ORE Metadata, citation and similar papers at corg

ided by Elsevier - Publisher Connector

Artificial
Intelligence

: XA
ELSEVIER Artificial Intelligence 139 (2002) 137-174

www.elsevier.com/locate/artint

L earning cost-sensitive active classifiers”

Russell Greiner 2*, Adam J. Grove®, Dan Roth®

@ Department of Computing Science, University of Alberta, Edmonton, AB T6G 2H1, Canada
b Netli Inc., 844 E. Charleston Rd, Palo Alto, CA 94303, USA
¢ Department of Computer Science, University of lllinois — Urbana/Champaign, Urbana, IL 61801, USA

Received 31 December 2000

Abstract

Most classification algorithms are “passive’, in that they assign a class label to each instance
based only on the description given, even if that description is incomplete. By contrast, an active
classifier can—at some cost—obtain the values of some unspecified attributes, before deciding upon
aclasslabel. This can be useful, for instance, when deciding whether to gather information relevant
to a medical procedure or experiment. The expected utility of using an active classifier depends
on both the cost required to obtain the values of additional attributes and the penalty incurred if the
classifier outputs the wrong classification. This paper analyzes the problem of learningoptimal active
classifiers, using a variant of the probably-approximately-correct (PAC) model. After defining the
framework, we show that thistask can be achieved efficiently when the active classifier is allowed to
perform only (at most) a constant number of tests. We then show that, in more general environments,
this task of learning optimal active classifiers is often intractable. 0 2002 Elsevier Science B.V. All
rights reserved.

Keywords:Learning cost-sensitive classifiers; Decision theory; PAC-learnability; Reinforcement learning

1. Introduction

A classifieris a function that assigns a class label to an instance. For example, given
information about a credit-card applicant, a classifier could decide whether the personisa
good risk and so should receive a credit card. Similarly, given information about a patient
(such as symptoms and test values), a diagnostic classifier might specify the disease; given
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avisual scene of the world, avisua classifier might decide what object is being depicted;
given a sentence, a context sensitive classifier might infer that the word “it” was intended
to be “in” in the sentence “The man it the park”, etc. Most classifiers have no
control over how much data they see. A more versatile classifier, however, might first
seek additional information about the instance before deciding upon a classification. As
obtaining data usually involves costs—e.g., to perform a medical test, to run a specialized
image interpreter or to run some additional processing such as partial parsing on a
sentence—a classifier should not necessarily request all possible pieces of information.
We therefore consider active classifiersfunctionsthat, given apartially specified instance,
return either a class label or a strategy that specifies which test should be performed next
(and recur).

To make this more concrete, suppose a “hepatitis’ classifier is initialy told only that
a patient is jaundiced—i.e., her eyes are yellowish. A passive classifier must then return
either the diagnosis that the patient has hepatitis, or the diagnosis that she does not. An
active classifier could return either of these responses, or it could perhapsfollow a strategy:
order a blood test, and if that test is positive, return the diagnosis “hepatitis’, but if the
blood test is negative, then order a liver biopsy, and decide on the diagnosis based on
the result of this test. Many other classification situations fit this active classifier model.
For example, a context sensitive text analyzer could make a decision based on the raw
information available in the text, use more information such as part-of-speech tags [20]
or, when the decision seems to be yet more difficult, choose to perform partial parsing of
the sentence [14] to improve its accuracy. Similarly, credit card companies, in deciding
whether to give specia dealsto “accommodate” certain customers, must decide whether it
is worth the expense of gathering information about those customers (e.g., by sending out
questionnaires, thoroughly investigating their previous spending patterns, etc.). An “active
vision” system may also deal with this situation, in two senses: first, a camera platform on
amobile robot must decide whether it is worth the expense of moving the camerato obtain
a better view [6]; and second, an image analyzer must decide which operators to use in
analyzing asingle pose[11,42].

Inthe standard learning paradigm, aclassifier isconsidered good precisely if it correctly
identifies the class label for as many of the instances as possible. This measure is too
simplistic for active classifiers. Here, the correct measure must be decision theoretic,
balancing the costs of acquiring additional information against the penalties for incorrect
classification. For instance, it may not be worth spending $1,000 to perform an expensive
test to distinguish two minor variants of hepatitis, especialy if the treatment isthe same for
both [37]; similarly, it is not appropriate to spend $100 to obtain the information required
towin a$1 bet.

When dealing with any single instance, an active classifier « must pay a total cost
defined as the sum of the penalty (if the answer returned is wrong) plus all costsincurred.
Ideally, we would like to find an active classifier whose expected total costbover the
distribution of instances that the classifier encounters, is minimum.

This paper investigates the task of learning such active classifiers. A distinctive aspect
of our proposal isthat welook at the problem of learning active classifiersin an integrated
fashion, as opposed to the “two phase” approach: first learning the underlying concept and
then, in a separate phase that does not involve learning, finding the best active classifier.



R. Greiner et al. / Artificial Intelligence 139 (2002) 137-174 139

15}

“RealWorld” (instance x is unblocked, labeled) €
Sample Generator Learner |+ 0
P() (@, ¢(z) er(-,)

| c(-)

T . B(z)
Blogkcr —— | Active Classifier
(1100) | 0w x0)
R Classification:
Q: What is value of z; =7 O })\ r/FE
O O

A: Value of z; = 0/1

Fig. 1. Active classification framework.

After formally defining our framework in Section 2, we explain this idea and argue, in
Section 3, that it has the potential to improve over the two-phase approach. The rest of the
paper investigates whether this potential can be realized.

The results are a mix of good and bad news. Section 4 demonstrates an interesting
case in which active classifiers can be learned efficiently; then Section 5 proves that
the general problem is very often intractable. Section 6 extends our basic framework.
Our current framework charges the classifier for each value it requests and receives, but
gives the learner this information for free. This section considers the dlightly different
“on-line” learning model, which charges the learner for answering questions during the
learning process. Section 7 contrasts our approach with previousrelated work; in particul ar,
it connects our framework with “episodic reinforcement learning”, and points out that
our results on learning active classifiers is different from “active learning”, which deals
with learners that actively learn passiveclassifiers. Section 8 concludes with some ideas
for future work and some thoughts on the contrast between active learning and passive
classifiers. The appendix provides proofs for the theorems presented in this paper. (The
text sketches proofs for the propositions.)

2. Framework

To simplify the presentation, we assume that all attributes, as well as the classification
itself, are binary.! Thus we can identify each domain instance with a finite vector of
Boolean attributes x = (x1, ..., x,), and let X = {0, 1}" be the set of al possible domain
instances. As each instance either belongs to the underlying concept or not (e.g., the
individual with a particular set of attributes either does, or does not, have hepatitis), we
can view this concept ¢ asanindicator function ¢ : X — {T, F}, where x € X isamember
of ¢ iff p(x) = T. We assume that the |earner knows the set of possible concepts, C = {¢;},
aswell as how each concept is expressed; see discussion below.

1 We will later extend our results to non-binary attributes and class labels; see Corollary 8. Note that even if
the concept is conceptually “binary”, it is often useful to have an “1-don’t-know” option available to the classifier,
inadditionto 7 and F.
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A (labeled) example of a concept ¢ € C isapair (x, p(x)) € X x {T, F}. We assume
there is a stationary distribution P: X +— [0, 1] over the space of domain instances,
according to which random instances are drawn independently, both during training and
during testing of the learning algorithm.

To continuethe earlier “Hepatitis’ example, suppose thefirst attribute x1 in the instance
x = (x1, x2, x3) correspondsto the jaundicetest and x2 and x3 correspond (respectively) to
particular tests of the patient’s blood and liver. Then theinstance (1, 0, 1) correspondsto a
patient whose blood would test negatively, but whose jaundice and liver tests (x1 and x3)
would both be positive.? Assume that the concept associated with hepatitis corresponds to
any tuple (x1, x2, x3) where x;1 = 1 and either x =1 or x3 =1, i.e., Hep({x1, x2, x3)) =
x1 A (x2 V x3). Hence labeled examples of the concept hepatitis include ((1,0, 1), T),
((1,0,0), F), and ({(0,1, 1), F). Further, P(x) specifies the probability of encountering
a patient with the particular set of symptoms specified by x; eg., P({(1,0,1)) = 0.01
means 1% of the time we will deal with a patient with positive jaundice and liver tests,
but negative blood test. (Notice we are assuming that class assignments are deterministic;
eg., every (1,0, 1) patient has hepatitis. It is straightforward to extend our analysis to
stochastic assignments—e.g., where say 90% of the patients with this set of symptoms
have hepatitis.)

The above description implicitly suggests that the classifier has to pay for the value
of each attribute it sees (see Section 2.1), as the classifier initially sees nothing (read
“(%,%,...,%)"). Wewill refer to this as empty blockingln some situations, however, the
classifier will initially see some of the attribute values for free. (E.g., this information
may be available from an already completed questionnaire, or from a low-level feature
extractor that is always run.) In general, we assume there is a separate blocking process
B that, for each instance, first stochastically selects a subset of the attributes, and then
reveals the values of those attributes to the classifier, for free. (See [36,45] for a more
general discussion of the blocking models in general.) Under any blocking model, the
active classifier is subsequently allowed to obtain (at a price) the values of the remaining
blocked attributes. Thisleadsto the framework suggested by Fig. 1.

Definition 1 (Active classifiey. An active classifier isafunction
a:{0,1,%}"— (T, F,1,2,...,n},

wherea({x1, x2, ..., x,)) =T (respectively, F) meansthe classifier returnsthe categorical
answer T (respectively, F) given partial instance (x1, x2, ..., x,) € {0, 1, x}. Returning
a({x1,x2,...,x,)) =i €{1,...,n} meansthe classifier is requesting the value of the x;
attribute. We alow a({x1, x2, ..., x,)) =i only when x; = *. (Once the value for x; has
been provided, the active classifier then recurs on the now-more-completely instantiated
instance.)

Hence, continuing with the example above, a((1, %, *)) = 2 means the classifier is
requesting the value of xo—i.e., asking for the results of performing the blood test on

2 N.b., we are not committi ng to performing these tests. We are merely stating the outcomes of these tests on
the current patient, if these tests are performed.
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the patient. The classifier then calls itself on the result, say (1,0, ), perhaps to return
a({1,0, %)) = F. In general, of course, yet other subsequent calls to « might be necessary
(sequentially requesting the valuesfor several variables) before afinal answer is produced.

The learner’s task may be to find the optimal active classifier anongst the set of all
possible classifiers A2, or to find the best classifier of some particular type A < A2,
Generally, such A should be more than simply a restricted subset of .42""; it should
be a “programming language” in that it specifies a representation and a computational
model for its members. Thus, for any active classifier «, we can consider its size, |«]|,
as well as its running time (i.e., the time « requires, given input x* € {0, 1, x}", to
output its recommendation). Naturally, we are interested in finding classifiers whose
size is polynomial in the relevant quantities (such as |¢|, the size of the true concept).
Furthermore, we want active classifiers that execute quickly. As any particular active
classifier only has finitely many inputs, we cannot speak of its asymptotic execution time
in the sense of standard complexity theory. We can, however, impose the requirement of
efficient execution indirectly, as a property of the computational model given by A.3 In
this paper we restrict our attention to subclasses A with the property that

thereis some fixed polynomial p 4(-) such that,
for al o € A, therunning time of « isat most p 4(|a|).

The question of how best to represent classifiers is a subtle one, and largely beyond
the scope of this paper. In the following we occasionally refer to a very simple lookup-
table representation language. In this, one simply lists the classifier's recommendations
for varioustuples x* € {0, 1, x}"; if the classifier encounters a tuple that is not on the list,
it performs some constant action (perhaps announce the classification “ F”). The size of
an active classifier thus represented is just the length of the given list, and the run-time
complexity of using such aclassifier isat most linear in its size.

We will later consider the following class of classifiers that are allowed to be active at
most k times.

Definition 2. For any constant k € V', AX is the class of al active classifiers « such that
a(x*) € {T, F} whenever x* has k specified values (i.e., n — k *'s). Hence, each @ € A
has the option of performing additional tests on observing a partial instance that specifies
strictly fewer than k attributes. For completeness, we assume « gives a constant response
(e.g., F) if there are more than k specified values.

Notice that the size of any such classifier, in the lookup-table representation, is at most

k

HOEY (’f)z = O(k(2n)") (1)

i=0

3 This is very similar to the standard PAC requirement that the output representation can be evaluated
efficiently [48]. E.g., our active classifier can be apolynomial time circuit, but cannot be an arbitrary polynomial-
sized Bayesian network [12].



142 R. Greiner et al. / Artificial Intelligence 139 (2002) 137-174

as this bounds the number of distinct partial instancesin which the classifier must perform
an action (either return atruth-value, or perform atest).

It is easy to motivate this .A* class. Consider atime-critical task, where a classification
returned after k seconds is useless—perhaps because we know the patient will be dead by
then, or the part on the conveyer belt that needs to be classified will be beyond the range
of the mechanical sorter. Similarly, many text, speech and image processors need to run
real-time; here again it is reasonable to limit the amount of time used before making a
decision.

2.1. Evaluating an active classifier

To evaluate the quality of an active classifier, we assume as given a cost function
ci =c(i)eR (fori =1,...,n) that specifies the cost of obtaining the value of the ith
attribute x;; and a penalty function err(vy, v2), which specifies the penalty for returning
v1 € {T, F} when the correct answer is vy € {T, F'}. Without loss of generality, we can
assumeerr(T, T) = err(F, F) = 0.% To avoid degeneracy, we also assume that err(T', F) >
O and err(F, T) > 0, and also ¢; > 0. Further, as it never makes sense to perform a test
whose cost ¢; exceeds

erry 2 max{err(T, F), err(F, T)} 2)

we will assume ¢; < erry forall i.5

Suppose that x* € {0, 1, }" represents the active classifier's current knowledge about
the instance x € X. We define the “total cost” tcy(x, x*) € R to be the amount that «
would spend to complete the classification, together with the misclassification penalty, if

appropriate.

As suggested by the notation, we assume the tcy,(x, x*) cost function is “time
independent”—i.e., the cost of requesting a value of an attribute is independent of when it
isdone. This meansthe value tc, (x, x*) can be determined recursively:

If a(x*) € {T, F}, then tc,(x, x*) = err(a(x*), ¢(x)) where ¢ isthe target formula.
Otherwise, if a(x™) =i € {1,...,n}, then tcy(x,x™) = c(i) + tCa(X,X;L)x[,-]) where
x;ka[i] isthe result of setting the value of the variableindexed by i = a(x*) to x[i].

Asan example, suppose x = (1,0, 1), x* = (x, , *) (i.e., we have not yet asked for the
value of any attribute), and a(x*) = 2. Then x3_ ;= (, 0, ), because o sets x3 to x[2],

i.e., to 0. If we suppose further that ar((*, 0, %)) = F, and ¢({(1,0, 1) = T, then

4 |n some situations the classifier may have to pay a positive cost even if the classification is correct. However,
asthe classifier will eventually have to pay exactly one of {err(F, F), err(T, F)} for every negative instance, we
need only consider the differencebetween these values when deciding on the optimal active classifier. We can
therefore shift the values, re-setting err(7', F) to this difference, and re-setting err(F, F') to 0. The same argument
shows that we can view err(T, T) = 0.

5 While the condition ¢ < min{err(T, F), err(F,T)} is sufficient for this situation, we use erry, (based on
max) as erryy is later used in several other proofs. Also, to avoid a possible confusion: each ¢; quantity is the
amount the active classifier will have to pay if it asksto see the value of the ith attribute. The classifier is not
charged if a“non-empty blocker” reveals the value of this attribute initialy.
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tc, ({1, 0, 1), (x,*, %))

cla((, %, )] +tca ({1, 0, 1), (*, *, *)2-0)
= c(2) +1tc,((1,0,1), (x,0, %))

= co+err(a((*,0,%)), ¢((1,0,1)))

= cp+er(F,T).

We define the expected total costf the active classifier o as the expected value of
tc(x, B(x)) under the distribution of instances x, P(-), and the blocker 8,

ECp (@) = Eg xep[tCa(x, B(x))] = Z P(x) x Pg(x™ | x) X tCq(x, x™),

xeX,x*eX*

where Pg(x* | x) is the probability that the block 8 produces x* when given x. Also,
to further smplify the notation, we omit g from ECp («), as we assume this stochastic
blocker is fixed.

We assume, for now, that a learning algorithm L can draw random correctly-labeled
compl etely-specified examples (x, ¢(x)) according to the distribution P. One justification
for alowing the learner to train on completanstances, even though the classifier will see
only partial instances, is that it can be cost-effective to invest in a relatively expensive
training phase, if we expect that the active classifier we learn will be used very often.
In this case, the cost of obtaining al attributes while learning, amortized over a much
longer performance phase, might be insignificant. In Section 6, we seethisis not a serious
restriction, by showing that we get similar results when considering the more general case,
where the learner must pay to see each attribute.

Here, we evaluate the learner L in terms of the expected total cost of its computation
and output, o« € A. Forany suchg e Cand A, let o, 4 p € A bean active classifier whose
expected total cost is minimum among active classifiersin A:

Up AP = argmln{ECp(oz) | oc A} (3)

(Notice oy, 4, p also dependson err(-, -), c(-) and 8; we omit this extra notation. When the
dependenceon A and P isclear, we will write «,, rather than ey, 4, p.)

We define the following Probably Approximately aCTive learnea variant of the
standard “ Probably Approximately Correct” (PAC) criterion [29,48], to specify the desired
performance of such alearner.

Definition 3 (PACT-learning. Given a set of concepts C defined over X, a probability
distribution P over X, a blocker 8, a cost function ¢(-), and a penalty function err(-, -),
we say that an algorithm L PACT-learnsa set of active classifiers A (with respectto C, P,
B, c(-) and err(-, -)) if, for some polynomial function p(- - -), for any target concept ¢ € C,
distribution P and error parameterse, § > 0, L runsin time at most p(1/¢, 1/8, |¢|), and
outputs an active classifier

a=L(e,8,C, P, B, c(), (-, ) € A,

whose expected total cost is, with probability at least 1 — §, no morethan ¢ over the minimal
possible expected total cogt; i.e.,

VoeC, ,8>0 P(ECp(a)>ECp(ay 4 p)+e)<s.
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Assuming the learning algorithm L and the active classifier « are deterministic, the
definition only makes use of a fixed (but unknown) probability distribution P, which
governs the occurrences of instances. (If the blocker is stochastic, we need to consider
that distribution as well.) Note aso that the number of instances drawn by L can be no
more than the running time, and thus is polynomial in 1/¢,1/8, |¢|. Similarly, the size of
the learned classifier, |«|, is bounded by the learner’s running time, and so is polynomial
as well. Using the requirement that .4 includes only classifiers whose execution time is
polynomial in their size, we see that «’s run-timeis also polynomial in 1/¢, 1/8, |¢|.

One restriction inherent in this model is that the value of the requested attributes
are reported sequentially (as opposed to requesting a group of tests to be performed
concurrently [47]). A second restriction is that the classifier makesits decisions based only
on the valuesof attributesit knows—not on how these valueswere obtained: i.e., were they
visibleinitialy, or did the classifier have to ask for them?®

The class of active classifiers considered, A < 42", is an important component of
the above definition. It is often useful to consider only a subset of the class of all
possible active classifiers, perhaps to facilitate learning the classifier, and/or to insure
that the classifier produced is computationally efficient. We should also choose a suitable
representation language. Explicitly enumerating the actions of a classifier (i.e., viewing it
asafunctiona : X* — {T, F}U X) requiresexponential space, even for conceptually trivial
classifiers such as the degenerate classifier that always returns F. We already mentioned
the “lookup-table” encoding, which addresses this problem by specifying a defaultaction
(e.g., announce that every unexceptional instance has the label F) and only enumerate
exceptions to this default. For concreteness, we have this representation language in mind
throughout this paper unless we specify otherwise, although none of our results depend
critically on this particular choice.

There are a number of more general approaches that might be used to specify A.
An active classifier « can be viewed as making a number of binary decisions based on
the current input x* € X*: E.g., should T be returned?; if not, should F be returned?;
if not, should we ask for x1?, etc. That is, we can write a ~ (e, ep,e1,...,en),
where each ¢; : X* — {1, 0}, with the understanding that «’s action on (x1, x2, ..., x,)
is the index of the first of these ¢; which evaluated to 1; «a({x1,x2,...,x,)) =
argmin;{e; ((x1, x2, ..., x,)) = 1}. Using this representation, we can then restrict each ¢;
to belong to some specified collection of Boolean concepts £ over {0, 1, x}* (&la[40]).
Although it is beyond the scope of this paper, it would be interesting to investigate the
connection between learnability of active classifiers thus specified, and standard PAC-
learnability of the classes £.

6 Although we do not do so here, the cost model could be generalized to allow “context dependent” costs,
where the cost of obtaining attribute i might depend on what other attributes have already been requested.
For example, in medical diagnosis there may be a fixed cost associated with drawing blood which should be
charged only to the first test requiring a blood sample. (Here, the second, and subsequent, blood tests would be
charged only the specific test performed, but not for extracting the blood [17,47].) This extension would, however,
force a corresponding generalization to our definition of an active classifier: If ¢(i) depends on which tests have
previously been performed, it is not sufficient to act based on the values of known attributes—it is also relevant
to know howwe learned about previous attributes (i.e., did we request the test, or wasiit initially unblocked?).
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3. Why should we learn active classifier s?

The optimal active classifier is determined by the concept ¢, the set of active classifiers
A, and the distribution P. (In general, we will assume that the blocker 8, error function
err(-, -) and cost function ¢ () areal fixed and known.) If we know all of these components,
then we are faced with a very interesting optimization problem [23,26]—one which,
however, has nothing to do with learning. Sometimes this problem is tractable as, for
instance, in the following case involving product distributions (i.e., distributions in which
the value of each attribute is determined independently) and classifiers that can only ask a
constant number of questions.

Proposition 4. Suppose we know the concepnd the product distribution over instances
P, and are looking for classifiers itd* (i.e., active classifiers that ask for at madst
attribute values see Definition2). Then, for anye > 0, there is an efficient algorithm
that runs in timeO(poly(n, 1/¢)) and produces an active classifier i whose expected
total cost is withine of the optimal active classifier id*.

Proof. Given ¢ and the product distribution P, the classifier can determine the probability
of T versus F for any given (partially specified) instance and thus determine which is the
better response. In general, it can aso determine whether it should ask for the value of an
attribute using straightforward dynamic programmirtgsee the proof of Theorem 7 (from
Section4). O

This suggests an obvious way to learn an active classifier: first learn the optimal
underlying (passive) classifier ¢ and the distribution P, and then combine these to
produce the best active classifier «, 4 p. While Proposition 4 shows that this “learn then
optimize” approach can sometimes works, there are problems. First, and unsurprisingly,
the optimization problem can be intractable:”

Theorem 5. For someA, P and(, it is NP-hard to find the optimad&™ € A. This result
holds even if we further require that th@tis PAC-learnable, thaf*| is polynomial in|¢|
(i.e., the complexity is not simply because we need a very large classifierthatP have
support of siz&(n), wheren is the number of attribute¢That is, P (x) > O for only O(n)
different atomic assignmerits”s))

The result above shows that the complexity of classifying actively is, in a sense,
“independent” of the complexity of learning. Learning the concept and/or the distribution
poses separate problems:

Proposition 6. There are some concept classe@ogether withA, P, err(-, -), ¢(-)) such
that finding the optimal active classifier is trivial if we are givere C, but otherwise is
not known to be possible.

7 Recall that proofs of the theorems appear in Appendix A.
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Proof. Thisclaim reducesto thefact that not everything is known to be PAC-learnable [4]
because, if all costs ¢(x;) are zero and the error err(-, -) non-trivial, the classifier can ask
for all attributesand then it will classify optimally if and only if it can identify the concept.
(Noticethisholdsfor any blocker 8.) O

The preceding claims (Proposition 4, Theorem 5 and Proposition 6) show that, whilethe
“learn then optimize” approach is certainly sufficient(in principle) to determine o, it can
fail (for complexity reasons) in various ways. This paper’s main point, however, is that it
may be easier to simply learn the active classifier direttliyarticular, one can sometimes
learn a good active classifier without having learned (even implicitly) the concept or the
distribution. This basic idea—of learning just enough to perform some particular task,
rather than trying to learn everything—is conceptually related to the direction developed
by Khardon and Roth [32] in their Learning to Reasoframework. In the context of logical
reasoning (rather than classification), they show that there are computational advantagesin
directly learning a representation tailored to the reasoning task (rather than trying to learn
the general concept itself and then, in a separate phase, perform the reasoning with respect
toit). Inasimilar vein, our work is aso consistent with results showing that discriminative
learning can be more efficient than generative learning; see [39].

When might it be a good ideato learn the active classifier directly? Our main positive
result, given in Section 4, provides one answer in detail. Below are some of the underlying
general issues:

e We do not always need to learn the full concept. For example, suppose we are
considering the empty blocking cases (i.e., the classifier initially sees no attribute
values), and err(-, -) and ¢(-) are such that it is never worthwhile asking more than
one question. Then the optimal active classifier is completely determined once we
specify which single attribute we should request, and which classification (T or F) is
most likely given each value that this attribute might take (forming “ decision-stumps’
of the form studied in [5,25]). We can sometimes learn this classifier without knowing
the full concept itself. Of course, knowing the full concept would be important if we
were frequently asked to classify completely specified (unblocked) instances. But this
is simply irrelevant: as we know that the instances will be presented empty blocked,
we know that such questionswill not in fact be asked. We should only care about cases
that we actually might encounter (with high enough probability).

e We do not always need to learn the complete distribution P. The same example shows
that, in some cases, only a few aspects of the distribution may be relevant: here we
only need to know correlations between single attributes and the class label. Higher
order correlations (i.e., involving more than one attribute) do not affect the optimal
active classifier.

e Thereisasecond reason why we might not need to learn the distribution. The standard
learning framework, and especially the PAC-learning model, usually avoids having
to explicitly learn a distribution, because the performance criterion uses the same
distribution that one learns under. If one has a (passive) classifier that fits the sample
datawell, one can often assume that it will perform well on other data from the same
distribution. We do not necessarily need to know whatthat distribution is; only that it
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has not changed since the learning phase. As our definition of PACT-learningissimilar
to the standard PAC formulation in this respect, it too might avoid the need to learn
distributions. (That is, an active classifier that performswell on training data, will do
well on future test data.)

Of course, these arguments are only suggestive. Section 5 below will show several
significant limitations on what can be achieved. However, we first present a fairly simple,
yet worthwhile, positive result.

4. Learning A*

This section presents an expressive class of problemsfor which we can efficiently learn
the optimal active classifiers. The results depend on restricting the set of active classifiers
considered to AX, those classifiers that request at most a constant, k, attribute values
(Definition 2).

We show that it is possible to PACT-learn anyconcept class C under anydistribution. In
particular (in this situation), we can learn to actively classify with respect to concepts and
distributions that are not learnable in the pure PAC-learning sense!

4.1. LearningA* under empty blocking

We start the presentation of the main result by considering first the case of “empty
blocking”—i.e., the classifier only sees the features it explicitly requests. The L%
agorithm, shown in Fig. 2, is capable of PACT-learning active classifiers in the set A*,
given empty blocking, for any concept class and under any distribution.

We let X§ , = Uf-{:o X7¥, where X is the set of all partially-specified n-tuples with
exactly m specified attributes (n — m *’s). Also, for any x* € X whose ith attribute has
not been specified (i.e., x; = %), y* = x/_ ; isapartialy-specified tuplewith ¢ + 1 specified
valuesthat extends x* by setting y* = 0. (E.g., (1, *, )30 = (1,*,0).)

L® first draws a number of instances, which it uses to obtain estimates:

° Pf*, to estimate Pf* = P(¢p(x) =T | x extendsc™), which is the conditional probab-
ility that aninstance drawn accordingto P and which coincideswith x* onits specified
aEri\butea will belabeled T'; and

o P20 toestimate P10 = P(x} | x*), which is the conditional probability that an
instance drawn according to P and which coincideswith x* on its specified attributes,
will haveits ith attribute equal to 0.

Stated more precisely: given the set of complete instances S, for each x* € X7, let
#x*] = |[{x € S | x extends x*}|| be the number of instances in S that extend x*, and
#Hle(x*)=T]=|{x € S| x extendsx* & ¢(x) = T'}|| be the number of instancesin S that
extend x* and arelabeled 7. Then P, = #{p(x*) = T/ #[x*] isthe empirical estimate of
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Algorithm L® (e e Rt §€(0,1): ac Ak
% Returns an active classifierfrom 4% whose expected cost is, with probability at lehst 5,

% within e of optimal
% Uses oracle for drawing complete labeled instances, and knows cost rawodel), c(-)
Let g(k)=Y%_o(1)2 % See Eq(1)
2 p2k+3
Draw M (k)= %Iogw conpl et el y-specifi ed,
| abel ed i nstances §
Return Hel per L®(S, (x,...,%))
End Al gorithm L&

Al gorithm Hel per _L®)(S:sanpl e; xS@":instance):a e A
9 Uses] AFTERL: alistof ¢(k) real numbers,
Opl-]: alist of g(k) “operation8  (each Opj1€({T,F,1,...,n}),

% whose elements aféndexed by partial assignments frork ,
% See text for definitions af?, and P)’;'?O
For each ¢=k%..0 do

For each x*e Xy do [LO]
C(x*,T):=(1— P%) x en(T, F) [L1]
Cw*, F) = PV, x e (F, T) L2]
If ¢<k, then For each i=1.n where x*=x do

C(x*,i):=c; + P70 x AFTER[x} ]
+(1— P70 x AFTERx} ] [L3]
Oplx*]:=argni n{C(x*,2) | z€ (T, F,1,...,n})
AFTER[x*] :=min{C(x*,2) | z € {T, F,1,...,n}}
Return BUILDTREE( O[], (*,...,%))
End Al gorithm Hel per_L®
Al gorithm BuiLDTREE(Op-]: |ist_of _operations; x*eX*):

Deci si on_Tree
Let n be a new node
if Ooplx*1=T
Label n.Action:=“Return True”
elseif Opx*]=F
Label n.Action:=“Return Fal se”
el se %Here, Opx*1=i e{1,...,n}
Label n.Action:="Test x;”
Let n.ifTrue:= BUILDTREE(Op-], x} ;)

Let n.ifFalse:= BUILDTREE(OQ], X7, 4)

return( n)
End Al gorithm BUILDTREE

Fig. 2. The L®) learning algorithm, for PACT-learning .4¥ under empty blocking.
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P(p(x*)=T | x*),and P)ﬁ?o =#[x7_ o]/ #[x*] istheempirica estimateof P(x;_ ,|x*).

i—0
If #x*] =0, then set PY. and P/ 0 to 1/2.
Before dealing with sampling error, we first prove that, if these estimates are exactly

correct (i.e., P, = PY. and PO = PI>0), then the L® algorithm will in fact produce
the optimal active classifier «””’ = «, 4 p asdefinedin Eq. (3). Thisfollowsby observing
that L isastraightforward dynamic programGiven our assumptions, we haveto classify
x* e X after the classifier has already asked k questions, meaning a(x*) € {T, F}. Now
observe that C(x*, T) (here 5(-) is defined on line [L1], based on PY values;, C(-) is
corresponding value based on PY) is simply the cost paid for returning T for x*; similarly
for C(x*, F). Clearly the optimal «°’’, on encountering x*, should take the smaller of
these values.

Having decided what thea " classifier shoulddofor x* € X}, L) must then determine
the correct actionsfor each element in X7_; and then decide how to deal with each element
inX;_,,andsoon, until reaching X = {{x, *, *, ..., *)}, thuscompleting the specification
of the learned classifier a??".

To explain each step, suppose o’ has decided what to do for all x* € X§_, (i > 0),
and is considering some particular y* € X,’:_(I.H), with onemore*”*". Let BEFORE(y*) be
a°P!’s costs already incurred in reaching y* (starting from (x, ..., %)), and let AFTER(Y*)
be the remaining costs; hence, if «%’ eventual strategy involves y*, its cost will be
BEFORE(y*) + AFTER(y*). Here, a°P"’s possible actions are to announce a classification
(i.e, T or F) or ask about avariablewhose valueis hot yet known. The cost of announcing
either T or F isthesame asit wasfor x; € X;. The expected cost of testing attribute x; is:

C(y*,i)=c¢; + P(xi =1|x extends™) x AFTER(y, 1)
+ P(x; =0]x extends™) x AFTER(y;., )- (4)

(Seeline[L3].) Note that the expected costs required by the last equation (AFTER(y;:, 1)
and AFTER(y;_, ), have been computed in the previous phase of the algorithm. As shown,
the L% algorithm then simply assigns to «°”* the action (“Ret urn True”, “Ret urn
Fal se”,or“Test x;”) with the lowest expected cost.

To understand why this algorithm works, note that these AFTER(y;" ;) costs depend
only on the instance y}  ;, and not on how (or even, if) «°" would reach this instance.
As such, this value is completely independent of BEFORE(y*). This means that L*) can
compute the values of AFTER(y*) in one sweep, from the most specified (in X)) back to
theleast (in X{).

Of course, our L® agorithm does not have access to the actual probabilities. Here, it
will use empirical estimates of P, and P':>0 called PY, and P!> in Fig. 2, and so pro-
duce a not-necessarily-optimal classifier «. What happens if these estimates are inexact—
which they typicaly will be, due to statistical fluctuations? Suppose first the true distri-
bution is uniform, Pynisorm, Which means the proportion of training instances matching
any x* € X7 will be about 1/2¢. Thus, in a reasonable number of instances, we can ob-
tain good estimates of these quantities—i.e., we expect P%, ~ PY,. If the basic “argmin
decisions’ areclear cut—i.e., if (1— PY%.) x err(T, F) isfar from P, x err(F, T)—thenus-
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ing P‘ﬂ rather than P, should not matter, as here (1 — P“i) x err(T, F) will be bigger than

Py xerr(F, T) iff (1 P“L) x err(T, F) isbigger than P“’ x err(F, T). Theonly potential
problemsarlself PY. isnear athreshold—i.e., if (1— P“L) xer(T, F)~ P, x ert(F, T)—
asthis could cause L(") to make the wrong decision. But thisis precisely when it does not
matter much which decision we make, because the expected costs are nearly the same.

For distributions other than Pnitorm, there may be some probabilities whose estimates
will be wildly inaccurate, because the sample will include very few matching instances.
But, by our PAC-like performance criterion, it does not matter much if we do badly on
these extremely unlikely cases. We make these arguments precise in Appendix A (when
we give the proof for the algorithm, Theorem 7), but thisisthe basic ideaunderlying L*)’s
correctness. Estimated payoffsare good enouglin this setting, and although they may lead
to aclassifier whose recommendationsdiffer from the optimal classifier, this only happens
when the disagreement does not affect costs by much.

Theorem 7. For any fixedk, the algorithmL® (Fig. 2) PACT-learns active classifiers in
the setA* given empty blocking for any conceptand any distributionP. Moreover, its
run complexity i<O((erry /)?n*[logn + log %])_

While this specific L® algorithm is geared to binary classification over a set of binary
attributes, these ideas can be extended to handle active classifiers that deal with finite
classifications, over aspace of finite-domain attributes. In particular, assume each attribute
ranges over s values, and each instance is labeled by one of r values {¢1, ..., ¢,}. We will
need, as input, a general r x r “error matrix”, whose (i, j) entries—ak.a err(¢;, £;)—
define the penalty for returning the label ¢; when the correct label should be ¢;. Let
erry = max; j{err(¢;, £;)} be the maximum of these r2 values. We now define A rs 1O
be the class of classifiers that can ask at most £ questions (starting from empty blocking)
over these active classifiers—which in general can ask for the value of any of » attributes,
or return any of r possible values.

We can till PACT-learn in this situation:

Corollary 8. For any fixedk, it is possible to PACT-learns active classifiers in the set
Ak, ¢ given empty blocking for any conceptand any distributionP. Moreover, its run
complexity iSO((erry /e)%(sn)*[log(sn) + log §1).

Comparing the computational complexity hereto Theorem 7, we see that the complexity
scales as s* logs with respect to the number of attribute values s, but only as logr with
respect to the number of classes. (This is because the obvious dynamic program needs to
consider all of the partial instances that specify at most & attributes.)

While the remainder of this paper focuses on binary attributes and binary class labels,
each of our subsequent results can be extended to this more general case.

4.2. LearningA¥ under arbitrary blocking

While the L® algorithm shown only takes (x, %, x, ..., %) as its “starting pattern”, it
is easy to define a related algorithm that starts from anyfixed pattern. Here, at each step,
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the active classifier may ask the value of any currently-unspecified attribute; we continue
to consider only classifiers that ask for the values of at most k additional attributes. To do
this, we replace the X7 on line [LO] with

Xj(x%) = {x* € X* | x* extends x>™", specifying ¢ additional attributes}

which denotesthe set of all O(2¢ (Z)) instances formed by starting with the starting instance
xS e x* and specifying the values of exactly ¢ of its initially-uninstantiated variables.

(Hence X7 ((*,...,*)) = Xj. Actualy, our bound is dightly tighter, as we need only

consider the O(2° (’2)) possible patterns formed by instantiating the n” < n attributes not
specified initialy.)

This basic approach similarly works whenever the classifier can encounter a fixed (or
even polynomial) number of starting patterns, by just building a different “subclassifier”
for each starting pattern. Next we investigate several more significant weakenings.

In general, there can be an exponentially large number of initial instances xSt —
e.g., we can consider blockersthat can reveal completely arbitrary sets of attribute values
initially, for free. The simple extension cannot handlethis, as thiswould mean dealing with
perhaps 3" initia instances, and so require building an exponential number of different
sub-classifiers (one for each starting instance).

However, a fairly simple modification of the L®) agorithm will work. The main
difference is that we will not use the explicit (lookup-table) representation scheme, as
that would not be poly-size in this case. Instead, the learning algorithm will be a “lazy”
learning algorithm (reminiscent of [1]). In the learning phase, this learner simply records
the instances seen during training, S. The resulting classifier would take the result of the
learning (read “the sample S), together with the specified starting instance xS, It would
then call Helper LX) (S, xS to compute the appropriate actions to take, then begin
performing the specific actions.

Notice we only estimate the relevant probabilities—the values of P(p(x™) =T | x™)
and P(x}_ | x*), for each x* € X} (xS, ¢ = 0..k—after we know the current value of
xS Applying the technique from the proof of Theorem 7 requires that we be able to
estimate these 235 _o | X5 (x38™)| < 2g(k) values, associated with any possible starting
instance xS e X*. The only challengeis collecting a sufficiently large sample to achieve
this. In fact, the short proof below goes further and shows that it is possible to collect a
sample large enough to estimate P(p(x*) =T | x*) and P(x}_ , | x*) for everypossible
x* e X*—all 3" possible partially-specified instances.

Thisleadsto the “lazy variant of L®”: Thelazy-L® learner initialy collects

err, 4%+3 4% 3 err2 1
Ma”: M IOg x :O( M|:i’l+logg:|> (5)

9¢2 ) &2

instances, S. (Recall that &, and hence 4%+3, is a constant.) The subsequent classifier will
then use this to actively-classify, starting with the starting instance x5, It simply calls
Helper L% (s, xS to find the appropriate active-classification-tree, then executes this
tree.

Corollary 9. The lazyL® system PACT-learns active classifiers in the.4etgiven any
blocker for any concept and any distributionP.
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Proof. Just observe (from the proof of Theorem 7) that the classifier is effective
whenever it can reliably (i.e., with collective probability at least 1 — §) estimate the
values of P(p(x*) =T | x*) and P(x}_ | x*) for each x* € X} (x5 to within A =
3¢/(8erry 4%). Using Hoeffding's Inequality (Eq. (A.4)), M, instances is sufficient to
estimate these quantitiesover all 3" possiblex* € X*. O

To summarize, the extension to deal with general blocking relies on two issues. First,
aclassifier in .A* only requires the algorithm to estimate O(n*) probabilities; this means
computational complexity is not a problem. The second issue deals with the sample size.
Unlike the case of a fixed starting point, here we may need to estimate an exponential
number of probabilities, which meansthe sample size required to guarantee good estimates
will be larger. However, since the sample size depends only logarithmicallyon the number
of probabilitieswe need to estimate, the sample size remains polynomial.

5. Further extensions
5.1. Allowing the active classifier to ask more questions

Theresultsin the previous section show that we can PACT-learnin general, provided the
active classifier is allowed to inquire about no more than a constant & additional queries.
We might also hopeto be able to weaken thisrestriction, by alowing the active classifier to
ask, say, O(logn) attributes; this corresponds to learning the class .4'°9" . However, if this
was possible, then we could PAC-learn logrn-depth decision trees in the standard (passive
learning) model.2 But even the simpler problem:

learning Boolean functions that depend on only logn variables, even under the
uniform distribution,

is regarded as a challenging open problem [8]. However, given that some very good
heuristics exist for learning decision trees, it could be interesting to investigate modifying
those heuristics to produce a practical algorithm that would apply in the more genera
situation of active classifiers.

On the other hand, the news is not al bad here. As suggested above, the number of
attributes requested by the learner is responsible for the time complexity of the algorithm
(at least in the a gorithmic approach we suggested). The sample complexity is determined
by the number of starting points the blocking allows and, as we have shown, scaleswell in
our case. Therefore, the difficulty here concerns computationatomplexity, but not sample
complexity nor the nonexistence of agood small classifier.

Proposition 10. It is possible to learn4'®” in the sense of DefinitioB, still using
only polynomially many instances and producing a polynomial-size table-lookup classifier,
except that the learner may not run in polynomial time.

8 Just assume uniform cost for each query, and a very large penalty for incorrect responses.
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Proof. As noted in Corollary 9, the sample size remains poly-sized even if we need to
estimate all O(3") possible P(p(x*) =T | x*) and P(x;_ o | x*) values. To see that the
output is small, note that the resulting active classifier will correspond to abinary decision
tree of depth logn, and hence of size O(2/%9") = O(n). (It is binary as each internal node
asksfor the value of abinary attribute) O

That is, the learner uses a reasonable number of instances and (eventually!) outputs a
small, and hence efficient, active classifier. This can be useful: if the performance phase
is much longer than the training phase, it may well be worth spending whatever time is
necessary to find agood classifier, as that effort will be well rewarded. See also Section 6.

5.2. Restricted distributions and underlying concepts

So far we have discussed activelearning in avery general setting, without any restriction
on the underlying distribution or the underlying concept. Here, we consider whether the
probability distribution and the concept class can have asignificant effect onlearnability, as
it doesin standard passive PAC-learning. We do thisin the context of the class of “product
distributions’, in which the value of each attribute value is chosen independently. The
uniform distribution is afurther restriction of this class.

The following discussion shows that sometimes the underlying concept class could be
significant to learning.

Theorem 11. The class of conjunctions can be PACT-learned under the product
distribution, under any blocking model, and with any cost structure, using a greedy
strategy.(Note that here we allow any active classifier, which can ask for an arbitrary

number of attribute values4™ = 43!

The greedy algorithm LS for learning conjunctions is shown in Fig. 3. This classifier
aways asks first for the attribute that promises the highest immediate information gain
about the classification, balanced by cost, then recurs. This results in a “linear” active
classifier, on the form shown in Fig. 4. The appendix provides the complete proof that the
LS agorithm can PACT-learn conjunctions.

Although this is a simple observation, we note that the algorithm does not restrict
the number of attributes requested by the classifier and thus shows that the earlier
negative result depends crucially on having “difficult” distributions or concepts. To further
understand this, note that even under product distributions, greedy active classification
is not guaranteed to work in general, beyond the class of conjunctions. As a smple
counterexample, consider the function (x1 @ x2) A x3 A xa A -+ A x,. The dependencies
introduced by the exclusive-or “®” mean the optimal active classifier will not be asimple
linear-tree (Fig. 4), which means the greedy heuristic shown in Fig. 3 will not produce
an optimal active classifier. However, variants of the greedy strategy might be very useful
heuristics and this, too, is worth further investigation.
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Algorithm LS (e eRT,6€(0,1)): a%c A
% Returns an active classifierfrom A whose expected cost is, with probability
% at leastl — §, within ¢ of optimal
% Uses oracle for drawing complete labeled instances, and knows cost raodel), c(-)

Draw M, =2(2ED)2(,1093n) + 2)  conpl etel y-speci fied, |abel ed
instances S each xeS represented as SET %x =[x1—x2x3] ~{1,2,3}
Let ST be positive exanples in §

Let ¢p= m X [R1]
xest

% Re-number, flip-parity s =x1 Ax2 A -+ A xg
For i=1.k

Let ¢;=P(x;=0)= |—§||{x e S|x; =0} % ...= estimate of success

% probability P (x; = 1)
Re-number s.t. 4A2¢...g&% % ...Settoo if g; =0
q1 = g2 9k

Let ¢=argmax{ ;—‘W <erry |€ =1k} % ...= largest index for Whichgi—’,

is undererr,

% Build ¢-node“linear” decision tregsee Fig4:
For i=1.4¢:

Label node n; with “Perform x;”

Connect “0’-1abeled arc fromn; to: “Return F”

If i<¢ THEN Connect “1'-labeled arc frommn; to: nj4g

ELSE Connect “1"-labeled arc fromn, to: “Return T”

Return an active classifier «% based on this decision tree

End Al gorithm LC

Fig. 3. LG agorithm for PACT-learning conjunctions.

Y

Fig. 4. “Linear” active classifier (decision tree).

5.3. Bounded expected number ofquep@é

Our earlier results consider the situation where there is a hard upper bound on the
number of queries that can be used to classify each individual instance. Imagine, instead,
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that we place an upper bound on the averagenumber of queries needed or alowed. For
example, imagine we need to classify 100,000 text documents within a total of 200,000
seconds. While the “classify each document within 2 seconds’ requirement is sufficient,
the weaker requirement that the classifier takes on average2 seconds per document is a
more accurate reflection of the given constraint.

Definition 12. Given any instance distribution P(-), we define A;k as the subset of active
classifiers (in any representation language) that ask, on averageat most k questions for
samples drawn from P(-).

In general, we can bound the average number of queries asked by an optimal classifier
asfollows.

Definition 13. Without loss of generality, assume c1 < --- < ¢p; 1.€,, atributes are sorted
by increasing cost. We then define;

k/
k(err, ¢) = largest k” such that {Z ¢ < errM}
im1

using the erry, from Eq. (2).
Thenit is easy to seethat:

Proposition 14. The optimal active classifier fromd?' should not ask on average more
thank(err, ) questions—i.e., it is id ;™.

Proof. Whenever the classifier asks more than k(err, ¢) questions, its cost exceeds erry;;
henceif it averages more than k(err, ¢) questions, its average cost must exceed erry,. This
cannot be optimal, asit isinferior to the trivial “just say F” classifier, whose average cost
isat most erry,. O

However this does not mean that we can boundthe number of questions by k(err, ¢)—
i.e., we cannot restrict ourselves to .A%©™¢) 9 The problem is that a classifier may reach a
point whereit should ask yet more questions, even after it has spent more than any possible
payoff. Thisis because earlier costs are sunk costsnd even if, in retrospect, they turn out
to be useless, they must still be paid for. However the optimal classifier should not expect
a priori to get into this situation very often, as a classifier that often throws good money
after bad cannot be optimal.

Theorem 7 shows that the problem of learningin A* istractable for any concept and for
any distribution. It may seem plausible that there is a similar result given a bound on the
expectechumber of queries used by a good classifier.

9 On the other hand, it is sufficient to consider classifiers in AK(EM.C)x€Ty/e; soe Proposition A.2 in
Appendix A. But then our dynamic-programming agorithm will be exponential in err; /«.
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When might we have such abound? It could arise as an inherent property of the chosen
classifier language.A, although the dependence of expectation bounds on the instance
distribution P(-) means that this is not especialy useful. More plausibly, such a bound
may arise as an additional problem-specific constraint limiting the class of acceptable
classifiers. Recall the earlier example, where we need to classify 100,000 text documents
within a total of 200,000 seconds, and suppose each query takes a second. This places a
global constraint on the classifier class—i.e., that any learned classifier must be in A?Z.
Finally, we may be able to place a bound on the expected number of queries needed
using Proposition 14 or similar considerations. Unfortunately, however we come by such a
bound, we are faced with the following negative result:

Theorem 15. PACT-learning isNP-hard even given the additional constraint that there is
an optimal classifier inA~1*7, for any fixedy > 0.

(Note that this result does not apply when y = 0, since A?l is equivalent to A and so
islearnable.)

This hardness result only deals with computational complexity. It is open as to whether
thisisthe only difficulty—i.e., is there aresult analogousto Proposition 10?

5.4. Summary

We have shown that:

e one canlearn active classifiers in AX in general (for any concept class, any blocker,
any distribution);

e learning classifiers in A'°9" subsumes a hard computational problem (but neither
sample complexity nor representation size are problematic);

o for certain classes of classifiers and distributions, learning classifiers in A" can be
tractable;

e given just the constraint that it suffices to look for classifiersin Ajk, for k > 1, the
problem of learning active classifiersis NP-hard.

See Table 1.
Table 1
Complexity of PACT-learning various classes of active classifiers
Class Sample size Computation Representation size
Ak poly poly poly
Alogn poly = PAC-learn logn-depth DTs poly

a%®! e AGK poly NP-hard (k > 1) -
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6. On-linelearning

As noted earlier, we allow the learner to see completeunblocked instances, which the
eventual classifier must pay to see. An arguably more natural model would charge the
learnerfor each attribute it views, just as it charges the classifier. An suitable framework
s“on line” learning, where a learn + active-classify (LAC) system would pay for each
attribute it sees, from the very beginning. To evaluate such a system, we would compute a
“lossfunction” comparing some system LAC against the perfect classifier «%! (i.e., against
using the optimal active classification process from the beginning). The loss function
measures the average difference between LAC and this «:°", averaged over the number of
instances seen. Our goal hereisto find alearn + classify system whose average difference
goesto 0 as the number of instances increases.

To state this more precisely, we must first present our protocol: Complete instances
x¥ are drawn sequentially, and empty blocked to produce x *. These unlabeled, blocked
instances x(* are then presented to the LAC system, one by one. For each xV*, LAC
attempts to determine the class, asking questions as appropriate; we let tc(LAC, x*) be

Al gorithm LAC*()
% Continuously draws and processes instances
% Uses known cost modeltr(-, -), c(-)
% oracle for drawing empty-blocked labeled instances
% e, 8)=My(e, 8) = 9”%4 2
% W=6erTmin+Y ¢
For r=1,2,... do
% rth exploration phase
Let S, ={} % To hold set of examples
Let h =h(%, %)
For i=1.h, do
“Draw’ an enpty bl ocked instance x*
Pay > jc; to see values of all attributes x
T if er(T,F)<er(F,T)
F otherw se
Cet | abel ¢(x) (pay ermin if x is msclassified)
Sr =58 U{x, o(x))
Use L™ (with conpletely-specified, |abeled instances S,)
to produce «,

log 281 (sample size for. ("))

Return | east-risk guess: {

% rth exploitation phase

Let =[2'w —1] [Zh +Z ]

Use «r tO process next Yy |nstances
End For
End Al gorithm LAC*

Fig. 5. LAC* learn + classify algorithm.
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the penalty/cost that LAC must pay. Given asequenceof m suchinstances X,,, = (x0*)" |
we define tc(LAC, X,,) = %Zx(")*exm tc(LAC, xV)*) as the average cost. For a given
(stationary) distribution over instances P(-) and target concept ¢ (and given the empty
blocker), we can compute the expected value of E[tc(LAC, X,,)] of the learn + classify
system LAC, where the expectation is averaged over al sequences of m blocked instances.
Our goal isto minimizethis E[tc(LAC, X,,)], asm ~» co.

Of coursg, for this P(-), ¢ and B, there is a best possible active classifier, which has
the minimum cost «?" = a, 4 p asdefined in Eq. (3). (Note that this can be relative to a
subclass of active classifiers, A € A2!) Asthisisclearly the best that any learn + classify
systems can achieve, we will consider the difference

diff (LAC, m) = diff ,_4 p (LAC,m) 2 E[tc(LAC, X,)] — ECp (@ 4 p)-

We would like an on-line learn + classify system that can do essentially as well as this
optimal classifier, in that diff (LAC*, m) goes to 0 as m increases. One standard way to
do thisis by a series of “explore then exploit” stages. That is, the algorithm first gathers
information (“explore”), paying whatever it costs; it then uses this information to build
a reasonable classifier, a1. The algorithm will next exploit this o1 classifier, using it to
actively classify a number of instances, with the hope that «1 will do well enough to
compensate for the cost required to learn it. This constitutes one “explore + exploit” stage.
The agorithm performs a series of these stages—each time spending a bit longer in the
information-gathering phase, to help produce increasingly better classifiers (a1, a2, .. .);
after learning each, it spends yet longer in the “exploit” phase, to recover the cost.

Thisisthe basisfor the LAC* system, shown in Fig. 5. In the appendix we provethat it
works effectively:

Theorem 16. With probabilityl, diff LAC*, m) goes to0 asm increases.

While this algorithm deals with empty blocking and the complete class A2, it is
straightforward to extend this result to arbitrary blocking models and an arbitrary specific
subclass A c A2,

7. Related work

Our framework is based on the “standard” learning model [9], in which a learner
receives a set of labeled (i.e., correctly classified) training examples as input, and must
output a good classifier. Furthermore, the notion of “good” we use is a derivative of
the popular probably-approximately-correct (PAC) model [48]. However, we differ from
the usual model in the following respects. First, our classifier (and in Section 6, our
learner) receives only partially specifiedinstances, which can omit the values of some
or al attributes. Second, our classifier is ableto activelyrequest attribute values. Third, the
quality of such a classifier depends on its expected cost of obtaining attributes well as
its classification accuracy.



R. Greiner et al. / Artificial Intelligence 139 (2002) 137-174 159

Missing attribute values. Several other learning algorithms produce classifiers that can
deal with partially specified instances; cf. [13,36,38,45]. However, these classifiers are not
able to actively obtain missing information. Other research [7,21] (respectively, [31,33])
considers the problem of learning from partialy specified instances, but with the goal
of later classifying completeinstances (respectively, later reasoning with respect to the
learned concept). N.b., these other systems do not consider ways for the classifier to gather
more information. Also, we assume that we can obtain the value of an attribute, onceit is
requested.

Many researchers are concerned with “relevance”. Littlestone[35], John et al. [27], and
others consider the situation where only a subset of the variables are “relevant”—i.e., are
needed to perform the classification (for each instance). Those systems, however, assume
that the values of al variables, both relevant and irrelevant, are given. (By contrast, the
Greiner et a. [18] relevance model considers the case where the learner knows it will only
see the values of the relevant variables.) To connect this to our model, note that an active
classifier would never reguest the value of any irrelevant variable and would, moreover,
seek the “minimal cost” set of relevant attributes.

Active-ness. Of course, “active” classification is not a novel concept; there is a rich
history of ideas here, dating back (at |east) to the semina work by Howard [26] on “value
of information”. Many diverse areas use related ideas, including planning, diagnosis and
decision theory.

As just one illustrative example, Heckerman et al. [23] describe how to trandate a
certain class of decision nets (which satisfies certain properties) into an effective “active
classifier”—one that both isolates and repairs the fault, taking account of costs and
the probability of various diagnoses being correct. Other examples of studies of active
classification exist in the vision community [6,11,42]. However those frameworks do not
address the challenge of learning such classifiers. One possible reason is that the tasks
of learning and classifying can often be decoupled. For instance, Heckerman et al. [23]
could appeal to standard Bayesian-network learning techniques to learn the necessary
distributions. While conceding that such a decoupling is possible in many cases, the basic
question examined in this paper iswhether there can be any advantagein studying learning
and active classification togethesee Section 3.

Our task, of learning active classifiers, is aso distinct from the task of actively learning
(passive classifiers For example, [2,3,15,34], consider the “learning with membership
queries’ model, in which the learnercan request labelsof examplesasit islearning. Recall
however that our learneris seeking optimally inexpensive active classifiers, rather than
optimally accurate passive ones; moreover, we focus primarily on a passive learner (until
Section 6).

Utility. There are several learning projects that attempt to learn classifiers that are
sengitive to test costs. For example, Turney [47] (and others, see references therein)
uses heuristic methods to build decision trees that minimize classification and test costs;
by contrast, we are seeking provably optimal active classifiers, of any representation.
Haussler [22] studies a decision-theoretic generalization of the PAC model, in which the
learner may output a classification or a decision rule with the goal of minimizing a given
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loss function. However, his classifier always receives complete instances, and so is not
activein our sense.

Other comparisons. Our results arerelated to “behavioral cloning” [41,43,44], where the
learner sees a (hopefully good) active classifier in action, and produces a classifier (or in
general, a performance system) that tries to duplicate its performance [30]. In our model,
however, the learner must use the cost structure to discover its own classification strategy,
rather than simply imitate the observed teacher’s strategy.

Finally, our framework shares much in common with reinforcement learning (RL) [46];
especially episodicundiscounted RL. In each framework, the performance system (in our
case, the active classifier) isexpected to act in away that maximizesits reward, which often
involves acquiring new information before making an important decision (for us, “labeling
the instance™). As such, our active classifiers can be viewed as policies, as they each map
states to actions (here, from {z, f, *}" to one of {X1,..., X,,t, f}). Moreover, our basic
learning algorithm is a variant of dynamic programming, just like many reinforcement
learners. Our results show that, while this special case of episodic reinforcement learning
(with fixed known depth) is “easy”, it is hard to extend this to more general situations—
e.g., where there is a bound on the averagenumber of stepsin an episode.°

8. Conclusions and futurework

In this paper, we have proposed a framework for addressing learning and active
classificationtogether. We anticipated that we might obtain some “L earning-to-Reason” -
style advantages [32], in that learning a particular classification strategy (with respect to a
particular cost structure and blocker) might be easier than learning the full concept and
the distribution. Our results support this thesis. We show that we can efficiently learn
active classifiers in cases in which we do not know how to learn the underlying concept
and distribution separately. There are several possible directions that may yield further
positive results, including (1) other restrictions on the type of active classifiers allowed,;
(2) approximation techniques; and (3) combinations of restrictions on both the concept
class and the distribution.

We have also explored an “on-line” version of thisframework, wherethe learnerincurs
costs while it is learning, as it must pay for any attribute it sees, and has to predict each
instance’s classification, risking penalty. Here, our goal is to minimize total cost over the
learner’s lifetime. We show the (unsurprising) result that a learner can converge to the
optimal classifier by employing a sequence of exploration steps (to produce successively
better classifiers), each followed by an exploitation phase (to recoup the cost of producing
that classifier).

We close by noting an interesting contrast between our results and standard PAC concept
learning: Few of our results depend, in any critical way, on the identity of the concept class.

10 while the “fixed known depth” situation does correspond to an (episodic) Markov Decision Problem, the
harder “bounded averagenumber of steps’ situation does not.
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For example, while Theorem 7 and its corollary may be restrictive in some respects, they
work for every possible class of concepts. It is perhaps not surprising that the class of active
classifiers being learned should be a far more significant factor in learnability than the
underlying concept class. Furthermore, when one does not see all the attributes, theinduced
probabilistic concept [28] over the visible attributes can bear little useful relationship to the
underlying (deterministic) concept. (For example, aswe seefewer attributesthe correlation
under P between an attribute and the correct label becomes increasingly more important
than strict logical relevance; yet it is easy to construct examples with high correlation but
no strict relevance, and vice versa.) Thus, to whatever extent that active classifiers can be
learned at all, we might expect to find more results that do not distinguish between concept
classes, or at least not to the extent that they matter in ordinary passive classifier learning
theory.

Acknowledgements

We gratefully acknowledge receiving helpful comments from Mukesh Dalal, Sanjeev
Kulkarni, Nick Littlestone, and Dale Schuurmans, as well as the superb, and extremely
thorough, remarks from the reviewers. Some of this work was performed while the first
author (R.G.) worked at Siemens Corporate Research, NJ; the second author (N.G.) worked
at NEC Research Institute, NJ, and the third author (D.R.) worked at the Weizmann
Ingtitute of Science. Russ Greiner is supported by an NSERC operating grant, and Dan
Roth is supported by NSF grants 11S-9801638 and 11S-9984168.

Appendix A. Proofs

Proof of Theorem 5. We reduce our problem to the NP-complete problem.

Definition. EXACT COVER BY 3-SETS (Xx3cC) DECISION PROBLEM [16, p. 221]. Given
aset of eements X = {x1, ..., x3.} andacollection S = {51, ..., s, } of 3-element subsets
of X, does S contain an exact cover of X; i.e,, is there a subcollection S’ c S such that
each x € X isin exactly oneelement s, € §'?

Now given any instance (S, X), formadistribution over thebinary variables {s1, ..., sy,
X1, ..., x3} Wherethe x;’s areindependent of each other, and each is true with probability
P(x;j=1)=p=1/2. Also each S Ele&xj-z& ng—i.e., P(Sj | Xj1, ij,ng) =1and
P(Sj |—-xjk)=0foreachk=1, 2,3.

Now let ¢ = x1& --- & x3, and the cost of each s; be c(s;) = 1 and of each x; be
c(x;) = r. Finaly, set the penalty for being wrong

1-p¥ 8 .,
er(T, F)=ern(F,T)= 2(1_ ST 7(8 1).

We now show that
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Thereis an exact cover iff thereis an active classifier, in this situation,
whose expected costisat most y = (1 — p¥)/(1— p3) =8 x (1—1/8)/7.

=: Assumethereis an exact cover—without loss of generality call it {s1, ..., s,}. Now
consider the active classifier «* that simply asks these queries in order (sq, ..., s,), until
onefails (in which case, return “No”) or if all pass (here say “ Yes’)—see the decision tree
inFig. 4.

To compute the expected cost: Note that

P@sj=T|s1=T, s2=T,...,5j_1=T)
=P(s;=T) (A1)
= P(xj1, Xj2, Xj3)
= P(x;1) P(xj2 | xj1) P(x;3]| xj2,xj1)
= P(xj1) P(xj2) P(xj3) = p°, (A2

where Eq. (A.1) uses the fact that, as this is an exact cover, s; involves variables different
fromsy, ..., s;—1; and Eq. (A.2) usesthat fact that the x; s are independent.

Notice this classifier never returns the wrong prediction, hence its expected cost is
simply the expected number of evaluations, which is

ECr @) =(rx (p°)) + Y ix (1= p%) x (p°) = (1= (v%))/(1-p%)
i=1.r
as claimed.
«: Observe:

e Thereisan optimal active classifier that uses only s;'s rather than x;’s.
(Given any purportedly optimal classifier o that uses a x jx, form a new classifier o’
that differsfrom o only by replacing that x jx with s ;. Observethat o’ will be as correct
as o Suppose o reaches this x . -labeled node. If xj;x = 0, then the value of 5; = 0,
and the correct answer is “False”. On the “xjx = 1" branch of «: herethes; =1 test
will perform even more appropriate tests. Moreover, s; costsless—c(s;) < c(x)-

o We need only consider linear structures of s;’s, as finding any s; = F immediately
tells usthat the answer is” F”.

This means the optimal active classifier « can beviewed aso = (s1, ..., sn).

Moreover, we may assume that m > r: As here there is no exact cover, we know that
an always correcftlassifier must have “length” > r. We first show that any such “always
correct” active classifier will have cost strictly greater than y .

We can assume, without loss of generality, that each of the s;’s on the path o =
(s1,...,8n) Will include at least one x;; that did not appear on any of (s1,...,s;i—1).
(Otherwise, we can get a less expensive and equally correct classifier by deleting that
useless s5;.) This means the cost of dealing with the first r s;’s is at least > ;_;i x
P (“reaching the F under thisnode”) = >/_1i x (L — p) x p' L= QA +rp+1 — (r +
1)p")/(1 — p). In addition, we know that at least one x; was not covered by any of
{s1, ..., sr}. Thismeanswewill follow the 1-branchfrom all » of theses;’swith probability
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at least p 1, which means the probability of performing r + 1 tests is p%; this adds a
cost of (r 4+ 1) p¥ 1. Hence, the total cost of « is at least

L+rp™ = +Dp")/A-p)+ ¢ +Dp¥ T
=24r/2"=2(r+1)/2" +2(r +1)/8";

for r > 3, thisis strictly larger than y .

Of course, we might also consider classifiers that were not completely correct, but
instead were “truncated”, at say depth ¢ and simply announced a class (either “T" or
“F”). However, stopping at depth ¢ < r will again cause the active classifier to cost more
than y. Asthere is no exact cover, stopping before r + 1 means at least one x; will not
be included in the tests. It will reach this final node with probability at least p® —1. Now
suppose the active classifier o returns 7. Then with probability at least p¥ 1 x (1 — p),
the value of this untested x; was “false”, which means the classifier will return the wrong
answer. The cost of this mistake, therefore, is at |east
1 1-1/8"

2 “T <18
(Similarly for the case where « returns F here.)

To complete the proof, we need to observe that the classifier is small (just linear in
the size of the concept ¢ = x1, ..., x3,), that the class of classifiers C contains just one
classifier (correspondingto (/\; si) A (/\j x;)) and henceisclearly PAC-learnable, and that
thedistribution hasalinearly-sized representation sinceit isjust aproduct distribution. 0O

2
PP ix@A-p) xer(F,T)= g ¥ 2y > y.

Theorem 7 uses the following lemma:

Lemma A.1. An agent must take one pfpossible actiong$as, ..., a,}, whose true costs
are c(a;) € R. However, due to sampling error, the agent perceives these cos$tg,as
where|c(a;) — c(a;)| < B;i. Then the difference in cost between the optimal agent, who
takes actioru’! = argmi n, {c(ai)}, and the"estimation-basedagent, who takes action

a =argmin, {¢(a;)}, is bounded bBqx, Where,.x = max{p;}.

Proof.
c(a) — c(aom) = c(a) — ¢@a) + c(a) — é(aow) + é(aow) - c(aow)
< Ba+ 0+ Buor
< Bmax + Bmax = 2 Bmax- O

Proof of Theorem 7. We first need some definitions. Given any x* € {0, 1, x}", let
Ext(x*) C {0, 1} be the set of complete tuples that extend x*—i.e., each x € Ext(x™)
is a complete tuple that agrees with each attribute value specified in x*.

Let P;L‘)l = P(Ext(x}_ ;) | Ext(x*)) bethe probability that attribute x; hasthe value 1,
given the partial instance x*—e.g., P%ﬁ’l*) = P((0, %, 1) | (0, , %)) is the probability that
attribute x3 will have value 1, given that we know attribute x; had value 0—and

Pf* = P((p(x) =T |x extende*) = Z P(go(x) =T| x*).

x€EXt(x*)
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Notice both Pi>1 and PY, are conditional probabilities—each relative to the conditioning

event that x* occurs (with probability P(x*) = Y gy P(x)). The P, and Pt
guantities shown in Fig. 2 are empirical estimates of these quantities. There is one such
number for each of the g(k) = Y_*_, (1) 2" < k(2n)* partial instances (in X¢ ,) that can
occur.

Asshownin Fig. 2, the L% learner first draws

2 H4k+6
erry,2 log 4g(k)

9s2 )
instances. (Recall from Eq. (2) that erry; = max{err(T, F), err(F, T)} isthe largest error
for giving the wrong response.)

Wewill usetheseinstancesto produce estimates P (x* ocecurs) of P(x* occurs) = P(x™*)
and ﬁ(w(x) =T, x extendsx*) of P(¢(x) =T, x extendsx*), for eachx* € X7 ,. Notice
these are each unconditionalprobabilities.

We first bound the probability that any of these 2g(k) estimates is more than
3¢ /(8erry 4%) from the correct value. Here, we use Hoeffding's Inequality [10,24], which
bounds the probability that the empirical average of m iid (independent and identically
distributed) instances X; € [0, 1] with common mean w, will be far from w:

1 m
(5
=

Now consider a fixed x* € X ,, and let the X" variable be 1 if a randomly drawn
instance will extend x*, and O otherwise. After M instances, the chance that the empirical
estimate P (x* occurs) = = "M, X*" will be more than » = 3¢/(8erry 4) away from
w = P(x* occurs) will be under 2exp(—2M (3¢/(8erry 49)?) < §/(2g(k)). Hence, the
probability that any of the g (k) possible partial instances will be more than 3¢/ (8 erry, 4%)
off is

M=Mk,e,8) = (A.3)

- A) < 2e2mi?, (A.4)

P(3x* € X§ | P(x* occurs) — P(x* occurs)| > 1)
< ) P(|P(x* occurs) — P(x* occurs)| > 1)
x*eXg k
é é
<glh) X ——— =—.
g(k) el 2
Similarly,

P<3x* € X} 1 |P(p(x) =T, x extends x*)

3e 8
J— — * - —
P(ga(x) T, x extendsx )| > 8errM4’<> < >

Therefore, with probability at least 1 — §, we can assumethat all of the estimates are within
A = 3e/(8erry 4%) of correct—i.e.,
| P(x* occurs) — P(x* occurs)| < 2,

—~ A.5
|P(<p(x) =T, x extende*) - P((p(x) =T, x extende*)| <A (A-5)
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Now let «°P" be the optimal active classifier, @ be the classifier returned by our L®)
learner, which uses the estimates shown above, and AFTER(«, x§) be total expected cost
of using the active classifier a. As P(x3) = P(xg) = 1for x5 = (x,..., *) € X, we need
only show that

AFTER(&, x§) — AFTER(a??', x§) <&
when our estimates satisfy Eq. (A.5). Given that P(x%) = P(x§) = 1, it suffices to prove
that

Ap = |P(x}) x AFTER(&, x}) — P(x}) x AFTER(a”", x})|

e (4k+l—l o 1)

< (A6)

holdsfor al x; € X7 (i.e., for all partial instances that include exactly ¢ specified values),
asthismeans, in particular,
|AFTER(&, x§) — AFTER(a”", x3)|

8(4k+1_0 _ 1)

= |P(x3) x AFTER(&, x8) — P(x§) x AFTER(a”", x)| < prE)

<é&

asdesired.

We prove Eq. (A.6) by induction. We deal first with the base ¢ = k case. We will
use C(x;, x) to refer to the cost of the action x < (T, F,1,...,n}, given the partia
instance x;; and C(x;, x) to refer to our estimate of this cost. By Lemma A.1 (shown
above), we need only bound the difference between P(x;) x C(x;, x) and P(x}) x
C(x}, x),forthetwooptions—y =7 and x = F—as|P(x) x AFTER(a, x}) — P(x}) x
AFTER(a’?", x})| is a most twice the larger of these differences.

Now observethat

P(x;) x C(xg, F) = P(x{) x PL. x em(F,T)
= P(x extendsx;) x P(p(x) =T | x extendsx;) x err(F, T)
= P(p(x)=T, x extendsx;) x err(F, T)
and similarly
ﬁ(x;:) X 6()6;:, F) = ﬁ(gp(x) =T, x extende,f) x er(F,T).
Hence the difference between the true and estimated values

[P(x7)  Cxj. F) = P(s7) x E(sf. F)|
=|P(p(x) =T, x extendsxy) x err(F, T)
— P(x extendsx}, x extendsx;}) x err(F, T)|
=err(F, T) x |P(p(x) =T, x extendsx}) — P(p(x) =T, x extendsx;)|
<er(F,T) x A< A Xery
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as err(F, T) < erry. This is also the error bound for [P (x)) x C(x;,T) — ﬁ(x,j‘) X

C(xk, T)|. Hence, by Lemma A.1, the difference |P(x;j) X AFTER(a, x7) — P(xf) x

AFTER(2?, x})| isat most
3e £

(@ -1)

as desired.
For the inductive step, we need to bound A, given that

App1 = |i5(x2;+1) x AFTER(at, x, 1) — P(x;, 1) x AFTER(a”, x},4)|
(4= -1)

4k+1
holdsfor all x;, , € X7, ;. Again, using LemmaA.1, we need only bound the largest error
of any of then + 2 options, at x;.

For x € {T, F}, theerror |P(x}) x C(x}, x)— P(x}) x C(x}, x)| remainsbounded by
Aerry using the same proof as for x;°. For the other actionsi € {1, ..., n}, we use Eq. (4)
and the fact that AFTER(«, x;, ;) isthevalueof C[x;, ;] given the probability values used
(ﬁ(-) for AFTER(a, x7, 1), and P(-) for AFTER(a®P!, x7,11)), wesee

1P(ct) % (et 1) Pxt) x 0 1)

= |P(x}) x [ci + P(x; = 1| x extendsx*)AFTER(a””, x}_ )
+ P(x; = 0| x extends x*) AFTER(a””", x}_, o) ]
— P(x}) x [ + P(x; = 1| x extendsx*)AFTER[a, x}, ]
+ P(x; = 0| x extends x*)AFTER[a”", x%_ o]]|

<eil P(xf) = P(x7)]
+ |[P(x;:—>l’ *)AFTER( opt’ xz*|—>l) +P( Xir>00 X )AFTER( Opt’ X?HO)]

— [P (x} 1, x*)AFTER[e, X7, 1] + P(x( 0, x*)AFTER[a, x}0]]|

ik + | P(xjL 1, x*)AFTER(a?", x},q) — P(x]L 1, x*)AFTER[e, x7 4 ]|
+ | P(x7 0, x*)AFTER(a®P", 7, o) — P(x7, 0, x*) AFTER[a, X}, 0]

<errM)»+Ag+1+A@+1<AerrM+2m(4k —L 1).

(This uses the inductive assumption, our unproblematic assumption that c; < erry,
our assumption (Eg. (A.5)) that |P(x* occurs) — P(x* occurs)| < A, and the fact that
P(x”_)o, x*) issimply P(x”_)o) )

Hence, from Lemma A.1, we know that

Ar < 2max{xerrM, ey, AerrM+2—(4" —¢ 1)}

4k+1
3¢ Kt
gear2gal )]

3+aAx 4t —4]=——

4k+l 4 1)

4k+1 [ 4k+l (

as desired.
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All that remains is to show that the L®) algorithm is computationally efficient. L®
needs to collect only a polynomial number, M, of instances to estimate the values of

a polynomial number 2 x g(k) of probability values, for PY, and P!:>°. Given these
estimates, Helper_L® needs to compute the (2 + n) x 2g(k) vauesof C(x*, i), aswell
as the 2g(k) values of Op[x*] and AFTER[x*]; each of these computations requiring
constant time. Finally, BUILDTREE requires O(2¥) time to build the binary tree of
depth k. Hence, the total run time is O(M (k) x 2g(k) + (2 + n) x g(k) + 2. As
g(k) = 2K and M (k) > n, wehavearuntimeof O(g(k) x M(k)) = O((erry /e)2n*[Inn +
log1/8]), which is polynomial in the relevant quantities. (Here we view k as a
constant.) O

Proof of Corollary 8. To accommodate r class labelsand s values for each attribute, our
Lﬁ'? algorithm (and subroutines) must compute, for each x*, the r values Pj’f‘”’ (each an

estimate of Pff@" = P(p(x) =¢; | x extendsx*)); and the n x s values P;?j to estimate
P =P 10,

As shown in the proof of Theoremj, these quantitiei will be estimated well enough if
we can estimate the r + 1 quantities P (x* occurs) and P (¢ (x) = class#j, x extendsx™),

for j = 1..r, for each of the

k

grs)=3" (’:) st < k(sn)t

i=0
partially-specified instances x*; i.e., if we can guarantee the chance that any one of these
(r + 1) grs(k) unconditional quantities is greater than A = 3¢/(8erry 4%y away from the
correct value, isat most §.

Thisrequires at most

242k+3 2 1 . 2
M,,s(k)zerrﬂégz log r+ ;g"‘(k) =O<16"<er8ﬂ> [klog(sn)Jrlog%D

instances. Using the same arguments given above, the overall Lﬁ’? algorithm has

computational complexity

2
O(Mys (k) x 1.5 (k) = O((sn)k (ergﬂ> [log(sn) +log gD

asclamed. O

Proof of Theorem 11. As shown in Fig. 3, the LY agorithm first collects a set of
instances, then produces an active classifier «© using these instances. We need only prove
(1) if thissampleistruly representative (i.e., if P(x;i=0)=P(x; = 0)), then the resulting
«C is optimal; and (2) the sample size is sufficient to simultaneously estimate the costs
of al possible active classifiers (for conjunctions) to within /2, with probability at least
1— 6. Inparticular, let " bethe optimal classifier. If (2) holds, then we know that
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ECp(a®) — ECp ()
=[ECp(a®) — ECh(a)] + [ECr(a©) — ECh ()]
+ [ECr (") — ECp ()]
< [ECh(a©) — ECp(a%)| + 0+ [ECh(a""") — ECp (o)
<e/240+4+¢/2=c¢.

To prove (2), we note that there are at most 3" n! possible active classifiers for
conjunctions. (This requires observing that we need only consider classifiers that
correspond to linear decision trees (see Fig. 4), and there are only n! orderings of the
variables, and each variable can occur either positively (as*“ x;") or negatively (as“—x;"),
or be omitted.) Moreover, we need only consider classifiers whose costs range from 0 to
err(F, T), asour space of classifierstrivially includes the degenerate classifier that ssimply
returns F', whose error is at most err(F, T'). Now realize that each instance in the training
sample is providing an estimate of the expected cost of each classifier. We can then use
Hoeffding’s Inequality (Eq. (A.4)) to bound our estimates of the quality of the classifiers:
After M, ¢ instances, the probability that our empirical estimate of any classifier, based
on this sample (and the induced values ¢; = P(xi = 0)) will be more that ¢/2 off is
under

e/2 \? 8
2exp( —2My o[ —L5—) ) < —.
eXp< LG(err(F, T)) ) 3!

Hence, the chance that our estimates of any of the 3"n! classifiers will be off by more than
&/2 isunder the3”n'3n ; =9, asdesired.

We therefore need only prove (1): that L¢ produces the active classifier that is optimal,
with respect to the sample. It istrivial to see that the “intersection” step (line [R1]) PAC-
learns the target concept; cf., [48]. To show that the minimal-cost active classifier will
consider these variables in order of increasing values of ¢;/g; (where ¢; is the cost of
acquiring the value of x;), consider a classifier o that does not—e.g., that asks for x, 11
before x,., where

Cr Cr+1
— < —
qr  4qr+1

(A7)

For now, assume there is only a single violation. Here, using p; = P(x1=1), a’s cost
iISA+ Q X (¢cr+1+ pry1cr) + O X pr41 X pr X B, Where A is the cost of dealing with
the first portion of the classfler before reaching x,1, involving tests whose collective
success probability is Q =[] 73 p,, and B isthe cost associated with the remainder of the
classifier, after x,. To show that o cannot be optimal, let o’ be a classifier that differsfrom
« only by exchanging these variables, placing x, before x, ;1. Given Eq. (A.7), the cost of
a’, whichis A + Q x (¢, + prcr+1) + Q X pr X pr+1 X B, isunder the cost of «. Note
that the cost of classifier with more violations would be yet less.

Now let «,, be the linear-structured classifier (Fig. 4) that includes m variables, in
this ¢;/g; order; we need only show that oy has the minimal expected cost—i.e., that
m = £. Consider sequentially growing the classifier tree. The classifier «, |s better than
a1 when the difference between their costs ECp (o) — ECp (ar—1) = ([]; 23 p, -
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grerr(F, T)] is negative—i.e.,, when ¢, /q, < err(F, T). This means the optimal classifier
will have all-and-only thefirst ¢ of theterms, asshownin Fig. 3. O

Proposition A.2. Usingk = k(err, ¢) defined in Definitiorl3, there is an active classifier
af in Ak@mOxemu/e whose expected cost is withinof optimal i.e., if o* is a classifier
with minimal expected cost, BCa*) < ECp () + &.

Proof. Let the random variable N represent the number of actions taken by an optimal
strategy o™ on a specific example. Proposition 14 bounded the expected value of N:
E[N] < k. Using the Markov Inequality,

P(N >k xerry/e) < E[N]/(k xerry/e) <e/ermy.

Now let o} be the classifier formed by truncating o* after k x erry /e actions, and just
returning, say, F here. Note that o} isin A*E"OxeMu/e This o will be slightly worse
than o*: at most &/erry, of thetime, o will produce an error that is at most erry,. Hence,
ECp(a*) < ECp(af) + ¢, asclaimed. O

Proof of Theorem 15. We again reduceto our problem the NP-complete problem EXACT
COVER BY 3-SETS (x3c) (shown in proof of Theorem 5).

Given any x3c instance (Y, S), with |Y| = 3r and |S| = m, we produce a PACT-
learning instance whose m variables x; correspond to the subsets § = {s;}7"_,, and whose
training instances (basically) correspond to the elementsin Y. The concept to be learnedis
P=XLN - NXpy.

We will use atotal of (9r(r — 1))/2y training instances (including some duplicates;
there are 3r 4 2 distinct instances). Using f = 4y /(3(r — 1)), these instances are:

o 3r negativeinstances, {x¥, ..., x®"} whereeach x ) = (x{", ..., x\), wherexﬁ.i) =
0iff y; € s; (and = 1 otherwise). (We assume that no y; isin every s;—for otherwise,
the nonexistence of an exact cover would be immediate.) We include each of these
instances one time, so the empirical probability of eachis f/(6r);

e onepositiveingtance x*) = (1,1, ..., 1) included 3r times, so its empirical probabil-
ity is f/2;

e one negative instance x(~) = (0,0, ..., 0), included 3r[3(r — 1) — 4y]/2y times, s0
itsempirical probabilityis1— f.

L et the cost of obtaining the value of attribute x; bec; > 1, and the penalty for being wrong
be R =9r(r — 1)/y. We assume empty blocking.

Claim: For every exact cover, there corresponds (in a sense discussed below) an
active classifier in A7 which classifies every training instance correctly. All other
classifiers (i.e., that do not correspond to any exact cover in this sense) have average cost
>min(2,1+ y + f/6r) onthetraining set.

<: If there is an exact cover C = {s;,, ..., s;,} C S, then form an active classifier af
whose associated decisiontreeis“linear” (see Fig. 4), with nodeslabeled by the setss € C,
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goingto “F” if si; =0, and further down if si; = 1. Thefinal internal nodeiss;, ; its“1”-
labeled arc leadsto “ T . The expected number of queries used by o€ is:

1-fx1 :; to deal with x)
+f/2xr :; to deal with xV)
+fx@r+1)/4 ;- to deal with al 3r x's

=1+ f[3r —1)/4=1+y.

The first line uses the observation that x(—), which occurs with probability P(x(™)) =
1— £, will beanswered (correctly) after examining thefirst node. The second line usesthe
fact that x(*) requires examining al » nodes in the decision tree. The third line requires
noting first that exactly 3 of the x©’swill reach the “false”-branch of each of the nodesin
the tree. This means the total number of queriesinvolved in handling al 3r of the x’sis

r
P(x®) x 3Zj - 6—fr3r(r +1)/2.
j=1
Clearly this classifier always returns the correct answer.

= First observethat if a classifier misclassifies even one sample point, then its cost is
at least

F/(6r) x R = 1 4y 9(r—1) _

= 2
6r3r—1) ’

as required.

Thuswe restrict attention to classifiers that classify al sample points correctly. We can
further restrict attention to such classifiers that are equivalent to linear trees, i.e., that test
some sequence s;y, iy, - - -, 8i;, iN order, stop and announce F if any s;; = 0, and announce
T ifals;; = 1. If wearegiven any other classifier (e.g., that makesfurther tests after seeing
some s;; = 0) we can modify it to construct alinear classifier that is asleast as good, and
so it suffices to prove the result for such linear trees. Note that, necessarily, k > r. For if
k < r, the classifier must make an error on at least one x . And k = r, the classifier must
either correspond to an exact cover, or must also make at least one misclassification.

Since k > r and the first r tests do not correspond to an exact cover, then there must
be at least one x¥) that reaches the (r + 1)th internal node (i.e., takes more than r tests to
classify). In fact, the total number of tests to classify all 3r of the x® must be at least

r—1

P(x®) x ((32;’) +2r+(r+ 1)) = é(1+ 3r(r+1)/2).
j=1

Thus, the total number of tests used by this classifier isat least 1 + y + f/6r. Since each

test costs at least ¢; > 1, thisverifiesthe claim.

To complete the proof of the theorem, consider x3c instances (Y, S) such that s; =
{y3i+1, y3i+2, y3i+3} for i = 1,...,r. Thus, it is known that there is at least one exact
cover. Clearly, given this knowledge, the problem of determining whether there exists
any other exact cover remains NP-complete. Let the cost of querying s; for i < r be
1+ f/(12r(1+ y)), and the cost of querying any other s; be 1. From the claim, we know
that there is an optimal classifier in A~11” (because there is at |east one exact cover). In
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fact, the cost of thisclassifier is1+y + f/12r. By the claim, thisisbetter than any classifier
notbased on an exact cover. However, if thereis aclassifier based on any other exact cover
(i.e., other than {s1, ..., s,}) then at least one query in thisother classifier costsonly ¢; = 1.
In the worst case, this cheaper query is the last query, but even then the expected cost will
bel+y + f/12r — c wherec = £2/(24r2(1+ y)). Thus, the ability to PACT-learn under
these conditions, taking ¢ = ¢/2, implies the ability to tell if there is more than one exact
cover. Thisprovestheresult. O

Proof of Theorem 16. We know that the L* learning algorithm (Fig. 2) can PACT-learn
AF under empty blocking, using

2 H4k+6
ey, 2 log 4¢(k)
9g2 k)
compl etely-specified, labeled instances, and so to consider al » attributes (i.e., k = n), it

needstouse (e, §) = M, (¢, §) instances.

AsshowninFig. 5, LAC* first draws k1 = h(1/2, 1/2) instances, and for each, paysthe
cost ) ; ¢; tofill-in al of their attribute values. It then guesses T if err(T, F) < err(F, T),
and F otherwise; and so pays at most a penalty of

My (e, 8) =

(A.8)

efmin=min{err(T, F), err(F, T)}.

Thisphase, therefore, costsat most 11 x W where W = ermin+Y_; ¢;. It thenuses L™ and
these now compl etel y-specified and |abel ed instancesto construct aclassifier og whose cost
will be, with probability at least 1/2, within 1/2 of thebest—i.e., ECp(a1) —ECp (a?P") <
1/2. We then exploit this pretty-good classifier, using it to deal with the next batch of

Y1 = hl[ZlW — 1]

instances. After these m1 = hy + Y1 instances, we are 50% confident that the average
differenceis only

hix [W—ECp@”)l+V1x1/2 _
hi+7Y1 =

The LAC* algorithm then repeats this “explore then exploit” cycle, but with tighter
bounds: Here, the exploration phase draws ho = h(1/4, 1/4) instances, and for each, pays
>"; ci toget thevalues of al attributes, and then accepts an efrmin penalty for guessing the
“safer” option. It then uses this sample to produce the « active classifier, then exploits
this o, for the next Yo = [22W — 1] x (h1 + ho + Y1) instances. Here, we are 1 — 1/4
confident that thisfinal batch of instanceswill have expected error at most 1/4. Even if we
no longer assume that the first set of instancesis within 1/2 of optimal, we see that, after
m2 = h1 + Y1 + ho + Yo instances, the differenceis

(h1+Y1+ho) x [W — ECp(@)] + Y2 x 1/4 _1
hi+Y14+ho+ Yo S 2

In general, our LAC continueswith this explore-exploit loop—on the rth cycle, it draws
h, =h(1/2", 1/2") instances, pays to see the values of all of the attribute and guesses the
least-risk label, then uses these instances to produce an active classifier «, whose cost is,

diff (LAC*, m1) <

diff (LAC*, m2) <
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with probability at least 1 — 1/2", within 1/2" of optimal. It then exploits this «, for the
next Y, =[2°W — 1] x [Yi_1 hi + Z?;ll Y;] instances. It is easy to confirm that, after
m, = ;_qhi +> ;_1Y; instances, the average difference is, with probability at least
1-2r,

Notethat, asr grows, we becomeincreasingly confident that the resulting o, will be better,
at arate that insures that the running average differenceis also going to 0.

Notes.Of course, in practice there are several things we could do to produce a more
effective on-line learning algorithm. For example, rather than just return the least risk label
(T or F) in the exploration phase of stage r + 1, we could instead use «, to produce a
label.

Also, we don’t have to use M, (1/2,1/2) on the first round; we could instead grow
the depth of the tree, in paralel with decreasing the ¢ and § terms; i.e, use i} =
M1(1/2,1/2), then hl, = M2(1/4,1/4), ..., h,. = M,(1/2",1/2"), ...until reaching A/, =
M,(1/2",1/2"), and then after leaving the tree depth at » and only updating ¢ and §.

Finally, notice we use a completely different sample for each «;; i.e., we do not re-use
Si when learning «; for any j > i. This proof did not explore subtle ways of re-using these
S;sagain later.

Notice that none of these tricks would change the correctness of the theorem’s
asymptoticclam. 0O
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