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Nous montrons que dans la classe des graphes connexes tels jue deux arétes incidentes
quelconques appartiennent a un et un seul quadrilatére, les hypercubes finis sont les graphes de
degré minimum r fini et possédant 2" sommets.

The following theorem! is proved: Let € be the class of connected graphs such that ea h pair
of distinct adjacent edges lies in exactly one 4-cycle. Then G in 4 is a finite hypercube 1ff the
minimum degree 8 of G is finite and? |V(G)|=2°%.

By a 4-cycle we mean a set of 4 edges, each of them being adjacent with two
others; 2 finite hypercube or a n-cube is defined to be the graph C, with
V(C,)={0, 1}" and where x and y are joined iff the n-tuples x and y differ in
exactly one position®; the distance d(x, y) between 2 vertices in a connected graph
G is the minimum number of edges in a path joining x to y.

Remark 1. The 6 smallest graphs in € are shown in Fig. 1.

Remark 2. Every G in € is a simple graph (i.e. a graph without loops or multiple
edges) unless G itself is a loop.

Prool. Suppose e an edge of a 4-cycle to be a loop. Let f# ¢ and g# e be the two
others edges adjacent with e. Each e, f or g is adjacent with two others edges, so
it is a0t possible to add any fourth edge giving a 4-cycle with the first three. It
follows that G in % cannot contain a loop unless G itself is a loop.

In the same way it is easy to prove that 2 edges of a 4-cycle cannot have the

! After the first version or this paper was 'written a book by H.M. Mulder {6] was published. Here a
similar result but with different approach and proofs may be fouud.

2 V(G) denotes the vertex set of graph G. For any X, | X| denotes the cardinal (number of elements)
of X.

3 C, can also be obtained from C, = K, by the follawing induction C, ., = C, + K {for the definition
of the cartesian sum of two graphs see for example [1]).
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Fig. 1.

same ends. Then G in € does not contain multiple edges and the remark is
settled.

So we shall remove the unijue non simple graph from € and from now we
consider € as a class of simple graphs and denote an edge joining two vertices x
and v by xy.

Remark 3. The class € verifies € +% = €. In particular if G is in €, then G+ K,
is also in €.

Theorem. Let € be the class of connected graphs such that each pair of distinct
adjacent edges lies in exactly one 4-cycle. Then G in € is a finite hypercube iff the
minimum degree & of G is finite and |V(G)|=2°.

We decompose the proof of the theorem in three parts:
Every G belonging to € is regular (Proposition 1).
f 8 is finite, then

|V(G)|<2° (Proposition 2). (1)
Study of equality in (1).

Proposition 1. Every G in € is regular.

Proof. If G =9 or G =K,, then G is trivially regular. If not let x be a vertex and
xy be an edge incident with x.
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To each edge xy; different from Xy we can associate a unique vertex y! such
thet {xy, yyi, yiy;, y:ix} constitutes a 4-cycle (see Fig. 2). This 4-cycle, or according
to the context the fourth vertex y; will be called the closure of xy and xy,.

! A — A 7Y
Since all y; are disvinct we have d{y)=d(x). Since G is connecied the result
follows.

Proposition 2. If 8 is finite (8§ =n), then
|V(G)|<2". (1)

Proof. Consider the following level decomposition of G: we first choose any
x € V(G) and then define for i eN the ith level N(i)={y e V(G) |d(x, y)=i}. Itis

sufficient to prove

Nl ("), @)

\i

sinice then

|V(G)|=ZiN(i)|<1+(';)+. . _+(:)T0+G+, g

Proof of (2). Trivially |N(0)|=|{x}|=1. Now assume n=1 and let us prove by
induction on i=1 the following property:

P(i) |N(i)|$(?) and VveN() |[N(G-1)NTIv|=i,

where I'v denotes the set of all vertices adjacent to v.

For i =1 this is immediate because |N(1}|=n and each v e N(1) is joined to x.
So assume P(i) and establish P(i+1). If N(i+1)=@, then P(i+1). If not, let
veN(i+1) and we N(i) be such that vw is an edge of G. For each w, e
Nii—1)NTIw let w, be the closure of wo and ww, (see Fig. 3).

The wy’s are by induction in number at lzast i, hence also the w,’s. The
w;’s belong obviously 0 N(i), then |N(O)NTv|=i+1. Furthermore

N(i=1) N (1) N(i+l)
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IT'w AN+ D+ T'wNN(i—1)|<n, hence |FT'wNN(i+1)|<n—i and finally by
counting the edges of the bipartite graph induced by the edges with one end in
N(i) and the other in N{(i+1):

ING+ D] <|NG)}- —+—1<(l:1). 3)

So the proofs of (2) and (.) are complete.

Equality |V(G)|=2"

This equality implies equality in (2) and (3). Then every edge intersects two
(consecutive) levels, hence G is bipartite. Furthermore ali pairs of edges starting
from eny v € N(i + 1) and ending in N(i) have their closure in N(i — 1) (se< Fig. 3).
So anv 4‘-cycle intersects exactly 3 levels. The closure of i edges having a common
vertex, is defined to be the smallest subgraph of G, containing these edges and
belonging to 6. We will show by induction on i=1 that all closures are
hypercubes and therefore that G contains in particular a n-cube and since G has
n-2""! edges, that G itself is a n-cube.

This affirmation is trivial for i =1 or 2.

Assume the property for i (i =2) and prove it for i +1:

If i+1>n it is clearly true, otherwise consider a level decomposition of G
starting at the common vertex x of i+1 given edges xx;.

Let H be the closure of i from the i+ 1 given edges; let x’ be the other end of
the remaining edge. Consider now the different closures of xx’ and xx; denoted by
xj. Finally consider H' the closure of the x'x| (see Fig. 4).

|
|
|
|
|
|
|

N(0) N(1) N(2) N’(i-’l) N0 N(i41)

Fig. 4.
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Let y and y’ be the vertices of H and H' at distance i from x and x’
respectively. In H' —{y'} consider a vertex v at distance j<i from x’. There are

j+1 edges adjacent to v and intersecting N(j), trom which j have their closures
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is removed Left to prove that yy' is an edge of G. For thxs purpose consider the
unique edge starting at y’ whose other end z belongs to N(ij and not to H' (it
exists because of |y AN@)|=i+1).

We claim z = y- Indeed the closure of y'z and y' t (y'1 in H') cannot belong to

h induced bv HU H' —{v"} is isomorph:c
’

H', therefore this is necessarily a certain vertex in H, say y,. In the same way th
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CIOSUIC O1 y Z anG y y5 i8S yo ! 7 yypJ). ni€NCE y = Z, i0f1 11 10y, Yy, ainda yy, wouia 1ic
in more than one 4-cycle.

namely to know whether the exclusion of a given configuration was essential to obtam
a preceding characterization of finite hypercubes [4]; this characterization reads as

follows: simple conn: cted graphs with 2" vertices and n-2"~! edges, with neither
triangles nor the following configuiation (see Fig. 5) and in which each pair of
distinct edges lies in exactly one 4-cycle.

(b) The theorem 1mp11es the characterization of Foides [3]: a 1mpl connected
finite bipartite graph is ny two ver X: >
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Acrually if G is bipattite, then the two end vertices of a path of length 2 are
joined by 2! =2 paths of length 2 and G is in 6. Let n be the maximum distance
between two vertices x and y of G and consider a level decomposition with

N(0):={x}; we have d(y)=n and then |[N(D)|=n, INQ)|=(3),..., |[N(n)|=1,
hence |V(G)|=2" and, by our theorem, G is a n-cube.

(c) If we make use of the characterization by Foldes the equality in (1) is rather
obvious, since it is not difficult to see that between 2 vertices x and y at distance d
there exist precisely d! distinct paths with length d (for this consider a level

decomposition with N (0)={x}).

Question. The hypercubes are maximal graphs of 6. What about the mimimal
graphs?

2AROVY
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and if G contains neither triangles nor pentagons, then for n=2

lV(G)lz1+n+"("—l)+"("_l) ~ ";2=2(1+(g)).

2 2

Furthermore graphs in € with neither triangles nor pentagons and with
2(1+(3)) vertices are bipartite and in 1-1 correspondance with the so called
biplanes [2], i.e. symmetric blocks designs with parameters (1+(3), n, 2) (they can
be interpreted as SBD with ‘point set” N(0) U N(2) and ‘block set’ N(1)U N(3)).
The first corresponding graphs are C,, C;, and the following on 14 vertices [4]
depicted in Fig. 6.

All biplanes are known for n <15 [2] and the conjecture about the existence of
finite biplanes for arbitrary large n is then expressed in terms of minimal graphs
of €.

Note finally that the first minimal non bipartite graphs are K,, K,+ C, and the
icosahedron with 12(>1+(3)=11) vertices as shown by M. Mollard (private
communication).
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