o/7 k is a module in the category and either?”; = 7711
or ¥/ iy1=X () for somey, € PT. SetJ = {0<i < K : 727 +1} and
suppose that J is not emptyhen? o/7 x = @, ; X (i;).

Proof. We argue by induction on the cardinality df Suppose first that = {i} for
some G<i< K. Then

V==YV i=Yic1=--=70
and so? o/ k =V i)V i1 = X ().
If the cardinality ofJ is greater than 1, let; be the minimal element o, that is.
Vi ="i—1=---="oand ¥ ;,11C7 ;. Then we have the following short exact

sequence:

0— V'iy41/V'k — Vo/V'k — Yo/ iy+1 — 0.
All modules involved are in the categody and integrable. Therefore, this short exact
sequence splits and s6'0/7 k = 70/7 iy+1® Viy+1/V k =X (W) © V i1/ Y k-
The lemma follows by applying the induction hypothesis to the sequéfigeC --- C
Vi1 O
7.3. Let g be of typeA, and letvg be a highest weight vector i (@). Set

wo =vp, wi1= Eowo, w;=E;_jiow;_1, 2<j<e+ 1

Thenwy1 = wo and the elements);, 0< j < form a basis of theﬁj]-module V().
Set Fy41 = Fp. It is easy to see that

Ejw; =0 i+1Wit1, Fiwiy1=0j¢—iy1w;, jel, 0<j<¢,

and n(w;) = 1 —6;j0. The elementsw;t", 0<j<¢, n € Z, form a basis of the
U,-module L(V (n)) and we have

0 =5
ijitn = 5j,g,i+1w,-+1t”+ 7.0, Fjw,'+1tn = 5j,z,i+1wi,11n .0, (7.2)

Define %, ; = Gq(vA ® wjt”+1—5f»0), 0<j<tl+ 1 ThenZ, ¢+1 = Zn+1.0.
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Lemma.

(i) For all n € Z, we have
Zn0 22012 2Xne 2 Xnt10-
Further, 2, ; 2%, j+1 implies
Xnj/Xnjs1=2X(A+Wtw; + (n+1—-9;0)0).
(i) Forallie 1, 0<j<¢, we have
F/' o) @ wjpar") = aidio—j41F{ (vg ® wjt"00),
for someqa; € C(g)*.

Proof. Part (i) is immediate from (7.1). Part (ii) follows from (7.1) as well by applying
Lemmas 6.1 and 7.1.0J

Applying Lemma 7.2 we conclude that

X)X g1 = P xUA+wtw; + (0 +nw)))d).
0<j<l: T j#Xn j+1

Thus, in this case Theorerhis equivalent to the following:

Proposition. For all 0<j<¢, Zo; = 4o, j+1 if and only if A,_;1 1 = 0, where
Ag+1 = Ao.

Proof. If A¢_j11 =0, thenF,_; 1€ Anngq_v/l by Proposition 2.2(ii). Therefore, by

(i) of the above Lemmay, ® u)jtl_éj’o =cFp_j11(v4 @ wjtt) for somec € C(g)*
and we are done. ‘

For the converse, suppose thgt ® wjtl“’flo € Zo,j+1. It follows from (7.1) that
we can write,

+1 R ¢
VAWt = 3" Viog@wit) + Y > X (g @wjt") (7.2)
i=j+1 r=2 j=0

for someY;, X;,, € U{;. We first prove that there exists an expression of the above
form in which the second term is zero. Indeed, suppose that the second term in the
right-hand side is always non-zero and Rtbe minimal such that an expression

of form (7.2) exists. Letjo be such thatX;, r(vs ® wj,t®) # 0 and assume that
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@ — Wtwj, is minimal with this property. Then by Proposition 435 r € AnnG; VA,

say X jo.r = Ziefy,-FAiJrl for somey; € Uq_. If jo=1, then it follows from Lemma
7.3 that

A _
Xjo.r(0A ® wjot™) = yoF§°(vs ® wor® b.

Since this is impossible by the choice Rfwe get jo > 1. But then Lemma 7.3 implies
that we get another expression of form (7.2) with the minimal value-efvt w; strictly
greater thanw — wtwj,. Repeating, we eventually obtain an expression of form (7.2)
where the minimal value oty — wtw; such thatX; zr(v4y ® w;t%) # 0 is attained
for j = 1 which is a contradiction.

Thus, we can write

041
vg ® w;rt 00 = Z Yi(vg ® wit). (7.3)
i—jt1

Let ip > j be maximal such that an expression of the above from exists and
Yio(vg ® wigt) # 0. Thenw —wt v;, is minimal with this property sincé > 0. Hence
Y, € AnnG;vA by Proposition 4.5. Ifio = j + 1, thenY; ;1 is of weight —a,_ ;1.
It follows that Y;11 = aF,_j41 for somea € C(¢)*. Thus, Fp_j11 € AnnggvA
whenced,_;y1 =0. If ip > j + 1, thenY;, is of weight —(otp—jg+1 + - - + ce—j41).
SinceFjw;, = 0 unlessj = {—ig+2, we conclude thaY;, (v, ®@wjyt) = yFr—ig+2(vA®
wiot) and A¢_j+2 = 0. Thus, we get an expression of form (7.3) where the maxi-
mal i > j such thatY;(v4 ® w;r) # 0 is at mostiop — 1. Repeating the argument, we
get to the casép = j + 1 which has already been considered]

7.4. Suppose that is of type C;. Thenn(w) = 1. Let vp be a highest weight vector
of V(w) and set

wo = Vo,
wj=Ej,1wj71, 1<j<£+l,

Wetj+1 = Eg_ng+j,j<£ -2, 1)<t -1

Thenuwy, ..., wy—1 form a basis ofV (@), wo; = wo andn(w;) = 1—95; 0. SetZ, ; =
Uy (vg ® wjt"™ i), 0< j<2¢. In particular, 2, 2 = Z»+1,0. Then, as in the case
considered in 7.3, Theorewh is equivalent to the following:

Proposition. For 0<j<¥, 2o, = Zo,j+1 if and only if 4; = 0. Similarly, for
1<j<l -1, Zoeqj = Xo,e4j+1 if and only if A,_; =0.
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The proof repeats that of Proposition 7.3 with the obvious changes of notations and
we omit the detalils.

7.5. Let g be of typeBy,. In this case the situation is somewhat more complicated since
n(w) = 2. Let vg be a highest weight vector df (w) and set

wo = vo, w1 = Epwo,
ijijj—la 2<1<Z,
Weyjr1 = E¢ jwerj, 0<j<l-2,

woe = Eowae—1.
Thenwo, ..., wy form a basis ofV(w). Setwy1 = wo. We also have

Fiwg = d; 1a0w2¢—1, Fiwy = d; 1a1w2¢ + d; owo,
Fiwj = 0; jwj_1, 2< <UL,
Fiwey jv1 = 6i0—jwey j, 0<j<t-2,

Fiwye = 0; 0w2¢—1.

One can easily check thatw;) = 1—4;,0+06, 2. DefineZ,, ; = Gq(vA®wjt"+”<wf>),
j=0,...,2¢
We have the following analog of Lemma 7.3.

Lemma.

(i) For all n ez, we have
An02An1 2 2Xn20-1 2 Zn20 + X410 2 Lnt1,0-
Furthermore 2, ;24 j+1, 0<j<2¢ — 2 implies
n il X, jr1=X(A+Wtw; + (n 4+ n(w;))9).
Similarly, 2. 20-12% 1,20 + Zn+1.1 implies
Xn20-1/Tn20 + Zn1.1) =X (A +Wtwoe—1 + (n + n(wze-1))9),
whilst Z .20 + Zn+1.02% n+1.0 implies

(Tn2e + Xn+1,0)/Lns11=Z X (A +Wtwye + (n + n(wze))d).
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(i) For all i e 7, we have

A g @ wot") = aod;, 1F "(vg @ woe—1t"),

A oy @ wir") = ard; 1F "(vg @ woe—1t") + 0; oF f(og ®@ wor™™ Y,

F' @ity =6 i Fl og@wj_at"),  2<j<C,
M, @ wep ") = 55,2—117,- "(vg @ weyjt")

+5j,05i,/éF~Ai_l(UA ®we—1t"), 0<j<l -2,

F ™ og @ woet™) = 6, 0F" (v4 @ woe—1t" ).
Thus, Theoremt reduces to the following:

Proposition.
Zoo=201 < Ap=0,
Zoj1=%0, < 4;=0, 2<j <UL,
Zoe+j+1=Z0+j — A =0, 0<j<t—2,
Zoo2-1=Z%020+X10 < Ag=00r A1 =0,
Zo2e+X10=210 = A;=0.

Proof. The only if direction follows in all cases from Proposition 2.2(ii) and the
formulae in (ii) of the above Lemma.
For the converse, we consider three separate cases.
Casel. o =20,j+1, 0<j <20 - 1.
We can write
2¢-1
vg @ wjrtoR0 = Z Yi(va ® wi) + Y2e41(vg @ war11)
i=j+1
R 2

+ Z in,r(v/l ® w;t").

r=21i=0

Arguing exactly as in Proposition 7.3, but using Lemma 7.5 instead, we conclude
that there exists an expression of the form

20-1
v @ w0 = 3" ¥ (vg @ wit) + Yar1(vg ® wargat). (7.4)
i=j+1
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Let ip > j be maximal such that an expression of the above from exists¥giia, ®
wiot) # 0. Thenw — wtv;, is minimal with this property sincéy > 0. HenceY;,
AnnG;vA by Proposition 4.5. lfig = j +1, thenY; 1 is of weight —o; 11 if 2<j < £
and of weight—ao,— ;41 if j>1. It follows thatY; 1 = aF; 11 (respectivelya Foo—j 1)
for somea € C(g)* and henced;;; = 0 (respectively, 4. ;11 = 0). Suppose
thatip > j + 1 and set

io, 2<ipo<t,
k=320 —ig+ 1, € <ig<20—1,
1, io=20+ 1.

Then Fyw;, = 0 unlessi = k. Therefore,Y;,(v4 ® wjyt) = yFkAk“(vA ® wi,t) for

somey € U, . Using Lemma 6.1 and the formulae in Lemma 7.5(ii) we obtain an
expression of form (7.4) where the maximab j such thatY;(v4 ® w;t) # 0 is at
mostig — 1 if ip<2¢ — 1 and at most 2— 1 if ip = 2¢ + 1. Repeating this argument
we reduce to the casg = j + 1 which has already been considered.

Case2. X021 = %020 + Z1,0-

In this case we should prove that eithég = O or A, = 0. Suppose that there exists
an expression,

R 2

vA® w1t =Yg @wot) + Y > Xi (g @ wit").
r=2i=0

Using Lemma 7.5 we see that as usual there must exist an expression of the form
A ® wae—1t = Y1(vg ® wot) + Y2(vg @ woet?)

for someYy, Yo € 0;. If Yo(vq @ woet?) # 0, then by Proposition 4.5 we get that
Yo € Anng{7 v 4. On the other hand since wiy_17 —Wt w2 = —og, we see thats =
aFp € Anngqfv/l for somea € C(¢)*. HenceAg = 0 and we are done. Otherwise
Yo(vg ® wot?) = 0 and thenY; € Anng.v,. Again sinceYy has weight—o, it
follows that A7 = 0 and the proof of case 2 is complete.

Case3. 202t + Z10= 210
In this case we can write

201 R 2
vA@wt’ =Y Yi(vg ® wit? %) + Yor11(vg ® waer1t)+Y Y Xir(vg @ wit")
i=0 r=3i=0

for someY;, X;, € Uq—. Observe first thatty € Uq— must be of weight Wipt2 —
Wtwot € ag — O ¢ —O7T. Thus, Yo = 0. Furthermore, using Lemma 7.5, we can
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reduce the above expression to
20-1

v @ wyt? = Z Yi(vg @ wit?) 4 Yori1(vg ® woerat?). (7.5)
i=1

Let iop be maximali such thatY;(v4 ® w;r?) # 0. Thenw — wt v, < @; — Wtv; for
all i <ig, i #2¢ and soY;, € AnnU;vA by Proposition 4.5. Suppose first thigt= 1.

ThenY;, is of weight —o; and soY;, = aF; for somea € C(¢)*. ThenA; =0 by
Proposition 2.2(ii). To complete the proof, it remains to observe that the igasel
can be reduced to the cage= 1 by an argument similar to the one in Case 1]

7.6. Finally, let g be of type Dy, £>4. In this case we also havew) = 2. Define

wo =vg, w1 = Eowo,

wj = Ejw;_1, 2<j<e -1,
we = Eqwe—2,

wet1 = Egwe—1 = Eg—qwy,

weyj = E¢g—jweyj-1, 2<j<L -2,
w2e—1 = Eowz¢—2.

Then wo, ..., wy—1 form a basis ofV(w). One can easily check thatw;) = 1 —
5]"0 + 5]"2(3,1. Define Xnj=Us(vg ® wjt”+n(w-f)), j=0,...,2¢—1. Then

%H,O

U

3{1”’1 ) %n,E—Z 2 %n,i—l + gzn,l 2 gg‘n,@+l

D Xne422 22022 X100+ Ln2e-1 2 X410

Theorem4 is thus equivalent to the following:

Proposition.
Zoo=Z01 < A0 =0,
Zoj=%0j+1 — Aj11=0, 1<j<e =3,
Zog—2=2oe-1+Zo¢ < Ag-1=00r 4,=0,
Zoe-1=Zoe+1 —= A, =0,
Zoe=Zoe+1 = Ap_1=0,
Zoe+j-1=20.0+j — A-j =0, 1<j<e -2,
Zo2e—2=Z020-1+Zx10 < Ag=00r 47 =0,
Zo2e-1+Z10=210 <~ A1 =0.

The proof is similar to that of Proposition 7.5 with the obvious changes in notations.
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Remark. It is known (cf. for examplg21]) that the moduled.(V (w)) considered in
7.3-7.6 admit crystal bases which in turn admit a simple realization in the framework of
Littelmann’s path model. Leﬁ(w) (respectivelyZ(A)) be a subcrystal of Littelmann’s
path crystal isomorphic to a crystal basis bfV (@)) (respectively, to a crystal basis

of X(A)). Then the concatenation produgt(A1) ® #(w) contains a subcrystal which

is a disjoint union of indecomposable crystals isomorphic01 + wtb), whereb

runs over the set off-dominant elements i (w). For the special cases considered
above the two are actually isomorphic (this is proven for the tpen [14], but the
argument given where remains valid for the modules considered in 7.4 and 7.6 and
can be easily modified for the module considered in 7.5). Moreover, one can check
that there is a bijection between the set #fdominant elements oiﬁ(w) and the

setQ (@) x Z.

List of notations

I 11 Pk 1.6

@i 11 M, 2.1

P, Q, OF, ht 1.1 Wt 21

9 1.2 QM) 2.1

-, 12 X(A), vy 2.2

P, 0, 0", ht 12 V(m), vy, vk 2.3

Ui 1.3 . 23

Xiko ik 1.3 Wo 2.3

K 1.3 k(m) 25

¢D R 13 n(v), n(m) 2.8

U (), Uy ), UG (0) 1.3 m(m) 2.9

ug 1.3 Ny 2.9

b 1.4 V(m® 2.9

u;, U, U, 1.5 L(V(m)), L(V(m)) 2.10
A 1.6 Nn 2.10
ot o h 3.2

Uy, U, 1.6 tn
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