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Abstract

Let R = k[x1, . . . , xr ] denote the polynomial ring inr variables over a fieldk, with maximal
idealM = (x1, . . . , xr ), and letV ⊂ Rj denote a vector subspace of the spaceRj of degree-j
homogeneous elements ofR. We study three related algebras determined byV . The first is the
ancestor algebraAnc(V )= R/V whose definingancestor idealV is the largest graded ideal ofR
such thatV ∩Mj = (V ), the ideal generated byV . The second is the level algebra LA(V )= R/L(V )
whose defining idealL(V ), is the largest graded ideal ofR such that the degree-j component
L(V ) ∩ Rj is V ; and third is the algebraR/(V ). We have thatL(V ) = V +Mj+1. Whenr = 2
we determine the possible Hilbert functionsH for each of these algebras, and as well the dimen
of each Hilbert function stratum. We characterize the graded Betti numbers of these alge
terms of certain partitions depending only onH , and give the codimension of each stratum in ter
of invariants of the partitions. We show that whenr = 2 andk is algebraically closed the Hilbe
function strata for each of the three algebras attached toV satisfy a frontier property that the closu
of a stratum is the union of more special strata. In each case the familyG(H) of all graded ideals o
the given Hilbert function is a natural desingularization of this closure. We then solve a refin
of the simultaneous Waring problem for sets of degree-j binary forms. Key tools throughout includ
properties of an invariantτ(V ), the number of generators ofV ⊂ k[x1, x2], and previous result
concerning the projective varietyG(H) in [Mem. Amer. Math. Soc., Vol. 10 (188), 1977].
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1. Introduction

In Section 1.1 we first define what we term theancestor idealV andancestor algebra
Anc(V ) and also thelevel algebraLA(V ) of a vector spaceV ⊂ Rj of degree-j forms in
the polynomial ringR = k[x1, . . . , xr ] in r variables over a fieldk. We then show som
initial results about the three algebras Anc(V ),LA(V ) andR/(V ) determined byV . In
Section 1.2 we state our main results about these three algebras forr = 2, and we give
context in the literature. In Section 1.3 we show some general results about the H
function strata of ancestor ideals. In Section 2 we show our main results about the
algebras ofV for r = 2 variables. In Section 2.1 we determine the dimensions of
Hilbert function strata (Theorem 2.17); in Section 2.2 we express the codimensio
these strata in terms of partitions given by the graded Betti numbers of the three al
attached toV (Theorem 2.24); and in Section 2.3 we determine the Zariski closure of
Hilbert function stratum whenk is algebraically closed. We show that the strata for eac
the three algebras satisfy the frontier property, that the closure is a union of more s
strata in a natural partial order (Theorem 2.32). In Section 3.1 we study a refinem
the simultaneous Waring problem for vector spaces of degree-j forms whenr = 2. In
Section 3.2 we develop a concept ofrelatedvector spaces of forms, then we state so
open problems.

1.1. Three algebras attached to the vector spaceV ⊂Rj
We letk be an arbitrary field, and we denote byR = k[x1, . . . , xr ] the polynomial ring

over k, with maximal idealM = (x1, . . . , xr), and the standard grading. For an inte
j � 0 we denote byRj the vector space of degree-j homogeneous elements ofR. Let
j > 0 and suppose thatV ⊂ Rj is a vector subspace of the space of degree-j homogeneou
forms ofRj . We denote by(V ) the ideal generated byV , and byV the largest ideal ofR
such thatV ∩Mj = (V ) (see Definition 1.1). For a formf ∈ Rj and an integeri � 0 we
denote byRi · f the vector space

Rif = 〈hf | h ∈ Ri〉 ⊂Ri+j .
For a vector spaceV ⊂Rj and an integeri � 0 we denote byRiV the vector space span

RiV = {hf | h ∈Ri,f ∈ V }. (1.1)

For 0� i � j we denote byR−iV the vector space satisfying

R−iV = {f ∈ Rj−i | f ·Ri ⊂ V }. (1.2)

We now define the three algebras determined byV that we study.

Definition 1.1. Let V ⊂ Rj be a vector space of forms. Thelevel idealL(V ) determined
by V is

L(V )=Mj+1⊕ V ⊕R−1V ⊕ · · · ⊕R−j V , (1.3)
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and thelevel algebradetermined byV is LA(V )=R/L(V ). Theancestor idealV of V is
the ideal

V = (V )⊕R−1V ⊕ · · · ⊕R−j V , (1.4)

and theancestor algebradetermined byV is Anc(V )=R/V . The usual ideal determine
by V is (V )⊂Rj , and we denote by GA(V )=R/(V ) the graded algebra quotient.

Recall that thesocle of an Artinian algebraA=R/I is

Soc(A)= (0 :M)A = 〈f ∈A |M · f = 0〉.

Thetypeof A is the vector space dimension dimk(Soc(A)) of the socle.

Remark 1.2. The ancestor idealV is the largest graded ideal ofR such thatV ∩Mj = (V ),
the ideal ofR generated byV . The level idealL(V ) is the largest graded ideal ofR such
thatL(V ) ∩ Rj = V : it satisfiesL(V ) = V +Mj+1; and the socle of the level algeb
LA(V )= R/L(V ) satisfies Soc(LA(V ))∼=Rj/V . The ideal(V ) satisfies(V )= V ∩Mj .
Note, the maximality statements for the ancestor idealV and for the level idealL(V )
may appear similar, but they are quite different. The two ideals are equal only
R1 · V =Rj+1.

Proof of Remark. For i > 0,R−iV ⊂ Ri−j is the largest subset ofRi−j satisfying
Ri(R−iV ) ⊂ V ; and evidentlyV of Definition 1.1 is the largest graded ideal such t
V ∩Mj = (V ), the ideal generated byV . The other statements are also immediate fr
the relevant definitions. ✷
Lemma 1.3. There are exact sequences

0→ V /(V )→R/(V )→R/V → 0, and

0→Mj/(V )→ R/V → R/L(R−1V )→ 0. (1.5)

Proof. Immediate from the definitions.✷
Example 1.4 (see [Mac1, Section 60ff], [IK, Lemma 2.14]). When the codimensio
of V as a vector subspace ofRj is one, then LA(V ) = R/L(V ) is a graded Artinian
Gorenstein algebra, and all standard graded Artinian Gorenstein algebras quotienR
having socle degreej arise in this way. WhenV = 〈xy2 + yx2, x3, y3〉 ⊂ R = k[x, y]
thenL(V )= (x2+ xy + y2, x3) and LA(V ) is a complete intersection of Hilbert functio
H(A) = (1,2,2,1). Here, as usual in the Gorenstein Artinian case,V = L(V ); the
exception is whenV = (mp) ∩ Rj for the maximal ideal of a pointp ∈ Pr−1, then
V =mp.

Example 1.5. Let IZ be the defining ideal of a closed subschemeZ ⊂ Pr−1, and let
V = IZ ∩Rj . ThenV ⊂ IZ. If alsoj � σ( Z), the regularity degree ofZ, thenV = IZ.
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Recall that the saturation Sat(I) of a graded idealI ⊂R is the ideal

Sat(I)= I :M∞ = {f | ∃i with Rif ⊂ I }. (1.6)

Denote byσ(V ) the Castelnuovo–Mumford regularity degree of the projective sch
ZV = Proj(R/(V ))⊂ Pr−1. In case(V )⊃Mσ but (V )�Mσ−1, whenZ(V ) is empty, we
setσ(V )= σ . We denote this same integerσ(V ) also byσ(Anc(V )) andσ(V ).

Lemma 1.6. LetV ⊂Rj be a vector subspace. Fori � 0,

Ri ·R−i · V ⊂ V, and R−i ·RiV ⊃ V. (1.7)

WhenV �=Rj we have

0=R−j V ⊂ · · · ⊂R−1V ⊂ V , (1.8)

and

V ⊂R1V ⊂R2V ⊂ · · · ⊂ Sat((V )). (1.9)

Also, fori � σ(Anc(V ))− j, we haveRiV = Sat((V )).

Proof. The inclusions of Eq. (1.7) are immediate from the definitions, and they
ply Eqs. (1.8) and (1.9) (see also Lemma 3.6). The increasing sequence of ide
Eq. (1.9) evidently terminates in Sat((V )). Concerning the last claim, thatRiV = Sat(V )
for i � σ(V )−j we first note that, takingW =Rσ−j V ; thatσ(V )= σ impliesσ(W)= σ .
WhenR1W = Rσ+1 the claim is trivially satisfied; otherwise the regularity degree
Proj(R/(W)) is σ . It follows thatW = Sat((W))σ , andW = Sat((W)). This completes
the proof. ✷
Lemma 1.7. Let I be a graded ideal ofR satisfyingH(R/I)=H , and letV = Ij . Then
we have

I +Mj+1⊂ V +Mj+1 and I ∩Mj ⊃ (V ). (1.10)

Proof. Let a > 0 andi = j − a, then we haveV = Ij ⊃RaIi , hence

V i =R−a · V ⊃R−aRaIi ⊃ Ii
by (1.7) of Lemma 1.6. This showsI +Mj+1⊂ V +Mj+1. Now leta > 0 andi = j + a.
We haveRaV =RaIj ⊂ Ii , henceI ∩Mj ⊃ (V ). ✷
Definition 1.8. Let V ⊂ Rj andW ⊂ Ri . We say thatV is equivalentto W (V ≡W ) if
V =W . We will say thatW is simpler thanV if W =Ri−j V andW �= V .
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The first principle behind this article is that each vector space in one of the seque

V,R−1V,R−2V, . . . or V,R1V,R2V, . . .

should be either equivalent to or simpler than the preceding space. The complexi
vector spaceV ⊂Rj should be measured by an invariantτ (V ) that is nonincreasing alon
each sequence above, and where equalityτ (V ) = τ (RiV ) impliesV ≡W . We succeed
in this enterprise of measuring the complexity ofV only whenr = 2. In this case, we
takeτ (V )= dimk R1V − dimk V , and show thatτ (V )= ν(V ), the number of generato
of the ancestor ideal ofV (Lemma 2.2). We show that thisτ has the needed properti
(Theorem 2.3). Whenr � 3 an analogous invariant with such strong properties is
possible due to an example of D. Berman (Example 3.8).

The second principle is that, fixing a degreej and vector space dimensiond , the
Grassmanian Grass(d,Rj ) parametrizingd-dimensional subspaces ofV ⊂Rj is stratified
by locally closed subschemes Grass(H)=GrassH(d, j), parametrizing the vector spac
V for which the Hilbert functionH(R/V ) = H is fixed. LettingG(H) be the scheme
parametrizing all the graded idealsI ⊂ R with H(R/I) = H , we have that Grass(H) is
an open subscheme ofG(H) (Theorem 1.15). Natural questions are, when is Grass(H)

nonempty? Is Grass(H) irreducible? What are the dimensions of its components
Grass(H) smooth? Describe the Zariski closureGrass(H)⊂Grass(d,Rj ).

1.2. Background and main results

We first give the immediate background of the paper, and outline our main results
we discuss related work of others.

Our main results are for the caser = 2, where we answer the above questions.
further show thatG(H) is a natural desingularization ofGrass(H) whenr = 2, and we
determine the fibre ofG(H) over a point in the closure of Grass(H).

Whenr = 2 we denote by Grassτ (d,Rj ) the locally closed subscheme of Grass(d,Rj )

parametrizing vector spacesV with τ (V ) = τ . Recall that here,τ (V ) is the number of
generators ofV . Given a sequenceH = (H0,H1, . . .) of nonnegative integers, we defin
the first difference sequenceE(H)=!H by

E(H)= (e1, . . . , ei, . . .), whereei =Hi−1−Hi. (1.11)

We let e0 = −1. WhenH = H(R/V ), thenei = τ (Ri−jV ) − 1 for i < j , and ei =
τ (Ri−j−1V ) − 1 for i > j (Proposition 2.6). ForH ′,H two sequences of integers th
occur as Hilbert functions of ancestor algebras Anc(V ),V ⊂ Rj , dimV = d we let (see
Definition 1.14)

H ′ �P H if for eachi � j we haveH ′i �Hi,

and for eachi � j we haveH ′i �Hi. (1.12)

We denote bya+ the numbera if a � 0 and 0 otherwise. It is well known that in tw
variables, the Hilbert functionH of a quotientA = R/I by a proper nonzero ideal (s
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H is a proper O-sequence) satisfies, for some positive integerµ, the order of H (so
Mµ ⊃ I, Iµ �= 0)

H = (1,2, . . . ,µ,Hµ,Hµ+1, . . . ,Hi, . . .) with µ=min{i |Hi < i + 1}, and

µ�Hµ �Hµ+1 � · · ·� cH and lim
i→∞Hi = cH � 0. (1.13)

Definition 1.9. Given a sequenceH satisfying (1.13) withcH = 0, let σ = σH satisfy
Hσ−1 �= 0,Hσ = 0. We denote byG(H) the closed subscheme

G(H)⊂
∏

µ�i�σ−1

Grass(i + 1−Hi,Ri) (1.14)

parametrizing graded ideals ofR having Hilbert functionH : here
∏
µ�i�σ−1 Grass(i+1−

Hi,Ri) parametrizes sequencesVµ,Vµ+1, . . . , Vσ−1 of vector spaces with eachVi ⊂ Ri
and dimVi = i + 1 − Hi ; we assumeVi = 0 for i < µ and Vi = Ri for i > j . The
subschemeG(H) is defined by the conditionsxVi ⊂ Vi+1 andyVi ⊂ Vi+1 for µ� i < j .

WhencH > 0, let σH = min{i | Hi−1 > cH }. It is not hard to show that each idealI
with H(R/I)=H , satisfies

∃f ∈RcH | i > σH ⇒ Ii = (f )∩Ri. (1.15)

Thus, whencH > 0 we may regardG(H)⊂∏µ�i�σ Grass(i + 1−Hi,Ri), in a manner
similar to that above in (1.14) for the casecH = 0.

We will use the following result, essentially from [I2], valid over a fieldk of arbitrary
characteristic.

Theorem 1.10 [I2, Theorems 2.9, 2.12, 3.13, 4.3, Proposition 4.4, Eq. (4.7)].Letr = 2, and
for (1.10)let the fieldk be algebraically closed. LetH be anO-sequence that is eventua
constant, soH is a sequence satisfying(1.13), let c= cH and letHs = cH ,Hs−1 �= cH .

(i) ThenG(H) is a smooth projective variety of dimensionc +∑i�µ(ei + 1)(ei+1).
G(H) has a finite cover by opens in an affine space of this dimension. Ifchark = 0 or
chark > s thenG(H) has a finite cover by opens that are affine spaces.

(ii) [I2, Theorem 4.3]The number of generatorsν(I) of a graded idealI for which
H(R/I)=H , satisfiesν(I)� ν(H)= 1+ eµ +∑i�µ(ei+1− ei)+.

(iii) [I2, Proposition 4.4]Assume thatk is an infinite field. The graded idealsI with
H(R/I)=H and having the minimal numberν(H) of generators given by equalit
in (1.10)form an open subscheme ofG(H) having the dimension specified in(1.10),
that is dense inG(H) whenk is algebraically closed.

Remark on the Proof. The proof of (i) in the caseR/I Artinian, soc = 0 is one of the
main results of [I2]. The characteristic 0 case is handled in Theorems 2.9, 2.12, a
characteristicp case in Theorem 3.13 of [I2]. The proof of (i) whenc > 0 relies on the fac
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that ts = ts+1 = c implies there is a formf of degreec such thatIs = (f ) ∩ Rs, Is+1 =
(f ) ∩ Rs+1 (for a proof, see Proposition 2.3(vi)). This implies thatf | Ii for i � s. Thus,
whenc > 0, I = f I ′ whereI ′ is a graded ideal such thatH(R/I ′) = H ′, whereH ′ is
defined byH ′i = Hi+c − c. It follows thatG(H) ∼= Pc × G(H ′). HereH ′ is eventually
zero, so the dimension and structure ofG(H ′) is given by Theorems 2.9, 2.12, and 3.13 (
also Eq. (4.7)) of [I2]. In [I2] we defined certain subfamiliesUH ⊂ G(H) parametrizing
idealsI having “normal patterns:” such thatI has a Gröbner basis with leading terms
first i + 1− Hi degree-i monomials in lexicographic order for eachi. We showed tha
these subfamilies are affine spaces of dimension specified in (i); this result in fact re
only thatk be an infinite field. However, thatUH be dense inG(H) requires thatk be
algebraically closed.

We will show the following main results for ancestor ideals of a vector spaceV ⊂ Rj
of homogeneous polynomials whenr = 2. Analogous results for level algebras a
the algebrasR/(V ) follow, and are stated in the appropriate section. Recall tha
denote GrassH(d,Rj ) by Grass(H), and that we haveei = E(H)i = Hi−1 − Hi . We
denote bycH = limi→∞Hi . Theorem A is Theorem 2.19(ii). Theorem B is (2.34)
Theorem 2.17(B); other dimension results are in Theorems 2.17 and 2.24. Theore
D are the two parts of Theorem 2.32, Theorem E is Theorem 2.35. For Theorems B
assume that the fieldk is infinite, and theO-sequencesH,H ′ belong to the setH(d, j) of
acceptablesequences (Definition 2.7), which by Corollary 2.8 are thoseO-sequencesH
with d fixed satisfying the conditions of Theorem A; the partial order is that of (1.
We denote by LA(N) = LAN(d, j) ⊂ Grass(d,Rj ) the scheme parametrizing tho
vector spacesV ⊂ Rj whose level algebra LA(V ) satisfiesH(LA(V )) = N ; and we
let GA(T ) = GAT (d, j) ⊂ Grass(d,Rj ) parametrize graded algebrasR/(V ),V ⊂ Rj
satisfyingH(R/(V ))= T . For Theorem E the setPA(d, j) is a certain partially ordere
set of pairs of partitions (Definition 2.34).

Theorem A. The properO-sequenceH = (H0,H1, . . . ,Hj ,Hj+1, . . .) as in(1.13)occurs
as the Hilbert function of the ancestor algebra of a proper vector subspace ofRj if and
only if the first differenceE =!(H) satisfies the conditions

ej = ej+1 � ej+2 � · · ·� eσ(V ) = 0, (1.16)

ej � ej−1 � ej−2 � · · ·� e1 � e0=−1 and (1.17)∑
i�j
(ei + 1)+

∑
i>j

ei + cH = j + 1. (1.18)

Each such sequenceE satisfying the three conditions occurs, and for a vector spac
dimensiond =∑i�j (ei + 1).

Theorem B. Let d � j be positive integers, and letH be an acceptableO-sequence. Th
dimension ofGrass(H) is cH +∑i�µ(H)(ei + 1)(ei+1).
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Theorem C (Frontier property).Assume thatk is algebraically closed. The Zariski closu
Grass(H) is

⋃
H ′�PH Grass(H ′).

Theorem D. Assume thatk is algebraically closed. Letd, j be positive integers satisfyin
d � j , and suppose thatH is an acceptableO-sequence(Definition 2.7). There is a
surjective morphismπ :G(H)→Grass(H) from the nonsingular varietyG(H), given by
I → Ij . The inclusionι : GrassH(d, j) ⊂ G(H), ι :V → V is a dense open immersio
For H ′ ∈ H(d, j),H ′ �P H , the fibre ofπ over V ′ ∈ GrassH (d, j) ∩ GrassH ′(d, j)
parametrizes the family of graded ideals{

I |H(R/I)=H andIj = V ′
}
.

The schemesLAN(d, j) and GAT (d, j) have desingularizationsG(N) and G(T ),
respectively, with analogous properties.

Theorem E. There is an isomorphismβ from the partially ordered setH(d, j) under the
partial order P = P(d, j), and the partially ordered setPA(d, j) under the product o
the majorization partial orders(see Definition2.34). The isomorphism is given byβ(H)=
(P,Q),P = P(H)=A(H)∗,Q=Q(H)= B(H)∗ (see Definitions2.9and2.21). This is
the same order as is induced by specialization(closure) of the strataGrass(H).

We show similar results to Theorems A–E for the Hilbert function strata LAN(d, j)

and GAT (d, j). Of these results Theorems C, D—Theorem 2.32 in Section 2.3—ar
deepest of the paper. The kind of frontier property shown is rare in this context of H
schemes of families of ideals. The key step in the case ofR/(V ) is the construction of an
ideal I of a given Hilbert functionT = H(R/I) such thatI contains a given idealI ′ of
Hilbert functionT ′ =H(R/I ′), whereT ′ � T termwise, andT ,T ′ are permissible Hilber
functionsT =H(R/(V )), T ′ =H(R/(V ′)) for algebrasR/(V ). This key step is made i
Lemma 2.30, and involves constructing a sequence of intermediate ideals.

Many of the main results here, including Theorems A–D are rewritten from a you
preprint [I1] of 1975, that was circulated then, even submitted, but not published
is hereby retired! We have chosen to restrict the focus of the present paper to a
algebras, level algebras, and also the algebraR/(V ) determined byV , and severa
applications. We omit the developing of basic facts about apolarity/Macaulay’s in
systems that comprised an important part of [I1], but was both classically known, a
now well-known in recent literature in the form that we use in Section 3.1 (see, for exa
[I4,EmI1,IK,G]). We give here a much-changed and clearer exposition of Theorems
and their analogues for level algebras and the algebrasR/(V ); the latter caseR/(V ) was
treated in [I2, Section 4B], but the exposition here is improved.

Several advances since 1975 have modified our exposition and influenced our
The Persistence theorem of Gotzmann, which appeared in 1978, resolved a natural q
that was open at the time of our original preprint and is a result that had been conje
by D. Berman [Be,Go1]: see also [BrH,IKl] for further exposition of the persistence
Hilbert scheme result of G. Gotzmann, a refinement of Grothendieck’s construct
the Hilbert scheme [Gro]. New here is the use of the Gotzmann results in Section
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help parametrize the Hilbert function strata of ancestor ideals, whenr > 2 andH is not
eventually zero.

Several authors have written about the restricted tangent bundle to a rational
[GhISa,Ra,Ve], closely related to the Hilbert function strata GAH(d, j). The form of
the codimension results there have inspired an entirely new Section 2.2 on the m
resolutions of the three algebras attached toV . We define partitionsA,B giving the
generator and relation degrees of the ancestor idealV , and depending only on the Hilbe
functionH(R/V ) (Lemma 2.23); and we find compact formulas for the codimension
GrassH(d, j),LAN(d, j) and GAT (d, j) in terms of natural invariants of these partitio
(Theorem 2.24). We also count level algebra and ancestor algebra Hilbert functions
the partitions (Theorem 2.19, Corollary 2.20) and as well we describe the closures o
using them (Lemma 2.28, Theorem E). The Betti strata for more generalO-sequence
H—not arising from ancestor algebras—are studied in a sequel [I6].

The methods of this paper, in particular the proof of the frontier property of The
C for the parameter spaces GAT (d, j) of the ideal (V ), can be applied to show
similar frontier property for the stratification of the family of rational normal curve
Pr according to the decomposition of the restricted tangent bundle into a direct s
line bundles (see [GhISa], also [Ra]). The analogous result for LAN(d, j) has a similar
interpretation for the stratification of such a family by the minimal rational scroll u
which they lie [I5].

In Section 3.1 we apply our results to solve a refined version of the simultan
Waring problem for a vector spaceW of degree-j forms inR = k[X,Y ], using apolarity
or Macaulay inverse systems. The simultaneous Waring problem for a set ofc general
forms of specified degrees is to find a smallest integerµ such thatc generic forms of
these degrees may be written as linear combinations of powers ofµ linear forms. It
was studied classically by A. Terracini, whose approach is generalized and mode
in [DF]. Recently E. Carlini has interpreted the result concerning the generic (la
Hilbert function for a level algebra, in terms of the simultaneous Waring problem, w
making explicit the connection with secant varieties to the rational normal curve [Ca]
well-known connection of ideals ink[x, y] to secant bundles is explained in the compl
intersection case related to the Waring problem for a single form in [IK, Section
Another recent solution of the Waring problem for forms in two variables occurs
unpublished preprint with Jacques Emsalem, a result that can be readily derived fr
theory of compressed algebras [I4, Theorem 4.6C]. In the special case of equal d
so one considersf ∈W , for a general vector spaceW ⊂Rj , r = 2 solutions are given in
[CaCh, Theorem 3.1], [Ca, Theorem 3.3], and [ChGe, Theorem 3.16]; the latter resu
determines the dimension of the subscheme of Grass(c,Rj ) parametrizing vector space
W having a lengthµ simultaneous decomposition. Our refinement here is two-fold,
to consider vector spaces of degree-j formsW having a givendifferentialτ invariant, and
second, we use Theorem 2.32 to determine the closure of the relevant LAN(d, j) strata
(Theorem 3.4).

Section 3.2 has results from the original preprint [I1] concerning related vector s
V,W , whereW =Rik ·Rik−1 · · ·Ri1V . David Berman’s article [Be] showed that acomplete
Hilbert function associated to a vector subspace ofRj , ostensibly a function from
countable set of sequences toN, the nonnegative integers giving the dimension of e
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spaceW related toV , is determined by its restriction to a finite subset of the sequen
Here we study primarily the caser = 2 and we bound the number of classesW related to
V (Proposition 3.9).

The results of Sections 2.1 and 2.3 in the special case of the algebrasR/I where
I = (V ) whenr = 2 were stated and shown in Proposition 4.7–4.9 and Theorem 4.
[I2, Section 4B]. Our exposition here is rather more detailed and careful even in this s
case. Other results of this article for the caser = 2 were announced in [I3, Appendix B
(the case (V), with an allusion to the ancestor ideal case), in [I4, Proposition 4.6
(level algebras), in [IK, Theorem 8.1] (Gorenstein Artinian algebras), and in a no
level algebras whenr = 2 at the end of [ChoI]. But proofs of the results of Sections
and 2.3 for ancestor ideals and level algebras, whenr = 2 were in the original preprint [I1
and appear here for the first time.

Several authors have recently studied level algebras, but from a rather dif
viewpoint than taken here [ChoI,BiGe,Bj,St1]. In addition E. Carlini, and J. Chipal
with Tony Geramita have written about the two variable case, each determining the po
Hilbert functions for level algebras [Ca,ChGe]. E. Carlini and J. Chipalkatti have m
some remarkable progress in the simultaneous resolution problem in certain othe
for r � 3 variables [CaCh]. J. Chilpakatti and A. Geramita give a geometric descri
of Hilbert function stratum LAN(d, j) for level algebras in [ChGe, Propositions 3
3.10]; and they draw conclusions for the simultaneous Waring problem for binary f
(ibid., Theorme 3.16). They also show that certain quite special unions of these str
projectively normal, or arithmetically Cohen–Macaulay (ibid., Theorem 4.4): these u
are different from the closuresLAN(d, j) studied here.

In higher dimensionsr > 2, until recently only the Gorenstein case codV = 1 of
level algebras had been extensively studied (see [IK] for results and references);
compressed algebra case whereH is maximum given the codimension ofV andr had been
studied [I4,FL,Bj]. The analogue forr > 2 of the frontier property of Theorem C does n
usually hold even in the Gorenstein height three case [IK, Example 7.13], nor isG(H) a
desingularization of Grass(H) [IK, Lemma 8.3 with J. Yaméogo]. The sequencesH that
occur as Hilbert functionsH = H(R/V ) are known whenr = 3 in the Gorenstein cas
[BuEi,St1,Di] (see [IK, Section 5.3.1]); also in this Gorenstein case the family Grass(H) is
irreducible and nonsingular [Di,Klp]. The question of which sequencesH occur as Hilbert
functions of level algebrasLA(V ) is studied by A. Geramita, T. Harima, and Y. Shin
[GHS1] usingskew configurationsof points inPn. With J. Migliore they develop furthe
results, including necessary conditions and new techniques and constructions for a
socle degree and type; they also include a complete list of level Hilbert function
r = 3, socle degree at most 5, of socle degree 6 and type codV = 2 [GHMS1]. When
r � 4 even the set of Gorenstein sequences are unknown. However, several autho
established both minimum and maximum Hilbert functions for level algebras LA(d, j) in
any codimensionr (see [BiGe,ChoI]).

1.3. The Hilbert function strata

Fix r and the polynomial ringR = k[x1, . . . , xr ]. Recall that we denote by Grass(d,Rj )
the Grassmanian parametrizingd-dimensional vector subspaces ofRj . A reader primarily
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interested inr = 2 may wish to skip over or skim this section and consult Proposition
in its place.

Definition 1.11. Let H be a sequence of nonnegative integers that occurs as the H
functionH = H(R/V ) whereV is a d-dimensional vector subspace ofRj . We denote
by GrassH (d, j)⊂Grass(d,Rj ) the subscheme of the Grassmanian parametrizing v
spacesV satisfying the rank conditions

codRiV =Hi+j in Ri+j , for i =−j,−j + 1, . . . . (1.19)

WhenH is eventually zero, evidently Eq. (1.19) imposes a finite number of alge
conditions onV (which we study shortly). WhenH is not eventually zero, we will us
Gotzmann’s Persistence and Hilbert scheme theorems, a refinement of the Grothe
Hilbert scheme theorem, to show that the number of algebraic conditions imposed by
is finite.

Recall that every sequenceH = (H0, . . .) occurring as the Hilbert functionH =H(A)
of a quotient algebraA=R/I is eventually polynomial: there exists a pair(pH ∈Q[t], s =
s(H) ∈N) |Hi = pH (i) for i � s(H). We denote byσ = σ(pH ) the Gotzmann regularit
degree ofpH (see [Go1,IKl]). It is easy to see thatσ � s(H). Recall that the Grothendiec
Hilbert scheme Hilbp(Pr−1) parametrizes subschemes ofPr−1 having Hilbert polynomia
p [Gro]. We denote byri the integerri = dimk Ri =

(
r+i−1
i

)
, and defineq = qH by

q(i)= ri − pH (i). We denote byM(d, j) the vector space span of the firstd monomials
of degreej in R, in lexicographic order.

Theorem 1.12 (Macaulay Growth Theorem [Mac2]).A vector spaceV ∈ Grass(d,Rj )
satisfies

dimR1 · V � dimR1 ·M(d, j). (1.20)

Theorem 1.13 (Gotzmann Hilbert scheme and Persistence Theorem [Go1]).Let p be a
Hilbert polynomial, andσ = σ(p). The Hilbert schemeHilbp(Pr−1) is the locus of pairs
of vector spaces

(V ,V ′) ∈Grass
(
q(σ),Rσ

)×Grass
(
q(σ + 1),Rσ+1

)
(1.21)

satisfyingR1 ·V = V ′, or, equivalentlyR1 ·V ⊂ V ′. Such vector spacesV satisfy equality
in (1.20).
(Persistence)A vector spaceV occurring in such an extremal growth pair(V ,V ′) satisfies

dim(Rσ+i/RiV )= p(σ + i) ∀i � 0; (1.22)

the spaceRiV has dimensionq(σ + i), and also satisfies equality in(1.20).

For an exposition of the persistence result overk, see [BrH, Section 4.3]; for a
exposition of the Gotzmann–Grothendieck Hilbert scheme results and further refe
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see [IKl]. One consequence of Theorem 1.13 for us is that one may suppose thi �
max{1, σpH +1−j } in Eq. (1.19). Thus (1.19) defines a scheme structure on GrassH(d, j)

as locally closed subscheme of Grass(d,Rj ), for all occurring sequencesH .
Given such a sequenceH we define a projective schemeG(H) parametrizing the

graded idealsI ⊂ R that determine a quotient algebraA = R/I having Hilbert function
H(A)=H . WhenH is eventually zero, soHs = 0, the parametrization ofG(H) is as a
subset of

∏
i�s Grass(rj − hj ,Rj ), whererj = dimk Rj . WhenH is not eventually zero

thenH is eventually polynomialHi = pH(i) for i � s(H) for some polynomialp = pH .
As before, we takeσ(H) the regularity degree of the polynomial, and parametrize

G(H)⊂
(∏
i<σ

Grass(rj − hj ,Rj )
)
×Hilbp

(
Pr−1). (1.23)

By Theorem 1.13, we may replace the product in Eq. (1.23) by
∏
i�σ+1 Grass(rj −hj ,R).

Results of D. Mall (when chark = 0 or chark > σ(pH ) and K. Pardue (for arbitrar
characteristic) show that when the base fieldk is algebraically closed, the schemeG(H) is
connected [Mall,Par].

Definition 1.14. We define a partial orderP = P(d, j, r) on the setH(d, j, r) of Hilbert
functions possible forH(A),A=R/V , as follows:

H ′ �P(d,j,r) H ⇔ H ′i �Hi for i � j andH ′i �Hi for i � j. (1.24)

When the triple(d, j, r) is obvious from context we writeH ′ �P H forH ′ �P(d,j,r) H .
Recall thatH occursor is possible for us if it occurs as the Hilbert function of an ance
algebra Anc(V ) for somed-dimensional vector subspace ofRj .

Theorem 1.15. Let H be a sequence that occurs as the Hilbert function of an ance
algebra. The schemeGrassH (d, j) is a locally closed subscheme ofGrass(d,Rj ). The
conditionH ′ = H(R/V ) �P H is a closed condition onV ∈ Grass(d,Rj ). Also the
inclusionι : GrassH(d, j)→G(H) given byι :V → V is an open immersion.

Proof. Let I = IV = V . It is not hard to show that dimIi � ri −Hi is a closed condition
and dimIi < ri −Hi +1 is an open condition onV ∈Grass(d,Rj ), wheni � j . Likewise,
it is not hard to show that for eachi � j then dimIi � ri −Hi is a closed condition, while
dimIi > ri − Hi − 1 is an open condition. By the Gotzmann persistence and regu
theorems, ifV satisfies each of these conditions for all positive integersi � σ(pH ) + 1
(which we may suppose greater thanj ), thenH(R/V ) = H . Thus, we have shown tha
GrassH(d, j)⊂Grass(d,Rj ) is defined by the intersection of a finite number of open
closed conditions, so it is locally closed, as claimed.

That the inclusionι is an open immersion, follows fromI�j being generated byIj , and
Ii , i < j beingRi−j Ij . For a > 0 the condition thatV = Ij generatesIj+a is equivalent
to the rank of the multiplication map:Ra ⊗ V → Ri being greater than dimIi − 1 =
ri −Hi − 1 onG(H)—an open condition. LetW = V⊥ ⊂ Rj in the Macaulay duality
Fora > 0 the condition thatIj−a =R−aV is equivalent to the rank of the contraction m
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Ra ×W → Ra ◦W ⊂Rj−a being greater thanHi − 1, onG(H), also an open condition
This completes the proof.✷
Corollary 1.16. The Zariski closureGrassH (d, j) ⊂ ⋃

H ′�PH GrassH ′(d, j). Similar

inclusions hold forLAN(d, j) and forGAT (d, j).

Remark 1.17. The partial orderP(d, j, r) for r � 2 is not in general subordinate to
equal to a simple order. Forr = 2 a simply ordered exception are the complete intersec
cases(d, j) = (d, d + 1), whereV has codimension one: see [IK, Section 1.3]. A
for r = 2, Example 2.36 gives a different simply ordered case,(d, j) = (4,5), while
Example 2.29(A) below(d, j) = (3,5) and Example 2.29(B)(d, j) = (10,12) illustrate
the more general situationP(d, j,2) not a simple order, for ancestor algebras and le
algebras, respectively.

2. The ancestor ideal in two variables

Throughout this section,R is the polynomial ringR = k[x, y] over an arbitrary fieldk,
and we denote byM = (x, y) the homogeneous maximal ideal. The vector spaceRj of
degree-j forms inR satisfies,Rj = 〈xj , xj−1y, . . . , yj 〉, of dimensionj + 1, andV ⊂Rj
will be a vector subspace having dimension dimV = d . In Section 2.1 we give our mai
results concerning the individual Hilbert function strata of the three algebras relatedV

whenr = 2. These include a characterization of ancestor ideals (Proposition 2.11) a
dimension/structure Theorem 2.17. In Section 2.2 we give our results relating the g
Betti numbers of these three algebras to certain partitionsA,B,C,D (Lemma 2.23); also
we give the codimension of the Hilbert function strata in terms of the partitionsA,B or
C,D (Theorem 2.24). In Section 2.3 we determine the closures of the Hilbert fun
strata (Theorem 2.32).

2.1. The Hilbert function strata whenr = 2

We first present the main tool we need, the simplicityτ (V ), and a key exact sequenc

Definition 2.1. ForV ⊂Rj we define

τ (V )= dimk R1V − dimk V . (2.1)

We define the sequence

0→ R−1V
φ→R1⊗ V θ→R1 · V → 0, (2.2)

whereφ :f → y ⊗ xf − x ⊗ yf , andθ :
∑
i :i ⊗ vi→

∑
i :ivi , where the:i are elements

of R1 (linear forms).
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For I a graded ideal ofR, we denote byν(I) the number of minimal generators forI .
For a vector subspaceW ⊂ Ri we denote by codW = i + 1− dimW , the codimension o
W in Ri .

Lemma 2.2. The sequence(2.2) is exact. We have

τ (V )= dimV − dimR−1V (2.3)

= 1+ codR−1V − codV = 1+ codV − codR1V (2.4)

= ν(V ). (2.5)

Also,τ (V )� min{d, j + 2− d}.

Proof. Clearly φ is a monomorphism, andθ is surjective, so we need only show t
exactness of (2.2) in the middle. Suppose thatU ∈R1⊗V andθ(U)= 0. We may suppos
U = x ⊗ v1+ y ⊗ v2, thusxv1+ yv2 = 0, implyingy dividesv1 andx dividesv2. Thus
w = v2/x =−v1/y ∈ R−1V satisfies

φ(w)= y ⊗ xw− x ⊗ yw = y ⊗ v2− x ⊗ (−v1)=U. (2.6)

This completes the proof of the exactness of (2.2). Thus, counting dimensions in (2
have

2 dimV = dimR1⊗ V = dimR−1V + dimR1V. (2.7)

Noting the definition ofτ in (2.1), we have shown (2.3). Eqs. (2.4) follow immediately.
show thatτ (V )= ν(V ), we first note that applying (2.7) toRiV we have for any integeri
satisfying−j � i,

dimR−1RiV + dimR1RiV = 2 dimRiV . (2.8)

Wheni � 0 we haveR−1RiV =Ri−1V , so we have

for i � 0 dimR1RiV = 2 dimRiV − dimRi−1V. (2.9)

The number of generatorsν(V ) of the ancestor ideal ofV satisfies,ν(V )= dimk(V /MV ),
whereMV =R1V , sinceV is graded. We have

V /R1V =
+∞⊕
i=−j

(RiV /R1Ri−1V )=
0⊕

i=−j
(RiV /R1Ri−1V ), (2.10)

since fori � 0 we haveR1Ri−1V =RiV . Let di = dimRiV . From (2.10) we have
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d
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ν(V )=
0∑

i=−j
dimRiV −

0∑
i=−j

dimR1Ri−1V

=
0∑

i=−j
di −

(
2

0∑
i=−j

di−1−
0∑

i=−j
di−2

)
by (2.9)

= d0− d−1

= τ (V ) by (2.3).

This completes the proof of (2.5). The upper bound onτ (V ) is immediate from (2.3) an
(2.4). ✷

Recall from Definition 1.8 that the subspaceV ⊂Rj is equivalenttoW ⊂Ri if V =W .
A generalization of (iii) below is shown in Corollary 3.10.

Proposition 2.3 (Equivalence).We assume thatV ⊂Rj ; hereR = k[x, y].

(i) For s �−j we haveτ (RsV )� τ (V ), with equality if and only ifRsV = V .
(ii) In the sequence

τ (R−j V ), . . . , τ (R−1V ), τ (V ), τ (R1V ), . . .

the values ofτ (RiV ) are monotone nondecreasing fori � 0, and monotone non
increasing fori � 0.

(iii) For two-vector spacesRsV,RtV , we have

RsV = RtV ⇔ RsV =Rs−tRtV and RtV =Rt−sRsV

⇔
{

eitherτ (RsV )= τ (RtV )= τ (V ),
or sign(s)= sign(t) andτ (RsV )= τ (RtV ).

(iv)

RsV = V ⇔
{

if s > 0, dimRs+1V = dimV + (1+ s)τ (V );
if s � 0, dimRs−1V = dimV − (1− s)τ (V ).

(v) For any two-vector spacesV ⊂Rj ,W ⊂Ri ,

V =W ⇔ V =Rj−iW and τ (V )= τ (W).

(iv) τ (V )= 1⇔ V = f ·Rj−c wheredegf = c= codV . Alsoτ (V )= 0⇔ V = 0.
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Proof. To show (i) it suffices to prove it fors =±1 and apply an induction. Fors = 1 we
haveτ (R1V ) = dimR1V − dimR−1R1V , butR−1R1V ⊃ V , so τ (R1V ) � dimR1V −
dimV = τ (V ) with equality if and only ifR−1R1V = V , which is equivalent toV =R1V .
Fors =−1, we haveτ (R−1V )= dimR1R−1V −dimR−1V � dimV −dimR−1V = τ (V )
with equality if and only ifR1R−1V = V , which is equivalent toR−1V = V .

Repeated use of (i) shows the rest of the proposition. For example, we sho
for s > 0. By definitionτ (RiV ) = dimRi+1V − dimV for i = 0, . . . , s so we have for
W =RsV ,

dimR1W = dimV + τ (W)+ τ (R1V )+ · · · + τ (RsV ).

Thatτ (V ), τ (R1V ), . . . is nonincreasing shows that dimR1W = dimV + (s + 1)τ (V )⇔
τ (V ) = τ (R1V ) = · · · = τ (RsV ), as claimed. This completes the proof of (iv). For (v
evidently τ (V ) = 0⇔ V = 0. Whenτ (V ) = 1, then lemmaV = (f ) by Lemma 2.2.
Letting c = degf we thus haveRc−j V = 〈f 〉 andRj−cf = V j = V , whencec = codV ,
as claimed. This completes the proof of (vi).✷
Example 2.4. We show here the need to use the dim(Rs+1V ) in Proposition 2.3(iv)
to decide if RsV is equivalent toV when s > 0, and the need forRs−1V when
s � 0. Let V = 〈x4, x3y, y4〉 ⊂ R4, thenR−1V = 〈x3〉, andV = (x3, y4), so τ (V ) = 2
while R−1V = (x3), yet we have dimR−1V = dim(V ) − τ (V ). Thus, the dimensio
of W = RsV is not enough to test the equivalence ofW and V . Here dimR−2V =
0 �= dimV − 2τ (V ), corresponding toV �= R−1V . Here V = R1V , and dimR1V =
5 = dimV + τ (V ), dimR2V = dimV + 2τ (V ), but R2V = R6 so V �= R2V . Here
j = 4, V is a complete intersection, satisfyingH(Anc(V )) = (1,2,3,3,2,1), E(H) =
!H = (−1,−1,−1,0, e4 = 1,1,1). As in Proposition 2.6 (2.14) the subsequen
(−1,−1,−1,0,1= e4) of E(H) is nondecreasing, while the subsequence (1= e4,1,1) is
nonincreasing, andτ (V )= 2= e4+ 1= e5+ 1 (see Proposition 2.6 (2.17)).

We define the greatest common divisor GCD(V ) as the principal ideal ink[x, y] with
a generator of highest degree, such that GCD(V ) containsV (the generator divides eac
element ofV ). We will now show directly forR = k[x, y] that limi→∞RiV =GCD(V ),
a special case of limi→∞RiV = Sat(V ) in Lemma 1.6.

Proposition 2.5. Assume thatH =H(R/V ) satisfieslimi→∞Hi = c. Then we have

∑
i�0

(
τ (RiV )− 1

)= codV − c= (j + 1− d)− c, (2.11)

∑
i�0

τ (Ri · V )= dimV = d. (2.12)

The degreedegGCD(V )= c. For i � codV − τ (V )+ 2, we have

τ (Ri · V )= 1 andRi · V =GCD(V ), (2.13)
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Proof. Let k � 0 satisfyHk+j = c; then evidentlyτ (Rk ·V )= 1 and by Proposition 2.3(ii
we havec = degGCD(Rk · V ) and evidently sincek � 0, we have GCD(Rk · V ) =
GCD(V ). Now, Eq. (2.11) is a consequence of (2.4), and Eq. (2.12) follows from (2.3
now turn to the explicit bound oni for achievingτ (Ri · V )= 1. Suppose on the contra
that for an integeri � 2 we haveτ (Ri ·V )� 2. Proposition 2.3(ii) shows that the sequen
τ (V ), τ (R1 · V ), . . . is montone, hence we have from (2.11),

τ (V )− 1+ i � (
τ (V )− 1

)+ (τ (R1 · V )− 1
)+ · · · + (τ (Ri · V )− 1

)
� codV,

implying i � codV − (τ (V ) − 1). Thus we have the explicit boundτ (RiV ) = 1 for
i � codV − τ (V )+ 2, as claimed. By Lemma 2.2 we have for suchi, Ri · V = (f ). As
above we conclude by Proposition 2.3(vi) that for suchi, we havef = GCD(Ri · V ) =
GCD(V ). ✷

Recall that whenH = H(R/I) is the Hilbert function of a graded quotient ofR, we
denote byE(H) the first difference sequenceE(H) = !H = (e0 = −1, e1, . . . , ei, . . .)

where ei = (!H)i = Hi−1 − Hi . We setµ(H) = min{i | Hi < i + 1}, which is the
order of any idealI ⊂ R with H(R/I)= H . Recall that sinceH is anO-sequence with
H1 � 2, H must satisfy (1.13), so 0� Hi � i + 1, and forIi �= 0, Hi+1 � Hi . Thus,
H �= H(R) (or I �= 0) implies limi→∞Hi = cH � 0 with cH a non-negative constan
WhenH =H(R/V ) we have by Proposition 2.5,cH = degGCD(V ).

Proposition 2.6. Let V ⊂ Rj be a vector subspace satisfyingdimV = d , and letH =
H(R/V ) as above be the Hilbert function of the ancestor algebra ofV , and letc = cH .
The first difference sequenceE(H) satisfies

ei � ei+1 for i � j, and ei � ei+1 for i � j ; (2.14)

also
∑
i�j
(ei + 1)= d and

∑
i>j

ei = (j + 1− d)− c. (2.15)

LetV ⊂Rj and letH =H(R/V ). Thenτ (Ri−j · V ) satisfies

τ (Ri−j · V )=
{
ei + 1= ν(Ri−j · V )= #{generators ofV of degree� i} if i � j,

ei+1+ 1 if i � j.

(2.16)

We haveej = τ (V )− 1 and

0 � ej = ej+1 � min{j + 1− d, d − 1}, (2.17)

with equalityej = d − 1 if and only if R−1V = 0. Also, ej+1 = codV if and only if
R1V =Rj+1.
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Proof. By applying the first part of Eq. (2.4) toRi−j · V wheni < j , we obtain

τ (Ri−j · V )= codRi−j−1 · V − codRi−j · V + 1= ei + 1

which is the first part of Eq. (2.16). For anyi we have by Lemma 2.2τ (Ri−j · V ) =
ν(Ri−j · V ); wheni � j we have also the second part of Eq. (2.16) since

ν(Ri−j · V )=
∑
u�i
(dimRu−j · V − dimR1 ·Ru−j−1 · V )

= #{generators ofV having degree� i}.

By applying the second part of Eq. (2.4) toRi−j · V wheni � j we obtain

τ (Ri−j · V )= codRi−j · V − codRi−j+1 · V + 1= ei+1+ 1,

which is the last part of Eq. (2.16). Eq. (2.14) now follows from Proposition 2.3(ii),
Eq. (2.15), follows from the definition ofE(H) as a first difference ofH . Eq. (2.17) and
remaining claims follow from (2.16). ✷
Definition 2.7. Let d, j be positive integers satisfyingd � j . We say that a properO-
sequenceH (a sequenceH satisfying (1.13)) isacceptablefor an ancestor algebra in tw
variables of ad-dimensional subspace ofRj if H satisfies (2.14), (2.15), and (2.17)
Proposition 2.6.

The sequenceH = 0 occurs forV =Rj , andH =H(R)= (1,2, . . .) occurs forV = 0,
but we will omit these cases henceforth.

Corollary 2.8. Let j be a positive integer. A properO-sequenceH of (1.13)is acceptable
for an ancestor ideal of a degree-j vector space iff the first differenceE =!(H) satisfies

ej = ej+1 � ej+2 � · · ·� eσ(V ) = 0, (2.18)

ej � ej−1 � ej−2 � · · ·� e1 � e0=−1, and (2.19)∑
i�j
(ei + 1)+

∑
i>j

ei + cH = j + 1. (2.20)

Proof. Immediate from Definition 2.8, and (2.14), (2.15), (2.17). Hered =∑i�j (ei + 1).✷
In the following definition we usepartition of n in the usual sense ofn = n1 + n2 +

· · · + nu,n1 � n2 � · · · � nu > 0. Part of the reason for our choice ofP,Q is that we
later show they are the duals of the pair of partitions(A,B) determined by the generat
degrees, and the relation degrees of ancestor algebras Anc(V ) satisfyingH(Anc(V ))=H
(Lemma 2.23). Recall that the orderµ(H) of anO-sequence is the smallest integeri such



548 A. Iarrobino / Journal of Algebra 272 (2004) 530–580

,

s

for

e of
lgebra
lly

ce

set of
ns

the
thatHi �= i + 1. We lets(H)=min{i |Hi = c(H)}. Also givenj,H , with H acceptable
we defineτ (H)=Hj+1−Hj + 1= ej+1+ 1= ej + 1.

Definition 2.9. Given positive integersd, j with d � j and an acceptableO-sequence
H as in Definition 2.7, and lettingτ = τ (H)= ej (H)+ 1, we define a pair of partition
(P = P(H),Q=Q(H)) of (d, j+1−d−c(H)) as follows. LetV satisfyH(R/V )=H .
ThenP(H),Q(H) satisfy

P(H)= (τ, τ (R−1 · V )= ej−1(H)+ 1, τ (R−2 · V ), . . . ,
τ (Rµ−j V )= eµ(H)+ 1

)
, (2.21)

Q(H)= (τ − 1= ej+1(H), ej+2(H), ej+3(H), . . . , es(H)
)
. (2.22)

Recall from Definition 1.14 thatH(d, j,2) is the set of sequences possible
the Hilbert function of Anc(V ),V a d-dimensional subspace ofRj ,R = k[x, y];
understanding thatr = 2 we will denote this set byH(d, j). We will likewise denote by
P(d, j) the partial orderP(d, j,2) onH(d, j,2) from Definition 1.14. We will denote by
H(d, j)τ the subset ofH(d, j) for which ej = τ − 1.

We will shortly show that theO-sequences that are acceptable in the sens
Definition 2.7 are exactly those that occur as the Hilbert function of an ancestor a
(Theorem 2.19). So each pair(P,Q) of partitions described in the lemma below actua
occurs asP = P(H),Q=Q(H) for some acceptableH .

Lemma 2.10. For (i), (ii) below we suppose that theO-sequenceH is proper and
acceptable, as in Definition2.7, and letτ = τ (H). Then

(i) The partitionP = P(H) of Definition2.9 is a partition ofd having largest partτ .
The partitionQ=Q(H) is a partition ofj + 1− d − c having largest partτ − 1.

(ii) Let (µ(H), s(H))= (µ, s). ThenP(H) hasj + 1− µ parts, andQ(H) hass − j
parts.

(iii) H is uniquely determined by(j,P (H),Q(H)).
(iv) Let d, j be positive integers, withd � j . There is a one-to-one onto corresponden

H → (P (H),Q(H)) between the subset of acceptableO-sequencesH satisfying
(µ(H), s(H)) = (µ, s) and c(H) = c, and the set of pairs of partitions(P,Q)
satisfying(i) and(ii) . There are similar one-to-one correspondences between the
partitionsP and the set of sequencesN =NH , and also between the set of partitio
Q and the set of sequencesT = TH (Definiton2.16).

Proof. The claim in (i) thatP partitionsd is (2.12). That the parts ofP are less thanτ
follows from Proposition 2.3(ii). ThatQ partitionsj + 1− d − c follows from (2.15); that
ej+1 = τ − 1 is (2.17). That the parts ofQ are no greater thanτ − 1 follows as before
from Proposition 2.3(ii). The claim of (ii) is immediate from the definitions, counting
nonzero parts ofP,Q. For (iii), we note that the triple(P,Q, j) determines(P,Q, τ) so
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determinesE(H), and alsod, j , hencec = c(H); thenHi = c+∑i<k ek determinesH .
The proof of (iv) is also immediate.✷

The following proposition and corollary describe which ideals are ancestor idea
terms of the degrees of the generators and relations. In a related result, we determ
graded Betti numbers of the ancestor algebra Anc(V ) in terms of the Hilbert function
H(Ann(V )) (Lemma 2.23).

Proposition 2.11 (Ancestor ideals).Let I be a graded ideal ofR = k[x, y]. The following
are equivalent

(i) I is the ancestor ideal ofIj .
(ii) I is homogeneously generated by elements of degree no greater thanj , and for eachi

satisfying0 � i � j we haveτ (Ii)= #{generators ofI having degree less or equali}.
(iii) I is generated by forms of degree at mostj , and with relations of degrees at lea

j + 1.
(iv) I has a generating setf1, . . . , fν of degrees at mostj and

Ij+1=
⊕

1�i�ν
Rj+1−degfi fi . (2.23)

(v) H(R/I) satisfies Eq.(2.14), andI has the minimum possible number of genera
for a graded ideal defining a quotientR/I of Hilbert functionH , namely

ν(I)= ej + 1=Hj−1−Hj + 1=Hj −Hj+1+ 1= ej+1+ 1. (2.24)

Proof. We show first that (i)–(iv) are equivalent, and then (i), (ii)⇔ (v). That (i)⇒ (ii) is
from Eq. (2.16). Assume (ii). Then we have fori � j ,

codR−1Ii − codIi = τ (Ii)− 1

= τ (Ii−1)− 1+ #{generators of degreei}
= cod(Ii−1)− cod(R1 · Ii−1)+ dimIi − dim(R1 · Ii−1)

= codIi−1− codIi ,

hence codR1 ·Ii = codIi−1. Since alwaysR−1 ·Ii ⊃ Ii−1 the equality of dimensions show
R−1 · Ii = Ii−1 for i � j : this andI generated by degreej shows thatI is the ancesto
ideal ofIj , so (ii) implies (i). Supposei � j . We have

dimIi+1= dimIi + ν(I�i+1)− #{relations ofI in degrees� i + 1}
τ (Ii)= ν(I�i )− #{relations ofI in degrees� i + 1},

hence we have (ii)⇔ (iii). The condition (iii) is evidently equivalent to (iv). We hav
shown (i)–(iv) equivalent.
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Assuming (i), (v) is a consequence of Proposition 2.6, Eq. (2.14) and Theorem 1.
Assuming (v) we have thatI has a generating set of degrees no greater thanj , and for
i � j + 1,

dimRi − dimR1 · Ii−1= #{generators of degreei},

implying (ii). This completes the proof.✷
Corollary 2.12. The idealI ⊂ k[x, y] is an ancestor ideal if and only if the highest deg
β1 of any generator and the lowest degreeβ2 of any relation satisfyβ1+ 2 � β2. ThenI
is the ancestor ideal ofIj for eachj satisfyingβ1 � j � β2− 2.

Proof. The corollary is immediate from (i)⇔ (iii) in Proposition 2.11. ✷
Example 2.13. Let H = (1,2,3,3,2,1) and let I = (x3, y4) ⊂ k[x, y]. Then I is a
complete intersection, with a single relation in degree 7. It follows from Corollary
thatI is an ancestor ideal both forI4= 〈x4, x3y, y4〉 and forI5.

We will need the following well-known result [Mac1,I2].

Corollary 2.14. Let I ⊂ R = k[x, y] be an ideal satisfyingH(R/I) = T , limi→∞ Ti = c
wherec = cT > 0. ThenI = f · I ′ where the common factorf satisfiesdegf = c, and
whereR/I ′ is an Artinian quotient of Hilbert functionT : c, where

(T : c)i = Ti+c − c. (2.25)

Proof. Let Ts = c,Ts−1 > c, and supposeµ = µ(T ) =min{i | Ti �= i + 1} be the order
of any idealI of R having Hilbert functionH(R/I)= T (soIµ �= 0, Iµ−1 = 0). Then we
have

Ī1⊂ Ī2⊂ · · · ⊂ Īi ⊂ · · · ⊂ Īs = (f ), f =GCD(Is). (2.26)

HereĪs = (f ) since evidentlyτ (Is)= codIs − codIs+1+ 1= 1, and we havef | I . The
corollary follows. ✷

We turn now to characterizing the Hilbert functions of level algebras and the alg
R/(V ).

Lemma 2.15. The Hilbert functionN of a level algebraLA(V ) determined by the vecto
subspaceV ⊂Rj ,dimV = d satisfies

τ (V )� min{d, j + 2− d}, Nj = j + 1− d,Ni = 0 for i > j, and

ej+1(N)= j + 1− d � ej (N)= τ (V )− 1� ej−1(N)� · · · . (2.27)
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The Hilbert functionT = H(R/(V )) for the algebraR/(V ) determined by the vecto
subspaceV ⊂Rj ,dimV = d satisfies

τ (V )� min{d, j + 2− d}, Tj = j + 1− d,Ti = i + 1 for i < j, and

ej (T )= d − 1 � ej+1(T )= τ (V )− 1 � ej+2(T )� · · · . (2.28)

Proof. Immediate from the definitions of LA(V ),GA(V ) and Proposition 2.6
Eq. (2.14). ✷
Definition 2.16. Let d, j be positive integers satisfyingd � j . Let H be an acceptabl
O-sequence as in Definition 2.7. ThenoseNH is the sequence

NH = (H0, . . . ,Hj−1,Hj = j + 1− d,0), (2.29)

and thetail TH (the Hilbert function is looking to the left!) is the sequence

TH = (1,2, . . . , j,Hj = j + 1− d,Hj+1, . . . ,Hi, . . .). (2.30)

A pair of sequences(N,T ),N = (1, . . . ,Nj ,0), T = (1,2, . . . , j, Tj , Tj+1, . . .) is com-
patible for (d, j), if Nj−1 − Nj = τ − 1= Tj − Tj+1, and each ofN,T can arise as
above from acceptableO-sequencesH,H ′: N = NH ,T = TH ′ . For (N,T ) compatible,
we defineH(N,T ) by

H(N,T )=
{
Ni for i � j,

Ti for i � j.
(2.31)

We let LAN(d, j) parametrize all level algebras LA(V ),V ⊂ Rj ,dimV = d , as a
subscheme of Grass(d,Rj ). We define GAT (d, j) ⊂ Grass(d,Rj ) similarly as the
parameter variety for all graded algebras GA(V ) = R/(V ),V ⊂ Rj ,dimV = d , having
Hilbert functionH(GA(V )) = T . As we shall see, the mapsV → LA(V ) and V →
GA(V ) give open dense immersions from LAN(d, j) to G(N), the projective variety
paremetrizing graded idealsI of Hilbert functionsH(R/I) = N , and from GAT (d, j)
toG(T ) (Theorem 2.17(A)).

Remark. Suppose thatH satisfiesH = H(Anc(V )); then LA(V ), GA(V ), respectively,
have Hilbert functionsNH ,TH , respectively. Also, we haveH(NH ,TH )=H in the sense
of Eq. (2.31).

Recall that Grassτ (d, j) denotes the subfamily of Grass(d,Rj ) parametrizing
d-dimensional vector subspacesV ⊂ Rj with τ (V ) = τ . We will later show that
Grassτ (d, j) is irreducible. We let rem(a, b) = b − $b/a% · a. For an integerτ satisfy-
ing 1� τ � min(d, j + 2− d), we defineHτ (d, j) as the Hilbert function correspondin
to the pair of partitions(Pτ (d, j),Qτ (d, j)) of (d, j +1− d) for whichP has at most one
of its parts different fromτ ,Q has at most one part different fromτ − 1. Thus,
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Pτ (d, j)=
(
τ, . . . τ, rem(τ, d)

)
,

Qτ (d, j)=
(
τ − 1, . . . , τ − 1, rem(τ − 1, j + 1− d)). (2.32)

HerePτ (d, j) has$d/τ% parts of sizeτ , and if rem(τ, d) �= 0 one further part; likewise th
partitionQτ (d, j) has$(j + 1− d)/(τ − 1)% parts of sizeτ − 1 and at most one furthe
part. We have, lettinga = j + 1− d ,

Hτ (d, j)i =
{

min{i + 1, a + (τ − 1)(j − i)} for i � j,

max{0, a− (τ − 1)(i − j)} for i > j.
(2.33)

We now show our main result characterizing the Hilbert function strata of the
algebras attached toV . In each of Eqs. (2.35), (2.36), (2.38), (2.39), below the term
the far right has the same form as the terms in the sum enclosed in parentheses; w
broken out the single term for clarity, since, for example,ej+1(N) = j + 2− d − τ �=
ej+1(H)= τ − 1. In the equations belowei = E(H)i = Hi−1−Hi throughout. We will
show analogous equations for the codimensions of the strata in terms of the grade
numbers in Section 2.2, Theorem 2.24. Note that the dimension Eqs. (2.34)–(2.3
written essentially in terms of the partitionsP,Q which are determined byE(H).

Theorem 2.17. Let r = 2, let k be an infinite field, and fix positive integersd � j . LetH
be a proper acceptableO-sequence in the sense of Definition2.7. Then

(A) Assumek is algebraically closed. Each of the schemesGrassH (d, j),LAN(d, j),
GAT (d, j) has an open cover by opens in affine spaces of the given dimension
such scheme is irreducible, rational and smooth. Each is an open dense subsch
the corresponding schemeG(H),G(N), or G(T ) parametrizing all graded ideals o
the given Hilbert function.

(B) Let limi→∞Hi = cH . The dimensions ofGrassH (d, j), and of the related varietie
satisfy

dimGrassH(d, j)= cH +
∑

i�µ(H)
(ei + 1)(ei+1), (2.34)

dimLAN(d, j)=
( ∑
µ(N)�i<j

(ei + 1)(ei+1)

)
+ (ej + 1)(j + 1− d), (2.35)

dimGAT (d, j)= cT +
( ∑
i�j+1

(ei + 1)(ei+1)

)
+ d(ej+1). (2.36)

(C) The codimension ofGrassH(d, j) and of related varieties inGrass(d,Rj ) satisfy

codGrassH(d, j)= codLAN(d, j)+ codGAT (d, j)

− codGrassτ (d, j), (2.37)
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codLAN(d, j)=
( ∑
µ(N)�i<j

(ei+1− ei)(i −Ni−1)

)

+ (d − τ )(j + 2− d − τ ), (2.38)

codGAT (d, j)= (2d − 2− j)cT +
( ∑
i�j+1

(ei − ei+1)(Ti+1)

)

+ (d − τ )(j + 2− d − τ ), (2.39)

codGrassτ (d, j)= (dimV − τ )(codV − (τ − 1)
)

= (d − τ )(j + 2− d − τ ). (2.40)

Proof. That each suchH occurs asH(R/V ) for some suchV is a consequence o
Proposition 2.11(i) equivalent to (v), and Theorem 1.10(iii). That each scheme
cover by opens in affine spaces of the given dimension, and the dimension for
themselves also follow from Theorem 1.10, applied to the relevant Hilbert functionsH,N,

or T , respectively. In each case the schemes parametrize those ideals of the given
function having the minimum possible number of generators, hence whenk is algebraically
closed, they are by Theorem 1.10 open dense subschemes of the schemesG(H),G(N),
or G(T ), respectively, that parametrize all graded ideals of the Hilbert function (no
those that areV ,L(V ), or (V ), respectively withV = Ij ). The codimension formulas a
consequences of the dimension formulas, as we will now show. We begin by ver
(2.38), whose right side we denote byL(N). Since forI = V | H(R/I) = H we have
by Proposition 2.11(ii), (iii) there are no relations among the generators in degrees
equalj + 1, we have

i −Ni−1= dimIi−1= τ (Ii−1)+ τ (Ii−2)+ · · · = (ei−1+ 1)+ (ei−2+ 1)+ · · · .
We have, noting that

∑
i<j (ei + 1)= dimIj−1= d − τ ,

dimLAN +L(N)=
∑
i<j

(ei+1− ei)
(
(ei−1+ 1)+ (ei−2+ 1)+ · · ·)

+
∑
i<j

(ei + 1)ei+1+ (ej + 1)(j + 1− d)+ (d − τ )(j + 2− d − τ )

=
∑
i<j

ej (ei + 1)+ (ej + 1)(j + 1− d)+ (d − τ )(j + 2− d − τ )

= (τ − 1)(d − τ )+ τ (j + 1− d)+ (d − τ )(j + 2− d − τ )
= d(j + 1− d)= dimGrass(d,Rj ).

It follows thatL(N)= codLA(N), which is (2.38).
We now show (2.39), first whencT = limi→∞ Ti = 0. LettingL(T ) denote the right side

of (2.39), with the last term on the right included in the sum (hereej (T )= j−(j+1−d)=
d − 1), and noting that sincecT = 0, Ti+1= ei+2+ ei+3+ · · ·, we have in this case
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dimGAT (d, j)+L(T )=
∑
i�j+2

(
ej (T )+ 1

) · ei + d(ej+1)

= d(Tj+1)+ d(τ − 1)= d(j + 1− d)= dimGrass(d,Rj ),

thus we haveL(T )= codGAT (d, j) whencT = 0. WhencT > 0, the formula results from
a comparison with the same sums forT ′ = T : c (see Corollary 2.14).

We now show the formula (2.40) for codGrassτ (d, j). Since Grassτ (d, j) =⋃
τ (H)=τ GrassH(d, j), we will need to use that its largest-dimensional stratum

GrassHτ (d, j), whereHτ = Hτ(d, j) is defined above in Eq. (2.33). Although this fa
can be seen from Eq. (2.34), it is more readily apparent from (2.32) and the codim
formula (2.57) in terms of the partitions(A,B) = (P ∗,Q∗) of Theorem 2.23; it is also
of course, a consequence of the irreducibility of Grassτ (d, j), with GrassHτ (d, j) being a
dense open subscheme, shown below fork algebraically closed in Corollary 2.33. We ha
by (2.34) and (2.32),

dimGrassHτ (d, j)=
∑
i<j

(ei + 1)(ei+1)+
∑
i�j
(ei + 1)ei+1

=
∑
i<j

(ei + 1) · (τ − 1)+ τ ·
∑
i�j

ei+1

= (d − τ )(τ − 1)+ τ (j + 1− d)= τ (j + 2− τ )− d, (2.41)

whence we have codGrassHτ (d, j)= (d − τ )(j + 1− d − (τ − 1)), which is (2.40), with,
as mentioned, the dense open subscheme GrassHτ (d, j) in place of Grassτ (d, j).

We now show (2.37), which is equivalent to the analogous equation with dime
replacing codimension. We have evidently from (2.34), (2.35), and (2.36), sinceej (H)=
ej+1(H)= τ − 1,

dimLAN(d, j)+ dimGAT (d, j)

= dimGrassH(d, j)+ (ej + 1)(j + 1− d)+ d(ej+1)− (ej + 1)(ej+1)

= dimGrassH(d, j)+ τ
(
j + 1− d − (τ − 1)

)+ d(τ − 1)

= dimGrassH(d, j)+ dimGrassτ (d, j),

using (2.41). This completes the proof of Theorem 2.17.✷
Corollary 2.18. Let d, j, τ be positive integers withd � j , and letH be an acceptable
O-sequence inH(d, j)τ . LetN =NH,T = TH be the sequences of Eqs.(2.29), (2.30)or
Definition 2.16. ThenLAN(d, j) and GAT (d, j) intersect properly inGrassτ (d, j), τ =
ej + 1, andLAN(d, j)∩GAT (d, j)=GrassH(d, j).

Theorem 2.19. Let d, j be positive integers withd � j . Let (P,Q) be a pair of partitions
satisfying(i) and (ii) of Lemma2.10.
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(i) The set of properO-sequencesH as in Eq.(2.8) that are acceptable for(d, j) as in
Definition2.7, is identical withH(d, j)=H(d, j,2), the set that occur as the Hilbe
functionsH(Anc(V )) for somed-dimensional vector spaceV ⊂Rj .

(ii) All proper O-sequencesH satisfying the conditions of Corollary2.8 occur as the
Hilbert function of an ancestor algebra of a proper vector subspaceV ⊂Rj .

(iii) Fix τ = τ (H). The pairs of partitions(P,Q) of (d, j + 1 − d − c) where c �
j + 1− d − τ , satisfying the condition of Lemma2.10(i) (that P has at least one
part τ and no larger parts, andQ has at least one partτ −1 and no larger parts) are
exactly the pairs that occur as the partitionsP(H),Q(H) for those Hilbert functions
H ∈H(d, j) satisfyingτ = ej + 1 fixed andcH = c.

Proof. Corollary 2.18 is immediate from Theorem 2.17. Theorem 2.19(i) follows f
Proposition 2.6 and (2.34): the lowest value for dimGrassH(d, j),H acceptable is
one, which occurs only ford = j,H = (1,1, . . .). Theorem 2.19(ii), (iii) follow from
Theorem 2.19(i) and Lemma 2.10.✷

We now use our results to count the number of level algebra and related H
functions, given(d, j). We first define theq-binomial series, a power series inq

(
a+ b

a

)
= (qa+b − 1)(qa+b − q) · · · (qa+b − qb−1)

(qb − 1)(qb − q) · · · (qb − qb−1)
. (2.42)

Recall that the numberp(a, b,n) of partitions ofn into at mostb parts, each less or equal
a is given by the coefficient ofqn in theq-binomial series

(a+b
b

)
[St2, Proposition 1.3.19]

We denote byp(n) the number of partitions ofn, and bypk(n) the number of partition
of n into exactlyk parts (or, equivalently, partitions ofn with a largest part equal tok).
Evidently, there arep(a − 1, b − 1, n− a − (b − 1)) partitions ofn into exactlyb parts,
with largest parta.

Corollary 2.20. Let d, j be positive integers withd � j . We assumeV ⊂Rj ,dimV = d .

(A) The level algebra Hilbert functionsN of socle degreej withNj = j+1−d, τ (Ij )= τ
correspond one to one as in(2.21)with thepτ (d) partitionsP of d with largest partτ .
Hereτ runs through all integers less or equalmin{d, j + 2− d}.

(B) The level algebra Hilbert functionsN of socle degreej withNj = j+1−d, τ (Ij)= τ
having orderµ(N)= µ correspond one to one as in(2.21)with thep(τ − 1, j − µ,
d − τ − (j − µ)) partitions ofd into exactlyj + 1− µ nonzero parts with larges
part τ . There arep(τ, j + 1−µ,d) level algebra Hilbert functionsN with (τ (N)�
τ,µ(N)� µ), and fixed(d, j).

(C) The Hilbert functionsT for Artinian algebrasA= R/(V ), τ (V )= τ correspond one
to one as in(2.22) to thepτ−1(j + 1− d) partitionsQ of j + 1− d having largest
part τ − 1.

(D) The Hilbert functionsT for Artinian algebrasA=R/(V ), τ (V )= τ , whereTs−1 �= 0
but Ts = 0 correspond one to one as in(2.22)to thep(τ − 1, s − j − 1, j + 1− d −
τ − (s− j −1)) partitions ofj +1− d into s− j parts, with largest partτ −1. There
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arep(τ −1, s− j, j +1−d) such Hilbert functionsT with (τ (T )� τ, s(T )� s) and
fixed(d, j).

(E) There arepτ (d) · pτ−1(j + 1 − d − c) acceptable Hilbert functionsH as in
Definition 2.7, havingτ (H) = τ, cH = c. This is the subset ofH(d, j) delimited in
Theorem2.19(iii).

Proof. The corollary follows immediately from Theorem 2.19, and Lemma 2.10.✷
2.2. Minimal resolutions of the three algebras ofV , and partitions

In this section we relate the sets of graded Betti numbers of the ancestor a
Anc(V ), the level algebra LA(V ), and the usual graded algebra GA(V ) determined
by a vector space of degree-j homogeneous elements ofR. These depend on sever
partitionsA,B derived from the Hilbert functionH(Anc(V ))—from the generator an
relation degrees of the ancestor idealV . We also give further codimension formulas f
the Hilbert function strata, in terms of the graded Betti numbers, or natural inva
of the partitions. The following results were not in the original preprint [I1]. They
inspired by the special case (2.59), a formula for codGAT (d, j) in [GhISa], which
arose from a geometric tradition in studying the restricted tangent bundle from proj
space to an embedded rational curve (see also [Ra,Ve]). We will suppose thatV ⊂ Rj
satisfiesH(R/V )=H ; unless otherwise stated we will suppose also that limi→∞Hi = 0.
Then, as we shall see in Lemma 2.23, the ancestor algebra Anc(V ) = R/V , the algebra
GA(V )=R/(V ) and the level algebra LA(V ) determined byV have graded Betti numbe
given by certain sequences/partitionsA,B as follows,

0→
τ−1∑
i=1

R(−j − 1− bi)→
τ∑
i=1

R(−j − 1+ ai)→ R→ R/V → 0, (2.43)

0→ R(−j − 2)j+1−d→
τ∑
i=1

R(−j − 1+ ai)⊕R(−j − 1)j+2−d−τ → R

→ LA(V )→ 0, (2.44)

0→
τ−1∑
i=1

R(−j − 1− bi)⊕R(−j − 1)d−τ → R(−j)d→R→ R/(V )→ 0,

(2.45)

where we assume that the sequencesA= (a1, . . . , aτ ) andB = (b1, . . . , bτ−1) defined by
(2.43) are listed in decreasing ordera1 � · · ·� aτ andb1 � · · ·� bτ−1.

Definition 2.21. When limi→∞Hi = 0, we define partitionsA,B givenV by (2.43); we
will show that they depend only onH , and evidently they are the same that occu
(2.44) and (2.45) (see Lemma 2.23). ByA + 1 we mean the partition whose parts a
A+1= (a1+1, a2+1, . . .). We denote byC the partition ofj +2 havingj +2− d parts
given by(A+1)∪[1j+2−d−τ ], namelyA+1 with j+2−d−τ parts of size one adjoined
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and we denote byD the partition ofj havingd−1 parts given by(B+1)∪[1d−τ ], namely
B + 1 with d − τ ones adjoined.

When limi→∞Hi = cH � 0 we defineA,B from the minimal resolution ofV : f ,
wheref =GCD(V ); thenA,B depend only onH : cH (see (2.25)). We defineC,D in this
case as above fromA,B; hereC again partitionsj +2, butD partitionsj +2−d − τ − c.

Evidently, the generator degrees of the idealL(V ) defining LA(V ) in (2.44) are
j + 2− C and the relation degrees of(V ) in (2.45) arej +D. We have chosenA andB,
thenC andD in a symmetric fashion so that they partition integers depending onlyd
andj ; this allows application of Lemma 2.27 later. As we shall see, the partitionsA,C

depend only onN = NH , determined byH�j ; and B,D depend only onT = TH ,
determined byH�j (see Definition 2.16). To describe this dependence simply, we
the dual partition.

Definition 2.22. Let A = (a1, . . . , ak), a1 � a2 � · · · be a partition ofa =∑ai into k
nonnegative parts (some may be zero). Recall that theFerrers graphF(A) of A hask
rows, theith row of lengthai . We denote byA∗ = (a∗1, a∗2, . . .) the dual partition of a,
whose Ferrers graph is obtained by switching rows and columns in the Ferrers graphF(A).
Here also,a∗i is the number of parts ofA of length greater or equali.

Lemma 2.23. Letd, j be positive integers satisfyingd � j , and letH be an acceptableO-
sequence as in Definition2.7, and suppose thatcH = limi→∞Hi = 0. Then the algebra
Anc(V ),LA(V ), andR/(V ) have minimal resolutions whose graded Betti numbers
given by(2.43)–(2.45). We have

τ∑
1=1

ai = d; (2.46)

A satisfiesai � 1, andA has dual partitionA∗ = P = (τ, τ (R−1 ·V ), τ (R−2V ), . . .) of d ,
and

a∗i = τ (R−i+1 · V )= ej+1−i (H )+ 1. (2.47)

Also

τ−1∑
i=1

bi = j + 1− d; (2.48)

B satisfiesbi � 1, andB has dualB∗ =Q= (ej+1(H), . . .) of j + 1− d , andb∗i = ej+i .
We have fori � 0

dimIj−i =
∑
u

|au − i|+, (2.49)

Hj+i =
∑
|bu − i|+. (2.50)
u
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Likewise, the partitionC has dual the partition(E(N)j+1+ 1,E(N)j + 1, . . .) of j + 2

C∗ = (j + 2− d, τ (V ), τ (R−1V ), τ (R−2V ), . . .
)
, (2.51)

andD has dual the partitionE(T )�j of j

D∗ = (d − 1, ej+1, ej+2 . . .). (2.52)

Whenlimi→∞Hi = cH > 0, thenA from Definition2.21satisfies all the statements abov
including(2.46), (2.47), (2.49);andB is a partition ofj+1−d−cH into τ−1 parts. Also,
B∗ satisfies the same condition above, andHj+i = cH +∑u |bu − i|+ in place of (2.50).
Also,C∗ satisfies(2.51), andD∗ satisfies(2.52).

Proof. We first assume limi→∞Hi = 0. The definition ofV shows that it is generated
degrees less or equalj , and Proposition 2.11 shows thatV has no relations in degrees le
or equalj + 1. Thus, Eq. (2.43) defines ordinary partitionsA andB, with nonzero parts
Given the definition ofA,B in (2.43), the graded Betti numbers shown in (2.44), (2.
for the level algebra LA(V ) and the algebra GA(V ) = R/(V ) follow immediately from
the definitions of these algebras fromV in Definition 1.1, and the relations among the
given in Remark 1.2. For example, since the idealL(V ) defining the level algebra LA(V )
satisfiesL(V )= V +Mj+1 one obtainsL(V ) it by addingHj+1= (j+1−d− (τ −1))=
j +2−d− τ generators of degreej +1, and evidently all the relations are in degreej +2,
since the socle ofR/L(V ) lies solely in degreej ; this shows (2.44).

Proposition 2.6 shows that fori � 0, τ (R−i ·V )= ej−i (H )+1, soτ (R−i ·V ) depends
only on initial portionNH of H . We have from Proposition 2.11(iii), and the definition
A∗ that fori � 1,

τ (R−i+1V )= #{u | au � i} = a∗i .

It follows from (2.12) that
∑
ai =∑i=1 a

∗
i = d , which is (2.46).

ConcerningB, we have from (2.43), that fori � 0

Hj+i =Hj − (τ − 1)i +
∑

u|bu�i−1

(i + 1− bu); thus

ej+i = τ − 1−
∑

u|bu�i−1

(−1)= τ − 1− (#{relations} − b∗i
)

= b∗i .

Thus we have ∑
bi =

∑
b∗i =

∑
u�1

ej+u =Hj = j + 1− d,

which is (2.48). It remains to show (2.49) and (2.50). We have fori � 0,
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Hj+i =Hj − (ej+1+ · · · + ej+i )
= j + 1− d − (b∗1+ · · · + b∗i )= b∗i+1+ b∗i+2+ · · ·
=
∑
|bu− i|+, (2.53)

which is (2.50). SinceV has no relations in degrees less or equalj + 1, we have fori � 0,

dimIj−i =
∑

au�i+1

(au − i)=
τ∑
u=1

|au − i|+,

which is (2.49). This completes the proof in the case limi→∞Hi = 0.
When limi→∞Hi = cH > 0, the assertions at the end of the lemma follow fr

Definition 2.21 ofA,B in this case that usesV :GCD(V ), Corollary 2.14 and the lemm
for V :GCD(V ). ✷

We denote by|n|+ the integern if n � 0, or 0 otherwise. We will denote byn the
sequence(n,n, . . .) of appropriate length. For a partitionA= (a1, . . .), a1 � a2 � · · · we
denote by:(A) the sum

:(A)=
∑
u�v

|au − av − 1|+. (2.54)

Recall from (2.40) that codGrassτ (d, j) in Grass(d,Rj ) satisfies

cod
(
Grassτ (d, j)

)= (d − τ )(j + 2− d − τ )= (dimV − τ )(codV − (τ − 1)
)
,

for anyV satisfyingτ (V )= τ . This is a term in Eq. (2.60).

Theorem 2.24. Let d, j be positive integers withd � j . Let H be an acceptable
O-sequence, and letlimi→∞Hi = cH , and letN = NH ,T = TH be the sequences
Definition2.16, wherecT = cH . The codimensions of the familiesLAN(d, j), GAT (d, j),
andGrassH(d, j) in Grassτ (d, j) satisfy

codτ LAN = :(A), (2.55)

codτ GAT = :(B)+ (d − 1)cT , (2.56)

codτ GrassH(d, j)= :(A)+ :(B)+ (d − 1)cT . (2.57)

The codimensions of these families inGrass(d,Rj ) satisfy

codLAN = :(C), (2.58)

codGAT = :(D)+ (d − 1)cT , (2.59)

codGrassH(d, j)= :(C)+ :(D)+ (d − 1)cH − (d − τ )(j + 2− d − τ ) (2.60)

= :(C)+ :(B)+ (d − 1)cH . (2.61)
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Proof. We first note that (2.55)⇔ (2.61), and (2.56)⇔ (2.59); evidently (2.57) is a
consequence of (2.55) and (2.56), and similarly for (2.60). Assume first thatcH = 0. We
have

:(C)− :(A)=
(∑

(ai)
)
(j + 2− d − τ )

= (d − τ )(j + 2− d − τ )= codGrassτ (d, j).

Likewise,

:(D)− :(B)= (d − τ )
(
τ−1∑
i=1

(bi − 2)

)

= (d − τ )((j − (d − τ )− 2(τ − 1)
)

= codGrassτ (d, j).

We now show (2.56) whencH = 0. Since limi→∞ Ti = 0, by Theorem 2.17, Eq. (2.39) w
have

codGAT =
∑
i�j+1

(ei − ei+1)(Ti+1)+ (d − 1− ej+1)(Tj+1),

whence, subtracting codGrassτ (d, j) = (d − τ )Tj+1 and noting that we specifyE(H)
below, asej (H) is different fromej (T ), we find,

codτ GAT =
∑
i�j+1

(ei − ei+1)(Ti+1)+ (d − 1− ej+1)(Tj+1)− (d − τ )Tj+1

=
∑
i�j

(
ei(H)− ei+1(H)

)
(Hi+1)=

∑
u�0

(ej+u − ej+u+1)Hj+u+1

=
∑
u�0

(
b∗u − b∗u+1

)
Hj+u+1 by Lemma 2.23,

=
τ−1∑
u=1

Hj+bu+1

= :(B) by (2.50).

We now show (2.55). By Theorem 2.17, Eq. (2.38), taking into account that the las
on the right is codGrassτ (d, j), and by (2.47) we have

codτ LA(N)=
∑

(eu+1− eu)(dimIu−1)=
∑
(ej−(i−1) − ej−i )(dimIj−(i+1))
µ(N)�u<j 1�i
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=
∑
1�i

(
a∗i − a∗i+1

)(∑
u

|au − (i + 1)|+
)

by Lemma 2.23 and (2.49)

=
∑
(#{av = i})

(∑
u

|au − i − 1|+
)

= :(A).

The adjustment of adding(d − 1)cH for the case limi→∞Hi = cH comes from a
comparison with the Hilbert functionT ′: T ′i = Ti+c − c, c = cH . The partitionsB,D are
the same forT and forT ′, and dimGA(T ) = c + dimGA(T ′), so the codimension o
GA(T ) in Grass(d,Rj ) satisfies

codGA(T )= codGA(T ′)+ dimGrass(d,Rj )− dimGrass(d,Rj−c)− c
= :(D)+ (d − 1)cH .

This completes the proof.✷
Example 2.25. We take(d, j)= (9,14) andτ = 4, then

dimGrass(9,R14)= dimGrass(9,15)= 9 · 6= 54,

and

codGrass4(9,14)= (9− 4)
(
6− (4− 1)

)= 15,

so dimGrass4(9,14)= 39. Consider

H = (1, . . . ,12,11,9,6,3,0) with H14= 6.

Here the sequence

A∗ = (τ, τ (R−1 · V ), τ (R−2 · V ), . . .
)= (τ, e13+ 1, e12+ 1)= (4,3,2),

whose dual partition isA = (3,3,2,1), with :(A) = 2 while B∗ = (2,2,2), B = (3,3),
for which :(B) = 0. By (2.43) the generator degrees ofV are (j + 1 − a1, j + 1 −
a2, . . .)= (j + 1− A). Here the generator degrees are(15− A)= (15− 3,15− 3,15−
2,15− 1) = (12,12,13,14). The codimension of GrassH(9,14) in Grass4(9,14) is
by Eq. (2.57):(A) + :(B) = 2 + 0 = 2, so dimGrassH(9,14) = 39− 2 = 37. The
formula (2.34) that dimGrassH (9,14) =∑(ei + 1)(ei+1) when applied toE(H)�13=
(1,2,3,3,3) also gives 37. Here the partitionC = (4,4,3,2,1,1,1) and:(C) = 17, and
cod(GrassH(9,14))= :(C)+ :(B)= 17 in Grass(9,R14) by (2.61).

Consider nowH ′ = (1, . . . ,12,11,9,6,3,2,1). HereA′ = A, but B ′ = (4,1,1), the
dual partition to(e15, . . .) = (3,1,1,1), :(B ′) = 4, and we have cod4 GrassH ′(9,14) =
:(A′)+ :(B ′)= 6 in Grass4(9,14), giving dimGrassH ′(9,14)= 33.
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2.3. Closure of the Hilbert function strata

We now determine the Zariski closure of GrassH(d, j) whenr = 2, and we show tha
the familyG(H) of graded algebra quotients ofA having Hilbert functionH is a natural
desingularization ofGrassH(d, j) (Theorem 2.32). This is one of our main results, a
certainly the deepest.

We show that the closure of a stratum GrassH(d, j) is the union of the more speci
strata GrassH ′(d, j), for H ′ �P H , whereP is the partial order on acceptable sequen
given in Definition 1.14. Evidently the partial orderP determines related partial orders
the sequencesN possible for level algebras, and to the sequencesT possible for graded
ideals(V ). For the caser = 2 we interpret these latter partial orders as majorization pa
orders on sets of partitions (Lemma 2.28). This result was suggested by an applica
the restricted tangent bundle in [GhISa]. We show that the partially ordered setH(d, j) of
acceptable Hilbert functions under the partial orderP—the same order as that determin
by Zariski closure of the varieties GrassH (d, j)—is equivalent to a partially ordered s
PA(d, j) of certain pairs of partitions, under the product of majorization partial or
(Theorem 2.35).

The proof of our main result depends on a key construction. Suppose that we are
two acceptable Hilbert functionsH,H ′ ∈ H(d, j), with H ′ � H (more special) in the
partial orderP(d, j), and letV ′ be a point of GrassH ′(d, j). We build a graded idealI of
Hilbert functionH , that is related as in (1.10) to the ancestor idealI ′ = V ′ (Lemma 2.30).
This idealI determines a point ofG(H) lying over the given pointV ′ of GrassH ′(d, j)
(Theorem 2.32(B)).

Definition 2.26. The length |D| of a partitionD is the sum of its parts. We reca
the majorizationpartial order on partitions (see [GreK]). LetD,D′ be two partitions
D = (d1, d2, . . . , ds) | d1 � d2 � · · · andD′ = (d ′1, d ′2, . . . , d ′s ′) | d ′1 � d ′2 � · · ·. We say
D′ �D if |D′|� |D| and∑

u�i
d ′u �

∑
u�i

du for all i | 1� i � min{s, s′}. (2.62)

Let D haveri parts of sizevi, v1 > v2 > · · · > vk . We define for eachs,1 � s � k the
partitionDs with ri parts of sizevi,1 � i � s, and no other parts. Thepolygonof D is the
convex graph with vertices(0,0) and(

s∑
i=1

ri ,

s∑
i=1

rivi

)
, 1 � s � k, (2.63)

the height of thesth vertex being the length|Ds | ofDs . We define the Harder–Narasimha
partial order [HN] on partitions having the same number of parts, byD′ �HN D if and only
if the polygon ofD′ is never below the polygon ofD.

The Harder–Narasimham order as stated above is a special case for bundles
form

⊕
O

P1(vi)
ri =⊕O

P1(di) overP1 of an order defined more generally by Harde
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Narasimham (see [HN]). This is relevant since the partitionC corresponds to the generat
degrees of the idealL(V ) defining the level algebra LA(V ), andD corresponds to th
relation degrees of the ideal(V ) determining GA(V ). The latter corresponds to th
decomposition into a direct sum of line bundles of the “restricted tangent bundl
the rational curveX in Pr−1 determined byV , studied in [GhISa,Ra,Ve]; the forme
corresponds to the decomposition of another natural bundle overX, of rankj + 2− d . It
is a general result that specialization in a familyV(t), t �= t0 of vector bundles having fixe
Harder–Narasimham polygon overX yields a bundleV (t0) of equal or higher Harder
Narasimham polygon [BrPV]. Both L. Ramella and F. Ghione et al. show a conver
the restricted tangent bundle, related to Theorem 2.32(A) for the closure of GAT (d, j).

We need a preparatory result, before giving some equivalent versions of the partia
P(d, j).

Lemma 2.27. If D,D′ are two partitions of the same integer n, then

D′ �D ⇔ D′∗ �D∗. (2.64)

Proof. It suffices to consider adjacent partitionsD′ > D in the partial order: thenD′ is
obtained fromD by increasing a part ofD by one and decreasing the next smaller-or-eq
block by one. A basic case isD = (d1, . . . , ds+1)= (a,1, . . . ,1) andD′ = (d ′1, . . . , d ′s)=
(a + 1,1, . . . ,1). ThenD∗ = (s + 1,1, . . . ,1) with a − 1 ones, andD′∗ = (s,1, . . . ,1)
with a ones, whence we haveD′∗ < D. The general case hass + 1 relevant parts
for D, (di, . . . , di+s ) = (k + a, k + 1, . . . , k + 1) with di−1 > di , and s + 1 relevant
parts forD′, (d ′i+1, . . . , d

′
i+s) = (k + a + 1, k + 1, . . . , k + 1, k); thenD∗ has relevan

parts(d∗k+1, . . . , d
∗
k+a+1) = (i + s, i + 1, . . . , i + 1, i) andD′∗ has corresponding par

(i + s − 1, i + 1, . . . , i + 1, i + 1), whenceD′∗ <D∗. ✷
We say a Hilbert function sequenceT ′ � T if for each i,T ′i � Ti . Recall from Definition

1.14 the partial orderP =P(d, j) onH(d, j):

H ′ �P H ⇔ H ′i �Hi for i � j andH ′i �Hi for i � j. (2.65)

Recall from Definiton 2.16 that(NH )i =Hi for i � j and 0 otherwise, and(TH )i =Hi for
i � j and(TH )i = i + 1 for i < j . In terms of the pairNH ,TH we thus have

H ′ �P H ⇔ N ′ �N and T ′ � T ,

whereN ′ �N andT ′ � T in the termwise partial order on sequences.
We now determine the analogues of the partial orderP(d, j), for the pairs of partitions

(P,Q) from Definition 2.9, and the pairs(A,B) or (C,D) from Definition 2.21. In
the lemma belowH ′,N ′,A′,B ′, . . . are more special thanH,N,A,B, . . . , as we shall
show in Theorem 2.32. The implicationsT ′ � T ⇔ D′ � D ⇔ D(T ′) � D(T ) from
Lemma 2.28(B) are shown forc(T ) = c(T ′) = 0 in [GhISa]. Recall that we showe
P =A∗ andQ= B∗ in Lemma 2.23.
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Lemma 2.28. We fix positive integersd, j with d � j . We treat separately the Hilbe
functions for the level algebraLA(V ), graded algebraGA(V ) = R/(V ) and ancestor
algebraAnc(V ).

(A) The following are equivalent:
(i) N ′ �N (note,N ′ is more special!),
(ii) A(N ′)�A(N), or equivalentlyC(N ′)� C(N),

(iii) P(N ′)� P(N) (i.e.,A′∗ �A∗), or equivalentlyC(N ′)�HN C(N).
(B) The following are equivalent;

(i) T ′ � T (note,T ′ is more special!),
(ii) (only whenc(T )= c(T ′)) B(T ′)� B(T ), or, equivalentlyD(T ′)�D(T ),

(iii) Q(T ′)�Q(T ) (i.e.,B ′∗ � B∗), or equivalentlyD(T ′)�HN D(T ).
(C) The following are equivalent;

(i) H ′ �P H ; meaning bothN ′H �NH andT ′H � TH ,
(ii) P(H ′)� P(H) andQ(H ′)�Q(H), (i.e., bothA′∗ �A∗ andB ′∗ � B∗),
(iii) ( only whencH = cH ′ ) A(H ′)�A(H) andB(H ′)�B(H),
(iv) (only whencH = cH ′ ) C(H ′)�HN C(H) andD(H ′)�HN D(H).

Proof. We first show (A.i)⇔ (A.ii) ⇔ (A.iii) and (B.i)⇔ (B.ii) ⇔ (B.iii). From Eq. (2.47)
thata∗i = ej+1−i (H )+ 1 we have fori � 1

Hj−i = j + 1− d + (a∗1 − 1
)+ · · · + (a∗i − 1

)= j + 1− d − i +
i∑

u=1

a∗u, (2.66)

whence we haveNH satisfies, using (2.64)

NH ′ �NH ⇔ A∗(N ′)�A∗(N) ⇔ A(N ′)�A(N). (2.67)

SinceA′ � A⇒ τ ′ = a′∗1 � a∗1 = τ , we haveC′ = 1+ A′ ∪ 1(j+2−d−τ )′ � C = 1+ A ∪
1(j+2−d−τ ). From Lemma 2.23 we have thatb∗i = ej+i , and as in (2.53)

Hj+i = j + 1− d −
i∑

u=1

b∗i−1,

whence we have using (2.64)

T ′ � T ⇔ B ′∗ � B∗ ⇔ B ′ � B. (2.68)

This completes the proof of the lemma except for the equivalences involving�HN , which
we now show. Note that for the partitonsC orD both the number of parts and sum are fix
by the triple(d, j, τ ). That (C.iii)⇒ (C.iv) follows, since, consideringD, the vertices of
the polygon ofD are a subset of the vertices of the graph of the sum function

∑
D of D,

used in comparingD andD′: thusD′ � D⇒ D′ �HN D. The converse follows from
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the extremality of the vertices of the graph of
∑
D chosen as vertices of the Harde

Narasimham polygon. ✷
Example 2.29. P(d, j) is not a simple order onH(d, j).

(A) Let d = 3, j = 5, soH5 = j + 1− d = 3. LetH = (1,2,3,4,4,3,2,1,0), where
τ = 1, andµ(H)= 4,H ′ = (1,2,3,4,5,3,1,1,1, . . .) whereτ = 2 andµ(H ′)= 5.
ThenH andH ′ are incomparable in the orderP(3,5) sinceH6 >H

′
6 butH8 <H

′
8.

Neither stratum is in the Zariski closure of the other. The two strata aregeometrically
incomparablein the sense that no element of either stratum can be in the closur
subfamily of the other stratum, by Corollary 1.16. This example essentially invo
just thetail of H , namelyT (V )=H(R/(V )), with (V ) the ideal generated byV (see
Definition 2.16).

(B) We give an example of similar behavior for the level algebra strata LAN(d, j)—the
family of level algebras of socle degree j and typed having Hilbert functionN . Here
N is thenoseof H as in Definition 2.16. To create the example, we begin with
partitionsP : 10= 4+2+2+2 andP ′: 10= 3+3+3+1, that are incomparable i
themajorizationpartial order of Definition 2.26. Thus, their associated sum seque∑
P = (4,6,8,10),

∑
P ′ = (3,6,9,10) are incomparable in the termwise order

sequences. By Definition 2.9 the corresponding sequencesE =!N,E′ =!(N ′) are
(3,1,1,1) and 2,2,2,0, respectively, and by Lemma 2.10(i) the dimensiond satisfies
d = |P | = 10. By (2.17) the simplest such case satisfiesj + 1 − d = p1 − 1 =
4− 1= 3, wherep1 is the largest part ofP , so we have(d, j) = (10,12), µ(N) =
µ(N ′) = 9,N = (1,2, . . . ,8,9,8,7,6,3,0) and N ′ = (1,2, . . . ,8,9,9,7,5,3,0).
Thus,N and N ′ are incomparable in the partial orderPN(10,12) on the set of
nose sequences{NH | H ∈ H(10,12)} induced from the partial orderP(10,12)
on acceptableO-sequencesH . Again Corollary 1.16 implies that LAN(10,12) and
LAN ′(10,12) aregeometrically incomparablein the sense that no subfamily of eith
stratum can have as limit a spaceV in the other stratum. This example illustrat
(Lemma 2.28(A)).

The following lemma is the crux of the proof that the morphismπ :G(H) →
GrassH(d, j) is surjective (Theorem 2.32). The proof we give is basically that of
original preprint, but we have supplied further details and made an improvement
that although the Hilbert functionsH,H ′ that occur are acceptable, the idealsI, I ′ arenot
assumed to be ancestor ideals. Thus in the proof we are rather careful about how
previous results. In particular, a key step, the last in the section concerningN is to show
in Eq. (2.72) that codR1 · I (1)u−1 satisfies a certain inequality (a similar step forT occurs
in (2.76)); the apparent clumsiness—or perhaps we should say, subtlety—of the arg
here is in part due toI ′ not being an ancestor ideal!

Lemma 2.30. Let d, j be positive integers satisfyingd � j , Assume thatH andH ′ are
acceptableO-sequences for the pair(d, j) (Definition2.7)satisfyingH ′ �P(d,j) H . When
cH = cH ′ let k be an arbitrary field; otherwise assumek is algebraically closed. LetI ′ be
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a graded ideal of Hilbert functionH(R/I ′)=H ′. Then there is a graded idealI of Hilbert
functionH(R/I)=H , satisfyingIj = V ′, or, equivalently, by Lemma1.7, satisfying

I +Mj+1⊂ I ′ +Mj+1 and I ∩Mj ⊃ I ′ ∩Mj. (2.69)

Let N andN ′ satisfy the condition(2.27)of Lemma2.15 for a fixed pair(d, j) and let
I ′ be an ideal of Hilbert functionH(R/I ′) = N ′; then there is an idealI of Hilbert
functionH(R/I) = N satisfyingI ⊂ I ′. Likewise, letT ,T ′ satisfy the condition(2.28)
of Lemma2.15and letI ′ be an ideal of Hilbert functionH(R/I ′) = T , then there is an
ideal I satisfyingH(R/I)= T , and such thatI ⊃ I ′.
Proof. Since dimIj = dimI ′j we haveIj = I ′j ; thus we may prove the result forH by
proving that forN andT separately. Our overall method is to construct a sequence of i
I ′ = I (0), I (1), . . . , I (s)= I of different Hilbert functionsH(R/I (u))=H(u) ∈H(d, j)
betweenH ′ =H(0) andH =H(s), using the properties of theτ invariant.

We begin by considering a pair of Hilbert functionsN � N ′, each satisfying
the condition relevant toN in Lemma 2.15, and a given graded idealI ′ satisfying
H(R/I ′)=N ′. We will construct an element ofG(N), a graded ideal of Hilbert functio
N satisfyingI ⊂ I ′. We may assume that all the ideals considered containMj+1. We first
prepare to choose a Hilbert functionN(1) of R/(I (1)) differing fromN ′ in the highest
possible degree. Then we will determine the idealI (1) ⊂ I ′. Let t < j be the larges
integer, such that there is a permissible sequenceN(1) for a level algebra in the sens
of Lemma 2.15, such thatN(1)t �=N ′t and satisfying both

N ′ �N(1)�N : that is∀i � j, N ′i �N(1)i �Ni, and

N(1)i =N ′i ∀i | t < i � j. (2.70)

Let E′ = !(N ′) be the difference sequence, and leta be the largest nonnegative integ
such that

e′t = e′t−1= · · · = e′t−a.
Claim A. The sequenceN(1), defined by

N(1)i =
{
N ′i unlesst − a � i � t,

n′i + 1 for t − a � i � t,
(2.71)

is a permissible sequence, in the sense thatN(1) satisfies (2.27) of Lemma 2.15. Also, l
N ′′ �N ′ termwise (soN ′′ �N ′ is a permissible sequence for which∃k, t−a � k � t with
N ′′k �=N ′k). ThenN ′′i �N(1).

Proof of Claim A. Becausee′i is nonincreasing asi � j decreases, the integert identifies
the largest parte′t+1 �= et+1, and we havee′t+1< et+1. By the definition ofN(1) we have
e(N(1))i = e′i unlessi = t + 1 or i = t − a. We have

e
(
N(1)

) = e′t+1+ 1 � et+1 � et+2= e′t+2= e
(
N(1)

)

t+1 t+2
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e
(
N(1)

)
t−a = e′t−a − 1� e′t−a−1= et−a−1.

Since bothN andN ′ are permissible, the above inequalities shows thatN(1) also is a
permissible Hilbert function satisfying the condition (2.27) of Lemma 2.15.

Suppose by way of contradiction thatN ′′ is a permissible sequence for LA(d, j)
satisfyingN ′′ � N ′ termwise, but not satisfyingN ′′ � N(1), and letu be the smalles
integer,t −a � u� t such thatN ′′u =N ′u. If t −a < u < t the differencee′′u > e′u = e′u+1 �
e′′u+1, contradicting the assumption thatN ′′ is permissible for LA(d, j). This completes
the proof of the Claim A.

We now choose an idealI (1)⊂ I ′ with H(R/I (1))=N(1). ClearlyI (1)i = I ′i unless
t − a � i � t , so we need only chooseI (1)t−a, . . . , I (1)t . We constructI (1) beginning
with lower degrees. Suppose thatu satisfiest − a � u � t andI (1)0, . . . , I (1)u−1 have
been chosen so that (here we regardI (1)u ⊂Ru)

R1 · I (1)v−1⊂ I ′v, I (1)v ⊂ I ′v, and cod
(
I (1)v

)=N(1)v for v < u.

NowR1 · Iu−1⊂R1 · I ′u−1⊂ I ′u, the first inclusion by assumption, and the second sincI ′
is an ideal. We need to choose a vector spaceI (1)u betweenR1 · I (1)u−1 andI ′u, having
codimensionN(1)u in Ru. This is possible if and only if cod(R1 · I (1)u−1)�N(1)u. We
have

dimR1 · I (1)u−1− dimI (1)u−1= τ
(
I (1)u−1

)= dimI (1)u−1− dimR−1 · I (1)u−1

� dimI (1)u−1− dimI (1)u−2 by (1.7)

= 1+ eu−1
(
N(1)

)
� 1+ eu

(
N(1)

)
, sinceN(1) is permissible.

Thus

u+ 1− dimR1 · I (1)u−1 � u− dimI (1)u−1− eu
(
N(1)

)
,

codR1 · I (1)u−1 �N(1)u−1− eu
(
N(1)

)=N(1)u (2.72)

by our choice ofN(1). Therefore, we may chooseI (1)u such thatI ′u ⊃ I (1)u ⊂
R1 · I (1)u−1, satisfying codI (1)u = codI ′u + 1. Continuing this process, we may choo
an idealI (1)⊂ I (0)= I ′ of Hilbert functionH(R/I (1))=N(1), as claimed. Continuin
in this manner, we eventually constructI (s) of Hilbert functionH(R/I (s))=N(s)=N ,
and satisfyingI (s) ⊂ I ′, as claimed. This completes the proof of the lemma for the
(N,N ′).

We now turn to choosing an idealI of Hilbert functionH(R/I)= T givenI ′ satisfying
H(R/I ′) = T ′. Although proof of this portion of the Lemma involving GAT (d, j)
for T ,T ′ eventually zero appears already in [I2, Section 4B], we include the argu
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with further details here for completeness. For now we assume thatT ,T ′ are eventually
zero: thatcT = cT ′ = 0. We will also now assume that our idealsI ⊂Mj , by intersecting
with Mj if necessary. We first choose the Hilbert functionT (1) of R/(I (1)), differing
from T ′ in the lowest degree possible, and then the corresponding idealI (1).

Let t > j be the smallest integer, such that there is a permissible sequenceT (1)
satisfying the condition (2.28) of Lemma 2.15 forT , and such thatT (1)t �= T ′t and
satisfying both

T ′ � T (1)� T : that is∀i � j T ′i � T (1)i � Ti, and

T (1)i = T ′i ∀i | j � i < t. (2.73)

LetE′ =!T ′ be the difference sequence, and leta be the largest nonnegative integer su
that

e′t+1= e′t+2= · · · = e′t+a. (2.74)

Claim B. The sequenceT (1), defined by

T (1)i =
{
T ′i unlesst � i � t + a − 1,
T ′i − 1 for t � i � t + a − 1,

(2.75)

is a permissible sequence satisfying the condition (2.28) of Lemma 2.15. Furthermo
T ′′ � T ′ (termwise) be a permissible sequence for which∃k, t < k � t + a with T ′′k �= T ′k .
ThenT ′′ � T (1).

Proof of Claim B. Becausee′i is non-increasing asi � j increases, the integert identifies
the largest differencee′t �= et , and we havee′i = ei for i satisfyingi � t −1. SinceT ′t > Tt ,
we havee′t = T ′t − T ′t−1 > Tt − Tt−1 = et so we havee′t > et . Evidently e(T (1))i = e′i
unlessi = t or t + a. We have

e
(
T (1)

)
t
= e′t + 1 � et � et−1= e′t−1= e

(
T (1)

)
t−1

and

e
(
T (1)

)
t+a = e′t+a − 1 � e′t+a+1= e

(
T (1)

)
t+a+1.

Since bothT and T ′ are permissible, the above inequalities show thatT (1) also is a
permissible sequence—one satisfying the condition (2.28) of Lemma 2.15 forT .

Suppose by way of contradiction thatT ′′ is likewise a permissible sequence satisfy
T ′′ � T ′ termwise, butT ′′ does not satisfyT ′′ � T (1), and letu be the smallest intege
t � u � t + a such thatT ′′u = T ′u. If t < u < t + a the differencee′′u < e′u = e′u+1 � e′′u+1,
contradicting the assumption thatT ′′ is permissible for GA(d, j). This completes the proo
of the Claim B.
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We now choose an idealI (1) ⊃ I ′ with H(R/I (1)) = T (1), beginning with the
higher degrees. ClearlyI (1)i = I ′i unlesst � i � t + a − 1, so we need only choos
I (1)t , . . . , I (1)t+a−1. Suppose thatu satisfiest + 1 � u� t + a andI (1)u+1, . . . , I (1)t+a
have been chosen so that

R−1 · I (1)v+1⊃ I ′v, I (1)v ⊃ I ′v, and codI (1)v = T (1)v for v > u.

NowR−1 · I (1)u+1⊃R−1 · I ′u+1⊃ I ′u, the first inclusion is by assumption, and the sec
sinceI ′ is an ideal. We need to choose a vector spaceI (1)u betweenR−1 · I (1)u+1 and
I ′u, having codimensionT (1)u in Ru. This is possible if and only if cod(R−1 · I (1)u+1)�
T (1)u = T ′u − 1. We have

dimI (1)u+1− dimR−1 · I (1)u+1= τ
(
I (1)u+1

)= dimR1 · Iu+1− dimIu+1

� dimI (1)u+2− dimI (1)u+1 by (1.7)

� 1+ eu+2
(
T (1)

)
� 1+ eu+1

(
T (1)

)
, sinceT (1) is permissible.

Thus

u+ 1− dimR−1 · I (1)u+1 � u+ 2− dimI (1)u+1+ eu+1
(
T (1)

)
,

codR−1 · I (1)u+1 � T (1)u+1+ eu+1
(
T (1)

)= T (1)u (2.76)

by our choice ofT (1). Therefore, we may chooseI (1)u such thatI ′u ⊃ I (1)u ⊂
R−1 · I (1)u+1, satisfying codI (1)u = codI ′u− 1. Continuing this process, we may choo
an idealI (1)⊃ I (0)= I ′ of Hilbert functionH(R/I (1))= T (1), as claimed. Continuin
in this manner, we eventually constructI (s) of Hilbert functionH(R/I (s)) = T (s)= T ,
and satisfyingI (s) ⊃ I ′, as claimed. This completes the proof of the lemma for the
(T ,T ′) whencT = cT ′ = 0.

WhencT �= 0, by Corollary 2.14 any idealI with H(R/I) = T must have a commo
factorf =GCD(I) of degreecT . We haveT � T ′ ⇒ c(T )� c(T ′). Suppose the pair o
idealsI, I ′ satisfiesI ⊃ I ′,H(R/I) = T ,H(R/I ′) = T ′, thenf = GCD(I) divides any
common factorf ′ =GCD(I ′) of I ′. GivenI ′, we now refine the choice ofI by choosing
in advance a degreec(T ) factor f of GCD(I ′) to be the common factor ofI . Now it
will suffice to chooseJ = I : f of Hilbert functionT : c(T ′) containingI ′ : f , of Hilbert
functionT ′ : c(T ′), and then setI = f J . Thus we have reduced to showing the lem
whenT is eventually zero, butcT ′ > 0.

Suppose now thatcT = 0, c′ = cT ′ �= 0, and defines′ by T ′
s ′−1 > T

′
s = cT ′ > 0. (When

no such integers′ exists, thenI ′ = (f ′) and choosingI ⊃ (f ′) poses no difficulty.)
Let f ′ be the degreec′ common factor ofI ′. When e′i of (2.74) satisfiese′i > 0 we
chooseT (1) as in the casecT = cT ′ = 0, however to constructI (1), we first construc
I (1) : f ′ of Hilbert functionT (1) : c′ such thatI (1) : f ′ ⊃ I ′ : f ′, as above, then we le
I (1)= f ′ · (I (1) : f ′). Wheni = s′ + 1 ande′i = 0 in (2.74), thena =+∞ in (2.74). We
chooseI (1) ∩Ms+1= (f ′) ∩Ms+1 with f ′ a degreec′ − 1 divisor off ′. Continuing in
1 1
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this way, we obtain finally an idealI ⊃ I ′ of Hilbert functionH(R/I)= T . This completes
the proof of the statements involvingT ,T ′ of the lemma in all cases.

We now turn to the case of a pairH,H ′ of acceptable Hilbert functions. WhenH
is eventually zero, one uses the above methods to first constructI + Mj+1 and then
constructI ∩Mj , which together determine the idealI (sinceIj = I ′j is given). When
H is eventuallyc, then one choosesf of degreec dividing the common factorf ′ of I ′ of
degreec(T ′) � c. Then one choosesI : f of Hilbert functionT : c, as above fromI ′ : f
of Hilbert functionT ′ : c, then setsI = f · (I : f ). SinceH = H(N,T ) is acceptable
(Definition 2.7) if and only ifN,T have the sameτ and are both permissible (satis
(2.27) or (2.28), respectively), this completes the proof of the lemma.✷
Example 2.31. We illustrate the process of choosingN(1) in the proof above. Suppos
that the two sequencesN ′,N areN ′ = (1,2, . . . ,13,11,9,7,4,0) with N ′16 = 4, and
N = (1,2, . . . ,13,12,11,8,4,0). We chooseN(1): here t = 15, and one choose
N(1)15,16 = (8,4). However, if this were the only change, the intermediate sequ
(1, . . . ,13,11,9,8,4,0) would violate the condition on first differences, as it has fi
differences(. . .2,1,4,4), which has a decrease from 2 to 1. Instead, we must ch
N(1) = (1, . . . ,13,12,10,8,4), which is also next toN ′ in the partial order among th
subset of sequences possible for level algebras LA(13,16) and havingN(1)15> 7. Then
N(2) = N . Note thatN(0)= (1, . . . ,13,12,10,7,4,0) is next toN ′ in the partial order
but we have chosen to step toN(1), which is the closest toN ′ among those betweenN ′
andN and differing fromN ′ in the highest possible degree. Note that in the proo
Lemma 2.30, the occurring Hilbert functionsN(i), T (i) must be permissible for a leve
algebra, graded ideal, respectively of a vector space of forms. But the intermediate
I (1), . . . that we construct are not themselves level ideals, nor ideals generatedIj ,
respectively.

Recall from Definition 1.14 that we denote byP = P(d, j) the partial order on the se
H(d, j) of acceptable Hilbert functions. The acceptable Hilbert functions are desc
in Definition 2.7, and further in Lemma 2.8. Recall that we showed in Theorem 2.19
theseH ∈ H(d, j) are exactly the sequences occurring as Hilbert functions of anc
algebras.

Theorem 2.32. Let d, j be positive integers satisfyingd � j , assume that the fieldk is
algebraically closed, and suppose thatH is an acceptableO-sequence(Definition2.7).

(A) Frontier property.The Zariski closureGrassH(d, j) satisfies

GrassH (d, j)=
⋃

H ′�PH

GrassH ′(d, j). (2.77)

The analogous equalities hold forLAN(d, j) and forGAT (d, j).
(B) G(H) is a desingularization ofGrassH (d, j). There is a surjective morphis

π :G(H)→ Grass(H) from the nonsingular varietyG(H), given byI → Ij . The
inclusion ι : GrassH(d, j) ⊂ G(H), ι :V → V is a dense open immersion. F
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H ′ ∈ H(d, j),H ′ �P H , the fibre ofπ over V ′ ∈ GrassH (d, j) ∩ GrassH ′(d, j)
parametrizes the family of graded ideals

{
I |H(R/I)=H andIj = V ′

}
. (2.78)

The schemesLAN(d, j) and GAT (d, j) have desingularizationsG(N) andG(T ),
respectively, with analogous properties.

Proof. By Theorem 1.10(i), (iii)G(H) is nonsingular and has as open dense subse
subfamily of ideals with minimum number of generators; by Proposition 2.11(v),
subfamily isι(GrassH(d, j)) (see also Theorem 2.17(A)). By definition ofπ the fibre of
π is the family specified in (2.78). Thatπ is surjective we will show next, thus completin
the proof of (B).

We now show (2.77). Suppose thatH ′ � H ∈H(d, j): soH,H ′ satisfy the condition
of Proposition 2.6 and each occurs as the Hilbert function of an ancestor ideal, a
V ′ ∈ GrassH ′(d, j). By Lemma 2.30 there is an idealI of Hilbert functionH satisfying
Ij = V ′. SinceG(H) is irreducible with open dense subscheme GrassH(d, j) we have that
there is a familyI (t), t ∈ Z of ideals parametrized by a curveZ ⊂ G(H) such that for
t �= t0, I (t) ∈ ι(GrassH (d, j)), with I = limt→t0 I (t); it follows thatV ′ = limt→t0 V (t)=
I (t)j is in the closure of GrassH (d, j). This shows that the closureGrassH (d, j) includes
the union of lower strata in (2.77). By Theorem 1.15 the closureGrassH(d, j) is a subse
of
⋃
H ′�PH GrassH ′(d, j). This completes the proof of (2.77) and (A), as well as (B)

GrassH(d, j). An analogous argument proves the results in (A) concerning the clo
LAN(d, j) andGAT (d, j). This completes the proof.✷
Corollary 2.33. The schemeGrassτ (d,Rj ) is irreducible andGrassHτ (d, j) (see(2.33))
is a dense open subscheme. The Zariski closure ofGrassτ (d, j) satisfiesGrassτ (d, j) =⋃
τ ′�τ Grassτ ′(d, j).

Proof. We fix (d, j, τ ). Evidently, by Lemma 2.3(ii) and Eq. (2.66), the Hilbert functi
N(Hτ ) is maximum, among the Hilbert functionsN(H) for H satisfying τ (H) � τ .
Similarly (2.53) and (2.68) show thatT (Hτ ) has the minimum values among suchH .
Thus, Theorem 2.32 implies the corollary.✷
Definition 2.34. We denote byPA(d, j) the partially ordered set of pairs of partitio
(P,Q) such thatP partitions d , Q partitions an integer no greater thanj + 1 − d ,
and the largest partp1 of P and the largest partq1 of Q satisfyp1 = q1 + 1. We let
(P,Q)� (P ′,Q′) if bothP � P ′ andQ�Q′ in the respective majorization partial orde

Theorem 2.35. There is an isomorphism of partially ordered setsH(d, j) under the partial
orderP(d, j) and the partially ordered setPA(d, j), under the product of the majorizatio
partial orders (see Definition2.34) given byH → (P,Q),P = P(H) = A(H)∗,Q =
Q(H) = B(H)∗ (see Definitions2.9 and 2.21). This is the same order as is induced
specialization(closure) of the strataGrass(H).
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Table 2.1
Hilbert functionsH for (d, j)= (4,5)
Stratum τ A B P =A∗ Q= B∗ c cod H

H(0) 3 (2,1,1) (1,1) (3,1) (2) 0 0 (1,2,3,4,4,2,0,0)
H(1) 2 (2,2) (2) (2,2) (1,1) 0 1 (1,2,3,4,3,2,1,0)
H(2) 2 (2,2) (1) (2,2) (1) 1 3 (1,2,3,4,3,2,1)
H(3) 1 (4) – (1,1,1,1) – 2 6 (1,2)

Proof. This is immediate from (2.77), Theorem 2.19(iii), and Lemma 2.28.✷
Example 2.36. We consider the partial order on all sequencesH for (d, j)= (4,5) (see
Table 2.1). Thus,A partitions the dimensiond = 4 into τ � 3 parts, andB partitions the
integer cod(V )− c = 2− c into τ − 1 parts. Grass(4,R5) has dimension 8; the open ce
is given by the pairA= (2,1,1),B = (1,1). Whenτ = 2 there are two sequences, and
τ = 1 a single sequence. They are here linearly ordered by�P(4,5), so by Theorem 1.16
the closure of each stratum listed in Table 2.1 is the union of the stratum itself wit
strata below it. Note that theA,P andQ columns of partitions in Table 2.1 are simp
ordered in the majorization partial order, but theB column is not. The order onH(d, j) is
equivalent to the product of majorization orders on the pairs(P,Q).

Remark 2.37. Possibly relevant to the frontier property, given Theorem 2.32(A)
Theorem 2.35, C. Greene and D.J. Kleitman have studied the longest simple ch
the lattice of partitions of an integer [GreK].

Relevant to the desingularization of Theorem 2.32(B), a basis for the homolo
G(H) is given in [IY], in terms of the classesπ∗(E(J )) determined by the monomia
idealsJ of Hilbert functionH(R/J ) = H : hereE(J ) is the affine cell parametrizin
graded ideals having initial idealJ , and it the set{E(J )} form a cell decomposition o
G(H). A natural cobasis of a monomial ideal of colengthn,H(R/J ) = H is a vector
spaceEc(J ) of monomials whose graph is the Ferrers graph of a partitionP(Ec) of n
with diagonal lengthsH . The dimension of the cellE(J ) is the number of difference on
hooks (arm-leg= 1) in the partitionP(Ec) When|H | =∑Hi = n a basis for the degree
i homology corresponds one-to-one with the partitions ofn having the given diagona
lengthsH ; and having the given numberi of hooks of difference one. In a few cases
homology ring structure ofG(H) is known, but in general the homology ring structure
not known (see [IY]).

3. Waring problem, related vector spaces

In Section 3.1 we apply the previous results to a refinement of the simultaneous W
problem for a vector space of forms. In Section 3.2 we first return to polynomial rinR
of arbitrary dimensionr, to develop the notion of a spaceW ⊂Ri related to a vector spac
V ⊂ Rj if W is obtained by a chain whose elements are each a homogeneous com
of the ancestor ideal of the predecessor space. Whenr = 2 we bound the number of class
W related toV in terms of theτ invariantτ (V ). Finally, we state some open problems.
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3.1. The simultaneous Waring problem for degree-j binary forms

We letr = 2 and denote byR= k[X,Y ] thedualpolynomial ring toR. We suppose tha
chark = 0 or chark = p > j throughout this section. Thesimultaneous Waring problem
is to find the minimum numberµ(c, j) of linear forms, needed to write each element o
general dimension-c vector spaceW ⊂Rj as a sum ofj th powers of the linear forms; her
the choice of the linear forms depends onW . Our refinement is to fix also the differenti
τ invariant ofW .

The casec = 1 of a single binary formF is quite classical: it is related to the seca
varieties of rational normal curves, and is resumed along with this connection in
Section 1.3]. Note that in this sectionc = dimW satisfiesc = cod(V ) = j + 1 −
dimV whereV = (AnnW)j (see (3.3)). Lettingµ(W) denote the minimal length of
simultaneous (generalized) additive decomposition ofW , our results rest on the identi
µ(W)= µ(L(V )), the order of the level idealL(V ) determined byV (Lemma 3.2), valid
for r = 2 only. Foru� c we letca = c(c− 1) · · · (c+ 1− a).

Definition 3.1. The ringR = k[x, y] acts onR by differentiation

xayb ◦XcY d =
{
(ca · db)Xc−aY d−b if c� a andb� d,

0 otherwise.
(3.1)

Let V ⊂Rj be a vector subspace. We denote byV ⊥ ⊂Rj the subspace

V ⊥ = {F ∈Rj | v ◦ F = 0 ∀v ∈ V }. (3.2)

GivenW ⊂Rj we denote by Ann(W)⊂R the ideal

AnnW = {f ∈R | f ◦w = 0 ∀w ∈W}. (3.3)

Let V = (Ann(W))j ⊂Rj . We define thedifferentialτ -invariant τδ(W) as

τδ(W)= τ (V )= dimR1 · V − dimV. (3.4)

We need also the following notions of additive decomposition: letF ∈ W then F =∑s
i=1αiL

j
i is an additive decomposition of lengthµ of F , assuming that the{Li} are

pairwise linearly independent. The formF ∈Rj has ageneralized additive decompositio
(GAD) of lengthµ and weightsβ1, . . . , βt into powers of the linear formsL1, . . . ,Lt ∈R1
if

F =
t∑
i=1

GiL
j+1−βi
i where degGi = βi − 1 and

∑
βi = µ. (3.5)

The vector spaceW ⊂ Rj has asimultaneous decompositionof lengthµ if there is a
single ordered setL = (L1, . . . ,Lt ) of linear formsLi ∈ R1 (which may depend onW )
and weightsβ = (β1, . . . , βt ) such that eachF ∈W has a GAD of lengthµ and weights
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β into the formsL. We denote byµ(W) the shortest length of a simultaneous addit
decomposition ofW .

We defineµ(c, j),µ(τ, c, j), respectively, as the common value ofµ(W) for W in
a suitable open dense subset of Grass(c,Rj ), or of Grassτδ (c,Rj ) (whereτδ(W) = τ ),
respectively.

Note that we definedτδ(W) for W ⊂ Rj using the annihilating degree-j space
V = (Ann(W))j . Here is a direct definition. LetR1 ◦ W ⊂ Rj−1 be R1 ◦ W =
{: ◦ w,: ∈ R1,w ∈ W}. Letting N = (n0, n1, . . .) = H(R/Ann(W)), we have from
(Ann(W)j−1)

⊥ =R1 ◦W and (2.4)

τδ(W)= 1+ ej (N)= 1+ nj−1− nj = 1+ dimR1 ◦W − dimW . (3.6)

For Li = aiX + biY ∈ R1 we let :i = bix − aiy ∈ R1: then :i ◦ Li = 0. We have the
following well-known result. Recall thatµ(L(V )) is theorder of the level idealL(V ).

Lemma 3.2. LetV ⊂Rj and setW = V ⊥. The level idealL(V ) satisfies

L(V )= Ann(W), W = V ⊥. (3.7)

LetF ∈Rj . ThenF has a GAD of lengthµ as in(3.5) if and only if

∃f ∈ Ann(F ) such that degf = µ and f =
∏
:
βi
i , :i ∈R1. (3.8)

Let W ⊂ Rj and dimW = c. Thenµ(W) = µ(L(V )) for V = (Ann(W)j . Also 1 � τδ
and

τδ(W)� min{c+ 1, j + 1− c}, (3.9)

with equality in(3.9) for a generic choice ofW ⊂ Rj of dimensionc.

Proof. The identity (3.7) is a basic property of inverse systems—see in general [M
Section 60ff], [EmI1,G] or for a modern proof, [IK, Lemma 2.17]. Eq. (3.8) is [
Lemma 1.33]; thatµ(W)= µ(L(V )) is a straightforward consequence. The last statem
is a consequence of the upper bound onτ (V ),V = (AnnW)j from Lemma 2.2, rewritten
in terms ofc, j , sinceτδ(W)= τ (V ). ✷

We letc= j + 1− d and defineµ(τ, d, j)= j + 1− 'd/τ(. Whenµ� µ(τ, d, j), we
define the Hilbert function sequenceN(µ, τ, d, j) by

N(µ, τ, d, j)i =
{

min{i + 1,µ, c+ (τ − 1)(j − i)} for i � j,

0 for i > j.
(3.10)

We defineN(τ, d, j) = N(Hτ (d, j)) with Hτ (d, j) from Eq. (2.33): thus we hav
N(τ, d, j)i = min{i + 1, c + (τ − 1)(j − i)} for i � j . We definea, κ ∈ N by µ − c =
a(τ − 1)+ κ with 0 � κ = rem(τ − 1,µ− c) < τ − 1.
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Lemma 3.3.N(τ, d, j) is the maximum level algebra Hilbert function for ad-dimensional
vector spaceV ⊂ Rj with τ (V ) = τ ; it has orderµ(τ, d, j) and partitionP(τ, d, j) =
(τ $d/τ%, rem(τ, j)) from (2.32). N(µ, τ, d, j) is the maximum level algebra Hilbe
function that is both bounded above byµ and possible for a vector spaceV ⊂ Rj with
τ (V )= τ . It has orderµ and partitionsP,A of d

P = P(µ, τ, d, j)= (τa, κ + 1,1j−µ−a
)
, (3.11)

A=A(µ, τ, d, j)= P ∗ = (j + 1−µ, '(µ− c)/(τ − 1)((κ−1)+, aτ−κ
)
. (3.12)

The dimension ofLAN(d, j),N =N(τ, d, j) is τ (j + 2− τ )− d .

Proof. The orderµ= µ(τ, d, j) of N(τ, d, j) satisfies

µ=max
{
i
∣∣N(τ, d, j)i−1 � i

}=max
{
i
∣∣ c+ (j − (i − 1)

)
(τ − 1)� i

}
,

which leads toµ = µ(τ, d, j). The calculation ofP(µ, τ, d, j),A(µ, τ, d, j) is routine,
and the dimension formula for LAN(d, j), is (2.41). ✷

One part (ii) of the following theorem may be classical; it was shown by J. Ems
and the author in an unpublished preprint, and also in [Ca,CaCh].

Theorem 3.4. We will suppose thatW ⊂Rj ,R= k[X,Y ], dimW = c, andd = j+1−c.

(i) Each dimensionc subspaceW ⊂ Rj with τδ(W) = τ satisfiesc � µ(W) �
µ(τ, d, j), with equalityµ(W)= µ(τ, d, j) for a generic choice of suchW .

(ii) For generalW the value ofµ(W) is $c(j + 2)/(c+ 1)% if c < j/2, andj otherwise.
(iii) Let c� µ� µ(τ, d, j). Whenk is algebraically closed, the subfamilyGADµ(τ, c, j)

of Grassτδ (c,Rj ) parametrizing W satisfying τδ(W) = τ and µ(W) � µ is
isomorphic underW → (AnnW)j to LAN(d, j), whereN = N(µ, τ, d, j). The
codimension ofLAN(d, j) in Grassτ (d, j) satisfies, for1 � µ<µ(τ, d, j)

codτδ GADµ(τ, c, j)= :(A)= (j −µ)τ − (d + 1). (3.13)

Proof. By Lemmas 3.2 and 3.3 each of the statements (i), (ii), and the first pa
(iii) translates into one about the order ofN(τ, d, j), or the dimension ofN(µ, τ, d, j).
Corollary 2.33 implies that for an open dense set ofV ∈Grassτ (d, j), the Hilbert function
of LA(V ) is N(τ, d, j), derived fromH(τ, d, j) of (2.33). Thus, the orderµ(τ, d, j) of
N(τ, d, j), is the generic value forµ(W),W, τδ(W) = τ . This gives (i), and (ii) follows
from substitutingτ = c+1 orj+1−c from (3.9) into the formula of (i). The codimensio
of LAN(d, j) in Grassτ (d, j) of (iii) is by (2.55) the invariant:(A) of (2.54) for the
partitionA=A(µ, τ, d, j) from (3.12); however a routine calculation using dimN(τ, d, j)
from Lemma 3.3 and (2.35)—assumingeµ = 0 for N = N(µ, τ, d, j)—gives (3.13) for
µ < µ(τ, d, j) (whenµ = µ(τ, d, j) the assumptioneµ = 0 for (3.13) may not hold)
Theorem 2.32 completes the proof of (iii).✷
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Remark 3.5. Theorem 3.4 states that vector spacesW with higherτ in general require a
larger number of linear formsL1, . . . ,Lµ so that

W ⊂ 〈Lj1, . . . ,Ljµ〉. (3.14)

Thus, lettingV = (Ann(W))j when τ (V ) = 1 so V = fcRj−c , we haveµ(W) = c.
Whenc � j/2 andτ (V ) = j + 1− c, the maximum value, thenµ(W) = j in general.
Note that, given(µ, τ, d, j) satisfyingc � µ � µ(τ, d, j), the proof of Theorem 1.10 i
[I2] shows that one can choose a vector spaceV ∈ LAN(d, j),N = N(µ, τ, d, j) such
that there is a formf ∈ L(V )µ with distinct roots, thus one may suppose that a gen
W ∈GADµ(τ, c, j) satisfies (3.14).

3.2. Vector spaces related toV ; open problems

In Section 3.2 the dimensionr of R is arbitrary unless otherwise specified. We say
W ⊂Ri is related toV ⊂Rj if there is a sequence(i1, . . . , ik) ∈ Zk such that

W =Rik ·Rik−1 · · ·Ri1V =Rik ·
(
Rik−1 · (· · ·Ri1V ) · · ·

)
. (3.15)

We give some basic identities, valid forR = k[x1, . . . , xr ].

Lemma 3.6. We have for arbitrary vector spacesV ⊂Rj ,

RsRtV =Rs+t V if s, t � 0 or s, t � 0; (3.16)

RsRtV ⊂Rs+t V if s � 0 or t � 0; (3.17)

RsRtV ⊃Rs+t V if s � 0 or t � 0. (3.18)

Also,

RsRtRuV =Rs+t+uV if s, t, v have the same sign,

or if signs = signu and|t|� |s|, |u|, (3.19)

RsRtRuV ⊂Rs+t+uV if s, s + t � 0 or u, t + u� 0, (3.20)

RsRtRuV ⊃Rs+t+uV if s, s + t � 0 or u, t + u� 0. (3.21)

The proofs are immediate from the definitions. The following lemma gives a normal
for relations, that need not be unique.

Lemma 3.7. LetW be related toV . Then there is an expressionW = Rik ·Rik−1 · · ·Ri1V
satisfying

(i) The sequencei1, . . . , ik is alternating in sign.
(ii) ∃t,1� t � k such that|i1|< · · ·< |it |, and ifk > t, |it |� |It+1|� · · ·� |is|.
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Proof. First, using (3.16) to collectRa · Rb for which signa = sign b, we may assum
the expression is alternating in sign and is no longer than the original expression
using (3.19) we collect adjacent triplesRa · Rb · Rc in the expression forW , for which
|b| � |a|, |c|. Since collecting terms shortens the length of the relation, after a
number of steps of collecting such triples and assuring that the signs alternate, w
arrive at an expression where the indices alternate in sign, and for which each ad
triple Ra · Rb · Rc we have|b| > |a|, |c|. This is possible only if the indices satisfy th
condition (ii). ✷

One might ask whetherW related toV andV related toW imply equalityV =W .
We will shortly show that this holds whenr = 2 (Corollary 3.10). The following
counterexample whenr = 3 is due to David Berman [Be].

Example 3.8 (D. Berman: loops in the natural partial order). LetV = 〈x2y3, y2z3, x3z2〉 ⊂
R5,R = k[x, y, z], and letW =R2V . ThenV =R−2W butR−1W containsx2y2z2, which
is not inR1V , henceV �=W .

We now restrict tor = 2.

Proposition 3.9. Suppose thatr = 2 andV ⊂ Rj satisfiesτ (V ) = τ . Then there are a
most2τ − 1 nonzero equivalence classesW of vector spaces related toV . Any nonzeroW
related toV has an expression of lengthk � τ (V )− τ (W)+ 1.

Proof. Whenτ (V )= 1, Lemma 2.2 implies that the vector spaceV satisfiesV = f ·Rj−d ,
andV = (f ). Evidently, any nonzeroW related toV must satisfyW = (f ). Let n > 1
and assume inductively that the statement is true for allj , for vector spacesV satisfying
τ (V )� n−1. LetV ⊂Rj satisfiesτ (V )= n, and letu,v be the minimum positive integer
such thatR−uV andRvV are each not equivalent toV . Since bothτ (R−uV )� n− 1 and
τ (Rv(V ))� n−1, the induction step would follow from the following claim, as we wou
then have that the number of classesW related toV would satisfy

#{W related toV } = #{W related toR−uV } + #{W related toRvV } + one forV

� 2
(
2n−1− 1

)+ 1= 2n − 1.

Claim. LetW �= 0 be related toV , and assumeW �= V . ThenW is related toR−uV or to
RvV , whereu,v are defined above.

Proof of claim. We first observe that

RwV = V ⇒ RaRwV =Ra+wV for a ∈ Z. (3.22)

When signa = signw, this is just (3.16); when signa �= signw and|a|� |w| then
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Ra ·Rw =Ra+wR−w ·RwV by (3.16) as signa +w = sign−w
=Ra+wV sinceV =RwV .

Suppose now thatW is related toV . UnlessV = W , by (3.22) we may assume that
the expressionW = Rik ·Rik−1 · · ·Ri1V for W we havei1 �−u or i1 � v. Then by (3.16)
Ri1V = Ri1+u · R−uV in the first case, orRi1V = Ri1−vRvV in the second case. Th
completes the proof of the claim, and of the first statement of the proposition.

The claim and above proof shows that we need only allow at most one factor of the
Rit in the expression forW for each reduction by one inτ , and one more for the last ste
giving usk � τ (V )− τ (W)+ 1 as claimed. ✷
Corollary 3.10. Let r = 2, and suppose thatV ⊂ Rj andW ⊂ Rw satisfyW is related to
V in the sense of(3.15), and alsoV is related toW . ThenV =W .

Proof. By repeated application of Proposition 2.3(i), we haveτ (W) � τ (V ), and vice-
versa, henceτ (W) = τ (V ). Then there is an expressionW = RaV by the second part o
Proposition 3.9. Proposition 2.3(iii) now implies thatV =W . ✷
Open problems
A. The dimension and closure results of Theorems 2.17, 2.24, and 2.32 have a na

that suggest they might extend to strata not only by the Hilbert function and p
Hilbert functions (analogous to [I2, Section 4B]), but also to more refined s
closer to the complete Hilbert function where the dimension of each vector s
W related toV is specified (see Section 3.2 and [Be]). For example, suppose
D(u,v)(V )= dimRuRvV is specified for allu,v: what is the dimension and closu
of the stratum of Grass(d,Rj ) determined byD = {D(u,v)}?

B. The desingularization morphismG(H)→ GrassH (d, j) is a semi-small resolution
What can be said about the singularities ofGrassH (d, j)? What is the class o
GrassH ′(d, j) in the homology ringH∗(G(H))? Is GrassH(d, j) Cohen–Macaulay
A. King and C. Walter have shown that the homomorphismi∗ :H∗(G(H)) ↪→∏
µ�i�s H∗(Grass(i + 1−Hi,Ri)) is an inclusion [KW].

C. In Corollary 2.18 we showed that GrassH(d, j)= LAN(d, j)∩GAT (d, j), is a proper
intersection in Grassτ (d, j). Thus, the only condition tying LAN(d, j) and GAT (d, j),
with N = NH and T = TH is that τ (N) = τ (T ). Do these subvarieties interse
transversely?

D. Is there a relation between the cohomology ringsH ∗(LAN(d, j)) andH ∗(GAT (d, j),
when the related partitionsA,B correspond? Or a relation betweenH ∗(LAN(d, j))

andH ∗(LA ′N(d, j)) when the partitionA′ determiningN ′ has one more part than th
partitionA determiningN?

E. There is a well-known geometric interpretation of the Hilbert function stra
GAT (d, j). The vector spaceV determines a rational curveX ⊂ Pd−1; the restriction
T toX of the tangent bundle toPd−1 decomposes into a direct sum of the line bund
T ∼=⊕O(−j − di) whereD is the partition we defined in Definition 2.21 [GhISa
Also, the partitionC corresponds to the generator degrees of the ancestor ideV ,
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and these are related to the minimum dimension rational scroll containing the ra
curve determined by (a basis of)V [I5]. Is there a natural geometric interpretation
the pairC,D, that could generalize to other curves inPd−1?
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