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Abstract

We consider the p(x)-Laplacian equations in RY with periodic data and nonperiodic perturbations being stationary at infin-
ity, where the perturbations are done not only for the coefficients but also for the exponents. Using concentration—compactness
principle, under appropriate assumptions, we prove the existence of ground state solutions vanishing at infinity for the equations.
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1. Introduction and statement of main results

In this paper, we consider the p(x)-Laplacian equation in RY with periodic data of form

—div(|VulPD72Vu) + V) lulPO2u = f(x,u) inRY, .

ue whP@(RN), (b
and its nonperiodic perturbation being stationary at infinity of form

— div(|VuPOTO2VY) 4 a )V @) |ul PO = b(x) £ (e, w)u] T inRY, .

ue Wl,p(x)+9(x)(RN)‘ (1.2)

In this paper, R denotes the space of all real numbers, R™ = [0, 4-00).
Let {e, e2, ..., en} be the standard basis of RV, Let T;, >0,i=1,2,...,N.Denote T = (T, T, ..., Tn). A func-
tion p : RY — R is called T-periodic if

p(x+Tie))=px), VxeRN i=1,2,...,N.
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For problem (1.1) we introduce the following assumptions.

(p1) The function p : R¥ — R is Lipschitz continuous and
1< p_:=infp(x)<supp(x):=ps <N.
RN RN
(p2) pis T-periodic.
(V1) VeC'®RN RY),0<V_ <V <oo.
(V2) V is T-periodic.
(f1) feC'RN xR,R) and

[FGe D <17 411797, Ve eRY, 1 eR,
where C is a positive constant, g € CO(RY,R) and p < g < p*, p* is defined by

Np(x)
Prx)=———"
N —px)
the notation “g < p*” means that inf{p*(x) — ¢(x): x e RV} > 0.
(f2) There is a positive constant 8 > p. such that

forxeRN,

0<BF(x,t)<tf(x,1), VxeRM, t+£0,

where F(x,t) = fé f(x,s)ds.
(f3) f(x,t)=o(t|’+~ ") ast — 0, uniformly in x.
(fs4) f(.,t)is T-periodic for every t € R.

(fs) Foreach x e RV, Iﬁf’i,i)' is an increasing function of ¢ on R \ {0}.

For problem (1.2) we introduce the following assumptions.

(2) ae CORN,R*), 0 <a_ <ay <ooand limy»o0a(x) =ay.
(b) be CORN,RY), 0 <b_ < by < o0 and limpy| 0o b(x) =b_.
©) 6:RN - R* is Lipschitz, there exists R, > 0 such that 8(x) =0 for |x| > Ry, and (p+0)+ < N.
(r) :RY > Rt is Lipschitz, and there exists R, > 0 such that 7(x) =0 for |x| > R,.
@,7t) (p+6)y <B— 14, where Bisasin (f2).
(f3)s fx, D)]t]7TD = o(|r|PTD+~1) as t — 0, uniformly in x.
(fs5), Foreach x e RV, ﬁ f;fl) is an increasing function of 7 on R \ {0}, where g is as in (f3).

A typical example of f satisfying (f})—(f3), (fs) and (f5), is f(x, 1) = [¢t|2®)72¢, where ¢ € CO(RY,R), g_ > py4
and g < p*. (V1) means that the left-hand side of Eq. (1.1) is positive definite. (f;) means that f satisfies the
subcritical growth condition.

The main results of this paper are the following theorems.

Theorem 1.1. Suppose the assumptions (p1), (p2), (V1), (V2), (f1)—(f4) hold. Then

(1) problem (1.1) has a nontrivial solution;
(2) problem (1.1) has a positive solution and a negative solution.

Theorem 1.2. Suppose that in addition to the assumptions of Theorem 1.1, (f5) holds. Then

(1) problem (1.1) has a ground state solution u., that is, u, is a nontrivial solution of (1.1) and
J(uy) =inf{J (u): J' (wu=0, u0},

where J(u) is the energy functional associated with problem (1.1) (for the definition of J see Section 2);
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(2) problem (1.1) has a positive solution v and a negative solution w such that

J () =inf{J(w): J' wu=0, u> 0},
J(w) =inf{J(u): J' (wu=0, u<0}.

Theorem 1.3. Suppose that in addition to the assumptions of Theorem 1.2, the assumptions (a), (b), (0), (), (0, 1),
(f3) 4 and (fs)4 hold. Then

(1) problem (1.2) has a ground state solution;
(2) problem (1.2) has a positive solution v and a negative solution w such that

Jo(v) = inf{Jo(u): J ()u =0, u> 0},
Jo(w) =inf{Jo(u): J ()u=0, u <0},

where J.(u) is the energy functional associated with problem (1.2).

The problems studied in this paper involve the variable exponent p(x). The variable exponent problems are inter-
esting for some applications (see [24,35]). The study of various mathematical problems with variable exponent has
been received considerable attention in recent years. We refer to the survey papers [8,13,36] for the advances and
references in this area. The p(x)-Laplacian is a generalization of the p-Laplacian, and it possesses more complicated
nonlinearities than the p-Laplacian.

It is well known that a main difficulty in studying the elliptic equations in R¥ is the lack of compactness. To over-
come this difficulty, many methods can be used. One type of methods is that under some additional conditions there
holds the required compact imbedding theorem, for example, the weighting method and the symmetry method (see
e.g. [34,37,39]). In [17] the equations of type (1.1) with weighted function f(x, u) were studied. In [17, Remark 3.3]
it was point out that the similar method is also applicable to the case that V (x) — 400 as |x| — o0, and the case of ra-
dial symmetry. In [23] a compact imbedding theorem with symmetry of Strauss—Lions type for the variable exponent
Sobolev space W!-P®)(RN) was obtained and in [21] the nodal solutions of p(x)-Laplacian equations possessing
radial symmetry were considered. Another type of methods is concentration—compactness principle, discovered by
PL. Lions [28,29]. By this principle, under suitable conditions, a noncompact minimizing or (PS). sequence can be
changed into a new sequence possessing some compactness. For such purpose the following methods are often used:

(19) Translations. It is applicable to homogeneous equations, i.e., equations not clearly including x. In this case the
corresponding energy functionals are invariant under translations. For applying this method to the p-Laplacian
equations, we refer to [27-29,37-39] and references therein.

(2°) Periodicity. It is applicable to the equations possessing periodicity. In this case the corresponding energy func-
tionals are invariant under period-translations. For applying this method to the p-Laplacian equations, the
Schrodinger equations and the biharmonic equations, we refer to [2—-6,9,10,26,30-33,40] and references therein.
Pankov [31] and Pankov and Pfliiger [32] have used the method of periodic approximations.

(3%) In comparison with a limiting equation. The idea of this method is to compare the original equation with its
limiting equation at infinity, especially to compare the corresponding critical values for these two equations,
where the existence of the ground state solutions for the limiting equation is known. For applying this method
to the p-Laplacian equations, the Schrédinger equations and the biharmonic equations, we refer to [3-6,11,12,
14,28-30,34,37-39,41] and references therein. Usually the limiting equations are homogeneous, but in [3—6,30]
the limiting equations are periodic. Alves and Souto [7] have studied the p(x)-Laplacian equations such that the
variable exponent p(x) is constant outside a ball, and thus in [7] the limiting equation is homogeneous.

For p-Laplacian equations, the constant exponent p, as a function on R", is periodic and is also invariant under
translations. For p(x)-Laplacian equations, of course, we cannot require that the variable exponent p(x) is invariant
under all translations. In this paper we study p(x)-Laplacian equations (1.1) and (1.2) by using methods (2%) and (39).
Equation (1.1) is periodic and Eq. (1.2) is a nonperiodic perturbation of (1.1). Note that all the coefficients and the
exponents in (1.1) are perturbed, and the limiting equation of (1.2) is not homogeneous but periodic. The perturbation
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of the exponents is a distinguishing characteristic of variable exponent problems. In this paper the idea of Pankov [30]
and the idea of Alves et al. [3—7] are used together. Theorem 1.3 is a generalization of the corresponding results of [7]
and [30].

This paper is organized as follows. In Section 2, we present some necessary preliminaries. In Section 3, we prove
Theorems 1.1 and 1.2. The proof of Theorem 1.1 is based on Proposition 2.3, a Lions type lemma for the variable
exponent space WP (RNY obtained by Fan, Zhao and Zhao [23]. The proof of Theorem 1.2 is done according
to the idea of the concentration—compactness but not directly applying the first concentration—compactness principle
of Lions. Such a proof seems to be simpler because the “dichotomy” case mentioned in the first concentration—
compactness principle is evaded. In Section 4 we give the proof of Theorem 1.3.

2. Preliminaries

Let £2 be an open subset of RV, p € L°(£2) and p_(£2) = essinfyc p(x) > 1. The variable exponent Lebesgue
space LP™)(£2) is defined by

LPO(2) = {u ‘ u: 2 — R is measurable and / lu|P® dx < oo}
2

with the norm

p(x)
dx < 1}.

. u
|M|Lp(x)(9) = lulp) = mf{)‘ > 0: /‘X
2

The variable exponent Sobolev space W7 (£2) is defined by
WP (@) ={u e LPY(2): |Vu| e LPY (2)}

with the norm

”u”WLP(X)(Q) = |M|LP(X>(_Q) + |VM|LP(X>(Q)-

When V satisfies (V1), it is easy to see that ||u||W1,p(x)(Q), defined by
|4
Vu |PO u |P
||u||Wé,p(x>(Q)=1nf{)L>O: /( - + Vx) n )dxgl},
Q

is an equivalent norm in wlr) ().

For the basic properties of spaces Lp(x)(.Q) and Wl’p(x)(.Q) we refer to [13,15,18,20,25,36]. In the following we
list some facts which will be used later. In this paper, for x € RN and R > 0, B(x, R) :={y e RV: |y — x| < R}
and Br = B(0, R). The symbols u, — up and u, — uo denote the strong convergence and weak convergence of a
sequence {u,} in a Banach space, respectively.

Proposition 2.1. (See [15,20,25].) The spaces LP™) (2) and W'P¥)(2) are separable Banach spaces, and they are
reflexive when p_(£2) > 1.

Proposition 2.2. (See [18].) Suppose that p satisfies (p1), g € CO(RN,R) and p < q < p*. Then there is a continuous
embedding WHPX)(RN) - LIO)(RN). If 2 is a bounded open subset of RN with cone property, then the embedding
WP®) (2) - LI%)(2) is compact.

Proposition 2.3. (See [23].) Suppose that p satisfies (p1). If {u,} is a bounded sequence in WP®) (RN and for some
R >0,

sup lup|?® dx -0 asn — oo, 2.1)

yeRN
B(y.R)
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for some R > 0 and some g € CO(RN,R) satisfying p < q <K p*, then u, — 0 in L' RN) for any r satisfying
p KL r L p*.

Let £2 be an open subset of RV . Define for u € WP™) (82),

Jg(u)=/L(|w|W>+V(x)|u|1’<x>)dx—/F(x,u)dx,

p(x)
$2 22
IQ(”):/L(W“VM)+V(x)lulp(x))dx,
p(x)
2
WQ(M):/F(x,u)dx. 2.2)
2

When 2 =RV, Jgv, Igy and Wyy are written simply by J, I and ¥, respectively. J is the energy functional
associated with problem (1.1).

Proposition 2.4. (See [17].) Suppose (p1), (V1) and (f1) hold. Then the following assertions are true.

(1) Jo € CLY(WIPX) (), R) and for every u,v e W-PH) (),

Jowv = /(|W|P<X>—2ww + V(@) |ulPOuv) dx — / fx, wvdx. (2.3)
2 2

(2) The mapping I_éz cWhP® () > (WHPW (2))* isa strictly monotone, bounded homeomorphism, and is of (S4)
type, namely

up —u and  im I5(up)(uy —u) <O imply uy — u.
n—>oo

u € WP (RN) is called a weak solution of problem (1.1) if u is a critical point of J, that is, for every v €
WL RY),

f(|Vu|p(x)_2Vqu + V) PP 2up) dx — f @, uyvdx =0.

RN RN

Proposition 2.5. Suppose (p1), (V1) and (f1) hold. If u is a weak solution of problem (1.1), then u € CH*[RN),
u(x) = 0and |Vu(x)| — 0 as |x| = oo.

Proof. Let u € WP (RV) be a weak solution of problem (1.1). By the regularity result on local boundedness of
the weak solutions (see [19]), we know that u € Lf’ooc (RM) and for every bounded open subsets £2 C 2c R cRY,
|u| () depends only on N, p_, pi,q—,q+,Cy, dist(£2,92') and [, (|Vu|P® + V(x)[u|P™)dx. Given any
& > 0, there is R, > 0 such that

f (IVuP® + V() |u|P™®) dx < e.
RV\B(0,R;)
For every xg € RY with |xo| = R + 2, we have that |u|;~p(x,,1)) < C(g), where C(e) — 0 as ¢ — 0. From this we

can see that u(x) — 0 as |x| — oco. Similarly, by the C'* regularity of the bounded weak solutions (see [1,16]), we
can see that u € C1*(RV) and |Vu(x)| = 0 as |x| > co. O
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Remark 2.1.
(1) Let assumptions (f1) and (f2) hold. (f]) implies that
|Fe, )] <Ci(1eP® +1e199),  vxeRN, reR. (2.4)
(f2) implies that
Fx,t)>Clt)?, VxeRM, teR. (2.5)
So there holds that C|t|f < C(|t|P™) + |¢]9™), which implies that ¢ (x) > B for all x € R and hence

ps <B<q-<p". 2.6)

(2) Let (f1), (f2) and (f3) hold. It follows from (f1), (f3) and (2.6) that, given any ¢ > 0, there exists a positive constant
C (&) such that

|fen| <elt*+ M+ C@f™@7!, vxeRY, reR, (2.7)
and consequently
|F(x,n| <elt]’* +C@)t]9Y), VxeRN reR. (2.8)

(3) Itis clear that (f3), implies (f3), and (f5), implies (f5). Note that when (f;) with 81 > p, and (f5), with 8y > p4+
hold, (f») and (f5), with 8 := min{B, B>} hold.

Remark 2.2. It is easy to see that, when 6 satisfies (), there is a continuous embedding W 1P+ (RN) s
WP @RN),

3. Solutions of problem (1.1)

In this section, we consider problem (1.1) and prove Theorems 1.1 and 1.2.
Let J = Jgn, I = Ignv and ¥ = Yy be as in Section 2. We write [lu|| = [[ully1.pc0 wyy and [lully = ||M||W1.p(x)(RN).
14

Lemma 3.1. Let (p1), (V1) and (f1) hold. Suppose that {u,} is a sequence in WHPX RNY such that u, — u in
WLPOY(RN), u, (x) = u(x) a.e. x € RN and J'(up) — 0 in (WHPEORN))* as n — oo. Then the following asser-
tions are true.

(1) up — u in WP RN),

loc

) J'(up) = J' ) in (WP (RNYY* and consequently J'(u) = 0. So u is a solution of (1.1).

Proof. (1) It follows from u, — u in WHP@(RN) and u, (x) — u(x) a.e. x € RN that u,, — u in WHP9 () for
every bounded open ball £2 ¢ RY, and consequently

up — u  in LY9(2) for g € C°(RY | R) satisfying p < g < p*. (3.1

Now let R > 0 be given. We will prove that u, — u in WHP®)(B(0, R)). Let ¢ € Cgo(]RN) be such that ¢(x) =1 if
x| <R, o(x) =0if |x| > R+2, ¢(x) € [0, 1] and |V (x)| < 1 for all x € RV. Put

0, (x) = (IVuy P92V, — |VulPD72Vu) (Vu, — Vu)
+ V@) (Jun PO — (PO 2u) (uy — u0).

We have
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0</Qn(x)dX</<P(x)Qn(X)dx
Br

RN

= / (IVun P2V, (Vuy — Vi) + V () |un PO 2unp(uy — u)) dx + o(1)

RN

=J (un) (uun — u) — / (ty — )| Vi [PD 2V, Vo dx + f Fx, u) @y —u)dx +o(1).

Bry2\Br Bri2

109

From J'(u,) — 0 and (3.1) it follows that fBR 0, (x)dx — 0, that is (Il’gk () — IllsR(”))(”n —u) — 0. Thus
I (un)(uy —u) — O and u, = u in W78 (Bg). Since I, is of (Sy) type, u, — u in WP (B). Assertion (1)

is proved.

(2) Denote WP (RN) = {v € WIPO(RN): suppv is compact}. Then W2 P® (RV) is dense in WP (RN).
For each v € WJ’p (x)(]RN ), taking R > O sufficiently large such that suppv C Bg and noting that u, — u in

WLP()(BR), we have that

J (W)= Jg, (up)v — Jp v =J (u)v.

This shows J'(u,) — J'(u) in (WLPO)(RN))*, Since J'(u,) — 0, we have J'(u) = 0. Assertion (2) is proved. O

Lemma 3.2. Let (p1), (V1), (f1) and (f2) hold. If {u,} is a (PS). sequence of J, that is, J(uy) — ¢ and J'(uy) — 0

as n — oo, then {||uy||} is bounded.

Proof. We may assume that ||u,|v > 1 for all n. For n sufficiently large, we have

1, 1 1 P
c+1+1ully 2 J W) — < J wpuy 2 | — — = Jllully,
B p+ B

which implies that {||u,]|} is bounded. O

Lemma 3.3. Let (p1), (V1), (f1), (f2) and (f3) hold. Then J satisfies the Mountain Pass Geometry, that is,

(1) there exist positive numbers p and o such that J(u) = o for ||u|| = p;
(2) there exists v e WP (RN such that ||v|| > p and J (v) < 0.

Proof. (1) By (2.6), (2.8) and Proposition 2.2, we have that, for any ¢ > 0, when |lu]y < 1,
T@) = ullf - f(e|u|l’+ + C(e)|ul1™) dx

RN
p p q-
> |lully” — eCsllully,” — C(e)Callully,

Taking ¢ = % in the above inequality and noting that g_ > py, we can see that assertion (1) holds.
(2) Assertion (2) follows easily from (2.5). O

Lemma 3.4. Let (p1), (V1), (f1)=(f3) hold. Suppose that {u,} is a sequence in WHPO)(RN) such that {||u,|} is

bounded and J'(u,) — 0 in (WPO) (RN))* as n — oo. Then, passing to a subsequence still labeled by n, either

(1% wu, — 0in WHPORNY a5 n — o0,

or
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(2%) there exist a sequence {y,} C RN and positive numbers R and § such that

|un(x)|p(x) dx>46 foralln.

B(yn,R)
Proof. Assume that (2°) does not hold. Then, passing to a subsequence still labeled by 7, for some R > 0,

sup / lun|?P dx — 0 asn— oo.

eRN
YRGB

By Proposition 2.3, u, — 0 in LI®@RN). Now J' (up)un, = I' )y — ¥’ (un)u, — 0. By (2.7) we know that, for
any € > 0,

|W(un>un|=‘ / f(x, up)up dx <‘ / (elun)”* + C(&)|un|?™) dx|. (3.2)
RN RN

The boundedness of {||u, ||} implies the boundedness of {|u, |7+ g, }. Noting that u, — 0 in L4®)(RY), from (3.2)
and the arbitrariness of ¢ > 0 it follows that ¥’ (u,,)u, — 0. Thus
I (up)up = /(|wn|l’<x> + V(@) un|PM) dx — 0,
RN
which implies u,, — 0 in WL-PO(RN), O

Proof of Theorem 1.1. (1) Define

r={yec(o, 11, wH?®(R")): y(0)=0and J(y(1)) <0},

= inf J(y@®). 33
o= im0 o) oy

By Lemma 3.3 and Mountain Pass theorem (see e.g. [38,39]), there exists a sequence {u,} C W1P®) (RY) such that
J(uy) —> ¢ > a>0and J'(u,) — 0. By Lemma 3.2, {||uy||} is bounded. Applying Lemma 3.4 to {u,} and noting
that the case (1%) does not hold because ¢ > 0 and J(0) = 0, we know that, for a subsequence of {u,}, denoted still
by {u,}, the case (2°) holds, that is, there exist a sequence {y,} C RV and positive numbers R and § such that

luy (0|7 dx =8 for all n.

B(yn,R)
Put

T, T,
Dz{xz(é‘],ég,...,éN)eRN: —5’ <§i<5, i=1,2,...,N}.

Denote by L the diameter of D. For each y,,, there are integers kin), ké"), e kl(\;l) such that z, =y, — (kf")Tl , kén) T,
kP Ty) e D.

Denote h, = (k" T1, kS Ta, ..., k¥ Ty) and put v, (x) = un” (x) = i, (x + hy). Since p, V and f(-,1) are T-
periodic, we have that

lvnll = llunll, J(vp) = J () — ¢, J/(vn) — 0,
and
v, ()| dx = / ity (0[P dx > 5 for all n.

B(zn,R) B(yn,R)
Noting that B(z,, R) C B(0, R + L), we have
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v, () [P dx > f v, (0)["® dx =8 forall n. (3.4)
B(0,R+L) B(zu,R)

We may assume, taking a subsequence if necessary, that v, — v in WH?®(RN) and v, (x) — v(x) a.e. x € RV, By
Lemma 3.1, v, - v in WIL’CP(X)(RN) and J'(v) = 0. From (3.4) it follows that

o))" dx = Tim / v, ()" dx =5 > 0,
n—oQ
B(0,R+L) B(0,R+L)
which shows v £ 0. So v is a nontrivial solution of (1.1).
(2) Define f*:RY x R — R by
fx,t) iftr >0,
0 ifr <0.

Then, similar to (1), we can prove that the problem

fran= {

{ —div(IVulPD72Vu) + V) lu)?O2u = fF(x,u) inRY, 35)

u e WP (RY)

has a nontrivial solution v. It is easy to see that, v, as a solution of (3.5), is nonnegative, and hence v is a solution
of (1.1). By the strong maximum principle of [22], v(x) > 0 for all x € R" and so v is a positive solution of (1.1).
Similarly, problem (1.1) has a negative solution. Theorem 1.1 is proved. O

Lemma 3.5. Let (p1), (V1) and (f)) hold, and let {u,} and u be as in Lemma 3.1. Then, given any € > 0, there exists

Re > 0 such that for each R > R, and n sufficiently large, |J]1/£N\BR (up)uy| < ¢, ie.

‘ / (IVn P + V() |un| P — f(x, up)un) dx| < e.
RN\ Bg

Proof. Let ¢ > 0 be given. Since u € W-P®)(RV), there exists R, > 2 such that
I3
/ (IVulP® + V@) ulP® + f e, wu+ [V PO ) dx < . (3.6)

RN\BR€_2

[\

Let R> R; and ¢ € C*®(RN) be such that Y(x) =1 for |x| = R, ¥(x) =0 for |x| < R — 2, ¥(x) € [0, 1] and
|V (x)| < 1 forall x € RY. Then {/u,} is a bounded sequence in W!-»®) (RV). Hence J'(u,)(Yu,) — 0, that is

f (IVin PO 2V iy (Y Vit + un V) + YV ) un P = £, un) ) dx — 0. 3.7)
]RN
From (3.7) we have that

|JH%N\BR(MH)MI’!|
= / (IVun [P + V) |5 — f(x, up)un) dx
RN\Bg
< (140 |Vt PO 72Vuy Vi + 9 (IVun |7 + V0O [P — (3, un)un)) dx| + o(1)
Br\BRr,—2
< (IVun Pt | + Vi P9 + V() | [P + f (e, wn)un) dx| + o(1). (3.8)

Br\BRr.—2
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From Lemma 3.1 we know that u,, — u in WIL’CP @) (RN). Thus the limit of the right side of (3.8) equals the left side

of (3.6) and consequently the assertion of Lemma 3.5 is true. O

Proposition 3.1. Let (p1), (V1), (f1) and (f2) hold. Suppose that {u,} and u are as in Lemma 3.1 and J (u,) — ¢ > 0.
Then 0 < J(u) < ¢, and J(u) > 0 provided u # 0.

Proof. Note that for any critical point « of J,

J(u) > pif(|Vu|"<x>+V(x)|u|"<x>)dx—%/f(x,u)udx

+

RN RN
11
= <_ - E) /(|W|P<x) + V) ulP™)dx >0,
P+ BN

and J(u) > 0 provided u # 0. It remains to prove that J(u) < c¢. Given any ¢ > 0, let R, > 0 be as in Lemma 3.5,
then for each R > R, and for n sufficiently large,

1 1
Tn g (ttn) > — / (IVun [P 4+ V () |PH)) dx — Fi / F O, un)u, dx
P+

RN\ By RNV
_(! 1 VulP® 4y P& 4 1]’
=\ 78 (IVu P + v (x)|uP) X‘f‘E RN\ gy Un)Un
RN
&
Z——= 2 ¢,
p

and consequently
I (un) = J(uy) — JRN\BR (uy) < c+2e.

Since u,, — u in Wli)’cp(x)(]RN), Jpg (u) =1lim,— o0 JBg (u,) < ¢ 4 2¢. Furthermore, J (1) = limg_, o0 Jp, (1) < c+2¢

and consequently, by the arbitrariness of ¢ > 0, J(#) <c. O

Define

N={ue WP (RN)\ {0}: J'(w)u=0}.

Lemma 3.6. Let (p1), (V1), (f1)—(f3) and (fs) hold. Then for any u € WPX (RN )\ {0} there exists a unique t,(u) > 0
such that t,(u)u € N. The maximum of J (tu) fort > 0 is achieved at t,, = t,(u). The function u > t.(u) is continuous
on WP (RNY\ {0} and the mapping u v~ t,(u)u defines a homeomorphism of the unit sphere of W1-P®) (RN)
with N.

Proof. Let u € WP (RN) \ {0} be fixed and define the function g(¢) := J(tu) on [0, 00). It is easy to verify that
g(0) =0, g(t) > 0 for ¢t > 0 small and g(¢) < O for ¢ > 0 large. Therefore max;c[0,00) g(f) is achieved at some t, =
to(u) > 0. Thus g'(t,) = J'(tsu)u = 0. Put v = t,u. Then J'(v)v = 0 and so v € N. Define the function 4 (r) = J(tv)
on [0, 00). We already know that /(1) = max,e[0,00) 2(t) and /' (1) = J'(v)v =0, that is

f(|Vv|p(x)+V(x)|v|p("))dx=/f(x,v)vdx.
RN RN
Whent > 1,

W)= J (tv)v = / PO (Vo PY) 4V () o] PY) dx — / fx, tv)vdx
RN RN
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1
<tp_,_1</A(|Vv|p(x)_}_V(x)lv|l7(x))dx_/l‘p+lf()c,tv)vd)C),
RN RY

and consequently /' (¢) < 0 because from (fs) it follows that fRN m% f(x,tv)vdx > fRN f(x,v)vdx. Analogously,
when ¢ € (0, 1) there holds /4'(¢) > 0. This shows that the positive number ¢, satisfying g'(t,) = J'(txu)u = 0 is
unique. The proof of the remainder statements is standard (see e.g. [39]) and is omitted here. O

Definition 3.1. A nontrivial solution u of (1.1) is called a ground state if J(u«) = infyen J (V).
Lemma 3.7. Let (p1), (V1), (f1)-(f3) and (f5) hold. Let c be the value defined by (3.3). Then ¢ = inf,eN J ().

Proof. Put ¢; = inf,en J (). By Lemma 3.6, N separates W!-?®) (RV) into two components. It is easy to verify that
every y € I has to cross N. Thus ¢ > c;. Given any u € N, there exists s > 0 such that J(su) < 0. Define y (¢) = tsu
fort € [0, 1]. Then y € I" and J (1) = max;¢(o,1] J (¥ (¢)) = c. This shows ¢; > cand hence c=c;. O

Lemma 3.8. Under the assumptions of Lemma 3.7, if v € N and J(v) = inf,en J (1), then J'(v) =0 and so v is a
ground state solution of problem (1.1).

The proof of Lemma 3.8 is similar to the proof of Theorem 4.3 of [39] and is omitted here.

Proof of Theorem 1.2. (1) By Theorem 1.1 and Proposition 3.1, problem (1.1) has a nontrivial solution v such that
0<J) <ec. §ince v € N, by Lemma 3.7, J(v) > ¢ and hence J(v) = c. So v is a ground state.
(2) Define f+:RY x R — R by
fon ifr>0,
| =f&x, -0 ifr<o,

and consider the problem

fre,n

{ —div(|Va| P72 V) + V@) lulP 20 = fT(x,u) inRY, 39)

ue WP (RN),

Denote by Jt (u) the energy functional associated with problem (3.9). Then, applying the above assertion (1) to
problem 3. 9) (3.9) has a ground state solution ug. Put v(x) = |ug(x)| for x € RV. It is easy to see that J 7 (v) =
J+(u0) and (J+) (v = (J+) (uo)uo = 0. By Lemma 3.8, v is a ground state solution of (3.9). Since v is nonnegative,
v is also a solution of (1.1). By the strong maximum principle of [22], v is a positive solution of (1.1). Since v is a
ground state solution of (3.9), we have that J(v) = JT (v) = inf{J(u): J'(u)u =0, u > 0}. Similarly, we can prove
that (1.1) has a negative solution w satisfying required condition. O

The following proposition shows that the ground state solution of (1.1) is the strong limit of the corresponding
(PS). sequence in the norm topology.

Proposition 3.2. Let (p1), (V1), (f1)—(f3) and (f5) hold. Suppose that {u,} is a sequence in WLPO (RNY such that
Uy — u in WEPOM@RNY, u, (x) = u(x) a.e. x € RN, J'(up) — 0 in (WHPORNYS and J(u,) — ¢ as n — oo,
where c is as in (3.3). If J(u) = c, then

(1) img_ o fRN\BR(|Vu,,|p(x) + V()| |PX) dx = 0 uniformly in n,
(2) up — uin WHPORN),

Proof (1) Let £ > 0 be given. By Lemma 3.6, there exists R, > 0 such that for each R > R, and n sufficiently large,

|J! RN\ By (up)u,| < e. We may assume that R, is large enough such that |JRN\BR (u)] <efor R>R..Let R > R,.

Then
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Jpp(u)=J ) — JRN\B m)>c—e.

By Lemma 3.1, u, — u in Wl1 p(x)(RN) and consequently Jp.(u,) — Jpp(u). Thus for n sufficiently large,
JBg(un) = ¢ —2¢e, Jgn\ g, (un) < 3¢ and consequently

38 JRN\B (l/ln)
1
/ (IVun [P 4+ V )y [P d x—— / F O, up)u, dx

P
RN\ Bg IRN \BR

(— - —) (|Vun|f’"‘> + V() |un|P) dx + ;

J N\B (un)un
RN\ Bp
1 1

> (— - —) f (IVunl P + V(@) || PV) dix — e,

p+ B
RN\ Bg

which implies that

11\
/ (1Vun |7+ V)l |PV) dx < (— - —) 4e.
P+ B
RN\ Bp
Assertion (1) is proved.
(2) Define pg (1) = f9(|Vu|p(’“) + V(x)|u|P™)) dx and write pgy = p. Since {||u, ||} is bounded, we may assume

that p(u,) — d. Since u, — u in Wll)cp(x) (RY), we may assume that Vu,(x) — Vu(x) a.e. x € RV, Given any

e > 0, by assertion (1), there exists R, > 0 such that PRN\ Bk (un) < € for R > R;. Then for n sufficiently large,

0B (Un) = d — 2¢. Noting that pg, (u,) — pp, (1) because u, — u in Wl p(x)(RN) we have that pp, (u) > d — 2¢
for all R > R,, furthermore p(u) > d — 2¢ and so p(u) > d. It follows from Uy — u in WEPO(RN) that p(u) <
lim,— o0 p(#,) =d. Thus p(u) =d =1lim,_, o p(u,). Noting that

|Vitn = VulP 4+ V() =l <224 (V[P V @)l PO+ (V2| P 4V () Jul D),
by the Vitali convergence theorem, we can obtain that
/((Wun —Vul)”™ + V) (g —ul)?)dx >0 asn — oo,
RN
which implies that u, — u in WP @RN), O
4. Solutions of problem (1.2)
In this section we consider problem (1.2) and prove Theorem 1.3.

Let the assumptions of Theorem 1.3 hold. Denote py(x) = p(x) 4+ 0(x), fu(x,1) = f(x,0)|t|77™) and F,(x,t) =
o f(x,s)ds. Define for u € WP« ®RN),

J*(u)=/ l(x) (|Vu|”*(x)+a(x)V(x)|u|”*(x))dx—fb(x)F*(x,u)dx,
R¥ P R¥
={y € ([0, 17, WP (RN)): 1(0) =0 and J, (y (1)) <0},

= inf max J. t
G vel, te[O)i] (r ).

Ny = {u e WhP<O(RN) \ {0}: J.(w)u =0},
and for u € WHPO)(RN),
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Joo(u):/L(|Vu|p(x)+a+V(x)|u|p(x))dx—/b_F(x,u)dx,
p(x)

RN RN
I ={y € CO(10, 1], WHPE(RY)): y(0) =0 and Jo(y (1)) <0},

Coo = inf max J 1)),
e tel0.1] o (r )

Noo = {u € WHPO(RN)\ {0}: J) (w)u =0}.

Denote by ||u]|s the norm of u in W 1P+ (RN,
Lemma 4.1. Under the assumptions of Theorem 1.3, the following conditions are satisfied.

(ps)1 The function py : RN — R is Lipschitz continuous and
I <(pso)— < (p)4 <N.
)1 fr € CORN x R, R) and
| £ee, O] S C (IO~ 411|071, vx eRY, 1 €R,

where C is a positive constant, g5 (x) = q(x) +0(x), g« € CORY | R) and py < g5 < (ps)*.
(fx)2 B—1t4 > (px)+ and
0<(B—t)Fu(x,t) <tfylx,1), VxeRN r50.
(f)3 fulx,t) = o(|t|PD+~1) as t — 0, uniformly in x.

(fy)s Foreach x e RV, |z\f<7’(*)§+tl : is an increasing function of t on R\ {0}.

Proof. (p.); follows immediately from (p;) and (8). (fi)3 is just (f3).. (f3). implies the continuity of f,(x,?)
at t = 0. Put ¢,(x) = g(x) + 0(x). From (f;) and (f3), it follows that when |¢]| < 1, | fu(x, )] < Calt|PD+~1 <
Colt|P™=1 "and when [f] > 1, | fi(x, )| < | f(x, )] < C3]¢]49~1 < C3¢+®) =1, Obviously py < g. From ¢ <« p*
we can obtain g, < (ps)*. Thus (f,); holds. Noting that

R I A e L s (C )

— — . |t|ﬂ—(17*)+—f()€)
|£](Pe)+—1 |£]A-1 ]A—1 ’

from (0, t) and (f5), it follows that (f,)s holds. It only remains to prove (fy)>. By (6, 1), (p +6)+ < B — 4. By (f2),
the definition of F, and the integration by parts, we have that, for x € RY and ¢ #0,

? t
0<F*(x,t)sz*(x,s)ds:/f(x’s)m—r(x)ds
0 0

t
= (F(x,)Is|7")]; + 1(x) / F(x,s)|s| "™ 2sds
0

1
B

t
< f(x,t)tltl‘“"’+%/f(x,s)ls|""‘>ds
0

—lf(x t)t—i—@F (x,1)
_ﬁ * ) ﬁ * ) )

and consequently

0<(B—1()Fulx,1) <tfilx,1).
Thus (f,)2 holds. The proof is complete. 0O
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Now let us to prove assertion (1) of Theorem 1.3. Noting that all the lemmata and propositions obtained in Section 3
hold without the periodicity assumptions, by Lemma 4.1, we know that J, satisfies Mountain Pass Geometry and
there exists a bounded sequence {u,} C wLp<()(RNY such that Jy (1) — ¢x > 0 and J/(up) — 0. We may assume
that u, — ug in WHP* RN and u,(x) = ug(x) a.e. x € RN, By Lemma 3.1, u, — ug in WlL’Cp*(x)(RN) and
Ji(uy) = J}(up) = 0. Thus ug is a solution of (1.2).

If ug # 0, then ug is a nontrivial solution of (1.2) and by Proposition 3.1 and Lemmas 3.6 and 3.7, J.(ug) = cx =
inf{J,(v): v € N,}. Thus ug is a ground state solution of (1.2). In this case assertion (1) of Theorem 1.3 already holds.
In addition, by Proposition 3.2, u, — ug in WP«)(RN),

Below let us consider the case that ug = 0. For this case we first give the following lemma.

Lemma 4.2. Under the above assumptions, if ug =0, then

(1) Ji(up)up — 0 and Joo(up) — ¢4 as n — 00,
(2) ¢4 2 Ccoo-

Proof. (1) By Lemma 3.1, u,, — 0 in Wll’p*(x)(RN). For any R > R, we have

ocC

Jc/;o(un)un - Li(un)un = / ((a+ - a(X))V(x)Iunlp(x) + (b(x) - b)f(x, un)un) dx
RN\Bg
+ (Joo)/BR (R (‘]*)/BR (un)uy.
From assumptions (a) and (b), the boundedness of {|lu,|.«} and u, — O in WIL’CP *(x)(RN ), we can obtain that
JLo(un)uy — J, (up)u, — 0 and consequently J. (u,)u, — 0 because J,(u,)u, — 0. Using similar arguments we

can prove that Joo (u,,) — J«(u,) — 0 and consequently Joo (14;,) —> Cx.
(2) Since J., (uy)u, — 0, we have

/ (IVutn?D + ar V(0 un | dx = / b f(x, un)up dx +o(1). 4.1
RN RN
From Joo(u,) = ¢4 > 0 it follows that {||u, ||} has a positive bound from below and consequently there exists § > 0
such that
/ b_ f(x,uy)u,dx > 6 for n large enough. 4.2)
RN

For each u,, there exists a unique positive number f, such that #,u, € Noo, which implies that J/ (t,u,)u, =0, that is

/ BT (VU 7D 4 @y V) |7 dx = / b f (x, tattn)uty dx. (4.3)
RN RN

By the mean value theorem for integrals, for each n there exists a number p, € [p—, p4] such that

/ BT (Vi P9 + g V() 1P ) de = 2 f (IVualP 4 ay V)l |P) dx,

RN RN
and so
b_f(x,1
f(|w,,|P(X>+a+V(x)|un|P<X>)dx:fde. (4.4)
RN RN tn"

(4.4) and (4.1) imply that

b—f(xatnun)un
f de = f b_ f(x,up)updx +o(1). 4.5)
Iy

RN RN
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When #, > 1, noting that

b_ f(x, taun)un S b_ f(x, tyup)un _ b f(x, tyun)uy tﬂ—[ur

pn—1 = -1 - —1 n
tnprl t’f+ tr/?

and using assumption (fs), we have that

b f(x, tyup)uy

pn—1
i

>0 P b f (5 ),
and consequently

(1P —1) / b f(x, un)un dx < o(1). (4.6)
RN

Analogously we can obtain that, when #, < 1,

(1= 77%) / b f(x, un)uy dx < o(1). (4.7)
RN

From (4.6), (4.7) and (4.2) it follows that #, — 1. Because the mapping J is bounded, the functional Jo, is
uniformly continuous on every bounded set and so

Joo(tntty) — Joo(uy) — 0 asn — oo.
Thus we have that
Cx = Ji(up) + o(1) = Joo (uy) + o(1)
= Joo(tntn) + 0(1) 2 coo +0(1)

and hence ¢y > ¢ The lemma is proved. O

Now let us continue with the proof of Theorem 1.3. Let ug = 0. Then by Lemma 4.2, there holds

Csx 2 Coo- (4.8)

Applying Theorem 1.2 to Js, we know that Jo, has a nontrivial critical point w € W& ([RN) such that
Joo(W) = coo. By Proposition 2.5, w(x) — 0 and [Vw(x)| — 0 as |x| — oco. Define foreach k=1, 2, ...,

wr(x) =wkx —kTyey), Vxe RV,

Then for each k, J. (wi) =0 and Joo(wi) = coo. Take ko big enough such that |wy,(x)| < 1 and |Vwg,(x)| < 1
for |x| < Ry. Applying Lemma 3.6 to N,, there exists a unique positive number #, such that z,wg, € Ny, that is
J, (tswi,)wi, = 0. Noting that

JL (W) wiy = f (IVweo P+ a () V () [wio 1P = b(x) f (x, wig)wi, ) dx
RN\ Bg,

+ / (IVwi 1759 + a(x) V () [wig |7 — b(x) £ (x, wieg) [wig | ™" wy ) dx
Bg,

< / (V0517 + sV () g |7 — b f (6. wigwig) dx
RN
— I (i wr =0,

we know that £, < 1. We claim that, in the case when ug = 0, there holds 7, = 1. Indeed, if #, < 1, then, noting that
when [x| < Ry, [tawy, (x)| < 1 and [V (t,wy,) (x)| < 1, and when |¢| < 1, Fy(x,t) > F(x,t), we have that
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Cy < J*(t*wko)

- / L(W(z*wko)]”‘“+a(x)V(x)|t*wk0|P<x>)dx— / b(x)F (x, tywg,) dx

p(x)
RN\ B, RN\ B,
1
+ / (mﬂvmwko) ”*“)+a<x)V<x>|r*wko|P*<x>)—b(x)F*(x,r*wk()))dx
*
Bg,

< Joo (i) < Joo(Why) = Coos

which contradicts with (4.8). Hence t, = 1, which implies wy, € N,. In this case,

Cx < (W) < Joo(Wiy) = Coo

From this and (4.8) it follows that ¢, = coo and Jx(wg,) = c4. By Lemma 3.8, J, (wk,) = 0 and wy, is a ground state
solution of (1.2). Assertion (1) of Theorem 1.3 is proved.
The proof of (2) of Theorem 1.3 is similar to the proof of (2) of Theorem 1.2 and hence is omitted here.
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