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Abstract 

Durand, B. Inversion of 2D cellular automata: some complexity results, Theoretical Computer 

Science 134 (1994) 387401. 

In this paper, we prove the co-NP-completeness of the following decision problem: “Given a two- 

dimensional cellular automaton & (even with Von Neumann neighborhood), is & injective when 

restricted to finite configurations not greater than its length?” In order to prove this result, we 

introduce two decision problems concerning, respectively, Turing machines and tilings that we 

prove NP-complete. Then, we present a transformation of problems concerning tilings into prob- 

lems concerning cellular automata. 

1. Introduction 

Cellular automata (CA) are often used for modeling complex natural systems with 

many rudimentary cells interacting locally with each other. Possible evolutions of 

cellular automata have been extensively studied in order to analyze evolutions of such 

natural systems. Problems like bijectivity or surjectivity of CA are very basic because 

they correspond to physical notions: conservation of information (which corresponds 

to physical reversibility) or reachability of all states. 

In 1962-1963, Moore and Myhill proved the so-called “garden of Eden” theorem 

which proves that surjectivity is equivalent to injectivity on finite configurations 
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Richardson proved in 1972 [lo] that if a CA realizes a bijective function, 

then there exists another CA called its inverse that realizes the inverse function. 

The same year, Amoroso and Patt proved that the reversibility (or the surjectivity) 

of one-dimensional CA is decidable [l]. One-dimensional CA work on a bi-infinite 

line of cells, two-dimensional CA work on a plane tiled with square cells, 

etc. 

Recently, Jarkko Kari proved that the reversibility of two-dimensional CA fails to 

be decidable [6,7]. An easy consequence of this result is that the inverse CA of 

a reversible CA cannot be found by algorithm: its size can be greater than any 

computable function of the size of the reversible CA. The proof of this result consists 

in transforming the tiling problem of the plane which has been proved undecidable in 

1966 by Berger [2,11] into the reversibility problem on an adequate family 

of CA. 

The main goal of this paper is to prove that, if we restrain the field of action of the 

two-dimensional CA to finite configuration bounded in size, it is still “difficult” to 

prove that the CA is (or is not) reversible. As far as we know, it would be the first 

complexity result concerning a global property of 2D CA. We prove that the decision 

problem presented above belongs to the class of co-NP-hard problems or to the class 

of co-NP-complete problems if the sizes of the considered finite configurations are 

supposed bounded by the size of the representation of the considered CA. Both of 

these complexity classes are supposed to contain only intractable decision 

problems. 

Our result also holds for k-dimensional CA where k 32. But in the case of 

one-dimensional CA, the reversibility problem can be solved in polynomial time 

in the size of the transition table (see [12] for another point of view on this 

problem). 

We prove our result by introducing a very adequate set of tiles having an ad hoc 

property. Kari [7] has proved his undecidability results for two-dimensional CA by 

introducing a very complicated set of tiles. We keep the ideas of his construction but 

the tile set we use is much simpler. With this construction, we reduce decision 

problems concerning tilings into decision problems concerning CA. We have already 

used this method in order to provide a simple proof for the undecidability of the 

surjectivity problem in [4] (improved version in [S]). 

In the next section, we give the usual definitions of cellular automata, tilings, and 

present well-known theorems related to our topics. In the following section we prove 

our main complexity result: the problem that we call CA-FINITE-INJECTIVE is co-NP- 

complete. Our proof consists in a reduction of a problem concerning finite tilings that 

we call FINITE-TILING. We prove this problem to be NP-complete by a reduction of 

another problem concerning the minimal computing time of non-deterministic Turing 

machines: NDTM-TIME. The reduction of FINITE-TILING into CA-FINITE-INJECTIVE is not so 

simple as the previous one. Anyway, all technical aspects of the proof are contained 

in the construction of a special set of tiles which verifies rather simple specific 

properties. 
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2. Definitions and basic properties 

2.1. Cellular automata 

Cellular automata are formally defined as quadruplets (n, S, NJ”): 

l The integer n is the dimension of the space the CA will work on. 

l S is a finite set called the set of states. 

l The neighborhood N is a v-tuple of distinct vectors of Z”. For us, N = {x1, . . ., x,}: the 

xi’s are the relative positions of the neighbor cells with respect to a given center cell. 

The states of these neighbors are used to compute the new state of the center cell. 

l The localfunction of the cellular automatonf: S” H S gives the local transition rule. 

A configuration is an application from Z” to S. The set of all the configurations is S”” 

on which the global function G of the cellular automaton is defined via f and N: 

V’c6S”“, ViEZ”, G(c)(i)=f(c(i+x,), . . ..c(i+x.)). 

Note that two distinct cellular automata do not differ by the definition of their 

global function G: they are only characterized by n, S, N and f: 

In the following, we consider two-dimensional CA (n=2). 

Sometimes, a state 4 for which f(q, q, . ., q) = q is distinguished in S and is called 

a quiescent state. AJinite configuration is an almost everywhere quiescent configura- 

tion. If there exist two integers i and j such that all nonquiescent cells of the 

configuration are located inside a square of size i xj, then, we say that the size of the 

finite configuration is smaller than (or equal to) i xj. 

In order to prove complexity results, it is very important to define precisely what 

are the sizes of the instances. In this paper, we use the following convention explained 

below. 

Size: The size necessary to code a cellular automaton is s”.log s + o(s”.log s) where s is 

its number of states and v the number of elements of its neighborhood. 

The size of a CA is exactly the sum of the size of its local transition function and of 

the size of its neighborhood. The local transition function is only a v-dimensional 

table, hence its size is s”.log s+ o(s”.log s). The size of the neighborhood is the size of 

the coding of the coordinates of each neighbor cell. We assume in the following that 

this last size is lower than the size of the transition table, more precisely, that 

VXE N, 1x1 <s”. If it were not the case, the neighbors of a cell would be very far from it, 

hence a single iteration of the CA would be intractable! If we refuse this hypothesis, 

the problem we present is proved co-NP-hard but may not be in co-NP. 

2.2. Turing machines 

There exist many different, although equivalent, definitions of deterministic Turing 

machines (DTM) and nondeterministic Turing machines (NDTM). We briefly present 
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below our definitions, and we discuss what could be considered as the size of a DTM and 

a NDTM. 

In our formalism, the two kinds of machines differ only by their transition function. 

Both of them have a single bi-injnite tape, on which O’s and l’s can be read and written 

by a read-write head. The digit “0” is sometimes called the blank symbol. The 

computations start on an almost everywhere blank tape. The input is written on the 

nonblank part of the tape. DTM and NDTM both have ajinite set of states S. The number 

of states of a Turing machine r is denoted by a(z). One of the states of S is called initial 

state and is denoted by ql. Two special states are added but do not belong to S: an 

acceptance halt-state qu and a refusal halt state qN. These two models differ by the 

definition of their transition function: 

l for a DTM, the transition function 6 associates a new state, a new letter and 

a movement of the head to a state and a letter. Formally, 

6:s x (0, l} ++(Su{q,,qN}) x {O,i> x {lef,right}; 

l for a NDTM, the transition function 6 associates an arbitrary number of triplets of 

a possible new state, a new letter and a movement of the head to a state and a letter. 

Formally, 

6 : S x (0, 1) w P(Su(q,, qN} x (0, l} x (lef, right}). 

The computation of a Turing machine begins in the initial state, and with the head 

located on the leftmost letter of the input word of the machine. It consists in the 

iteration of the following “procedure”: 

(1) If the machine is in a halt-state, then the machine stops and says “yes” if in qY, 

“no” if in qN. If the Turing machine is not only a decision machine but also computes 

an output, the output word is supposed to be located at the right of the current 

position of the head. 

(2) If the machine is not in a halt-state, then let q be the current state, and x be the 

letter on the tape at the current position of the head. 

l If the machine is deterministic, and if 6(q, x) = (q’, x’, d), then the machine writes x’ 

on the tape with the head, enters the new state q’ and its head moves according 

to d. 

l If the machine is nondeterministic, and if 6(q, x)+q’,x’,d), then the machine 

can write x’ on the tape with the head, enter the state q’, and move according 

to d. 

In the following, our study only concerns decision problems. That is why we 

consider only decision Turing machines: when given an input, we expect them to 

answer “yes” or “no” if the computation ends, but what is written on its tape does not 

matter. 

Lemma 1. Consider a TM 5. The size necessary to code the machine is a polynomial 

function of its number of states a(r) even $7 is nondeterministic. 
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Proof, First recall that the size necessary (and sufficient) to code a functionf: A H B is 
exactly a log b if a and b denote the number of elements of A and B, respectively. Hence 
the size of the transition function 6 of z is 
0 2.a(r).log(4.(o(z)+2)) if r is a DTM, 
0 2~o(z).log(4~2’““‘+2’ -2 )- .a(r).(CJ(z)+4) if Z iS a NDTM. 

As the coding of the number of elements of the set of states requires log(o(z)) bits, 
then the size necessary to code the machine is a polynomial function of the number of 
states. 0 

2.3. Tilings 

A tile is a square, the sides of which are colored. The colors belong to a finite set 
C called the color set. A set of tiles r is a subset of C4. All tiles have the same (unit) size. 
A tiling of the plane is valid if and only if all pairs of adjacent sides have the same color. 
Notice that it is not allowed to turn tiles. The following well-known theorem is due to 
Berger [2] in 1966 and a simplified proof was given in 1971 by Robinson [ll]. 

Theorem 1. Given a tile set, it is undecidable whether this tile set can be used to tile the 
plane. 

We can also definejinite tilings. We assume that the set of colors contains a special 
“blank color” and that the set of tiles contains a “blank tile”, i.e. a tile whose sides are 
blank. A finite tiling is an almost everywhere blank tiling of the plane. If there exist two 
integers i and j such that all the nonblank tiles of the tiling are located inside a square 
of size i x j, then we say that the size of the finite tiling is lower than i x j. Notice that 
inside the i x j square, there can be blank and nonblank tiles. If there is at least one 
nonblank tile, then the tiling is called nontrioial. 

Another undecidability result can be proved simply by using a construction pres- 
ented by Kari in [7] which reduces the undecidability of the halting problem for 
Turing machines into it. 

Theorem 2. Given a tile set with a blank tile, it is undecidable whether this tile set can be 
used to form a valid jinite nontrivial tiling of the plane. 

3. Complexity results 

In this section, we prove that the problem of deciding whether a given CA is 
reversible when restricted to finite configurations the size of which is lower than n x n 
(where n is the size of the CA) is co-NP-complete. We call this problem CA-FI- 

NITE-INJECTIVE. In order to prove this result, we introduce two decision problems that 
we prove to be NP-complete: NDTM-TIME and FINITE-TILING. 
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3.1. NDTM-TIME is NP-complete 

NDTM-TIME: 
Instance: A nondeterministic Turing machine. An integer n lower than the number of 

states of the machine. 

Question: Is there a computation of the machine beginning on an empty tape and 

halting after less than n steps? 

Proof. This problem belongs to NP: we construct a NDTM p' that, given an instance of 

the problem (i.e. a NDTM that we call p and an integer n lower than the number of states 

of p), computes n transitions of ,U and after these computations, if p answers “yes” then 

,u’ answers “yes”, else, if the computation is not finished or if the answer of p is “no” 

then ,u’ answers “no”. All possible computations of p can be simulated by ,u’. 

Consider an universal Turing machine as described for instance in [14]. This 

machine, when given as input a deterministic Turing machine y, is able to compute the 

evolution of y on the blank tape. The time needed to compute a step is lower than 

a polynomial function of the size of y. We transform this universal DTM into a universal 

NDTM: when the input is a NDTM ,u, then if ,U offers a choice in its evolution, then the 

universal NDTM offers the same choice. Thus, the universal NDTM simulates an arbit- 

rary computation of the NDTM p in polynomial time. 

,u’ acts as follows: on the input n and p, it computes one step of the universal NDTM 

with ,U as input, then it substracts 1 to II, then computes another step, substracts 1 to 

n- 1, etc. When n=O, then if the simulation of ,U has ended on the acceptance 

halt-state qY, then the NDTM ,u‘ halts in its acceptance state. Else it halts in its refusal 

state. As n is lower than the number of states of p, then the computation time for each 

step so defined is polynomial. Hence there exists an acceptance computation of ,u’ on 

the entrance (p, n) if and only if there exists a computation of the machine p beginning 

on an empty tape and halting after less than n steps. NDTM-TIME is in NP. 

To prove that this problem is NP-complete, we prove that any problem in NP 

polynomially reduces to NDTM-TIME. Our proof is much more simple than Cook’s 

proof which proves that any problem in NP reduces to the well-known SATISFIABILITY 

problem [3]. Recall that a problem n is said to polynomially reduce to a problem n’ if 

and only if there exists a polynomial-time (deterministic) algorithm which transforms 

any instance x of 7~ into an instance x’ of x’. It is also required that the answer of n on 

x should be “yes” if and only if the answer of 7-r’ on x’ is “yes” [13]. 

Let 7~ be any problem in NP. There exists a NDTM which solves 7~ in polynomial time. 

Let p, be such a NDTM and R the associated polynomial function. We transform pL, in 

the following way: 

(1) We first construct a new NDTM PI,. We conserve all states and transitions of pL,. 

We transform the halt-state qN of pL, into a “normal” new state q’ of ,&. and add the 

following transitions: 

&q’, 0) = {(q’, 0, r)> 2 

d(q’, 1) = {@I’> 1,4>. 
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It means that, in .L& if a computation enters the state q’, then it is absolutely sure that 
the computation will not reach any halt-state and thus will never halt. We create 
a new refusal halt-state for pLr: with no transitions arriving in it. 

The new NDTM pt: halts on an input if and only if ~1, halts on the same input and 
answers “yes”. ,u: either halts and answers “yes” or does not halt. 
The size of & is just a constant larger than the size of pL,. 

(2) Let x be an instance of the problem 7~. We construct a new NDTM pen, xj such that 
,q,,,) writes x on its tape and then runs PL,: (& reads x as input). If we run p(,,,) on 
a blank tape then the answer of pen, X) is “yes” if and only if x is a solution for X. If x is 
not a solution for rt then pen, X) does not halt. Furthermore, the answer is never “yes” 
after the polynomial time 21x1 +R(lxl), where 1x1 denotes the size of x. 

The size of pcR, X) is a polynomial function of the size of pL, and of the size of x. Its 
number of states is (xl + a&)+ 2; remember that a(~,) is the number of states of the 
Turing machine pL,. Hence, given x and pL,, ,u~,,.) can be computed by a poly- 
nomial-time algorithm. 

(3) We add new states to those of pen, ,.). As we intend that these added states do not 
modify any evolution of p(,, XJ, we do not add new transitions. The number of added 
states is exactly R( 1x1) + 1x1 - o(p,J - 2 which is a polynomial function. This addition of 
states can be computed by a polynomial-time algorithm on the inputs x and pu,. The 
new NDTM is called p&X). 

Given a problem 7~ in NP and an input x of this problem, there exists a poly- 
nomial-time algorithm that computes the NDTM p;,, xJ. The answer for 7c on the 
instance x is “yes” if and only if the answer for NDTM-TIME on the instance ,D&) is 
“yes”. Hence we have proved that 71 is polynomially reducible to NDTM-TIME. 0 

3.2. From NDTM-TIME to FINITE-TILING 

FINITE-TILING: 

Instance: Finite set C of colors with a blank color, collection r c C4 of tiles including 
a blank tile. A positive integer n<l Cl. 

Question: Is there a finite nontrivial tiling of the plane of size lower than n x n? 

Proof. First note that this problem trivially belongs to NP since it is polynomial to 
check whether a given tiling is valid. 

Now consider an instance of NDTM-TIME, i.e. a NDTM p and an integer n lower than 
the number of states cr(p) of the machine. We first construct a set of tiles associated to 
p. Let S be the set of states of p. An almost identical construction can be found in [7]. 
The goal of this construction was to prove that the problem of knowing whether there 
exists a finite nontrivial tiling of the plane is undecidable. We define below the colors 
used by our tiles: 
l A “blank” color B. 
l Two “initialization” colors I and I’. 
l A “halting” color H. 
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Fig. 1. The “initialization” tiles. 

0 1 

Fig. 2. The “static” tiles. 

l A “left” color L. 

l A “right” color R. 

l A “state” color s for each S~SU {qy, qN}. 

l A “symbol” color a for each a~f0, i}. 

l A “state-symbol” color s.a for each seSu {qy,qN} and for each a~(0, l}. 

With these colors, we construct a tile set r: we specify the tiles by the color of their 

North, East, South, and West sides: 

l The “blank” tile (B, B, B, B). 

l The “initialization” tiles (Fig. 1) 

(L 1, B, B), (071, & 0, (4,. 0, I’, 4 0, (0, I’, B, 1’1, (R, 4 4 1’). 

Remember that “0” is the blank symbol of p and q, its initial state. 

l The “static” tiles (Fig. 2) 

(L B, L, B), (0, & 0, B), (1, B, 1, B,), (R, B, R, B) . 

l The “computation” tiles of 2 kinds (Fig. 3): 

- (a’, B, s. a, s’) if the transition (s’, u’, left) is a possible image of (s, a). 

- (a’, s’, s. a, B) if the transition (s’, a’, right) is a possible image of (s, a). 

l The “merging” tiles of 2 kinds (Fig. 4): 

- (s.u,s,a, B) for each SGSU {qy,qN} and for each a~(0, l}. 

- (s*u,B,a,s) for each SESLJ {qy,qN} and for each ue{O, l}. 

l The “halting” tiles (Fig. 5) 

(B,H,L,B), (B,KO,H), (B,H,LH,), (B,H,s,.a,H)> (B,B,R,H). 

for each u~(0, 1) and for each shE{qy, qN}. 
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s.a s.a 

Fig. 3. The “computation” tiles. 

a 

Fig. 4. The “merging” tiles. 

a s* .a 

Fig. 5. The “halting” tiles. 

With these tiles, we simulate the space-time diagram of a computation of the NDTM 
p. It is clear that there exists a nontrivial tiling of the plane of length lower than n x n if 
and only if there exists a computation of p that ends after less than n - 2 steps. The 
number of colors of our set of tiles is exactly 

6+(+)+2)+2+2.(~(~)+2)=3.~+)+ 14. 

Our transformation is polynomial, hence FINITE-TILING is NP-complete. 0 

3.3. From FINITE-TILING to CA-FINITE-INJECTIVE 

A transformation between tilings and two-dimensional cellular automata was first 
presented by Jarkko Kari in [6] and a more complete proof can be found in [7]. The 
main idea of the transformation is to introduce a special set of tiles which has an 
ad hoc property called finite plane jilling property. We introduce another set of tiles, 
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blank border odd even the-end 
- . . . . . . . . . 

Fig. 6. The generic tiles of 6. 

more simple than Kari’s, which satisfies a slightly more restrictive property. We shall 

refer to our tile set as 6. With the help of 6, for each tile set z, we construct a cellular 

automaton LXZ~ in order to reduce FINITE-TILING to CA-FINITE-INJECTIVE. 

CA-FINITE-INJECTI VE: 
Instance: A two-dimensional cellular automaton LX? with Von Neumann neighbol- 

hood. Two integers p and q lower than the size of L&‘. 

Question: Is JZJ injective when restricted to all finite configurations smaller than p x q? 

Theorem 3. CA-FINITE-INJECTIVE is co-NP-complete. 

3.4. The special set of tiles 

Before proving this theorem, we introduce our tile set 6 and its properties. The sides 

contain a color (“blank”, “border”, “odd”, “even”, or “the-end”), a label 

(N, S, E, W, N+, S+, E+, W +, or w), and possibly an arrow. With this set of tiles, 

a tiling is considered as valid if and only if all pairs of adjacent sides have the same 

color, the same label, and for each arrow of the plane, its head points out on the tail of 

an arrow in the adjacent cell. 

The tiles of 6 can be found in Fig. 6. In this figure, the tiles are “generic” because 

labels are not represented. Each tile can have different labels which are defined below. 



Inversion of2D cellular automata: some complexity results 397 

, 
N : N+j 

WWWWWyeEE 
N : N+: 

_...................________~_ 
N : N+‘------------ 

W+ W+ W+ W+ W+ W+ E+ E+ E+ 
s ++.: .._......... 

Fig. 7. The labels in a basic rectangle. 

The labels are there to force that, in a valid tiling, inside a rectangle bordered with 

“border” tiles, there exists a unique cell labeled (N +, E +, S +, W +) (see Fig. 7 and 

Lemma 3). The labels of the other tiles should indicate whether the tile labeled 

(N+,E+, S+, W +) is above the cell, or on its right, etc. 

The tiles of Fig. 6 with no arrow on them have their sides labeled o. The four 

generic tiles with no side labeled “border” in the center-left of Fig. 6 have their North, 

East, South, and West sides labeled either (N+,E+,S+,W+), (X,Y,X,Y), 

(N,Y+,S,Y+)or(X+,E,X+,W)whereXisNorS,and YisEorW.InFig.6,the 

four upper generic tiles with arrows on them have their south side labeled N or N +, 

and the other sides labeled w; the four left generic tiles have their west side labeled 

W or W +, and the other sides labeled w; following the same scheme, E or E + is on 

the right and S or S+ at the bottom. 

We show in the rest of the section that our tile set 6 has the desired properties. 

Definition 1. A basic rectangle of size p x q is a finite valid tiling of the plane of size 

p x q with no side labeled “blank” or “border” inside the rectangle. 

See Fig. 8 for a description of such a rectangle in which only the border cells and the 

arrows are represented. 

Lemma 2. Using the tile set 6, for all integers p and q, both greater than 3, there exists 

a basic rectangle of size p x 2q. Each valid jinite tiling of the plane consists of a finite 

number of juxtaposed basic rectangles. 

Proof. It is easy to convince oneself that a basic rectangle of size p x 2q can be 

obtained by using the row of tiles between the horizontal dashed lines and the two 

columns of tiles between the vertical dashed lines in Fig. 6. Note that the East side of 

a tile is “odd” if the number of tiles on its right until a border is odd. To prove that 

each valid finite tiling of the plane consists of a finite number of juxtaposed basic 

rectangles, we have to check if it is possible to find another kind of combinations of 
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Fig. 8. A basic rectangle 

these tiles. It is easy to convince oneself that if one considers a North-West nonblank 

tile, then it is a North-West corner of Fig. 6, and hence that it is followed on its right 

by a North border and below by a West border. By finite iteration, the result 

holds. 0 

Lemma 3. Consider a basic rectangle. The path defined by the arrows of the cells forms 

a loop which visits one time each title of the inside of the rectangle. Inside the rectangle, 

there exists a unique cell labeled (N +, E +, S +, W +). 

Proof. Exactly as in the proof of Lemma 2, we observe that the leftmost column 

contains a vertical path directed North and that the loop in the rectangle is of the 

same kind as in Fig. 8. It is easy to check that there exists a unique cell labeled 

(N +, E +, S +, W +) in the rectangle: the cells with a side labeled X + have to form 

a cross in the rectangle as shown in Fig. 7. The horizontal part of the cross is labeled 

horizontally W+ or E+, and above it the vertical labels are N, below they 

are S. 0 

By a proof similar to the proof of Lemma 2, we can show the following result. 

Lemma 4. Consider a$nite tiling (valid or not). If the tiling is valid on each cell of a path, 

then this path forms a loop and visits every tile of a basic rectangle. 
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3.4.1. The reduction 
Consider a finite set C of colors with a blank color, and a collection tgC4 of tiles 

including a blank tile. We construct a cellular automaton &, = (2, S, N,f,) defined as 

follows: 

l The stale set S is included in 6 x z x (0. l}. 

S contains all triplets (d, t,a) of 6 x z x (0,l) under the following restrictions: 
_ if one of the sides of d is “blank” or “border”, then t is the blank tile of z. 
_ if d is labeled (N+, E+, S +, W +), then t is not the blank tile of 2. 

l The neighborhood N is the Van Neumann neighborhood, i.e. 

N={(O,O),(0,1),(0, -lL(LO),(-40)). 

l The local rulef,, applied on a cell the state of which is (d, t, cc), may change only the 

bit component cc. At each cell both the tilings 6 and t are checked. If there is a tiling 

error, or if the tile d contains no arrow, then the state of the cell is not altered. 

Otherwise, there is no tiling error in the concerned cell and the cell contains an 

arrow; the bit component is changed by performing an “exclusive or” operation 

with the bit attached to the cell pointed by the direction of the &component. 

The quiescent state of &, is (blank, blank, 0). 

We present now the basic theorem which provides a link between tilings and 

cellular automata. 

Theorem 4. Let n be an integer greater than or equal to 3 and 5 be a set of tiles. The 
cellular automaton &, is not injective restricted to$nite configurations of size lower 
than 2n x 2n ifand only ifthe tile set z can be used to form ajnite nontrivial tiling of the 
plane of size lower than (2n -4) x (2n-4). 

Proof. Assume that &, is not injective restricted to finite configurations. Then, there 

exist two different finite configurations c and c’ having the same image by &*. Note 

that only the bits can be different in c and c’ since &, does not affect the tiles 

components: c and c’ are different in at least one cell. On this cell, there is an arrow and 

the tilings are correct, otherwise the images of c and c’ could not be same. Thus c and 

c’ differ in the cell pointed by the arrow because an “exclusive or” is performed by d7. 

By finite induction, by Lemma 4, the constructed path forms a loop and there exists 

a basic rectangle of 6 on which the tiling of T is correct. By Lemma 3, the borders of the 

rectangle are blank in the state component of r, hence we can construct a finite tiling 

with 7. The tiling is not trivial because z is not blank on the cell labeled 

(N + , E + , S + , W + ) in 6 (Lemma 2). The size of the tiling is at most (2n - 4) x (2n - 4). 
Conversely, assume that there exists a finite nontrivial tiling of the plane by T of size 

lower than (2n - 4) x (2n - 4). We put this tiling inside a 2n x 2n basic rectangle tiled by 

6. The tiling is not trivial, thus there exists a nonblank tile on which we can put the tile 

of 6 labeled (N + , E +, S + , W +). We define two configurations c and c’ of size 2n x 2n: 
c is obtained by turning the bit component to 0 everywhere. For c’, we keep the two 

tilings, and turn the bit component to 1 on the cells whose &component has an arrow, 



400 B. Durand 

to 0 elsewhere. As both tilings are correct, &r performs an “exclusive or” on the loop 

of the rectangle and both c and c’ have the same image (which is in fact c). Hence G!~ 

restricted to finite configurations of size lower than 2n x 2n is not injective. 0 

Proof of Theorem 3. With the previous result, it is very easy to prove that CA-FINITE- 

INJECTIVE is co-NP-complete. We prove a stronger result: CA-FINITE-INJECTIVE is co- 

NP-complete with a restriction on its instances; p = q( = n) and n B 2 must be an even 

integer. 

CA-FINITE-INJECTIVE with or without the restriction mentioned above is in co-NP 

because one can check in time polynomial in the size of the cellular automaton d if 

two finite configurations smaller than n x n have the same image by d. So we only 

have to prove that the reduction presented from FINITE-TILING to CA-FINITE-INJECTIVE 

with the help of the automaton &r has a polynomial cost. If c denotes the number of 

colors used by the tile set z and t its number of tiles, then t d c4. If we call d the size of 

the tile set 6 then the size of the state set S of J$~ is at most 2dt. In the case of 6, the 

number of d its tiles is exactly 61. The number v of neighbors is 5, hence the size ofdT 

is (2dt)” .log(2dt)” o((2dt)“. log(2dt)) which is bounded by a polynomial function of L. 

As each element of the transition table can be computed in constant time, the 

reduction between the two problems is polynomial. Notice that we have proved that 

under a polynomial reduction, the answer to the problem FINITE-TILING applied to the 

instance z is “yes” if and only if the answer to the problem CA-FINITE-INJECTIVE applied 

to the instance JY~ is “no”. It explains why CA-FINITE-INJECTIVE is co-NP-complete and 

not NP-complete. 0 

4. Conclusion 

In this paper, we have assumed that the size of the representation of a cellular 

automaton is the size of its transition table. But these tables are not always given 

extensively: a program which computes the value of the transition table on a given 

entry is often furnished. Thus it is natural to wonder if our complexity results remain 

true if we define the size of a CA as the length of the smallest program (or of the 

smallest Turing machine) which computes its transition table. Maybe reversible CA 

given by “simple” algorithms, when restricted to finite bounded configurations, have 

their inverses given by “simple” algorithms too. 
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