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Nous montrons que dans la classe des graphes connexes tels ;lue deux a&es incidentes 
quelconques appartiennent a un et un seul quadrilatere, les hypercrtbes finis sont les graphes de 
degre minimum n lini et possedant 2” sommets. 

The fol!owing theorem’ is proved: Let % be the class of connected graphs such that ea .h pair 
of distinct adjacent edges lies in exactly one 4-cycle. Then G in %Z is a finite hypercube 15 the 
minimum degree 6 of G is finite and* IV(G)1 = 2”. 

By a 4-cycle we mean a set of 4 edges, each of them being adjacent with two 
others; a finite hypercube or a n-cube is defined to be the graph Cn with 
V(C, ) = (0, 1)” and where x and y are joined iff the n-tuples x and y differ in 
exactly one position3; the distance d(x, y) between 2 vertices in a connected graph 
G is the minimum number of edges in a path joining x: to y. 

. The 6 smallest graphs in % are shown in Fig. 1. 

. Every G in % is a simple graph (i.e. a graph without loops or multiple 
edge?;) unless G itself is a loop. 

oil. Suppose e an edge of a 4-cycle to be a loop. Let f# e” and g # e be the two 
others edges adjacent with e. Each e, f or g is adjacent with two others 
it is :?ot possible to add any fourth edge giving a 4-cycle with the first 
follolvs that G in 4e cannot contain a loop unless G itself is a loop. 

In the same way it is easy to prolIe t at 2 edges of a 4-cycle cannot 

’ After the first version or this paper was *written a book by - ~~~d~~r 161 was published. 
similar result but with different approach and proofs may be fourd. 

* VI G) denotes the vertex set of graph G. For any X, 1x1 denotes the cardinal (number of elements) 
of X. 

’ C, can also be obtained from (7, = e following induction Cn+, = (1, + & If~r the n Ition 

of the Cartesian sum of two graphs see for example [a]). 
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same ends. Then G in % does not contain multiple edges and the remark is 
settled. 
So we shall remove the unique non simple graph from % and fro:m now we 

consider (e as a class of simple graphs and denote an edge joining two vertices x 
and y by xy. 

* The class %’ verifies % + % = ‘3. In particular if G is in %, then G + K2 
is also in %. 

Let % 64 the class of connected graphs such that each pair of distinct 
adjacent kdges lies l’n exactly one 4-cycle. Then G in % is a finite hyperwbe iff the 
minimum degree 6 of G is finite and IV(G)\ = 2”. 

We decompose the proof of the th#eorem in three parts: 
Every G belonging to % is regular (Proposition 1). 
If 6 is finite, then 

(Proposition 2). 

Study of equality in (I). 

. Every G in % is regular. 

. If G = @!l or G = Ki, then G is trivially regular. f not let x be a vertex and 
xy be an edge incident with x. 
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“r0 each edge Xyi different from Xy we can associate a unique vertex yi such 
E t (xy, yy I, yiyi, yix} constitutes a 4-cycle (see Fig. 2‘1. This 4-cycle, or according 

to the context the fourth vertex yi will be called the closure of xg, and xyi. 

Since all y: are distinct we have d( y ) 2 d(x). Since G is connected the result 
follows. 

If 8 is finite (6 = n), then 

(1) 

. Consider the following level decomposition of G: we first choose any 
x E V(G) and then define for i EN the ith level Y(i) ={y E V(G) i d(x, y) = i}. It is 
sullkient to prove 

(2) 

since then 

iProof of (2). Trivially IN(O)) = I(X)! = 1. NON assume n 2 1 and let us prove by 
induction on i 2 1 the following property: 

and KEN(~) IN(i--l)nTu(~, 

where PU denotes the set of all vertices ad6acc:nt to u. 
For i = 1 this is immediate because (N( 1 )I = II and e#ach B E N( 1) is joined to X. 

So assume P(i) and esta lish P(i+ 1). If W(i + 1) = @, then P(i + 1). If not, let 

2, c:N(i + 1) and WE IV($) be such that w i:; an edge of G. For each wk E 
IV+ - 1) n rw let \vk be the closure of wu and wwk (see Fig. 3). 

The &‘s are by ind uction in number at kast i, hence also the w;‘s. The 
w L ‘s belong obviously to N(i), then IZV( I) n EJ I 2 i + 1. Furthermore 

N(i-1) X ( i) N(i+l) 

Fig. 3. 
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irw l-l N(i + l)J+(Tiu n N(i - 1)1 s ~1, hence (rw fNV(i+ 1)1~ n - i andcl finally by 
count~ing the edges of t e bipartite graph in e edges with1 ogle end in 

N(i) and the other in N(i+ 1): 

N(i+l)l+I(i)(-ff-+ (.Jl). 

So the proofs of (2) and (I) are complete. 

Equality 1 V(G)! = 2” 

(3) 

This equality implies equality in (2) and (3). Then every edge intersects two 
(consecutive) levels, hence G is bipartite. Furthermore all pairs of edges starting 
from 2 ny u E N(i + 1) and ending in N(i) have their closure in N(i - 1) (set Fig. 3). 
SO an!/ &cycle intersects exactly 3 EeueEs. The closure of i edges having a common 
vertex, is defkled to be the smallest subgraph of G, containing these edges and 
belonging to %. We will show by induction on i 3 1 that all closures are 
hypercubes and therefore that G contains in particular a n-cube and since G has 
)I . 2n- 1 edges, that G itself is a n-cube. 

This affirmation is trivial for i = 1 or 2. 
Assume the property for i (i 2 2) and prove it for i + 1: 
If i + 1~ n it is clearly true, otherwise consider a level decomposition of G 

starting at the common vertex x of i + 1 given edges Xxi. 
Let H be the closure of i from the i + 1 given edges; let x’ be the olther end of 

the rerqaining edge. Consider now the different closures of XX’ and xxi denoted by 
xi. Finally consider H’ the closure of the x)x: (see Fig. 4). 

N(O) N(l) N(2) 
s(i-1) Y’i.) N(,i+l) 



Another rharacterizatim of hypercubes 265 

and H’ at distance i from x and x’ 
x 0 at distance j < i from x’. There *are 

g N’(j), from which i have their closures 
m which thle rem:kining intersects If. It follows that the 
- { y ‘} is isomorphic to an i + l-cube, from which one vertex 

is relnoued. Left to prove that yy’ is an edge of 6. For this purpose consider the 
unique edge starting at y’ whose otlher end z belongs to N(i) and not to W’ (ilt 
exist; because of jry’ f7 N(i)\ = i + 1)” 

We claim z = y. Indeed the closure of y’z and y’y: (yi in H’) cannot belong to 
H’, therefore this is necessarily a certain vertex in H, say yl. En the same way the 
closure of y’z and y’y$ is y, 4: # y J. !Hence y = z, for if not, yy, and yy, would lie 

in more than one 4-cycle. 

a (a) The theorem answers a question [S] from one of the authors. 
o know whether the exclusion of a given configuration was essentiaJ to obtain 

a preceding characterization of finite hypercubes [4]; this characterization reads as 
follows: simple conn.~:ted graphs with 2” vertices and n. l 2”-’ edges, with neither 
triangles nor the following configt.iation (see Fig. 5:) and in which each pair of 
distinct edges lies in exactly one 4-cycle. 

(b) The theorem implies the characterization of Fotdes [3]: a simple connected 
finite bipartite graph is a n-cube ifi between any two vertices at distance d, there 
are e cactly d ! paths of d edges. 

Acually if G is bipartite, then the two end vertices of a path of length 2 are 
joined by 2! = 2 paths of length 2 and G is in %. Let n be the maximum distance 
between two vertices x and y of G and consider a level decomposition with 
N(O):={x); we have d(y) = :z and then IN(l)1 = n, IN(2)1= (;), . . . , IN(n)\ = 1, 

hence IV(G)1 = 2” and, by our theorem, G is a n-cube. 
(c) lf we make use of the characterization by Foldes the equality in (1) is rather 

obvfsus, since it is not difficult to see that between 2 vertices JC and y at distance d 
there exist precisely d! distinct paths with length d (for this consider a level 
decomposition with N(O) = ix}). 

. The hypercubes are maximal graphs of %. What about the mimimal 

graphs ? 

Trivial counting arguments show that for every graph in %: if n 2 3, then 
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Fig. 6. 

and if G contains neither triangles nor pentagons, then for n 3 2 

IV(C)Ial+n+ 2 
n(n-l)+n(n-1) n-2 

--*-=2(1+(i)). 
2 n 

Furthermore graphs in Ce with neither triangles nor pentagons and with 
2( 1 + (‘;)) vertices are bipartite and in l-l correspondance with the so called 
biplanes [2], i.e. symmetric blocks designs with parameters (1 +(i), n, 2) (they can 
be interpreted as SBD with ‘point set’ IV(O) U N(2) and ‘block set’ N( 1) U N(3)). 
The first corresponding graphs are Cz, C3, and the following on 14 vertices [4] 
depicts+ in Fig. 6. 

All biplanes are known for n s 15 [2] and the conjecture about the existence of 
finite biplanes for arbitrary large n is then expressed in terms of minimal graphs 
oi %. 

Note finally that the first minimal 
icosahedron with 12 (>l + (z) = 11) 
communication). 

non bipartite graphs are K4, K4 + C, and the 
vertices as shown by M. Moilard (private 
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