ANOTHER CHARACTERIZATION OF HYPERCUBES

Jean-Marie LABORDE
CNF:S IMAG, BP 53X, 38041 Grenoble Cedex, France
Surya Prakash RAO HEBBARE
The Mehta Research Institute, 26, Dilkusha, New Katra, Allahabad-211 002 (U.P.) India

Received 4 June 1979
Revised 14 May 1981

Abstract

Nous montrons que dans la classe des graphes connexes tels que deux arêtes incidentes quelconques appartiennent à un et un seul quadrilatère, les hypercubes finis sont les graphes de degré minimum ri fini et possédant 2^{n} sommets.

The following theorem ${ }^{1}$ is proved: Let \mathscr{C} be the class of connected graphs such that ea h pair of distinct adjacent edges lies in exactly one 4 -cycle. Then G in \mathscr{C} is a finite hypercube iff the minimum degree δ of G is finite and ${ }^{2}|V(G)|=2^{\delta}$.

By a 4-cycle we mean a set of 4 edges, each of them being adjacent with two others; a finite hypercube or a n-cube is defined to be the graph C_{n} with $V\left(C_{r}\right)=\{0,1\}^{n}$ and where x and y are joined iff the n-tuples x and y differ in exactly one position ${ }^{3}$; the distance $d(x, y)$ between 2 vertices in a connected graph G is the minimum number of edges in a path joining x to y.

Remark 1. The 6 smallest graphs in \mathfrak{b} are shown in Fig. 1.

Remark 2. Every G in \mathscr{C} is a simple graph (i.e. a grapin without loops or multiple edges) unless G itself is a loop.

Proof. Suppose e an edge of a 4-cycle to be a loop. Let $f \neq c$ and $g \neq e$ be the two others edges adjacent with e. Each e, f or g is adjacent with two others edges, so it is not possible to add any fourth edge giving a 4 -cycle with the first three. It follows that G in \mathscr{C} cannot contain a loop unless G itself is a loop.

In the same way it is easy to prove that 2 edges of a 4 -cycle cannot have the

[^0]

Fig. 1.
same ends. Then G in \mathscr{C} does not contain multiple edges and the remark is settled.

So we shall remove the unique non simple graph from \mathscr{C} and from now we consider \mathscr{C} as a class of simple graphs and denote an edge joining two vertices x and y by $x y$.

Remarlk 3. The class \mathscr{C} verifies $\mathscr{C}+\mathscr{C}=\mathscr{C}$. In particular if G is in \mathscr{C}, then $G+K_{2}$ is also in \mathscr{C}.

Theorem. Let \mathscr{C} be the class of connerted graphs such that each pair of distinct adjacent edges lies in exactly one 4-cycle. Then G in \mathscr{C} is a finite hypercube iff the minimum degree δ of G is finite and $|V(G)|=2^{\delta}$.

We decompose the proof of the theorem in three parts:
Every G belonging to \mathscr{C} is regular (Proposition 1).
If δ is finite, then

$$
\begin{equation*}
|V(G)| \leqslant 2^{\delta} \quad \text { (Proposition 2). } \tag{1}
\end{equation*}
$$

Study of equality in (1).

Proposition 1. Every G in \mathscr{C} is regular.
Proof. If $G=\not \emptyset$ or $G=K_{1}$, then G is trivially regular. If not let x be a vertex and $x y$ be an edge incident with x.

Fig. 2.

「o each edge $x y_{i}$ different from $x y$ we can associate a unique vertex y_{i}^{\prime} such thet $\left\{x y, y y_{i}^{\prime}, y_{i}^{\prime} y_{i}, y_{i} x\right\}$ constitutes a 4 -cycle (see Fig. 2). This 4 -cycle, or according to the context the fourth vertex y_{i}^{\prime} will be called the closure of $x y$ and $x y_{i}$.

Since all y_{i}^{\prime} are distinct we have $d(y) \geqslant d(x)$. Since G is connected the result follows.

Proposition 2. If δ is finite $(\delta=n)$, then

$$
\begin{equation*}
|V(G)| \leqslant 2^{n} \tag{1}
\end{equation*}
$$

Proof. Consider the following level decomposition of G : we first choose any $x \in V(G)$ and then define for $i \in \mathbb{N}$ the i th level $N(i)=\{y \in V(G) \mid d(x, y)=i\}$. It is sufficient to prove

$$
\begin{equation*}
|N(i)| \leqslant\binom{ n}{i} \tag{2}
\end{equation*}
$$

since then

$$
|V(G)|=\sum|N(i)| \leqslant 1+\binom{n}{1}+\cdots+\binom{n}{n}+\hat{0}+0+\cdots=2^{i} .
$$

Proof of (2). Trivially $|N(0)|=|\{x\}|=1$. Now assume $n \geqslant 1$ and let us prove by induction on $i \geqslant 1$ the following property:
$P(i) \quad|N(i)| \leqslant\binom{ n}{i}$ and $\forall v \in N(i) \quad|N(i-1) \cap \Gamma v| \geqslant i$,
where Γv denotes the set of all vertices adjacent to v.
For $i=1$ this is immediate because $|N(1)|=n$ and each $\tau \in N(1)$ is joined to x. So assume $P(i)$ and establish $P(i+1)$. If $N(i+1)=\emptyset$, then $P(i+1)$. If not, let $v \in N(i+1)$ and $w \in N(i)$ be such that $v w$ is an edge of G. For each $w_{k} \in$ $N(i-1) \cap \Gamma w$ let w_{k} be the closure of $w v$ and $w w_{k}$ (see Fig. 3).
'The w_{k} 's are by induction in number at least i, hence also the w_{k}^{\prime} 's. The $w_{k}^{\prime \prime}$'s belong obviously to $N(i)$, then $|N(t) \cap \Gamma v| \geqslant i+1$. Furthermore

Fig. 3.
$|\Gamma w \cap N(i+1)|+|\Gamma w \cap N(i-1)| \leqslant n$, hence $|\Gamma w \cap N(i+1)| \leqslant n-i$ and finally by counting the edges of the bipartite graph induced by the edges with one end in $N(i)$ and the other in $N(i+1)$:

$$
\begin{equation*}
|N(i+1)| \leqslant|N(i)| \cdot \frac{n-i}{i+1} \leqslant\binom{ n}{i+1} . \tag{3}
\end{equation*}
$$

So the proofs of (2) and (1) are complete.
Equality $|V(G)|=2^{n}$
This equality implies equality in (2) and (3). Then every edge intersects two (consecutive) levels, hence G is bipartite. Furthermore all pairs of edges starting from ε ny $v \in N(i+1)$ and ending in $N(i)$ have their closure in $N(i-1)$ (see Fig. 3). So any L-cycle intersects exactly 3 levels. The closure of i edges having a common vertex, is defined to be the smallest subgraph of G, containing these edges and belonging to \mathscr{C}. We will show by induction on $i \geqslant 1$ that all closures are hypercubes and therefore that G contains in particular a n-cube and since G has $n \cdot 2^{n-1}$ edges, that G itself is a n-cube.

This affirmation is trivial for $i=1$ or 2 .
Assume the property for $i(i \geqslant 2)$ and prove it for $i+1$;
If $i+1>n$ it is clearly true, otherwise consider a level decomposition of G starting at the common vertex x of $i+1$ given edges $x x_{j}$.

Let H be the closure of i from the $i+1$ given edges; let x^{\prime} be the other end of the remaining edge. Consider now the different closures of $x x^{\prime}$ and $x x_{j}$ denoted by x_{i}^{\prime}. Finally consider H^{\prime} the closure of the $x^{\prime} x_{i}^{\prime}$ (see Fig. 4).

Fig. 4.

Let y and y^{\prime} be the vertices of H and H^{\prime} at distance i from x and x^{\prime} respectively. In $H^{\prime}-\left\{y^{\prime}\right\}$ consider a vertex v at distance $j<i$ from x^{\prime}. There are $j+1$ edges adjacent to v and intersecting $N(j)$, from which j have their closures containec in H^{\prime} and from which the rem ining intersects H. It follows that the graph induced by $H \cup H^{\prime}-\left\{y^{\prime}\right\}$ is isomorphic to an $i+1$-cube, from which one vertex is removed. Left to prove that $y y^{\prime}$ is an edge of G. For this purpose consider the unique edge starting at y^{\prime} whose other end z belongs to $N(i)$ and not to H^{\prime} (it exists because of $\left|\Gamma y^{\prime} \cap N(i)\right|=i+1$).

We claim $z=y$. Indeed the closure of $y^{\prime} z$ and $y^{\prime} y_{1}^{\prime}\left(y_{1}^{\prime}\right.$ in $\left.H^{\prime}\right)$ cannot belong to H^{\prime}, therefore this is necessarily a certain vertex in H, say y_{1}. In the same way the closure of $y^{\prime} z$ and $y^{\prime} y_{2}^{\prime}$ is $y_{2} \neq y_{1}$). Hence $y=z$, for if not, $y y_{1}$ and $y y_{2}$ would lie in more than one 4-cycle.

Remarks. (a) The theorem answers a question [5] from one of the authors, namely to know whether the exclusion of a given configuration was essential to obtain a preceding characterization of finite hypercubes [4]; this characterization reads as follows: simple conncted graphs with 2^{n} vertices and $n \cdot 2^{n-1}$ edges, with neither triangles nor the following confighation (see Fig. 5) and in which each pair of distinct edges lies in exactly one 4-cycle.
(b) The theorem implies the characterization of Foides [3]: a simple connected finite bipartite graph is a n-cube iff between any two vertices at distance d, there are exactly d ! paths of d edges.

Accually if G is bipartite, then the two end vertices of a path of length 2 are joined by $2!=2$ paths of length 2 and G is in \mathscr{C}. Let n be the maximum distance between two vertices x and y of G and consider a level decomposition with $N(0):=\{x\}$; we have $d(y)=i$ and then $|N(1)|=n,|N(2)|=\binom{n}{2}, \ldots,|N(n)|=1$, hence $|V(G)|=2^{n}$ and, by our theorem, G is a n-cube.
(c) If we make use of the characterization by Foldes the equality in (1) is rather obvious, since it is not difficult to see that between 2 vertices x and y at distance d there exist precisely d ! distinct paths with length d (for this consider a level decomposition with $N(0)=\{x\}$).
Question. The hypercubes are maximal graphs of \mathscr{C}. What about the mimimal graphs?

Trivial counting arguments show that for every graph in \mathscr{C} : if $n \geqslant 3$, then

$$
|V(G)| \geqslant 1+n+\frac{n(n-3)}{2}=1+\binom{n}{2}
$$

Fig. 5.

Fig. 6.
and if G contains neither triangles nor pentagons, then for $n \geqslant 2$

$$
|V(G)| \geqslant 1+n+\frac{n(n-1)}{2}+\frac{n(n-1)}{2} \cdot \frac{n-2}{n}=2\left(i+\binom{n}{2}\right) .
$$

Furthermore graphs in \mathscr{C} with neither triangles nor pentagons and with $2\left(1+\binom{n}{2}\right)$ vertices are bipartite and in 1-1 correspondance with the so called biplanes [2], i.e. symmetric blocks designs with parameters $\left(1+\binom{n}{2}, n, 2\right)$ (they can be interpreted as SBD with 'point set' $N(0) \cup N(2)$ and 'block set' $N(1) \cup N(3))$. The first corresponding graphs are C_{2}, C_{3}, and the following on 14 vertices [4] depicter in Fig. 6.

All biplanes are known for $n \leqslant 15$ [2] and the conjecture about the existence of finite biplanes for arbitrary large n is then expressed in terms of minimal graphs of \mathscr{C}.

Note finally that the first minimal non bipartite graphs are $K_{4}, K_{4}+C_{1}$ and the icosahedron with $12\left(>1+\binom{5}{2}=11\right)$ vertices as shown by M. Mollard (private communication).

References

[1] C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1973) 363.
[2] P.J. Cameron, Biplanes, Math. Z., 131 (1973) 85-101.
[3] S. Foldes, A characterization of hypercubes, Discrete Math. 17 (1977) 155-159.
[4] J.-M. Laborde, Une caractérisation locale du graphe du n-cube, in: C. Benzaken, ed., Jo arnées de Combinatoire. (Grenoble, 1978) 198-200.
[5] J.-M. Laborde, Problem Session of the Colloque Franco-Canadien de Combinatoire (Montréal, 1978), Annals Discrete Math. 9 (1980) 305.
[6] H.M. Mulder, The interval function of a graph, Mathematis.h Centrum, Amsterdan (1980) 39-63.

[^0]: ${ }^{1}$ After the first version or this paper was 'written a book by H.P. Mulder [6] was published. Here a similar result but with different approach and proofs may be found.
 ${ }^{2} V(G)$ denotes the vertex set of graph G. For any $X,|X|$ denotes the cardinal (number of elements) of X.
 ${ }^{3} C_{n}$ can also be obtained from $C_{0}=K_{1}$ by the following induction $C_{n+1}=C_{n}+K_{2}$ ifor the defination of the cartesian sum of two graphs see for example [1]).

