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Abstract

Most classification algorithms are “passive”, in that they assign a class label to each instance
based only on the description given, even if that description is incomplete. By contrast, an active
classifier can—at some cost—obtain the values of some unspecified attributes, before deciding upon
a class label. This can be useful, for instance, when deciding whether to gather information relevant
to a medical procedure or experiment. The expected utility of using an active classifier depends
on both the cost required to obtain the values of additional attributes and the penalty incurred if the
classifier outputs the wrong classification. This paper analyzes the problem of learningoptimal active
classifiers, using a variant of the probably-approximately-correct (PAC) model. After defining the
framework, we show that this task can be achieved efficiently when the active classifier is allowed to
perform only (at most) a constant number of tests. We then show that, in more general environments,
this task of learning optimal active classifiers is often intractable.  2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

A classifieris a function that assigns a class label to an instance. For example, given
information about a credit-card applicant, a classifier could decide whether the person is a
good risk and so should receive a credit card. Similarly, given information about a patient
(such as symptoms and test values), a diagnostic classifier might specify the disease; given
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a visual scene of the world, a visual classifier might decide what object is being depicted;
given a sentence, a context sensitive classifier might infer that the word “it” was intended
to be “in” in the sentence “The man it the park”, etc. Most classifiers have no
control over how much data they see. A more versatile classifier, however, might first
seek additional information about the instance before deciding upon a classification. As
obtaining data usually involves costs—e.g., to perform a medical test, to run a specialized
image interpreter or to run some additional processing such as partial parsing on a
sentence—a classifier should not necessarily request all possible pieces of information.
We therefore consider active classifiers: functions that, given a partially specified instance,
return either a class label or a strategy that specifies which test should be performed next
(and recur).

To make this more concrete, suppose a “hepatitis” classifier is initially told only that
a patient is jaundiced—i.e., her eyes are yellowish. A passive classifier must then return
either the diagnosis that the patient has hepatitis, or the diagnosis that she does not. An
active classifier could return either of these responses, or it could perhaps follow a strategy:
order a blood test, and if that test is positive, return the diagnosis “hepatitis”, but if the
blood test is negative, then order a liver biopsy, and decide on the diagnosis based on
the result of this test. Many other classification situations fit this active classifier model.
For example, a context sensitive text analyzer could make a decision based on the raw
information available in the text, use more information such as part-of-speech tags [20]
or, when the decision seems to be yet more difficult, choose to perform partial parsing of
the sentence [14] to improve its accuracy. Similarly, credit card companies, in deciding
whether to give special deals to “accommodate” certain customers, must decide whether it
is worth the expense of gathering information about those customers (e.g., by sending out
questionnaires, thoroughly investigating their previous spending patterns, etc.). An “active
vision” system may also deal with this situation, in two senses: first, a camera platform on
a mobile robot must decide whether it is worth the expense of moving the camera to obtain
a better view [6]; and second, an image analyzer must decide which operators to use in
analyzing a single pose [11,42].

In the standard learning paradigm, a classifier is considered good precisely if it correctly
identifies the class label for as many of the instances as possible. This measure is too
simplistic for active classifiers. Here, the correct measure must be decision theoretic,
balancing the costs of acquiring additional information against the penalties for incorrect
classification. For instance, it may not be worth spending $1,000 to perform an expensive
test to distinguish two minor variants of hepatitis, especially if the treatment is the same for
both [37]; similarly, it is not appropriate to spend $100 to obtain the information required
to win a $1 bet.

When dealing with any single instance, an active classifier α must pay a total cost,
defined as the sum of the penalty (if the answer returned is wrong) plus all costs incurred.
Ideally, we would like to find an active classifier whose expected total cost, over the
distribution of instances that the classifier encounters, is minimum.

This paper investigates the task of learning such active classifiers. A distinctive aspect
of our proposal is that we look at the problem of learning active classifiers in an integrated
fashion, as opposed to the “two phase” approach: first learning the underlying concept and
then, in a separate phase that does not involve learning, finding the best active classifier.
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Fig. 1. Active classification framework.

After formally defining our framework in Section 2, we explain this idea and argue, in
Section 3, that it has the potential to improve over the two-phase approach. The rest of the
paper investigates whether this potential can be realized.

The results are a mix of good and bad news. Section 4 demonstrates an interesting
case in which active classifiers can be learned efficiently; then Section 5 proves that
the general problem is very often intractable. Section 6 extends our basic framework.
Our current framework charges the classifier for each value it requests and receives, but
gives the learner this information for free. This section considers the slightly different
“on-line” learning model, which charges the learner for answering questions during the
learning process. Section 7 contrasts our approach with previous related work; in particular,
it connects our framework with “episodic reinforcement learning”, and points out that
our results on learning active classifiers is different from “active learning”, which deals
with learners that actively learn passiveclassifiers. Section 8 concludes with some ideas
for future work and some thoughts on the contrast between active learning and passive
classifiers. The appendix provides proofs for the theorems presented in this paper. (The
text sketches proofs for the propositions.)

2. Framework

To simplify the presentation, we assume that all attributes, as well as the classification
itself, are binary.1 Thus we can identify each domain instance with a finite vector of
Boolean attributes x = 〈x1, . . . , xn〉, and let X = {0,1}n be the set of all possible domain
instances. As each instance either belongs to the underlying concept or not (e.g., the
individual with a particular set of attributes either does, or does not, have hepatitis), we
can view this concept ϕ as an indicator function ϕ :X �→ {T ,F }, where x ∈X is a member
of ϕ iff ϕ(x)= T . We assume that the learner knows the set of possible concepts, C = {ϕi},
as well as how each concept is expressed; see discussion below.

1 We will later extend our results to non-binary attributes and class labels; see Corollary 8. Note that even if
the concept is conceptually “binary”, it is often useful to have an “I-don’t-know” option available to the classifier,
in addition to T and F .
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A (labeled) example of a concept ϕ ∈ C is a pair 〈x, ϕ(x)〉 ∈ X × {T ,F }. We assume
there is a stationary distribution P :X �→ [0,1] over the space of domain instances,
according to which random instances are drawn independently, both during training and
during testing of the learning algorithm.

To continue the earlier “Hepatitis” example, suppose the first attribute x1 in the instance
x = 〈x1, x2, x3〉 corresponds to the jaundice test and x2 and x3 correspond (respectively) to
particular tests of the patient’s blood and liver. Then the instance 〈1,0,1〉 corresponds to a
patient whose blood would test negatively, but whose jaundice and liver tests (x1 and x3)
would both be positive.2 Assume that the concept associated with hepatitis corresponds to
any tuple 〈x1, x2, x3〉 where x1 = 1 and either x2 = 1 or x3 = 1; i.e., Hep(〈x1, x2, x3〉) ≡
x1 ∧ (x2 ∨ x3). Hence labeled examples of the concept hepatitis include 〈〈1,0,1〉, T 〉,
〈〈1,0,0〉,F 〉, and 〈〈0,1,1〉,F 〉. Further, P(x) specifies the probability of encountering
a patient with the particular set of symptoms specified by x; e.g., P(〈1,0,1〉) = 0.01
means 1% of the time we will deal with a patient with positive jaundice and liver tests,
but negative blood test. (Notice we are assuming that class assignments are deterministic;
e.g., every 〈1,0,1〉 patient has hepatitis. It is straightforward to extend our analysis to
stochastic assignments—e.g., where say 90% of the patients with this set of symptoms
have hepatitis.)

The above description implicitly suggests that the classifier has to pay for the value
of each attribute it sees (see Section 2.1), as the classifier initially sees nothing (read
“〈∗,∗, . . . ,∗〉”). We will refer to this as empty blocking. In some situations, however, the
classifier will initially see some of the attribute values for free. (E.g., this information
may be available from an already completed questionnaire, or from a low-level feature
extractor that is always run.) In general, we assume there is a separate blocking process
β that, for each instance, first stochastically selects a subset of the attributes, and then
reveals the values of those attributes to the classifier, for free. (See [36,45] for a more
general discussion of the blocking models in general.) Under any blocking model, the
active classifier is subsequently allowed to obtain (at a price) the values of the remaining
blocked attributes. This leads to the framework suggested by Fig. 1.

Definition 1 (Active classifier). An active classifier is a function

α : {0,1,∗}n �→ {T ,F,1,2, . . . , n},
where α(〈x1, x2, . . . , xn〉)= T (respectively,F ) means the classifier returns the categorical
answer T (respectively, F ) given partial instance 〈x1, x2, . . . , xn〉 ∈ {0,1,∗}. Returning
α(〈x1, x2, . . . , xn〉) = i ∈ {1, . . . , n} means the classifier is requesting the value of the xi
attribute. We allow α(〈x1, x2, . . . , xn〉) = i only when xi = ∗. (Once the value for xi has
been provided, the active classifier then recurs on the now-more-completely instantiated
instance.)

Hence, continuing with the example above, α(〈1,∗,∗〉) = 2 means the classifier is
requesting the value of x2—i.e., asking for the results of performing the blood test on

2 N.b., we are not committing to performing these tests. We are merely stating the outcomes of these tests on
the current patient, if these tests are performed.
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the patient. The classifier then calls itself on the result, say 〈1,0,∗〉, perhaps to return
α(〈1,0,∗〉)= F . In general, of course, yet other subsequent calls to α might be necessary
(sequentially requesting the values for several variables) before a final answer is produced.

The learner’s task may be to find the optimal active classifier amongst the set of all
possible classifiers Aall , or to find the best classifier of some particular type A ⊆ Aall .
Generally, such A should be more than simply a restricted subset of Aall ; it should
be a “programming language” in that it specifies a representation and a computational
model for its members. Thus, for any active classifier α, we can consider its size, |α|,
as well as its running time (i.e., the time α requires, given input x∗ ∈ {0,1,∗}n, to
output its recommendation). Naturally, we are interested in finding classifiers whose
size is polynomial in the relevant quantities (such as |ϕ|, the size of the true concept).
Furthermore, we want active classifiers that execute quickly. As any particular active
classifier only has finitely many inputs, we cannot speak of its asymptotic execution time
in the sense of standard complexity theory. We can, however, impose the requirement of
efficient execution indirectly, as a property of the computational model given by A.3 In
this paper we restrict our attention to subclasses A with the property that

there is some fixed polynomial pA(·) such that,
for all α ∈A, the running time of α is at most pA(|α|).

The question of how best to represent classifiers is a subtle one, and largely beyond
the scope of this paper. In the following we occasionally refer to a very simple lookup-
table representation language. In this, one simply lists the classifier’s recommendations
for various tuples x∗ ∈ {0,1,∗}n; if the classifier encounters a tuple that is not on the list,
it performs some constant action (perhaps announce the classification “F ”). The size of
an active classifier thus represented is just the length of the given list, and the run-time
complexity of using such a classifier is at most linear in its size.

We will later consider the following class of classifiers that are allowed to be active at
most k times.

Definition 2. For any constant k ∈N , Ak is the class of all active classifiers α such that
α(x∗) ∈ {T ,F } whenever x∗ has k specified values (i.e., n − k ∗’s). Hence, each α ∈ A
has the option of performing additional tests on observing a partial instance that specifies
strictly fewer than k attributes. For completeness, we assume α gives a constant response
(e.g., F ) if there are more than k specified values.

Notice that the size of any such classifier, in the lookup-table representation, is at most

g(k)
�=

k∑
i=0

(
n

i

)
2i =O

(
k(2n)k

)
(1)

3 This is very similar to the standard PAC requirement that the output representation can be evaluated
efficiently [48]. E.g., our active classifier can be a polynomial time circuit, but cannot be an arbitrary polynomial-
sized Bayesian network [12].
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as this bounds the number of distinct partial instances in which the classifier must perform
an action (either return a truth-value, or perform a test).

It is easy to motivate this Ak class. Consider a time-critical task, where a classification
returned after k seconds is useless—perhaps because we know the patient will be dead by
then, or the part on the conveyer belt that needs to be classified will be beyond the range
of the mechanical sorter. Similarly, many text, speech and image processors need to run
real-time; here again it is reasonable to limit the amount of time used before making a
decision.

2.1. Evaluating an active classifier

To evaluate the quality of an active classifier, we assume as given a cost function
ci = c(i) ∈ R (for i = 1, . . . , n) that specifies the cost of obtaining the value of the ith
attribute xi ; and a penalty function err(v1, v2), which specifies the penalty for returning
v1 ∈ {T ,F } when the correct answer is v2 ∈ {T ,F }. Without loss of generality, we can
assume err(T ,T )= err(F,F )= 0.4 To avoid degeneracy, we also assume that err(T ,F ) >
0 and err(F,T ) > 0, and also ci � 0. Further, as it never makes sense to perform a test
whose cost ci exceeds

errM
�=max

{
err(T ,F ), err(F,T )

}
(2)

we will assume ci � errM for all i .5

Suppose that x∗ ∈ {0,1,∗}n represents the active classifier’s current knowledge about
the instance x ∈ X. We define the “total cost” tcα(x, x∗) ∈ R to be the amount that α
would spend to complete the classification, together with the misclassification penalty, if
appropriate.

As suggested by the notation, we assume the tcα(x, x∗) cost function is “time
independent”—i.e., the cost of requesting a value of an attribute is independent of when it
is done. This means the value tcα(x, x∗) can be determined recursively:

If α(x∗) ∈ {T ,F }, then tcα(x, x∗)= err(α(x∗), ϕ(x)) where ϕ is the target formula.
Otherwise, if α(x∗) = i ∈ {1, . . . , n}, then tcα(x, x∗) = c(i) + tcα(x, x∗i �→x[i]) where
x∗i �→x[i] is the result of setting the value of the variable indexed by i = α(x∗) to x[i].

As an example, suppose x = 〈1,0,1〉, x∗ = 〈∗,∗,∗〉 (i.e., we have not yet asked for the
value of any attribute), and α(x∗)= 2. Then x∗2 �→0 = 〈∗,0,∗〉, because α sets x∗2 to x[2],
i.e., to 0. If we suppose further that α(〈∗,0,∗〉)= F , and ϕ(〈1,0,1〉 = T , then

4 In some situations the classifier may have to pay a positive cost even if the classification is correct. However,
as the classifier will eventually have to pay exactly one of {err(F,F ), err(T ,F )} for every negative instance, we
need only consider the differencebetween these values when deciding on the optimal active classifier. We can
therefore shift the values, re-setting err(T ,F ) to this difference, and re-setting err(F,F ) to 0. The same argument
shows that we can view err(T ,T )= 0.

5 While the condition ci � min{err(T ,F ), err(F,T )} is sufficient for this situation, we use errM (based on
max) as errM is later used in several other proofs. Also, to avoid a possible confusion: each ci quantity is the
amount the active classifier will have to pay if it asks to see the value of the ith attribute. The classifier is not
charged if a “non-empty blocker” reveals the value of this attribute initially.
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tcα(〈1,0,1〉, 〈∗,∗,∗〉) = c
[
α(〈∗,∗,∗〉)]+ tcα(〈1,0,1〉, 〈∗,∗,∗〉2 �→0)

= c(2)+ tcα(〈1,0,1〉, 〈∗,0,∗〉)
= c2 + err

(
α(〈∗,0,∗〉), ϕ(〈1,0,1〉))

= c2 + err(F,T ).

We define the expected total costof the active classifier α as the expected value of
tc(x, β(x)) under the distribution of instances x , P(·), and the blocker β ,

ECP (α)= Eβ,x∈P
[
tcα
(
x,β(x)

)]= ∑
x∈X,x∗∈X∗

P(x)× Pβ(x
∗ | x)× tcα(x, x

∗),

where Pβ(x
∗ | x) is the probability that the block β produces x∗ when given x . Also,

to further simplify the notation, we omit β from ECP (α), as we assume this stochastic
blocker is fixed.

We assume, for now, that a learning algorithm L can draw random correctly-labeled
completely-specified examples 〈x, ϕ(x)〉 according to the distribution P . One justification
for allowing the learner to train on completeinstances, even though the classifier will see
only partial instances, is that it can be cost-effective to invest in a relatively expensive
training phase, if we expect that the active classifier we learn will be used very often.
In this case, the cost of obtaining all attributes while learning, amortized over a much
longer performance phase, might be insignificant. In Section 6, we see this is not a serious
restriction, by showing that we get similar results when considering the more general case,
where the learner must pay to see each attribute.

Here, we evaluate the learner L in terms of the expected total cost of its computation
and output, α ∈A. For any such ϕ ∈ C and A, let αϕ,A,P ∈A be an active classifier whose
expected total cost is minimum among active classifiers in A:

αϕ,A,P = argmin
{
ECP (α) | α ∈A

}
. (3)

(Notice αϕ,A,P also depends on err(·, ·), c(·) and β ; we omit this extra notation. When the
dependence on A and P is clear, we will write αϕ rather than αϕ,A,P .)

We define the following Probably Approximately aCTive learner, a variant of the
standard “Probably Approximately Correct” (PAC) criterion [29,48], to specify the desired
performance of such a learner.

Definition 3 (PACT-learning). Given a set of concepts C defined over X, a probability
distribution P over X, a blocker β , a cost function c(·), and a penalty function err(·, ·),
we say that an algorithm L PACT-learnsa set of active classifiers A (with respect to C , P ,
β , c(·) and err(·, ·)) if, for some polynomial function p(· · ·), for any target concept ϕ ∈ C ,
distribution P and error parameters ε, δ > 0, L runs in time at most p(1/ε,1/δ, |ϕ|), and
outputs an active classifier

α = L
(
ε, δ,C,P,β, c(·), err(·, ·)) ∈A,

whose expected total cost is, with probability at least 1−δ, no more than ε over the minimal
possible expected total cost; i.e.,

∀ϕ ∈ C, ε, δ > 0, P
(
ECP (α) > ECP (αϕ,A,P )+ ε

)
� δ.
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Assuming the learning algorithm L and the active classifier α are deterministic, the
definition only makes use of a fixed (but unknown) probability distribution P , which
governs the occurrences of instances. (If the blocker is stochastic, we need to consider
that distribution as well.) Note also that the number of instances drawn by L can be no
more than the running time, and thus is polynomial in 1/ε,1/δ, |ϕ|. Similarly, the size of
the learned classifier, |α|, is bounded by the learner’s running time, and so is polynomial
as well. Using the requirement that A includes only classifiers whose execution time is
polynomial in their size, we see that α’s run-time is also polynomial in 1/ε,1/δ, |ϕ|.

One restriction inherent in this model is that the value of the requested attributes
are reported sequentially (as opposed to requesting a group of tests to be performed
concurrently [47]). A second restriction is that the classifier makes its decisions based only
on the valuesof attributes it knows—not on how these values were obtained: i.e., were they
visible initially, or did the classifier have to ask for them?6

The class of active classifiers considered, A ⊆ Aall , is an important component of
the above definition. It is often useful to consider only a subset of the class of all
possible active classifiers, perhaps to facilitate learning the classifier, and/or to insure
that the classifier produced is computationally efficient. We should also choose a suitable
representation language. Explicitly enumerating the actions of a classifier (i.e., viewing it
as a function α :X∗ �→ {T ,F }∪X) requires exponential space, even for conceptually trivial
classifiers such as the degenerate classifier that always returns F . We already mentioned
the “lookup-table” encoding, which addresses this problem by specifying a defaultaction
(e.g., announce that every unexceptional instance has the label F ) and only enumerate
exceptions to this default. For concreteness, we have this representation language in mind
throughout this paper unless we specify otherwise, although none of our results depend
critically on this particular choice.

There are a number of more general approaches that might be used to specify A.
An active classifier α can be viewed as making a number of binary decisions based on
the current input x∗ ∈ X∗: E.g., should T be returned?; if not, should F be returned?;
if not, should we ask for x1?; etc. That is, we can write α ≈ 〈eT , eF , e1, . . . , en〉,
where each ei :X∗ �→ {1, 0}, with the understanding that α’s action on 〈x1, x2, . . . , xn〉
is the index of the first of these ei which evaluated to 1; α(〈x1, x2, . . . , xn〉) =
argmini{ei(〈x1, x2, . . . , xn〉) = 1}. Using this representation, we can then restrict each ei
to belong to some specified collection of Boolean concepts E over {0,1,∗}n (á la [40]).
Although it is beyond the scope of this paper, it would be interesting to investigate the
connection between learnability of active classifiers thus specified, and standard PAC-
learnability of the classes E .

6 Although we do not do so here, the cost model could be generalized to allow “context dependent” costs,
where the cost of obtaining attribute i might depend on what other attributes have already been requested.
For example, in medical diagnosis there may be a fixed cost associated with drawing blood which should be
charged only to the first test requiring a blood sample. (Here, the second, and subsequent, blood tests would be
charged only the specific test performed, but not for extracting the blood [17,47].) This extension would, however,
force a corresponding generalization to our definition of an active classifier: If c(i) depends on which tests have
previously been performed, it is not sufficient to act based on the values of known attributes—it is also relevant
to know howwe learned about previous attributes (i.e., did we request the test, or was it initially unblocked?).
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3. Why should we learn active classifiers?

The optimal active classifier is determined by the concept ϕ, the set of active classifiers
A, and the distribution P . (In general, we will assume that the blocker β , error function
err(·, ·) and cost function c(·) are all fixed and known.) If we know all of these components,
then we are faced with a very interesting optimization problem [23,26]—one which,
however, has nothing to do with learning. Sometimes this problem is tractable as, for
instance, in the following case involving product distributions (i.e., distributions in which
the value of each attribute is determined independently) and classifiers that can only ask a
constant number of questions.

Proposition 4. Suppose we know the conceptϕ and the product distribution over instances
P , and are looking for classifiers inAk (i.e., active classifiers that ask for at mostk
attribute values; see Definition2). Then, for anyε > 0, there is an efficient algorithm
that runs in timeO(poly(n,1/ε)) and produces an active classifier inAk whose expected
total cost is withinε of the optimal active classifier inAk .

Proof. Given ϕ and the product distribution P , the classifier can determine the probability
of T versus F for any given (partially specified) instance and thus determine which is the
better response. In general, it can also determine whether it should ask for the value of an
attribute using straightforward dynamic programming; see the proof of Theorem 7 (from
Section 4). ✷

This suggests an obvious way to learn an active classifier: first learn the optimal
underlying (passive) classifier ϕ and the distribution P , and then combine these to
produce the best active classifier αϕ,A,P . While Proposition 4 shows that this “learn then
optimize” approach can sometimes works, there are problems. First, and unsurprisingly,
the optimization problem can be intractable:7

Theorem 5. For someA, P andC, it is NP-hard to find the optimalα∗ ∈A. This result
holds even if we further require that thatC is PAC-learnable, that|α∗| is polynomial in|ϕ|
(i.e., the complexity is not simply because we need a very large classifier), and thatP have
support of sizeO(n), wheren is the number of attributes.(That is,P(x) > 0 for onlyO(n)
different atomic assignments“x”s.)

The result above shows that the complexity of classifying actively is, in a sense,
“independent” of the complexity of learning. Learning the concept and/or the distribution
poses separate problems:

Proposition 6. There are some concept classesC (together withA, P , err(·, ·), c(·)) such
that finding the optimal active classifier is trivial if we are givenϕ ∈ C, but otherwise is
not known to be possible.

7 Recall that proofs of the theorems appear in Appendix A.
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Proof. This claim reduces to the fact that not everything is known to be PAC-learnable [4]
because, if all costs c(xi) are zero and the error err(·, ·) non-trivial, the classifier can ask
for all attributes and then it will classify optimally if and only if it can identify the concept.
(Notice this holds for any blocker β .) ✷

The preceding claims (Proposition 4, Theorem 5 and Proposition 6) show that, while the
“learn then optimize” approach is certainly sufficient(in principle) to determine αϕ , it can
fail (for complexity reasons) in various ways. This paper’s main point, however, is that it
may be easier to simply learn the active classifier directly.In particular, one can sometimes
learn a good active classifier without having learned (even implicitly) the concept or the
distribution. This basic idea—of learning just enough to perform some particular task,
rather than trying to learn everything—is conceptually related to the direction developed
by Khardon and Roth [32] in their Learning to Reasonframework. In the context of logical
reasoning (rather than classification), they show that there are computational advantages in
directly learning a representation tailored to the reasoning task (rather than trying to learn
the general concept itself and then, in a separate phase, perform the reasoning with respect
to it). In a similar vein, our work is also consistent with results showing that discriminative
learning can be more efficient than generative learning; see [39].

When might it be a good idea to learn the active classifier directly? Our main positive
result, given in Section 4, provides one answer in detail. Below are some of the underlying
general issues:

• We do not always need to learn the full concept. For example, suppose we are
considering the empty blocking cases (i.e., the classifier initially sees no attribute
values), and err(·, ·) and c(·) are such that it is never worthwhile asking more than
one question. Then the optimal active classifier is completely determined once we
specify which single attribute we should request, and which classification (T or F ) is
most likely given each value that this attribute might take (forming “decision-stumps”
of the form studied in [5,25]). We can sometimes learn this classifier without knowing
the full concept itself. Of course, knowing the full concept would be important if we
were frequently asked to classify completely specified (unblocked) instances. But this
is simply irrelevant: as we know that the instances will be presented empty blocked,
we know that such questions will not in fact be asked. We should only care about cases
that we actually might encounter (with high enough probability).

• We do not always need to learn the complete distribution P . The same example shows
that, in some cases, only a few aspects of the distribution may be relevant: here we
only need to know correlations between single attributes and the class label. Higher
order correlations (i.e., involving more than one attribute) do not affect the optimal
active classifier.

• There is a second reason why we might not need to learn the distribution. The standard
learning framework, and especially the PAC-learning model, usually avoids having
to explicitly learn a distribution, because the performance criterion uses the same
distribution that one learns under. If one has a (passive) classifier that fits the sample
data well, one can often assume that it will perform well on other data from the same
distribution. We do not necessarily need to know what that distribution is; only that it
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has not changed since the learning phase. As our definition of PACT-learning is similar
to the standard PAC formulation in this respect, it too might avoid the need to learn
distributions. (That is, an active classifier that performs well on training data, will do
well on future test data.)

Of course, these arguments are only suggestive. Section 5 below will show several
significant limitations on what can be achieved. However, we first present a fairly simple,
yet worthwhile, positive result.

4. Learning Ak

This section presents an expressive class of problems for which we can efficiently learn
the optimal active classifiers. The results depend on restricting the set of active classifiers
considered to Ak , those classifiers that request at most a constant, k, attribute values
(Definition 2).

We show that it is possible to PACT-learn anyconcept class C under anydistribution. In
particular (in this situation), we can learn to actively classify with respect to concepts and
distributions that are not learnable in the pure PAC-learning sense!

4.1. LearningAk under empty blocking

We start the presentation of the main result by considering first the case of “empty
blocking”—i.e., the classifier only sees the features it explicitly requests. The L(k)

algorithm, shown in Fig. 2, is capable of PACT-learning active classifiers in the set Ak ,
given empty blocking, for any concept class and under any distribution.

We let X∗0..k =
⋃k

i=0 X
∗
i , where X∗m is the set of all partially-specified n-tuples with

exactly m specified attributes (n−m ∗’s). Also, for any x∗ ∈ X∗� whose ith attribute has
not been specified (i.e., x∗i = ∗), y∗ = x∗i �→0 is a partially-specified tuple with �+1 specified
values that extends x∗ by setting y∗i = 0. (E.g., 〈1,∗,∗〉3 �→0 = 〈1,∗,0〉.)

L(k) first draws a number of instances, which it uses to obtain estimates:

• P̂
ϕ
x∗ , to estimate P

ϕ
x∗ = P(ϕ(x)= T | x extendsx∗), which is the conditional probab-

ility that an instance drawn according to P and which coincides with x∗ on its specified
attributes, will be labeled T ; and

• ̂P i �→0
x∗ , to estimate P i �→0

x∗ = P(x∗i �→0 | x∗), which is the conditional probability that an
instance drawn according to P and which coincides with x∗ on its specified attributes,
will have its ith attribute equal to 0.

Stated more precisely: given the set of complete instances S, for each x∗ ∈ X∗� , let
#[x∗] = ‖{x ∈ S | x extends x∗}‖ be the number of instances in S that extend x∗, and
#[ϕ(x∗)= T ] = ‖{x ∈ S | x extends x∗&ϕ(x)= T }‖ be the number of instances in S that
extend x∗ and are labeled T . Then P̂

ϕ
x∗ = #[ϕ(x∗)= T ] /#[x∗] is the empirical estimate of
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Algorithm L(k)(ε ∈R+, δ ∈ (0,1)): α ∈Ak

% Returns an active classifierα fromAk whose expected cost is, with probability at least1− δ,
% within ε of optimal
% Uses oracle for drawing complete labeled instances, and knows cost model,err(·, ·), c(·)
Let g(k)=∑k

i=0
(n
i

)
2i % See Eq.(1)

Draw M(k)= err2
M42k+3

9ε2 log 4g(k)
δ completely-specified,

labeled instances S

Return Helper_L(k)(S, 〈∗, . . . ,∗〉)
End Algorithm L(k)

Algorithm Helper_L(k)(S : sample; xstart : instance) : α ∈Ak

% Uses

{
AFTER[·] : a list ofg(k) real numbers,
Op[·] : a list ofg(k) “operations” (each Op[j ] ∈ {T,F,1, . . . , n}),

% whose elements are“indexed” by partial assignments fromX∗0..k
% See text for definitions of̂Pϕ

x∗ and ̂
P i �→0
x∗

For each �= k..0 do
For each x∗ ∈X∗

�
do [L0]

Ĉ(x∗, T ) := (1− P̂
ϕ
x∗)× err(T ,F) [L1]

Ĉ(x∗,F ) := P̂
ϕ
x∗ × err(F,T ) [L2]

If � < k, then For each i = 1..n where x∗i = ∗ do

Ĉ(x∗, i) := ci + ̂
P i �→0
x∗ × AFTER[x∗

i �→0]
+ (1− ̂

P i �→0
x∗ )× AFTER[x∗

i �→1] [L3]

Op[x∗] := argmin{Ĉ(x∗, z) | z ∈ {T,F,1, . . . , n}}
AFTER[x∗] :=min{Ĉ(x∗, z) | z ∈ {T,F,1, . . . , n}}

Return BUILDTREE(Op[·], 〈∗, . . . ,∗〉)
End Algorithm Helper_L(k)

Algorithm BUILDTREE(Op[·]: list_of_operations; x∗ ∈X∗):
Decision_Tree
Let n be a new node
if Op[x∗] = T

Label n.Action:= “Return True”
elseif Op[x∗] = F

Label n.Action:= “Return False”
else % Here, Op[x∗] = i ∈ {1, . . . , n}
Label n.Action:= “Test xi”
Let n.ifTrue:= BUILDTREE(Op[·], x∗

i �→1)

Let n.ifFalse:= BUILDTREE(Op[·], x∗
i �→0)

return( n )
End Algorithm BUILDTREE

Fig. 2. The L(k) learning algorithm, for PACT-learning Ak under empty blocking.
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P(ϕ(x∗)= T | x∗), and ̂P i �→0
x∗ = #[x∗i �→0] /#[x∗] is the empirical estimate of P(x∗i �→0 | x∗).

If #[x∗] = 0, then set P̂ ϕ
x∗ and ̂P i �→0

x∗ to 1/2.
Before dealing with sampling error, we first prove that, if these estimates are exactly

correct (i.e., P̂ ϕ
x∗ = P

ϕ
x∗ and ̂P i �→0

x∗ = P i �→0
x∗ ), then the L(k) algorithm will in fact produce

the optimal active classifier αopt = αϕ,A,P as defined in Eq. (3). This follows by observing
that L(k) is a straightforward dynamic program. Given our assumptions, we have to classify
x∗ ∈X∗k after the classifier has already asked k questions, meaning α(x∗) ∈ {T ,F }. Now

observe that C(x∗, T ) (here Ĉ(·) is defined on line [L1] , based on P̂
ϕ· values; C(·) is

corresponding value based on P
ϕ· ) is simply the cost paid for returning T for x∗; similarly

for C(x∗,F ). Clearly the optimal αopt , on encountering x∗, should take the smaller of
these values.

Having decided what the αopt classifier should do for x∗ ∈X∗k , L(k) must then determine
the correct actions for each element in X∗k−1 and then decide how to deal with each element
in X∗k−2, and so on, until reachingX∗0 = {〈∗,∗,∗, . . . ,∗〉}, thus completing the specification
of the learned classifier αopt .

To explain each step, suppose αopt has decided what to do for all x∗ ∈ X∗k−i (i � 0),
and is considering some particular y∗ ∈X∗k−(i+1), with one more “∗”. Let BEFORE(y∗) be
αopt ’s costs already incurred in reaching y∗ (starting from 〈∗, . . . , ∗〉), and let AFTER(y∗)
be the remaining costs; hence, if αopt eventual strategy involves y∗, its cost will be
BEFORE(y∗)+ AFTER(y∗). Here, αopt ’s possible actions are to announce a classification
(i.e., T or F ) or ask about a variable whose value is not yet known. The cost of announcing
either T or F is the same as it was for x∗k ∈X∗k . The expected cost of testing attribute xi is:

C(y∗, i)= ci + P(xi = 1 | x extendsy∗)×AFTER
(
y∗i �→1

)
+ P(xi = 0 | x extendsy∗)×AFTER

(
y∗i �→0

)
. (4)

(See line [L3] .) Note that the expected costs required by the last equation (AFTER(y∗i �→1)

and AFTER(y∗i �→0)), have been computed in the previous phase of the algorithm. As shown,
the L(k) algorithm then simply assigns to αopt the action (“Return True”, “Return
False”, or “Test xi”) with the lowest expected cost.

To understand why this algorithm works, note that these AFTER(y∗i �→1) costs depend
only on the instance y∗i �→1, and not on how (or even, if) αopt would reach this instance.
As such, this value is completely independent of BEFORE(y∗). This means that L(k) can
compute the values of AFTER(y∗) in one sweep, from the most specified (in X∗k ) back to
the least (in X∗0).

Of course, our L(k) algorithm does not have access to the actual probabilities. Here, it

will use empirical estimates of Pϕ
x∗ and P i �→0

x∗ called P̂
ϕ
x∗ and P̂ i �→0

x∗ in Fig. 2, and so pro-
duce a not-necessarily-optimal classifier α. What happens if these estimates are inexact—
which they typically will be, due to statistical fluctuations? Suppose first the true distri-
bution is uniform, Puniform, which means the proportion of training instances matching
any x∗ ∈ X∗i will be about 1/2i . Thus, in a reasonable number of instances, we can ob-

tain good estimates of these quantities—i.e., we expect P̂ ϕ
x∗ ≈ P

ϕ
x∗ . If the basic “argmin

decisions” are clear cut—i.e., if (1−P
ϕ
x∗)×err(T ,F ) is far from P

ϕ
x∗ ×err(F,T )—then us-
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ing P̂ ϕ
x∗ rather than Pϕ

x∗ should not matter, as here (1−P
ϕ
x∗)×err(T ,F ) will be bigger than

P
ϕ
x∗ ×err(F,T ) iff (1− P̂

ϕ
x∗)×err(T ,F ) is bigger than P̂ ϕ

x∗ ×err(F,T ). The only potential
problems arise if Pϕ

x∗ is near a threshold—i.e., if (1−P
ϕ
x∗)×err(T ,F )≈ P

ϕ
x∗ ×err(F,T )—

as this could cause L(k) to make the wrong decision. But this is precisely when it does not
matter much which decision we make, because the expected costs are nearly the same.

For distributions other than Puniform, there may be some probabilities whose estimates
will be wildly inaccurate, because the sample will include very few matching instances.
But, by our PAC-like performance criterion, it does not matter much if we do badly on
these extremely unlikely cases. We make these arguments precise in Appendix A (when
we give the proof for the algorithm, Theorem 7), but this is the basic idea underlyingL(k)’s
correctness: Estimated payoffs are good enoughin this setting, and although they may lead
to a classifier whose recommendations differ from the optimal classifier, this only happens
when the disagreement does not affect costs by much.

Theorem 7. For any fixedk, the algorithmL(k) (Fig. 2) PACT-learns active classifiers in
the setAk given empty blocking for any conceptϕ and any distributionP . Moreover, its
run complexity isO((errM/ε)2nk[logn+ log 1

δ
]).

While this specific L(k) algorithm is geared to binary classification over a set of binary
attributes, these ideas can be extended to handle active classifiers that deal with finite
classifications, over a space of finite-domain attributes. In particular, assume each attribute
ranges over s values, and each instance is labeled by one of r values {�1, . . . , �r}. We will
need, as input, a general r × r “error matrix”, whose 〈i, j 〉 entries—a.k.a. err(�i, �j )—
define the penalty for returning the label �i when the correct label should be �j . Let
errM = maxi,j {err(�i, �j )} be the maximum of these r2 values. We now define Ak

r,s to
be the class of classifiers that can ask at most k questions (starting from empty blocking)
over these active classifiers—which in general can ask for the value of any of n attributes,
or return any of r possible values.

We can still PACT-learn in this situation:

Corollary 8. For any fixedk, it is possible to PACT-learns active classifiers in the set
Ak

r,s given empty blocking for any conceptϕ and any distributionP . Moreover, its run
complexity isO((errM/ε)2(sn)k[log(sn)+ log r

δ
]).

Comparing the computational complexity here to Theorem 7, we see that the complexity
scales as sk log s with respect to the number of attribute values s, but only as log r with
respect to the number of classes. (This is because the obvious dynamic program needs to
consider all of the partial instances that specify at most k attributes.)

While the remainder of this paper focuses on binary attributes and binary class labels,
each of our subsequent results can be extended to this more general case.

4.2. LearningAk under arbitrary blocking

While the L(k) algorithm shown only takes 〈∗,∗,∗, . . . ,∗〉 as its “starting pattern”, it
is easy to define a related algorithm that starts from anyfixed pattern. Here, at each step,
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the active classifier may ask the value of any currently-unspecified attribute; we continue
to consider only classifiers that ask for the values of at most k additional attributes. To do
this, we replace the X∗� on line [L0] with

X∗�
(
xstart)= {x∗ ∈X∗ | x∗ extends xstart, specifying � additional attributes

}
which denotes the set of all O(2�

(
n
�

)
) instances formed by starting with the starting instance

xstart∈ X∗ and specifying the values of exactly � of its initially-uninstantiated variables.
(Hence X∗� (〈∗, . . . ,∗〉) = X∗� . Actually, our bound is slightly tighter, as we need only

consider the O(2�
(
n′
�

)
) possible patterns formed by instantiating the n′ � n attributes not

specified initially.)
This basic approach similarly works whenever the classifier can encounter a fixed (or

even polynomial) number of starting patterns, by just building a different “subclassifier”
for each starting pattern. Next we investigate several more significant weakenings.

In general, there can be an exponentially large number of initial instances xstart—
e.g., we can consider blockers that can reveal completely arbitrary sets of attribute values
initially, for free. The simple extension cannot handle this, as this would mean dealing with
perhaps 3n initial instances, and so require building an exponential number of different
sub-classifiers (one for each starting instance).

However, a fairly simple modification of the L(k) algorithm will work. The main
difference is that we will not use the explicit (lookup-table) representation scheme, as
that would not be poly-size in this case. Instead, the learning algorithm will be a “lazy”
learning algorithm (reminiscent of [1]). In the learning phase, this learner simply records
the instances seen during training, S. The resulting classifier would take the result of the
learning (read “the sample S”), together with the specified starting instance xstart. It would
then call Helper_L(k)( S, xstart), to compute the appropriate actions to take, then begin
performing the specific actions.

Notice we only estimate the relevant probabilities—the values of P(ϕ(x∗) = T | x∗)
and P(x∗i �→0 | x∗), for each x∗ ∈X∗� (xstart), �= 0..k—after we know the current value of
xstart. Applying the technique from the proof of Theorem 7 requires that we be able to
estimate these 2

∑k
�=0 |X∗� (xstart)| � 2g(k) values, associated with any possible starting

instance xstart∈X∗. The only challenge is collecting a sufficiently large sample to achieve
this. In fact, the short proof below goes further and shows that it is possible to collect a
sample large enough to estimate P(ϕ(x∗) = T | x∗) and P(x∗i �→0 | x∗) for everypossible
x∗ ∈X∗—all 3n possible partially-specified instances.

This leads to the “lazy variant of L(k)”: The lazy-L(k) learner initially collects

Mall = err2
M42k+3

9ε2
log

4× 3n

δ
=O

(
err2

M

ε2

[
n+ log

1

δ

])
(5)

instances, S. (Recall that k, and hence 42k+3, is a constant.) The subsequent classifier will
then use this to actively-classify, starting with the starting instance xstart. It simply calls
Helper_L(k)(S, xstart) to find the appropriate active-classification-tree, then executes this
tree.

Corollary 9. The lazy-L(k) system PACT-learns active classifiers in the setAk given any
blocker for any conceptϕ and any distributionP .
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Proof. Just observe (from the proof of Theorem 7) that the classifier is effective
whenever it can reliably (i.e., with collective probability at least 1 − δ) estimate the
values of P(ϕ(x∗) = T | x∗) and P(x∗i �→0 | x∗) for each x∗ ∈ X∗� (xstart) to within λ =
3ε/(8 errM 4k). Using Hoeffding’s Inequality (Eq. (A.4)), Mall instances is sufficient to
estimate these quantities over all 3n possible x∗ ∈X∗. ✷

To summarize, the extension to deal with general blocking relies on two issues. First,
a classifier in Ak only requires the algorithm to estimate O(nk) probabilities; this means
computational complexity is not a problem. The second issue deals with the sample size.
Unlike the case of a fixed starting point, here we may need to estimate an exponential
number of probabilities, which means the sample size required to guarantee good estimates
will be larger. However, since the sample size depends only logarithmicallyon the number
of probabilities we need to estimate, the sample size remains polynomial.

5. Further extensions

5.1. Allowing the active classifier to ask more questions

The results in the previous section show that we can PACT-learn in general, provided the
active classifier is allowed to inquire about no more than a constant k additional queries.
We might also hope to be able to weaken this restriction, by allowing the active classifier to
ask, say, O(logn) attributes; this corresponds to learning the class Alogn. However, if this
was possible, then we could PAC-learn logn-depth decision trees in the standard (passive
learning) model.8 But even the simpler problem:

learning Boolean functions that depend on only logn variables, even under the
uniform distribution,

is regarded as a challenging open problem [8]. However, given that some very good
heuristics exist for learning decision trees, it could be interesting to investigate modifying
those heuristics to produce a practical algorithm that would apply in the more general
situation of active classifiers.

On the other hand, the news is not all bad here. As suggested above, the number of
attributes requested by the learner is responsible for the time complexity of the algorithm
(at least in the algorithmic approach we suggested). The sample complexity is determined
by the number of starting points the blocking allows and, as we have shown, scales well in
our case. Therefore, the difficulty here concerns computationalcomplexity, but not sample
complexity nor the nonexistence of a good small classifier.

Proposition 10. It is possible to learnAlogn in the sense of Definition3, still using
only polynomially many instances and producing a polynomial-size table-lookup classifier,
except that the learner may not run in polynomial time.

8 Just assume uniform cost for each query, and a very large penalty for incorrect responses.
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Proof. As noted in Corollary 9, the sample size remains poly-sized even if we need to
estimate all O(3n) possible P(ϕ(x∗) = T | x∗) and P(x∗i �→0 | x∗) values. To see that the
output is small, note that the resulting active classifier will correspond to a binarydecision
tree of depth logn, and hence of size O(2logn)= O(n). (It is binary as each internal node
asks for the value of a binary attribute.) ✷

That is, the learner uses a reasonable number of instances and (eventually!) outputs a
small, and hence efficient, active classifier. This can be useful: if the performance phase
is much longer than the training phase, it may well be worth spending whatever time is
necessary to find a good classifier, as that effort will be well rewarded. See also Section 6.

5.2. Restricted distributions and underlying concepts

So far we have discussed active learning in a very general setting, without any restriction
on the underlying distribution or the underlying concept. Here, we consider whether the
probability distribution and the concept class can have a significant effect on learnability, as
it does in standard passive PAC-learning. We do this in the context of the class of “product
distributions”, in which the value of each attribute value is chosen independently. The
uniform distribution is a further restriction of this class.

The following discussion shows that sometimes the underlying concept class could be
significant to learning.

Theorem 11. The class of conjunctions can be PACT-learned under the product
distribution, under any blocking model, and with any cost structure, using a greedy
strategy.(Note that here we allow any active classifier, which can ask for an arbitrary
number of attribute values; A(n) ≡Aall .)

The greedy algorithm LG for learning conjunctions is shown in Fig. 3. This classifier
always asks first for the attribute that promises the highest immediate information gain
about the classification, balanced by cost, then recurs. This results in a “linear” active
classifier, on the form shown in Fig. 4. The appendix provides the complete proof that the
LG algorithm can PACT-learn conjunctions.

Although this is a simple observation, we note that the algorithm does not restrict
the number of attributes requested by the classifier and thus shows that the earlier
negative result depends crucially on having “difficult” distributions or concepts. To further
understand this, note that even under product distributions, greedy active classification
is not guaranteed to work in general, beyond the class of conjunctions. As a simple
counterexample, consider the function (x1 ⊕ x2) ∧ x3 ∧ x4 ∧ · · · ∧ xn. The dependencies
introduced by the exclusive-or “⊕” mean the optimal active classifier will not be a simple
linear-tree (Fig. 4), which means the greedy heuristic shown in Fig. 3 will not produce
an optimal active classifier. However, variants of the greedy strategy might be very useful
heuristics and this, too, is worth further investigation.
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Algorithm LG(ε ∈R+, δ ∈ (0,1)) : αG ∈A
% Returns an active classifierα fromA whose expected cost is, with probability
% at least1− δ, within ε of optimal
% Uses oracle for drawing complete labeled instances, and knows cost model,err(·, ·), c(·)
Draw MLG = 2

( err(F,T )
ε

)2(
n log(3n)+ 2

δ

)
completely-specified, labeled

instances S each x ∈ S represented as SET % x = [x1¬x2 x3] ≈ {1,2,3}
Let S+ be positive examples in S

Let ϕ =
⋂
x∈S+

x [R1]

% Re-number, flip-parity s.t.ϕ = x1 ∧ x2 ∧ · · · ∧ xk
For i = 1..k
Let qi = P̂ (xi = 0)= 1

|S| |{x ∈ S | xi = 0}| % . . .= estimate of success

% probabilityP(xi = 1)
Re-number s.t. c1

q1
� c2

q2
� · · ·� ck

qk
% . . . Set to∞ if qi = 0

Let �= argmax
{ c�′
q�′ � errM |�′ = 1..k

}
% . . .= largest index for which

c�′
q�′

is undererrM
% Build �-node“linear” decision tree; see Fig.4:

For i = 1..�:
Label node ni with “Perform xi”
Connect “0”-labeled arc from ni to: “Return F ”
If i < � THEN Connect “1”-labeled arc from ni to: ni+1

ELSE Connect “1”-labeled arc from n� to: “Return T ”
Return an active classifier αG based on this decision tree

End Algorithm LG

Fig. 3. LG algorithm for PACT-learning conjunctions.

Fig. 4. “Linear” active classifier (decision tree).

5.3. Bounded expected number of queriesA≈kP

Our earlier results consider the situation where there is a hard upper bound on the
number of queries that can be used to classify each individual instance. Imagine, instead,
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that we place an upper bound on the averagenumber of queries needed or allowed. For
example, imagine we need to classify 100,000 text documents within a total of 200,000
seconds. While the “classify each document within 2 seconds” requirement is sufficient,
the weaker requirement that the classifier takes on average2 seconds per document is a
more accurate reflection of the given constraint.

Definition 12. Given any instance distribution P(·), we define A≈kP as the subset of active
classifiers (in any representation language) that ask, on average, at most k questions for
samples drawn from P(·).

In general, we can bound the average number of queries asked by an optimal classifier
as follows.

Definition 13. Without loss of generality, assume c1 � · · ·� cn; i.e., attributes are sorted
by increasing cost. We then define:

k(err, c)= largest k′ such that

{ k′∑
i=1

ci � errM

}
using the errM from Eq. (2).

Then it is easy to see that:

Proposition 14. The optimal active classifier fromAall should not ask on average more
thank(err, c) questions—i.e., it is inA≈k(err,c)

P .

Proof. Whenever the classifier asks more than k(err, c) questions, its cost exceeds errM ;
hence if it averages more than k(err, c) questions, its average cost must exceed errM . This
cannot be optimal, as it is inferior to the trivial “just say F” classifier, whose average cost
is at most errM . ✷

However this does not mean that we can boundthe number of questions by k(err, c)—
i.e., we cannot restrict ourselves to Ak(err,c).9 The problem is that a classifier may reach a
point where it should ask yet more questions, even after it has spent more than any possible
payoff. This is because earlier costs are sunk costsand even if, in retrospect, they turn out
to be useless, they must still be paid for. However the optimal classifier should not expect
a priori to get into this situation very often, as a classifier that often throws good money
after bad cannot be optimal.

Theorem 7 shows that the problem of learning in Ak is tractable for any concept and for
any distribution. It may seem plausible that there is a similar result given a bound on the
expectednumber of queries used by a good classifier.

9 On the other hand, it is sufficient to consider classifiers in Ak(err,c)×errM/ε ; see Proposition A.2 in
Appendix A. But then our dynamic-programming algorithm will be exponential in errM/ε.
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When might we have such a bound? It could arise as an inherent property of the chosen
classifier languageA, although the dependence of expectation bounds on the instance
distribution P(·) means that this is not especially useful. More plausibly, such a bound
may arise as an additional problem-specific constraint limiting the class of acceptable
classifiers. Recall the earlier example, where we need to classify 100,000 text documents
within a total of 200,000 seconds, and suppose each query takes a second. This places a
global constraint on the classifier class—i.e., that any learned classifier must be in A≈2

P .
Finally, we may be able to place a bound on the expected number of queries needed
using Proposition 14 or similar considerations. Unfortunately, however we come by such a
bound, we are faced with the following negative result:

Theorem 15. PACT-learning isNP-hard even given the additional constraint that there is
an optimal classifier inA≈1+γ , for any fixedγ > 0.

(Note that this result does not apply when γ = 0, since A≈1
P is equivalent to A1 and so

is learnable.)
This hardness result only deals with computational complexity. It is open as to whether

this is the only difficulty—i.e., is there a result analogous to Proposition 10?

5.4. Summary

We have shown that:

• one can learn active classifiers in Ak in general (for any concept class, any blocker,
any distribution);

• learning classifiers in Alogn subsumes a hard computational problem (but neither
sample complexity nor representation size are problematic);

• for certain classes of classifiers and distributions, learning classifiers in An can be
tractable;

• given just the constraint that it suffices to look for classifiers in A≈kP , for k > 1, the
problem of learning active classifiers is NP-hard.

See Table 1.

Table 1
Complexity of PACT-learning various classes of active classifiers

Class Sample size Computation Representation size

Ak poly poly poly

Alogn poly ≡ PAC-learn logn-depth DTs poly

αopt ∈A≈kP poly NP-hard (k > 1) –
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6. On-line learning

As noted earlier, we allow the learner to see complete, unblocked instances, which the
eventual classifier must pay to see. An arguably more natural model would charge the
learner for each attribute it views, just as it charges the classifier. An suitable framework
is “on line” learning, where a learn + active-classify (LAC) system would pay for each
attribute it sees, from the very beginning. To evaluate such a system, we would compute a
“loss function” comparing some system LACagainst the perfect classifier αopt (i.e., against
using the optimal active classification process from the beginning). The loss function
measures the average difference between LAC and this αopt , averaged over the number of
instances seen. Our goal here is to find a learn+ classify system whose average difference
goes to 0 as the number of instances increases.

To state this more precisely, we must first present our protocol: Complete instances
x(i) are drawn sequentially, and empty blocked to produce x(i)∗. These unlabeled, blocked
instances x(i)∗ are then presented to the LAC system, one by one. For each x(i)∗, LAC
attempts to determine the class, asking questions as appropriate; we let tc(LAC, x(i)∗) be

Algorithm LAC∗()
% Continuously draws and processes instances
% Uses known cost model,err(·, ·), c(·)
% oracle for drawing empty-blocked labeled instances

% h(ε, δ)=Mn(ε, δ)= err2
M24n+6

9ε2 log 4g(n)
δ (sample size forL(n))

% W = errmin+∑i ci

For r = 1,2, . . . do
% r th exploration phase

Let Sr = {} % To hold set of examples
Let hr = h( 1

2r ,
1
2r )

For i = 1..hr do
“Draw” an empty blocked instance x∗
Pay

∑
j cj to see values of all attributes x

Return least-risk guess:

{
T if err(T ,F) < err(F,T )
F otherwise

Get label ϕ(x) (pay errmin if x is misclassified)
Sr = Sr ∪ 〈x, ϕ(x)〉

Use L(n) (with completely-specified, labeled instances Sr)
to produce αr

% r th exploitation phase

Let Yr =
[
2rW − 1

]× [ r∑
i=1

hi +
r−1∑
i=1

Yi

]
Use αr to process next Yr instances

End For
End Algorithm LAC∗

Fig. 5. LAC∗ learn + classify algorithm.
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the penalty/cost that LACmust pay. Given a sequence of m such instances Xm = 〈x(i)∗〉mi=1,
we define tc(LAC,Xm) = 1

m

∑
x(i)∗∈Xm

tc(LAC, x(i)∗) as the average cost. For a given
(stationary) distribution over instances P(·) and target concept ϕ (and given the empty
blocker), we can compute the expected value of E[tc(LAC,Xm)] of the learn + classify
system LAC, where the expectation is averaged over all sequences of m blocked instances.
Our goal is to minimize this E[tc(LAC,Xm)], as m❀∞.

Of course, for this P(·), ϕ and β , there is a best possible active classifier, which has
the minimum cost αopt = αϕ,A,P as defined in Eq. (3). (Note that this can be relative to a
subclass of active classifiers, A⊆Aall .) As this is clearly the best that any learn + classify
systems can achieve, we will consider the difference

diff (LAC,m)= diff ϕ,A,P (LAC,m)
�=E

[
tc(LAC,Xm)

]−ECP (αϕ,A,P ).

We would like an on-line learn + classify system that can do essentially as well as this
optimal classifier, in that diff (LAC∗, m) goes to 0 as m increases. One standard way to
do this is by a series of “explore then exploit” stages. That is, the algorithm first gathers
information (“explore”), paying whatever it costs; it then uses this information to build
a reasonable classifier, α1. The algorithm will next exploit this α1 classifier, using it to
actively classify a number of instances, with the hope that α1 will do well enough to
compensate for the cost required to learn it. This constitutes one “explore+ exploit” stage.
The algorithm performs a series of these stages—each time spending a bit longer in the
information-gathering phase, to help produce increasingly better classifiers 〈α1, α2, . . .〉;
after learning each, it spends yet longer in the “exploit” phase, to recover the cost.

This is the basis for the LAC∗ system, shown in Fig. 5. In the appendix we prove that it
works effectively:

Theorem 16. With probability1, diff(LAC∗, m) goes to0 asm increases.

While this algorithm deals with empty blocking and the complete class Aall , it is
straightforward to extend this result to arbitrary blocking models and an arbitrary specific
subclass A⊂Aall .

7. Related work

Our framework is based on the “standard” learning model [9], in which a learner
receives a set of labeled (i.e., correctly classified) training examples as input, and must
output a good classifier. Furthermore, the notion of “good” we use is a derivative of
the popular probably-approximately-correct (PAC) model [48]. However, we differ from
the usual model in the following respects. First, our classifier (and in Section 6, our
learner) receives only partially specifiedinstances, which can omit the values of some
or all attributes. Second, our classifier is able to activelyrequest attribute values. Third, the
quality of such a classifier depends on its expected cost of obtaining attributes, as well as
its classification accuracy.
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Missing attribute values. Several other learning algorithms produce classifiers that can
deal with partially specified instances; cf. [13,36,38,45]. However, these classifiers are not
able to actively obtain missing information. Other research [7,21] (respectively, [31,33])
considers the problem of learning from partially specified instances, but with the goal
of later classifying completeinstances (respectively, later reasoning with respect to the
learned concept). N.b., these other systems do not consider ways for the classifier to gather
more information. Also, we assume that we can obtain the value of an attribute, once it is
requested.

Many researchers are concerned with “relevance”. Littlestone [35], John et al. [27], and
others consider the situation where only a subset of the variables are “relevant”—i.e., are
needed to perform the classification (for each instance). Those systems, however, assume
that the values of all variables, both relevant and irrelevant, are given. (By contrast, the
Greiner et al. [18] relevance model considers the case where the learner knows it will only
see the values of the relevant variables.) To connect this to our model, note that an active
classifier would never request the value of any irrelevant variable and would, moreover,
seek the “minimal cost” set of relevant attributes.

Active-ness. Of course, “active” classification is not a novel concept; there is a rich
history of ideas here, dating back (at least) to the seminal work by Howard [26] on “value
of information”. Many diverse areas use related ideas, including planning, diagnosis and
decision theory.

As just one illustrative example, Heckerman et al. [23] describe how to translate a
certain class of decision nets (which satisfies certain properties) into an effective “active
classifier”—one that both isolates and repairs the fault, taking account of costs and
the probability of various diagnoses being correct. Other examples of studies of active
classification exist in the vision community [6,11,42]. However those frameworks do not
address the challenge of learning such classifiers. One possible reason is that the tasks
of learning and classifying can often be decoupled. For instance, Heckerman et al. [23]
could appeal to standard Bayesian-network learning techniques to learn the necessary
distributions. While conceding that such a decoupling is possible in many cases, the basic
question examined in this paper is whether there can be any advantage in studying learning
and active classification together; see Section 3.

Our task, of learning active classifiers, is also distinct from the task of actively learning
(passive) classifiers. For example, [2,3,15,34], consider the “learning with membership
queries” model, in which the learnercan request labelsof examples as it is learning. Recall
however that our learner is seeking optimally inexpensive active classifiers, rather than
optimally accurate passive ones; moreover, we focus primarily on a passive learner (until
Section 6).

Utility. There are several learning projects that attempt to learn classifiers that are
sensitive to test costs. For example, Turney [47] (and others; see references therein)
uses heuristic methods to build decision trees that minimize classification and test costs;
by contrast, we are seeking provably optimal active classifiers, of any representation.
Haussler [22] studies a decision-theoretic generalization of the PAC model, in which the
learner may output a classification or a decision rule with the goal of minimizing a given
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loss function. However, his classifier always receives complete instances, and so is not
active in our sense.

Other comparisons. Our results are related to “behavioral cloning” [41,43,44], where the
learner sees a (hopefully good) active classifier in action, and produces a classifier (or in
general, a performance system) that tries to duplicate its performance [30]. In our model,
however, the learner must use the cost structure to discover its own classification strategy,
rather than simply imitate the observed teacher’s strategy.

Finally, our framework shares much in common with reinforcement learning (RL) [46];
especially episodicundiscounted RL. In each framework, the performance system (in our
case, the active classifier) is expected to act in a way that maximizes its reward, which often
involves acquiring new information before making an important decision (for us, “labeling
the instance”). As such, our active classifiers can be viewed as policies, as they each map
states to actions (here, from {t, f,∗}n to one of {X1, . . . ,Xn, t, f }). Moreover, our basic
learning algorithm is a variant of dynamic programming, just like many reinforcement
learners. Our results show that, while this special case of episodic reinforcement learning
(with fixed known depth) is “easy”, it is hard to extend this to more general situations—
e.g., where there is a bound on the averagenumber of steps in an episode.10

8. Conclusions and future work

In this paper, we have proposed a framework for addressing learning and active
classificationtogether. We anticipated that we might obtain some “Learning-to-Reason”-
style advantages [32], in that learning a particular classification strategy (with respect to a
particular cost structure and blocker) might be easier than learning the full concept and
the distribution. Our results support this thesis. We show that we can efficiently learn
active classifiers in cases in which we do not know how to learn the underlying concept
and distribution separately. There are several possible directions that may yield further
positive results, including (1) other restrictions on the type of active classifiers allowed;
(2) approximation techniques; and (3) combinations of restrictions on both the concept
class and the distribution.

We have also explored an “on-line” version of this framework, where the learnerincurs
costs while it is learning, as it must pay for any attribute it sees, and has to predict each
instance’s classification, risking penalty. Here, our goal is to minimize total cost over the
learner’s lifetime. We show the (unsurprising) result that a learner can converge to the
optimal classifier by employing a sequence of exploration steps (to produce successively
better classifiers), each followed by an exploitation phase (to recoup the cost of producing
that classifier).

We close by noting an interesting contrast between our results and standard PAC concept
learning: Few of our results depend, in any critical way, on the identity of the concept class.

10 While the “fixed known depth” situation does correspond to an (episodic) Markov Decision Problem, the
harder “bounded averagenumber of steps” situation does not.
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For example, while Theorem 7 and its corollary may be restrictive in some respects, they
work for every possible class of concepts. It is perhaps not surprising that the class of active
classifiers being learned should be a far more significant factor in learnability than the
underlying concept class. Furthermore, when one does not see all the attributes, the induced
probabilistic concept [28] over the visible attributes can bear little useful relationship to the
underlying (deterministic) concept. (For example, as we see fewer attributes the correlation
under P between an attribute and the correct label becomes increasingly more important
than strict logical relevance; yet it is easy to construct examples with high correlation but
no strict relevance, and vice versa.) Thus, to whatever extent that active classifiers can be
learned at all, we might expect to find more results that do not distinguish between concept
classes, or at least not to the extent that they matter in ordinary passive classifier learning
theory.
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Appendix A. Proofs

Proof of Theorem 5. We reduce our problem to the NP-complete problem.

Definition. EXACT COVER BY 3-SETS (X3C) DECISION PROBLEM [16, p. 221]. Given
a set of elements X = {x1, . . . , x3r} and a collection S = {s1, . . . , sm} of 3-element subsets
of X, does S contain an exact cover of X; i.e., is there a subcollection S′ ⊂ S such that
each x ∈X is in exactly one element sx ∈ S′?

Now given any instance 〈S,X〉, form a distribution over the binary variables {s1, . . . , sm,

x1, . . . , x3r} where the xi ’s are independent of each other, and each is true with probability
P(xi = 1)= p = 1/2. Also each sj ≡ xj1 &xj2 &xj3—i.e., P(sj | xj1, xj2, xj3)= 1 and
P(sj | ¬xjk)= 0 for each k = 1,2,3.

Now let ϕ ≡ x1& · · ·&x3r and the cost of each sj be c(sj ) = 1 and of each xi be
c(xi)= r . Finally, set the penalty for being wrong

err(T ,F )= err(F,T )= 2
1− p3r

(1− p3)× p3r
= 8

7

(
8r − 1

)
.

We now show that
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There is an exact cover iff there is an active classifier, in this situation,
whose expected cost is at most γ = (1−p3r

)
/
(
1− p3

)= 8× (1− 1/8r
)
/7.

⇒: Assume there is an exact cover—without loss of generality call it {s1, . . . , sr }. Now
consider the active classifier α∗ that simply asks these queries in order 〈s1, . . . , sr 〉, until
one fails (in which case, return “No”) or if all pass (here say “Yes”)—see the decision tree
in Fig. 4.

To compute the expected cost: Note that

P(sj = T | s1 = T , s2 = T , . . . , sj−1 = T )

= P(sj = T ) (A.1)

= P(xj1, xj2, xj3)

= P(xj1)P (xj2 | xj1)P (xj3 | xj2, xj1)

= P(xj1)P (xj2)P (xj3)= p3, (A.2)

where Eq. (A.1) uses the fact that, as this is an exact cover, sj involves variables different
from s1, . . . , sj−1; and Eq. (A.2) uses that fact that the xi ’s are independent.

Notice this classifier never returns the wrong prediction, hence its expected cost is
simply the expected number of evaluations, which is

ECP (α
∗)= (r × (p3)r)+ ∑

i=1..r

i × (1− p3)× (p3)i−1 = (1− (p3)r)/(1− p3)
as claimed.
⇐: Observe:

• There is an optimal active classifier that uses only sj ’s rather than xi ’s.
(Given any purportedly optimal classifier α that uses a xjk , form a new classifier α′
that differs from α only by replacing that xjk with sj . Observe that α′ will be as correct
as α: Suppose α reaches this xjk-labeled node. If xjk = 0, then the value of sj = 0,
and the correct answer is “False”. On the “xjk = 1” branch of α: here the sj = 1 test
will perform even more appropriate tests. Moreover, sj costs less—c(sj ) < c(xjk).

• We need only consider linear structures of sj ’s, as finding any sj = F immediately
tells us that the answer is “F ”.

This means the optimal active classifier α can be viewed as α ≡ 〈s1, . . . , sm〉.
Moreover, we may assume that m > r: As here there is no exact cover, we know that

an always correctclassifier must have “length” > r . We first show that any such “always
correct” active classifier will have cost strictly greater than γ .

We can assume, without loss of generality, that each of the si ’s on the path α ≡
〈s1, . . . , sm〉 will include at least one xik that did not appear on any of 〈s1, . . . , si−1〉.
(Otherwise, we can get a less expensive and equally correct classifier by deleting that
useless si .) This means the cost of dealing with the first r si ’s is at least

∑r
i=1 i ×

P(“reaching the F under this node”) =∑r
i=1 i × (1 − p) × pi−1 = (1 + rpr+1 − (r +

1)pr)/(1 − p). In addition, we know that at least one xi was not covered by any of
{s1, . . . , sr }. This means we will follow the 1-branch from all r of these si ’s with probability
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at least p3r−1, which means the probability of performing r + 1 tests is p3r ; this adds a
cost of (r + 1)p3r−1. Hence, the total cost of α is at least(

1+ rpr+1 − (r + 1)pr
)
/(1− p)+ (r + 1)p3r−1

= 2+ r/2r − 2(r + 1)/2r + 2(r + 1)/8r;
for r > 3, this is strictly larger than γ .

Of course, we might also consider classifiers that were not completely correct, but
instead were “truncated”, at say depth q and simply announced a class (either “T ” or
“F ”). However, stopping at depth q � r will again cause the active classifier to cost more
than γ . As there is no exact cover, stopping before r + 1 means at least one xi will not
be included in the tests. It will reach this final node with probability at least p3r−1. Now
suppose the active classifier α returns T . Then with probability at least p3r−1 × (1− p),
the value of this untested xi was “false”, which means the classifier will return the wrong
answer. The cost of this mistake, therefore, is at least

p3r−1 × (1− p)× err(F,T )= 2

8r
× 1

2
× 2

1− 1/8r

(7/8)× 1/8r
= 2γ > γ.

(Similarly for the case where α returns F here.)
To complete the proof, we need to observe that the classifier is small (just linear in

the size of the concept ϕ ≡ x1, . . . , x3r ), that the class of classifiers C contains just one
classifier (corresponding to (

∧
i si )∧(

∧
j xj )) and hence is clearly PAC-learnable, and that

the distribution has a linearly-sized representation since it is just a product distribution. ✷
Theorem 7 uses the following lemma:

Lemma A.1. An agent must take one ofr possible actions{a1, . . . , ar }, whose true costs
are c(ai) ∈ R. However, due to sampling error, the agent perceives these costs asĉ(ai),
where|ĉ(ai) − c(ai)| � βi . Then the difference in cost between the optimal agent, who
takes actionaopt = argminai {c(ai)}, and the“estimation-based” agent, who takes action
â = argminai {ĉ(ai)}, is bounded by2βmax , whereβmax =max{βi}.

Proof.

c(â)− c
(
aopt

) = c(â)− ĉ(â)+ ĉ(â)− ĉ
(
aopt

)+ ĉ
(
aopt

)− c
(
aopt

)
� βâ + 0+ βaopt

� βmax + βmax = 2βmax. ✷
Proof of Theorem 7. We first need some definitions. Given any x∗ ∈ {0,1,∗}n, let
Ext(x∗) ⊂ {0,1}n be the set of complete tuples that extend x∗—i.e., each x ∈ Ext(x∗)
is a complete tuple that agrees with each attribute value specified in x∗.

Let P i �→1
x∗ = P(Ext(x∗i �→1) | Ext(x∗)) be the probability that attribute xi has the value 1,

given the partial instance x∗—e.g., P 3 �→1〈0,∗,∗〉 = P(〈0,∗,1〉 | 〈0,∗,∗〉) is the probability that
attribute x3 will have value 1, given that we know attribute x1 had value 0—and

P
ϕ
x∗ = P

(
ϕ(x)= T | x extends x∗

)= ∑
x∈Ext(x∗)

P
(
ϕ(x)= T | x∗).
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Notice both P i �→1
x∗ and P

ϕ
x∗ are conditional probabilities—each relative to the conditioning

event that x∗ occurs (with probability P(x∗) =∑
x∈Ext(x∗) P (x)). The P̂

ϕ
x∗ and ̂P i �→1

x∗
quantities shown in Fig. 2 are empirical estimates of these quantities. There is one such
number for each of the g(k) =∑k

i=0

(
n
i

)
2i � k(2n)k partial instances (in X∗0..k) that can

occur.
As shown in Fig. 2, the L(k) learner first draws

M =M(k, ε, δ)= err2
M24k+6

9ε2 log
4g(k)

δ
(A.3)

instances. (Recall from Eq. (2) that errM =max{err(T ,F ), err(F,T )} is the largest error
for giving the wrong response.)

We will use these instances to produce estimates P̂ (x∗ occurs) ofP(x∗ occurs)= P(x∗)
and P̂ (ϕ(x)= T , x extends x∗) of P(ϕ(x)= T , x extends x∗), for each x∗ ∈X∗0..k . Notice
these are each unconditionalprobabilities.

We first bound the probability that any of these 2g(k) estimates is more than
3ε/(8 errM 4k) from the correct value. Here, we use Hoeffding’s Inequality [10,24], which
bounds the probability that the empirical average of m iid (independent and identically
distributed) instances Xi ∈ [0,1] with common mean µ, will be far from µ:

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi −µ

∣∣∣∣∣> λ

)
� 2e−2mλ2

. (A.4)

Now consider a fixed x∗ ∈ X∗0..k , and let the Xx∗
i variable be 1 if a randomly drawn

instance will extend x∗, and 0 otherwise. After M instances, the chance that the empirical
estimate P̂ (x∗ occurs) = 1

M

∑M
i=1 X

x∗
i will be more than λ = 3ε/(8 errM 4k) away from

µ = P(x∗ occurs) will be under 2 exp(−2M(3ε/(8 errM 4k))2) � δ/(2g(k)). Hence, the
probability that anyof the g(k) possible partial instances will be more than 3ε/(8 errM 4k)
off is

P
(∃x∗ ∈X∗0..k∣∣P̂ (x∗ occurs)− P(x∗ occurs)

∣∣> λ
)

�
∑

x∗∈X∗0..k
P
(∣∣P̂ (x∗ occurs)− P(x∗ occurs)

∣∣> λ
)

� g(k)× δ

2g(k)
= δ

2
.

Similarly,

P

(
∃x∗ ∈X∗0..k

∣∣P̂ (ϕ(x)= T , x extends x∗
)

− P
(
ϕ(x)= T , x extends x∗

)∣∣� 3ε

8 errM 4k

)
� δ

2
.

Therefore, with probability at least 1− δ, we can assume that all of the estimates are within
λ= 3ε/(8 errM 4k) of correct—i.e.,∣∣P̂ (x∗ occurs)− P(x∗ occurs)

∣∣� λ,∣∣P̂ (ϕ(x)= T , x extends x∗
)− P

(
ϕ(x)= T , x extends x∗

)∣∣� λ.
(A.5)
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Now let αopt be the optimal active classifier, α̂ be the classifier returned by our L(k)

learner, which uses the estimates shown above, and AFTER(α, x∗0 ) be total expected cost
of using the active classifier α. As P(x∗0 )= P̂ (x∗0 )= 1 for x∗0 = 〈∗, . . . ,∗〉 ∈X∗0 , we need
only show that

AFTER
(
α̂, x∗0

)− AFTER
(
αopt , x∗0

)
� ε

when our estimates satisfy Eq. (A.5). Given that P(x∗0 ) = P̂ (x∗0 ) = 1, it suffices to prove
that

∆� =
∣∣P̂ (x∗� )×AFTER

(
α̂, x∗�

)− P
(
x∗�
)× AFTER

(
αopt , x∗�

)∣∣
� ε(4k+1−� − 1)

4k+1 (A.6)

holds for all x∗� ∈X∗� (i.e., for all partial instances that include exactly � specified values),
as this means, in particular,∣∣AFTER

(
α̂, x∗0

)− AFTER
(
αopt , x∗0

)∣∣
= ∣∣P̂ (x∗0)×AFTER

(
α̂, x∗0

)−P
(
x∗0
)×AFTER

(
αopt , x∗0

)∣∣� ε(4k+1−0 − 1)

4k+1 < ε

as desired.
We prove Eq. (A.6) by induction. We deal first with the base � = k case. We will

use C(x∗� , χ) to refer to the cost of the action χ ∈ {T ,F,1, . . . , n}, given the partial
instance x∗� ; and Ĉ(x∗� , χ) to refer to our estimate of this cost. By Lemma A.1 (shown
above), we need only bound the difference between P(x∗k ) × C(x∗k , χ) and P̂ (x∗k ) ×
Ĉ(x∗k , χ), for the two options—χ = T and χ = F—as |P̂ (x∗k )×AFTER(α, x∗k )−P(x∗k )×
AFTER(αopt , x∗k )| is at most twice the larger of these differences.

Now observe that

P
(
x∗k
)×C

(
x∗k , F

) = P
(
x∗k
)× P

ϕ
x∗ × err(F,T )

= P
(
x extends x∗k

)× P
(
ϕ(x)= T | x extends x∗k

)× err(F,T )

= P
(
ϕ(x)= T , x extends x∗k

)× err(F,T )

and similarly

P̂
(
x∗k
)× Ĉ

(
x∗k , F

)= P̂
(
ϕ(x)= T , x extends x∗k

)× err(F,T ).

Hence the difference between the true and estimated values∣∣P (x∗k )×C
(
x∗k , F

)− P̂
(
x∗k
)× Ĉ

(
x∗k , F

)∣∣
= ∣∣P (ϕ(x)= T , x extends x∗k

)× err(F,T )

− P̂
(
x extends x∗k , x extends x∗k

)× err(F,T )
∣∣

= err(F,T )× ∣∣P (ϕ(x)= T , x extends x∗k
)− P̂

(
ϕ(x)= T , x extends x∗k

)∣∣
� err(F,T )× λ� λ× errM
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as err(F,T ) � errM . This is also the error bound for |P(x∗k ) × C(x∗k , T ) − P̂ (x∗k ) ×
Ĉ(x∗k , T )|. Hence, by Lemma A.1, the difference |P̂ (x∗k ) × AFTER(α, x∗k ) − P(x∗k ) ×
AFTER(αopt , x∗k )| is at most

2λ errM = 2
3ε

8× 4k
= ε

4k+1

(
41 − 1

)
,

as desired.
For the inductive step, we need to bound ∆�, given that

∆�+1 =
∣∣P̂ (x∗�+1

)× AFTER
(
α, x∗�+1

)− P
(
x∗�+1

)×AFTER
(
αopt , x∗�+1

)∣∣
� ε

4k+1

(
4k−� − 1

)
holds for all x∗�+1 ∈X∗�+1. Again, using Lemma A.1, we need only bound the largest error
of any of the n+ 2 options, at x∗� .

For χ ∈ {T ,F }, the error |P(x∗� )×C(x∗� , χ)− P̂ (x∗� )× Ĉ(x∗� , χ)| remains bounded by
λ errM using the same proof as for x∗k . For the other actions i ∈ {1, . . . , n}, we use Eq. (4)
and the fact that AFTER(α, x∗�+1) is the value of C[x∗�+1] given the probability values used
(P̂ (·) for AFTER(α, x∗�+1), and P(·) for AFTER(αopt , x∗�+1)), we see∣∣P (x∗� )×C

(
x∗� , i

)− P̂
(
x∗�
)× Ĉ

(
x∗� , i

)∣∣
= ∣∣P (x∗� )× [ci + P(xi = 1 | x extends x∗)AFTER

(
αopt , x∗i �→1

)
+ P(xi = 0 | x extends x∗) AFTER

(
αopt , x∗i �→0

)]
− P̂

(
x∗�
)× [ci + P̂ (xi = 1 | x extends x∗)AFTER

[
α, x∗i �→1

]
+ P̂ (xi = 0 | x extends x∗)AFTER

[
αopt , x∗i �→0

]]∣∣
� ci

∣∣P (x∗� )− P̂
(
x∗�
)∣∣

+ ∣∣[P (x∗i �→1, x
∗)AFTER

(
αopt , x∗i �→1

)+P
(
x∗i �→0, x

∗)AFTER
(
αopt , x∗i �→0

)]
− [P̂ (x∗i �→1, x

∗)AFTER
[
α, x∗i �→1

]+ P̂
(
x∗i �→0, x

∗)AFTER
[
α, x∗i �→0

]]∣∣
� ciλ+

∣∣P (x∗i �→1, x
∗)AFTER

(
αopt , x∗i �→1

)− P̂
(
x∗i �→1, x

∗)AFTER
[
α, x∗i �→1

]∣∣
+ ∣∣P (x∗i �→0, x

∗)AFTER
(
αopt , x∗i �→0

)− P̂
(
x∗i �→0, x

∗)AFTER
[
α, x∗i �→0

]∣∣
� errMλ+∆�+1 +∆�+1 � λ errM + 2

ε

4k+1

(
4k−� − 1

)
.

(This uses the inductive assumption, our unproblematic assumption that ci � errM ,
our assumption (Eq. (A.5)) that |P̂ (x∗ occurs) − P(x∗ occurs)| � λ, and the fact that
P̂ (x∗i �→0, x

∗) is simply P̂ (x∗i �→0).)
Hence, from Lemma A.1, we know that

∆� � 2 max

{
λ errM, λ errM, λ errM + 2

ε

4k+1

(
4k−� − 1

)}
= 2

[
3ε

8× 4k
+ 2

ε

4k+1

(
4k−� − 1

)]
= ε

4k+1

[
3+ 4× 4k−� − 4

]= ε

4k+1

(
4k+1−� − 1

)
as desired.
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All that remains is to show that the L(k) algorithm is computationally efficient. L(k)

needs to collect only a polynomial number, M , of instances to estimate the values of

a polynomial number 2 × g(k) of probability values, for P̂
ϕ
x∗ and ̂P i �→0

x∗ . Given these
estimates, Helper_L(k) needs to compute the (2+ n)× 2g(k) values of Ĉ(x∗, i), as well
as the 2g(k) values of Op[x∗] and AFTER[x∗]; each of these computations requiring
constant time. Finally, BUILDTREE requires O(2k) time to build the binary tree of
depth k. Hence, the total run time is O(M(k) × 2g(k) + (2 + n) × g(k) + 2k). As
g(k)� 2k , and M(k)� n, we have a run time of O(g(k)×M(k))=O((errM/ε)2nk[lnn+
log 1/δ]), which is polynomial in the relevant quantities. (Here we view k as a
constant.) ✷
Proof of Corollary 8. To accommodate r class labels and s values for each attribute, our

L
(k)
r,s algorithm (and subroutines) must compute, for each x∗, the r values ̂

P
φ=�i
x∗ (each an

estimate of Pφ=�i
x∗ = P(ϕ(x)= �i | x extends x∗)); and the n× s values

̂
P
i �→j
x∗ to estimate

P
i �→j
x∗ = P(x∗j �→i | x∗).

As shown in the proof of Theorem 7, these quantities will be estimated well enough if
we can estimate the r + 1 quantities P̂ (x∗ occurs) and P̂ (ϕ(x)= class#j, x extends x∗),
for j = 1..r , for each of the

gr,s(k)=
k∑

i=0

(
n

i

)
si � k(s n)k

partially-specified instances x∗; i.e., if we can guarantee the chance that any one of these
(r + 1) gr,s(k) unconditional quantities is greater than λ = 3ε/(8 errM 4k) away from the
correct value, is at most δ.

This requires at most

Mr,s(k)= err2
M42k+3

9ε2 log
2(r + 1) gr,s(k)

δ
=O

(
16k

(
errM
ε

)2[
k log(sn)+ log

r

δ

])
instances. Using the same arguments given above, the overall L

(k)
r,s algorithm has

computational complexity

O
(
Mr,s(k)× gr,s(k)

)=O

(
(sn)k

(
errM
ε

)2[
log(sn)+ log

r

δ

])
as claimed. ✷
Proof of Theorem 11. As shown in Fig. 3, the LG algorithm first collects a set of
instances, then produces an active classifier αG using these instances. We need only prove
(1) if this sample is truly representative (i.e., if P̂ (xi = 0)= P(xi = 0)), then the resulting
αG is optimal; and (2) the sample size is sufficient to simultaneously estimate the costs
of all possible active classifiers (for conjunctions) to within ε/2, with probability at least
1− δ. In particular, let αopt be the optimal classifier. If (2) holds, then we know that
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ECP

(
αG
)−ECP

(
αopt

)
= [ECP

(
αG
)− ÊCP

(
αG
)]+ [ÊCP

(
αG
)− ÊCP

(
αopt

)]
+ [ÊCP

(
αopt

)−ECP

(
αopt

)]
�
∣∣ECP

(
αG
)− ÊCP

(
αG
)∣∣+ 0+ ∣∣ÊCP

(
αopt

)−ECP

(
αopt

)∣∣
� ε/2+ 0+ ε/2= ε.

To prove (2), we note that there are at most 3n n! possible active classifiers for
conjunctions. (This requires observing that we need only consider classifiers that
correspond to linear decision trees (see Fig. 4), and there are only n! orderings of the
variables, and each variable can occur either positively (as “xi”) or negatively (as “¬xi”),
or be omitted.) Moreover, we need only consider classifiers whose costs range from 0 to
err(F,T ), as our space of classifiers trivially includes the degenerate classifier that simply
returns F , whose error is at most err(F,T ). Now realize that each instance in the training
sample is providing an estimate of the expected cost of each classifier. We can then use
Hoeffding’s Inequality (Eq. (A.4)) to bound our estimates of the quality of the classifiers:
After MLG instances, the probability that our empirical estimate of any classifier, based
on this sample (and the induced values qi = P̂ (xi = 0)) will be more that ε/2 off is
under

2 exp

(
−2MLG

(
ε/2

err(F,T )

)2)
� δ

3nn! .

Hence, the chance that our estimates of any of the 3nn! classifiers will be off by more than
ε/2 is under the 3nn! δ

3nn! = δ, as desired.
We therefore need only prove (1): that LG produces the active classifier that is optimal,

with respect to the sample. It is trivial to see that the “intersection” step (line [R1]) PAC-
learns the target concept; cf., [48]. To show that the minimal-cost active classifier will
consider these variables in order of increasing values of ci/qi (where ci is the cost of
acquiring the value of xi ), consider a classifier α that does not—e.g., that asks for xr+1
before xr , where

cr

qr
<

cr+1

qr+1
. (A.7)

For now, assume there is only a single violation. Here, using pi = P̂ (x1 = 1), α’s cost
is A+Q× (cr+1 + pr+1cr)+Q× pr+1 × pr × B , where A is the cost of dealing with
the first portion of the classifier before reaching xr+1, involving tests whose collective
success probability is Q=∏r−1

i=1 pi , and B is the cost associated with the remainder of the
classifier, after xr . To show that α cannot be optimal, let α′ be a classifier that differs from
α only by exchanging these variables, placing xr before xr+1. Given Eq. (A.7), the cost of
α′, which is A+Q× (cr + prcr+1)+Q× pr × pr+1 × B , is under the cost of α. Note
that the cost of classifier with more violations would be yet less.

Now let αm be the linear-structured classifier (Fig. 4) that includes m variables, in
this ci/qi order; we need only show that α� has the minimal expected cost—i.e., that
m = �. Consider sequentially growing the classifier tree. The classifier αr is better than
αr−1 when the difference between their costs ECP (αr )−ECP (αr−1)= (

∏r−1
i=1 pi)×[cr −
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qrerr(F,T )] is negative—i.e., when cr/qr < err(F,T ). This means the optimal classifier
will have all-and-only the first � of the terms, as shown in Fig. 3. ✷
Proposition A.2. Usingk = k(err, c) defined in Definition13, there is an active classifier
α∗k in Ak(err,c)×errM/ε whose expected cost is withinε of optimal; i.e., if α∗ is a classifier
with minimal expected cost, ECP (α∗) < ECP (α

∗
k )+ ε.

Proof. Let the random variable N represent the number of actions taken by an optimal
strategy α∗ on a specific example. Proposition 14 bounded the expected value of N :
E[N]� k. Using the Markov Inequality,

P(N > k× errM/ε)�E[N]/(k× errM/ε)� ε/errM.

Now let α∗k be the classifier formed by truncating α∗ after k × errM/ε actions, and just
returning, say, F here. Note that α∗k is in Ak(err,c)×errM/ε . This α∗k will be slightly worse
than α∗: at most ε/errM of the time, α∗k will produce an error that is at most errM . Hence,
ECP (α

∗) < ECP (α
∗
k )+ ε, as claimed. ✷

Proof of Theorem 15. We again reduce to our problem the NP-complete problem EXACT

COVER BY 3-SETS (X3C) (shown in proof of Theorem 5).
Given any X3C instance 〈Y,S〉, with |Y | = 3r and |S| = m, we produce a PACT-

learning instance whose m variables xj correspond to the subsets S = {sj }mj=1, and whose
training instances (basically) correspond to the elements in Y . The concept to be learned is
ϕ ≡ x1 ∧ · · · ∧ xm.

We will use a total of (9r(r − 1))/2γ training instances (including some duplicates;
there are 3r + 2 distinct instances). Using f = 4γ /(3(r − 1)), these instances are:

• 3r negative instances, {x(1), . . . , x(3r)} where each x(i) = 〈x(i)1 , . . . , x
(i)
m 〉, where x(i)j =

0 iff yi ∈ sj (and= 1 otherwise). (We assume that no yi is in every sj—for otherwise,
the nonexistence of an exact cover would be immediate.) We include each of these
instances one time, so the empirical probability of each is f/(6r);

• one positive instance x(+) = 〈1,1, . . . ,1〉 included 3r times, so its empirical probabil-
ity is f/2;

• one negative instance x(−) = 〈0,0, . . . ,0〉, included 3r[3(r − 1)− 4γ ]/2γ times, so
its empirical probability is 1− f .

Let the cost of obtaining the value of attribute xi be ci � 1, and the penalty for being wrong
be R = 9r(r − 1)/γ . We assume empty blocking.

Claim: For every exact cover, there corresponds (in a sense discussed below) an
active classifier in A≈1+γ which classifies every training instance correctly. All other
classifiers (i.e., that do not correspond to any exact cover in this sense) have average cost
� min(2,1+ γ + f/6r) on the training set.
⇐: If there is an exact cover C = {si1, . . . , sir } ⊂ S, then form an active classifier αC

whose associated decision tree is “linear” (see Fig. 4), with nodes labeled by the sets s ∈ C,
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going to “F ” if sij = 0, and further down if sij = 1. The final internal node is sir ; its “1”-
labeled arc leads to “T ”. The expected number of queries used by αC is:

(1− f )× 1 ;; to deal with x(−)
+ f/2× r ;; to deal with x(+)
+ f × (r + 1)/4 ;; to deal with all 3r x(i)’s

= 1+ f [3(r − 1)/4] = 1+ γ.

The first line uses the observation that x(−), which occurs with probability P(x(−)) =
1−f , will be answered (correctly) after examining the first node. The second line uses the
fact that x(+) requires examining all r nodes in the decision tree. The third line requires
noting first that exactly 3 of the x(i)’s will reach the “false”-branch of each of the nodes in
the tree. This means the total number of queries involved in handling all 3r of the x(i)’s is

P
(
x(i)

)× 3
r∑

j=1

j = f

6r
3r(r + 1)/2.

Clearly this classifier always returns the correct answer.
⇒: First observe that if a classifier misclassifies even one sample point, then its cost is

at least

f/(6r)×R = 1

6r

4γ

3(r − 1)
× 9r(r − 1)

γ
= 2,

as required.
Thus we restrict attention to classifiers that classify all sample points correctly. We can

further restrict attention to such classifiers that are equivalent to linear trees, i.e., that test
some sequence si1 , si2, . . . , sik in order, stop and announce F if any sij = 0, and announce
T if all sij = 1. If we are given any other classifier (e.g., that makes further tests after seeing
some sij = 0) we can modify it to construct a linear classifier that is as least as good, and
so it suffices to prove the result for such linear trees. Note that, necessarily, k > r . For if
k < r , the classifier must make an error on at least one x(i). And k = r , the classifier must
either correspond to an exact cover, or must also make at least one misclassification.

Since k > r and the first r tests do not correspond to an exact cover, then there must
be at least one x(i) that reaches the (r + 1)th internal node (i.e., takes more than r tests to
classify). In fact, the total number of tests to classify all 3r of the x(i) must be at least

P
(
x(i)

)×((3
r−1∑
j=1

j

)
+ 2r + (r + 1)

)
= f

6r

(
1+ 3r(r + 1)/2

)
.

Thus, the total number of tests used by this classifier is at least 1+ γ + f/6r . Since each
test costs at least ci � 1, this verifies the claim.

To complete the proof of the theorem, consider X3C instances 〈Y,S〉 such that si =
{y3i+1, y3i+2, y3i+3} for i = 1, . . . , r . Thus, it is known that there is at least one exact
cover. Clearly, given this knowledge, the problem of determining whether there exists
any other exact cover remains NP-complete. Let the cost of querying si for i � r be
1+ f/(12r(1+ γ )), and the cost of querying any other si be 1. From the claim, we know
that there is an optimal classifier in A≈1+γ (because there is at least one exact cover). In
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fact, the cost of this classifier is 1+γ +f/12r . By the claim, this is better than any classifier
notbased on an exact cover. However, if there is a classifier based on any other exact cover
(i.e., other than {s1, . . . , sr }) then at least one query in this other classifier costs only ci = 1.
In the worst case, this cheaper query is the last query, but even then the expected cost will
be 1+ γ + f/12r − c where c= f 2/(24r2(1+ γ )). Thus, the ability to PACT-learn under
these conditions, taking ε = c/2, implies the ability to tell if there is more than one exact
cover. This proves the result. ✷
Proof of Theorem 16. We know that the L(k) learning algorithm (Fig. 2) can PACT-learn
Ak under empty blocking, using

Mk(ε, δ)= err2
M24k+6

9ε2 log
4g(k)

δ
(A.8)

completely-specified, labeled instances, and so to consider all n attributes (i.e., k = n), it
needs to use h( ε, δ)=Mn(ε, δ) instances.

As shown in Fig. 5, LAC∗ first draws h1 = h(1/2, 1/2) instances, and for each, pays the
cost

∑
i ci to fill-in all of their attribute values. It then guesses T if err(T ,F ) < err(F,T ),

and F otherwise; and so pays at most a penalty of

errmin=min
{
err(T ,F ), err(F,T )

}
.

This phase, therefore, costs at most h1×W whereW = errmin+∑i ci . It then uses L(n) and
these now completely-specified and labeled instances to construct a classifier α1 whose cost
will be, with probability at least 1/2, within 1/2 of the best—i.e., ECP (α1)−ECP (α

opt )�
1/2. We then exploit this pretty-good classifier, using it to deal with the next batch of

Y1 = h1
[
21W − 1

]
instances. After these m1 = h1 + Y1 instances, we are 50% confident that the average
difference is only

diff (LAC∗,m1)� h1 × [W −ECP (α
opt )] + Y1 × 1/2

h1 + Y1
� 1.

The LAC∗ algorithm then repeats this “explore then exploit” cycle, but with tighter
bounds: Here, the exploration phase draws h2 = h(1/4, 1/4) instances, and for each, pays∑

i ci to get the values of all attributes, and then accepts an errmin penalty for guessing the
“safer” option. It then uses this sample to produce the α2 active classifier, then exploits
this α2 for the next Y2 = [22W − 1] × (h1 + h2 + Y1) instances. Here, we are 1 − 1/4
confident that this final batch of instances will have expected error at most 1/4. Even if we
no longer assume that the first set of instances is within 1/2 of optimal, we see that, after
m2 = h1 + Y1 + h2 + Y2 instances, the difference is

diff (LAC∗,m2)� (h1 + Y1 + h2)× [W −ECP (α
opt )] + Y2 × 1/4

h1 + Y1 + h2 + Y2
� 1

2
.

In general, our LAC continues with this explore-exploit loop—on the rth cycle, it draws
hr = h(1/2r, 1/2r) instances, pays to see the values of all of the attribute and guesses the
least-risk label, then uses these instances to produce an active classifier αr whose cost is,
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with probability at least 1 − 1/2r , within 1/2r of optimal. It then exploits this αr for the
next Yr = [2rW − 1] × [∑r

i=1 hi +
∑r−1

i=1 Yi ] instances. It is easy to confirm that, after
mr =∑r

i=1 hi +
∑r

i=1 Yi instances, the average difference is, with probability at least
1− 2r ,

diff (LAC∗,mr)� 1

2r−1 .

Note that, as r grows, we become increasingly confident that the resulting αr will be better,
at a rate that insures that the running average difference is also going to 0.

Notes.Of course, in practice there are several things we could do to produce a more
effective on-line learning algorithm. For example, rather than just return the least risk label
(T or F ) in the exploration phase of stage r + 1, we could instead use αr to produce a
label.

Also, we don’t have to use Mn(1/2,1/2) on the first round; we could instead grow
the depth of the tree, in parallel with decreasing the ε and δ terms; i.e., use h′1 =
M1(1/2,1/2), then h′2 =M2(1/4,1/4), . . . , h′r =Mr(1/2r ,1/2r), . . . until reaching h′n =
Mn(1/2n,1/2n), and then after leaving the tree depth at n and only updating ε and δ.

Finally, notice we use a completely different sample for each αi ; i.e., we do not re-use
Si when learning αj for any j > i . This proof did not explore subtle ways of re-using these
Sis again later.

Notice that none of these tricks would change the correctness of the theorem’s
asymptotic claim. ✷
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