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Abstract

We consider the p(x)-Laplacian equations in R
N with periodic data and nonperiodic perturbations being stationary at infin-

ity, where the perturbations are done not only for the coefficients but also for the exponents. Using concentration–compactness
principle, under appropriate assumptions, we prove the existence of ground state solutions vanishing at infinity for the equations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

In this paper, we consider the p(x)-Laplacian equation in R
N with periodic data of form{−div

(|∇u|p(x)−2∇u
) + V (x)|u|p(x)−2u = f (x,u) in R

N,

u ∈ W 1,p(x)
(
R

N
)
,

(1.1)

and its nonperiodic perturbation being stationary at infinity of form{−div
(|∇u|p(x)+θ(x)−2∇u

) + a(x)V (x)|u|p(x)+θ(x)−2u = b(x)f (x,u)|u|−τ(x) in R
N,

u ∈ W 1,p(x)+θ(x)
(
R

N
)
.

(1.2)

In this paper, R denotes the space of all real numbers, R
+ = [0,+∞).

Let {e1, e2, . . . , eN } be the standard basis of R
N. Let Ti > 0, i = 1,2, . . . ,N. Denote T = (T1, T2, . . . , TN). A func-

tion p : R
N → R is called T -periodic if

p(x + Tiei) = p(x), ∀x ∈ R
N, i = 1,2, . . . ,N.
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For problem (1.1) we introduce the following assumptions.

(p1) The function p : R
N → R is Lipschitz continuous and

1 < p− := inf
RN

p(x) � sup
RN

p(x) := p+ < N.

(p2) p is T -periodic.
(V1) V ∈ C0(RN,R

+), 0 < V− � V+ < ∞.
(V2) V is T -periodic.
(f1) f ∈ C0(RN × R,R) and∣∣f (x, t)

∣∣ � C1
(|t |p(x)−1 + |t |q(x)−1), ∀x ∈ R

N, t ∈ R,

where C1 is a positive constant, q ∈ C0(RN,R) and p � q � p∗, p∗ is defined by

p∗(x) = Np(x)

N − p(x)
for x ∈ R

N,

the notation “q � p∗” means that inf{p∗(x) − q(x): x ∈ R
N } > 0.

(f2) There is a positive constant β > p+ such that

0 < βF(x, t) � tf (x, t), ∀x ∈ R
N, t 	= 0,

where F(x, t) = ∫ t

0 f (x, s) ds.
(f3) f (x, t) = o(|t |p+−1) as t → 0, uniformly in x.
(f4) f (·, t) is T -periodic for every t ∈ R.
(f5) For each x ∈ R

N , f (x,t)

|t |p+−1 is an increasing function of t on R \ {0}.

For problem (1.2) we introduce the following assumptions.

(a) a ∈ C0(RN,R
+), 0 < a− � a+ < ∞ and lim|x|→∞ a(x) = a+.

(b) b ∈ C0(RN,R
+), 0 < b− � b+ < ∞ and lim|x|→∞ b(x) = b−.

(θ) θ : R
N → R

+ is Lipschitz, there exists R∗ > 0 such that θ(x) = 0 for |x| � R∗, and (p + θ)+ < N .
(τ ) τ : R

N → R
+ is Lipschitz, and there exists R∗ > 0 such that τ(x) = 0 for |x| � R∗.

(θ, τ ) (p + θ)+ < β − τ+, where β is as in (f2).
(f3)∗ f (x, t)|t |−τ(x) = o(|t |(p+θ)+−1) as t → 0, uniformly in x.
(f5)∗ For each x ∈ R

N , f (x,t)

|t |β−1 is an increasing function of t on R \ {0}, where β is as in (f2).

A typical example of f satisfying (f1)–(f3), (f5) and (f5)∗ is f (x, t) = |t |q(x)−2t , where q ∈ C0(RN,R), q− > p+
and q � p∗. (V1) means that the left-hand side of Eq. (1.1) is positive definite. (f1) means that f satisfies the
subcritical growth condition.

The main results of this paper are the following theorems.

Theorem 1.1. Suppose the assumptions (p1), (p2), (V1), (V2), (f1)–(f4) hold. Then

(1) problem (1.1) has a nontrivial solution;
(2) problem (1.1) has a positive solution and a negative solution.

Theorem 1.2. Suppose that in addition to the assumptions of Theorem 1.1, (f5) holds. Then

(1) problem (1.1) has a ground state solution u∗, that is, u∗ is a nontrivial solution of (1.1) and

J (u∗) = inf
{
J (u): J ′(u)u = 0, u 	= 0

}
,

where J (u) is the energy functional associated with problem (1.1) (for the definition of J see Section 2);
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(2) problem (1.1) has a positive solution v and a negative solution w such that

J (v) = inf
{
J (u): J ′(u)u = 0, u > 0

}
,

J (w) = inf
{
J (u): J ′(u)u = 0, u < 0

}
.

Theorem 1.3. Suppose that in addition to the assumptions of Theorem 1.2, the assumptions (a), (b), (θ), (τ ), (θ, τ ),
(f3)∗ and (f5)∗ hold. Then

(1) problem (1.2) has a ground state solution;
(2) problem (1.2) has a positive solution v and a negative solution w such that

J∗(v) = inf
{
J∗(u): J ′∗(u)u = 0, u > 0

}
,

J∗(w) = inf
{
J∗(u): J ′∗(u)u = 0, u < 0

}
,

where J∗(u) is the energy functional associated with problem (1.2).

The problems studied in this paper involve the variable exponent p(x). The variable exponent problems are inter-
esting for some applications (see [24,35]). The study of various mathematical problems with variable exponent has
been received considerable attention in recent years. We refer to the survey papers [8,13,36] for the advances and
references in this area. The p(x)-Laplacian is a generalization of the p-Laplacian, and it possesses more complicated
nonlinearities than the p-Laplacian.

It is well known that a main difficulty in studying the elliptic equations in R
N is the lack of compactness. To over-

come this difficulty, many methods can be used. One type of methods is that under some additional conditions there
holds the required compact imbedding theorem, for example, the weighting method and the symmetry method (see
e.g. [34,37,39]). In [17] the equations of type (1.1) with weighted function f (x,u) were studied. In [17, Remark 3.3]
it was point out that the similar method is also applicable to the case that V (x) → +∞ as |x| → ∞, and the case of ra-
dial symmetry. In [23] a compact imbedding theorem with symmetry of Strauss–Lions type for the variable exponent
Sobolev space W 1,p(x)(RN) was obtained and in [21] the nodal solutions of p(x)-Laplacian equations possessing
radial symmetry were considered. Another type of methods is concentration–compactness principle, discovered by
P.L. Lions [28,29]. By this principle, under suitable conditions, a noncompact minimizing or (PS)c sequence can be
changed into a new sequence possessing some compactness. For such purpose the following methods are often used:

(10) Translations. It is applicable to homogeneous equations, i.e., equations not clearly including x. In this case the
corresponding energy functionals are invariant under translations. For applying this method to the p-Laplacian
equations, we refer to [27–29,37–39] and references therein.

(20) Periodicity. It is applicable to the equations possessing periodicity. In this case the corresponding energy func-
tionals are invariant under period-translations. For applying this method to the p-Laplacian equations, the
Schrödinger equations and the biharmonic equations, we refer to [2–6,9,10,26,30–33,40] and references therein.
Pankov [31] and Pankov and Pflüger [32] have used the method of periodic approximations.

(30) In comparison with a limiting equation. The idea of this method is to compare the original equation with its
limiting equation at infinity, especially to compare the corresponding critical values for these two equations,
where the existence of the ground state solutions for the limiting equation is known. For applying this method
to the p-Laplacian equations, the Schrödinger equations and the biharmonic equations, we refer to [3–6,11,12,
14,28–30,34,37–39,41] and references therein. Usually the limiting equations are homogeneous, but in [3–6,30]
the limiting equations are periodic. Alves and Souto [7] have studied the p(x)-Laplacian equations such that the
variable exponent p(x) is constant outside a ball, and thus in [7] the limiting equation is homogeneous.

For p-Laplacian equations, the constant exponent p, as a function on R
N , is periodic and is also invariant under

translations. For p(x)-Laplacian equations, of course, we cannot require that the variable exponent p(x) is invariant
under all translations. In this paper we study p(x)-Laplacian equations (1.1) and (1.2) by using methods (20) and (30).
Equation (1.1) is periodic and Eq. (1.2) is a nonperiodic perturbation of (1.1). Note that all the coefficients and the
exponents in (1.1) are perturbed, and the limiting equation of (1.2) is not homogeneous but periodic. The perturbation
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of the exponents is a distinguishing characteristic of variable exponent problems. In this paper the idea of Pankov [30]
and the idea of Alves et al. [3–7] are used together. Theorem 1.3 is a generalization of the corresponding results of [7]
and [30].

This paper is organized as follows. In Section 2, we present some necessary preliminaries. In Section 3, we prove
Theorems 1.1 and 1.2. The proof of Theorem 1.1 is based on Proposition 2.3, a Lions type lemma for the variable
exponent space W 1,p(x)(RN) obtained by Fan, Zhao and Zhao [23]. The proof of Theorem 1.2 is done according
to the idea of the concentration–compactness but not directly applying the first concentration–compactness principle
of Lions. Such a proof seems to be simpler because the “dichotomy” case mentioned in the first concentration–
compactness principle is evaded. In Section 4 we give the proof of Theorem 1.3.

2. Preliminaries

Let Ω be an open subset of R
N , p ∈ L∞(Ω) and p−(Ω) = ess infx∈Ω p(x) � 1. The variable exponent Lebesgue

space Lp(x)(Ω) is defined by

Lp(x)(Ω) =
{
u

∣∣∣ u :Ω → R is measurable and
∫
Ω

|u|p(x) dx < ∞
}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf

{
λ > 0:

∫
Ω

∣∣∣∣uλ
∣∣∣∣p(x)

dx � 1

}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {
u ∈ Lp(x)(Ω): |∇u| ∈ Lp(x)(Ω)

}
with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

When V satisfies (V1), it is easy to see that ‖u‖
W

1,p(x)
V (Ω)

, defined by

‖u‖
W

1,p(x)
V (Ω)

= inf

{
λ > 0:

∫
Ω

(∣∣∣∣∇u

λ

∣∣∣∣p(x)

+ V (x)

∣∣∣∣uλ
∣∣∣∣p(x))

dx � 1

}
,

is an equivalent norm in W 1,p(x)(Ω).
For the basic properties of spaces Lp(x)(Ω) and W 1,p(x)(Ω) we refer to [13,15,18,20,25,36]. In the following we

list some facts which will be used later. In this paper, for x ∈ R
N and R > 0, B(x,R) := {y ∈ R

N : |y − x| < R}
and BR = B(0,R). The symbols un → u0 and un ⇀ u0 denote the strong convergence and weak convergence of a
sequence {un} in a Banach space, respectively.

Proposition 2.1. (See [15,20,25].) The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable Banach spaces, and they are
reflexive when p−(Ω) > 1.

Proposition 2.2. (See [18].) Suppose that p satisfies (p1), q ∈ C0(RN,R) and p � q � p∗. Then there is a continuous
embedding W 1,p(x)(RN) → Lq(x)(RN). If Ω is a bounded open subset of R

N with cone property, then the embedding
W 1,p(x)(Ω) → Lq(x)(Ω) is compact.

Proposition 2.3. (See [23].) Suppose that p satisfies (p1). If {un} is a bounded sequence in W 1,p(x)(RN) and for some
R > 0,

sup
y∈RN

∫
|un|q(x) dx → 0 as n → ∞, (2.1)
B(y,R)
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for some R > 0 and some q ∈ C0(RN,R) satisfying p � q � p∗, then un → 0 in Lr(x)(RN) for any r satisfying
p � r � p∗.

Let Ω be an open subset of R
N . Define for u ∈ W 1,p(x)(Ω),

JΩ(u) =
∫
Ω

1

p(x)

(|∇u|p(x) + V (x)|u|p(x)
)
dx −

∫
Ω

F(x,u)dx,

IΩ(u) =
∫
Ω

1

p(x)

(|∇u|p(x) + V (x)|u|p(x)
)
dx,

ΨΩ(u) =
∫
Ω

F(x,u)dx. (2.2)

When Ω = R
N , JRN , IRN and ΨRN are written simply by J , I and Ψ , respectively. J is the energy functional

associated with problem (1.1).

Proposition 2.4. (See [17].) Suppose (p1), (V1) and (f1) hold. Then the following assertions are true.

(1) JΩ ∈ C1(W 1,p(x)(Ω),R) and for every u,v ∈ W 1,p(x)(Ω),

J ′
Ω(u)v =

∫
Ω

(|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv
)
dx −

∫
Ω

f (x,u)v dx. (2.3)

(2) The mapping I ′
Ω : W 1,p(x)(Ω) → (W 1,p(x)(Ω))∗ is a strictly monotone, bounded homeomorphism, and is of (S+)

type, namely

un ⇀ u and lim
n→∞ I ′

Ω(un)(un − u) � 0 imply un → u.

u ∈ W 1,p(x)(RN) is called a weak solution of problem (1.1) if u is a critical point of J , that is, for every v ∈
W 1,p(x)(RN),∫

RN

(|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv
)
dx −

∫
RN

f (x,u)v dx = 0.

Proposition 2.5. Suppose (p1), (V1) and (f1) hold. If u is a weak solution of problem (1.1), then u ∈ C1,α(RN),
u(x) → 0 and |∇u(x)| → 0 as |x| → ∞.

Proof. Let u ∈ W 1,p(x)(RN) be a weak solution of problem (1.1). By the regularity result on local boundedness of
the weak solutions (see [19]), we know that u ∈ L∞

loc(R
N) and for every bounded open subsets Ω ⊂ Ω ⊂ Ω ′ ⊂ R

N ,
|u|L∞(Ω) depends only on N,p−,p+, q−, q+,C1, dist(Ω, ∂Ω ′) and

∫
Ω ′(|∇u|p(x) + V (x)|u|p(x)) dx. Given any

ε > 0, there is Rε > 0 such that∫
RN\B(0,Rε)

(|∇u|p(x) + V (x)|u|p(x)
)
dx � ε.

For every x0 ∈ R
N with |x0| � Rε + 2, we have that |u|L∞(B(x0,1)) � C(ε), where C(ε) → 0 as ε → 0. From this we

can see that u(x) → 0 as |x| → ∞. Similarly, by the C1,α regularity of the bounded weak solutions (see [1,16]), we
can see that u ∈ C1,α(RN) and |∇u(x)| → 0 as |x| → ∞. �
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Remark 2.1.

(1) Let assumptions (f1) and (f2) hold. (f1) implies that∣∣F(x, t)
∣∣ � C1

(|t |p(x) + |t |q(x)
)
, ∀x ∈ R

N, t ∈ R. (2.4)

(f2) implies that

F(x, t) � C2|t |β, ∀x ∈ R
N, t ∈ R. (2.5)

So there holds that C2|t |β � C1(|t |p(x) + |t |q(x)), which implies that q(x) � β for all x ∈ R
N and hence

p+ < β � q− < p∗−. (2.6)

(2) Let (f1), (f2) and (f3) hold. It follows from (f1), (f3) and (2.6) that, given any ε > 0, there exists a positive constant
C(ε) such that∣∣f (x, t)

∣∣ � ε|t |p+−1 + C(ε)|t |q(x)−1, ∀x ∈ R
N, t ∈ R, (2.7)

and consequently∣∣F(x, t)
∣∣ � ε|t |p+ + C(ε)|t |q(x), ∀x ∈ R

N, t ∈ R. (2.8)

(3) It is clear that (f3)∗ implies (f3), and (f5)∗ implies (f5). Note that when (f2) with β1 > p+ and (f5)∗ with β2 > p+
hold, (f2) and (f5)∗ with β := min{β1, β2} hold.

Remark 2.2. It is easy to see that, when θ satisfies (θ), there is a continuous embedding W 1,p(x)+θ(x)(RN) ↪→
W 1,p(x)(RN).

3. Solutions of problem (1.1)

In this section, we consider problem (1.1) and prove Theorems 1.1 and 1.2.
Let J = JRN , I = IRN and Ψ = ΨRN be as in Section 2. We write ‖u‖ = ‖u‖W 1,p(x)(RN) and ‖u‖V = ‖u‖

W
1,p(x)
V (RN)

.

Lemma 3.1. Let (p1), (V1) and (f1) hold. Suppose that {un} is a sequence in W 1,p(x)(RN) such that un ⇀ u in
W 1,p(x)(RN), un(x) → u(x) a.e. x ∈ R

N and J ′(un) → 0 in (W 1,p(x)(RN))∗ as n → ∞. Then the following asser-
tions are true.

(1) un → u in W
1,p(x)

loc (RN).
(2) J ′(un) ⇀ J ′(u) in (W 1,p(x)(RN))∗ and consequently J ′(u) = 0. So u is a solution of (1.1).

Proof. (1) It follows from un ⇀ u in W 1,p(x)(RN) and un(x) → u(x) a.e. x ∈ R
N that un ⇀ u in W 1,p(x)(Ω) for

every bounded open ball Ω ⊂ R
N , and consequently

un → u in Lq(x)(Ω) for q ∈ C0(
R

N,R
)

satisfying p � q � p∗. (3.1)

Now let R > 0 be given. We will prove that un → u in W 1,p(x)(B(0,R)). Let ϕ ∈ C∞
0 (RN) be such that ϕ(x) = 1 if

|x| � R, ϕ(x) = 0 if |x| � R + 2, ϕ(x) ∈ [0,1] and |∇ϕ(x)| � 1 for all x ∈ R
N . Put

Qn(x) := (|∇un|p(x)−2∇un − |∇u|p(x)−2∇u
)
(∇un − ∇u)

+ V (x)
(|un|p(x)−2un − |u|p(x)−2u

)
(un − u).

We have
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0 �
∫
BR

Qn(x)dx �
∫

RN

ϕ(x)Qn(x)dx

=
∫

RN

(|∇un|p(x)−2∇unϕ(∇un − ∇u) + V (x)|un|p(x)−2unϕ(un − u)
)
dx + o(1)

= J ′(un)(ϕun − ϕu) −
∫

BR+2\BR

(un − u)|∇un|p(x)−2∇un∇ϕ dx +
∫

BR+2

f (x,un)ϕ(un − u)dx + o(1).

From J ′(un) → 0 and (3.1) it follows that
∫
BR

Qn(x)dx → 0, that is (I ′
BR

(un) − I ′
BR

(u))(un − u) → 0. Thus

I ′
BR

(un)(un − u) → 0 and un ⇀ u in W 1,p(x)(BR). Since I ′
BR

is of (S+) type, un → u in W 1,p(x)(BR). Assertion (1)
is proved.

(2) Denote W
1,p(x)
c (RN) = {v ∈ W 1,p(x)(RN): suppv is compact}. Then W

1,p(x)
c (RN) is dense in W 1,p(x)(RN).

For each v ∈ W
1,p(x)
c (RN), taking R > 0 sufficiently large such that suppv ⊂ BR and noting that un → u in

W 1,p(x)(BR), we have that

J ′(un)v = J ′
BR

(un)v → J ′
BR

(u)v = J ′(u)v.

This shows J ′(un) ⇀ J ′(u) in (W 1,p(x)(RN))∗. Since J ′(un) → 0, we have J ′(u) = 0. Assertion (2) is proved. �
Lemma 3.2. Let (p1), (V1), (f1) and (f2) hold. If {un} is a (PS)c sequence of J , that is, J (un) → c and J ′(un) → 0
as n → ∞, then {‖un‖} is bounded.

Proof. We may assume that ‖un‖V � 1 for all n. For n sufficiently large, we have

c + 1 + ‖u‖V � J (un) − 1

β
J ′(un)un �

(
1

p+
− 1

β

)
‖u‖p−

V ,

which implies that {‖un‖} is bounded. �
Lemma 3.3. Let (p1), (V1), (f1), (f2) and (f3) hold. Then J satisfies the Mountain Pass Geometry, that is,

(1) there exist positive numbers ρ and α such that J (u) � α for ‖u‖ = ρ;
(2) there exists v ∈ W 1,p(x)(RN) such that ‖v‖ > ρ and J (v) < 0.

Proof. (1) By (2.6), (2.8) and Proposition 2.2, we have that, for any ε > 0, when ‖u‖V � 1,

J (u) � ‖u‖p+
V −

∫
RN

(
ε|u|p+ + C(ε)|u|q(x)

)
dx

� ‖u‖p+
V − εC3‖u‖p+

V − C(ε)C4‖u‖q−
V .

Taking ε = 1
2C3

in the above inequality and noting that q− > p+, we can see that assertion (1) holds.
(2) Assertion (2) follows easily from (2.5). �

Lemma 3.4. Let (p1), (V1), (f1)–(f3) hold. Suppose that {un} is a sequence in W 1,p(x)(RN) such that {‖un‖} is
bounded and J ′(un) → 0 in (W 1,p(x)(RN))∗ as n → ∞. Then, passing to a subsequence still labeled by n, either

(10) un → 0 in W 1,p(x)(RN) as n → ∞,

or
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(20) there exist a sequence {yn} ⊂ R
N and positive numbers R and δ such that∫

B(yn,R)

∣∣un(x)
∣∣p(x)

dx � δ for all n.

Proof. Assume that (20) does not hold. Then, passing to a subsequence still labeled by n, for some R > 0,

sup
y∈RN

∫
B(y,R)

|un|p(x) dx → 0 as n → ∞.

By Proposition 2.3, un → 0 in Lq(x)(RN). Now J ′(un)un = I ′(un)un − Ψ ′(un)un → 0. By (2.7) we know that, for
any ε > 0,∣∣Ψ ′(un)un

∣∣ =
∣∣∣∣ ∫
RN

f (x,un)un dx

∣∣∣∣ �
∣∣∣∣ ∫
RN

(
ε|un|p+ + C(ε)|un|q(x)

)
dx

∣∣∣∣. (3.2)

The boundedness of {‖un‖} implies the boundedness of {|un|Lp+ (RN)}. Noting that un → 0 in Lq(x)(RN), from (3.2)
and the arbitrariness of ε > 0 it follows that Ψ ′(un)un → 0. Thus

I ′(un)un =
∫

RN

(|∇un|p(x) + V (x)|un|p(x)
)
dx → 0,

which implies un → 0 in W 1,p(x)(RN). �
Proof of Theorem 1.1. (1) Define

Γ = {
γ ∈ C0([0,1],W 1,p(x)

(
R

N
))

: γ (0) = 0 and J
(
γ (1)

)
< 0

}
,

c = inf
γ∈Γ

max
t∈[0,1]

J
(
γ (t)

)
. (3.3)

By Lemma 3.3 and Mountain Pass theorem (see e.g. [38,39]), there exists a sequence {un} ⊂ W 1,p(x)(RN) such that
J (un) → c � α > 0 and J ′(un) → 0. By Lemma 3.2, {‖un‖} is bounded. Applying Lemma 3.4 to {un} and noting
that the case (10) does not hold because c > 0 and J (0) = 0, we know that, for a subsequence of {un}, denoted still
by {un}, the case (20) holds, that is, there exist a sequence {yn} ⊂ R

N and positive numbers R and δ such that∫
B(yn,R)

∣∣un(x)
∣∣p(x)

dx � δ for all n.

Put

D =
{
x = (ξ1, ξ2, . . . , ξN ) ∈ R

N : −Ti

2
� ξi <

Ti

2
, i = 1,2, . . . ,N

}
.

Denote by L the diameter of D. For each yn, there are integers k
(n)
1 , k

(n)
2 , . . . , k

(n)
N such that zn = yn − (k

(n)
1 T1, k

(n)
2 T2,

. . . , k
(n)
N TN) ∈ D.

Denote hn = (k
(n)
1 T1, k

(n)
2 T2, . . . , k

(n)
N TN) and put vn(x) = u

hn
n (x) = un(x + hn). Since p, V and f (·, t) are T -

periodic, we have that

‖vn‖ = ‖un‖, J (vn) = J (un) → c, J ′(vn) → 0,

and ∫
B(zn,R)

∣∣vn(x)
∣∣p(x)

dx =
∫

B(yn,R)

∣∣un(x)
∣∣p(x)

dx � δ for all n.

Noting that B(zn,R) ⊂ B(0,R + L), we have
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∫
B(0,R+L)

∣∣vn(x)
∣∣p(x)

dx �
∫

B(zn,R)

∣∣vn(x)
∣∣p(x)

dx � δ for all n. (3.4)

We may assume, taking a subsequence if necessary, that vn ⇀ v in W 1,p(x)(RN) and vn(x) → v(x) a.e. x ∈ R
N . By

Lemma 3.1, vn → v in W
1,p(x)

loc (RN) and J ′(v) = 0. From (3.4) it follows that∫
B(0,R+L)

∣∣v(x)
∣∣p(x)

dx = lim
n→∞

∫
B(0,R+L)

∣∣vn(x)
∣∣p(x)

dx � δ > 0,

which shows v 	= 0. So v is a nontrivial solution of (1.1).
(2) Define f + : R

N × R → R by

f +(x, t) =
{

f (x, t) if t � 0,

0 if t < 0.

Then, similar to (1), we can prove that the problem{−div
(|∇u|p(x)−2∇u

) + V (x)|u|p(x)−2u = f +(x,u) in R
N,

u ∈ W 1,p(x)
(
R

N
) (3.5)

has a nontrivial solution v. It is easy to see that, v, as a solution of (3.5), is nonnegative, and hence v is a solution
of (1.1). By the strong maximum principle of [22], v(x) > 0 for all x ∈ R

N and so v is a positive solution of (1.1).
Similarly, problem (1.1) has a negative solution. Theorem 1.1 is proved. �
Lemma 3.5. Let (p1), (V1) and (f1) hold, and let {un} and u be as in Lemma 3.1. Then, given any ε > 0, there exists
Rε > 0 such that for each R � Rε and n sufficiently large, |J ′

RN\BR
(un)un| � ε, i.e.∣∣∣∣ ∫

RN\BR

(|∇un|p(x) + V (x)|un|p(x) − f (x,un)un

)
dx

∣∣∣∣ � ε.

Proof. Let ε > 0 be given. Since u ∈ W 1,p(x)(RN), there exists Rε > 2 such that∫
RN\BRε−2

(|∇u|p(x) + V (x)|u|p(x) + f (x,u)u + |∇u|p(x)−1|u|)dx � ε

2
. (3.6)

Let R � Rε and ψ ∈ C∞(RN) be such that ψ(x) = 1 for |x| � Rε , ψ(x) = 0 for |x| � Rε − 2, ψ(x) ∈ [0,1] and
|∇ψ(x)| � 1 for all x ∈ R

N . Then {ψun} is a bounded sequence in W 1,p(x)(RN). Hence J ′(un)(ψun) → 0, that is∫
RN

(|∇un|p(x)−2∇un(ψ∇un + un∇ψ) + ψV (x)|un|p(x) − f (x,un)ψun

)
dx → 0. (3.7)

From (3.7) we have that∣∣J ′
RN\BR

(un)un

∣∣
=

∣∣∣∣ ∫
RN\BR

(|∇un|p(x) + V (x)|un|p(x) − f (x,un)un

)
dx

∣∣∣∣
�

∣∣∣∣ ∫
BR\BRε−2

(
un|∇un|p(x)−2∇un∇ψ + ψ

(|∇un|p(x) + V (x)|un|p(x) − f (x,un)un

))
dx

∣∣∣∣ + o(1)

�
∣∣∣∣ ∫
B \B

(|∇un|p(x)−1|un| + |∇un|p(x) + V (x)|un|p(x) + f (x,un)un

)
dx

∣∣∣∣ + o(1). (3.8)
R Rε−2
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From Lemma 3.1 we know that un → u in W
1,p(x)

loc (RN). Thus the limit of the right side of (3.8) equals the left side
of (3.6) and consequently the assertion of Lemma 3.5 is true. �
Proposition 3.1. Let (p1), (V1), (f1) and (f2) hold. Suppose that {un} and u are as in Lemma 3.1 and J (un) → c > 0.
Then 0 � J (u) � c, and J (u) > 0 provided u 	= 0.

Proof. Note that for any critical point u of J ,

J (u) � 1

p+

∫
RN

(|∇u|p(x) + V (x)|u|p(x)
)
dx − 1

β

∫
RN

f (x,u)udx

=
(

1

p+
− 1

β

) ∫
RN

(|∇u|p(x) + V (x)|u|p(x)
)
dx � 0,

and J (u) > 0 provided u 	= 0. It remains to prove that J (u) � c. Given any ε > 0, let Rε > 0 be as in Lemma 3.5,
then for each R � Rε and for n sufficiently large,

JRN\BR
(un) � 1

p+

∫
RN\BR

(|∇un|p(x) + V (x)|un|p(x)
)
dx − 1

β

∫
RN

f (x,un)un dx

=
(

1

p+
− 1

β

) ∫
RN

(|∇u|p(x) + V (x)|u|p(x)
)
dx + 1

β
J ′

RN\BR
(un)un

� − ε

β
� −ε,

and consequently

JBR
(un) = J (un) − JRN\BR

(un) � c + 2ε.

Since un → u in W
1,p(x)

loc (RN), JBR
(u) = limn→∞ JBR

(un) � c + 2ε. Furthermore, J (u) = limR→∞ JBR
(u) � c + 2ε

and consequently, by the arbitrariness of ε > 0, J (u) � c. �
Define

N = {
u ∈ W 1,p(x)

(
R

N
) \ {0}: J ′(u)u = 0

}
.

Lemma 3.6. Let (p1), (V1), (f1)–(f3) and (f5) hold. Then for any u ∈ W 1,p(x)(RN)\{0} there exists a unique t∗(u) > 0
such that t∗(u)u ∈ N. The maximum of J (tu) for t � 0 is achieved at t∗ = t∗(u). The function u → t∗(u) is continuous
on W 1,p(x)(RN) \ {0} and the mapping u → t∗(u)u defines a homeomorphism of the unit sphere of W 1,p(x)(RN)

with N.

Proof. Let u ∈ W 1,p(x)(RN) \ {0} be fixed and define the function g(t) := J (tu) on [0,∞). It is easy to verify that
g(0) = 0, g(t) > 0 for t > 0 small and g(t) < 0 for t > 0 large. Therefore maxt∈[0,∞) g(t) is achieved at some t∗ =
t∗(u) > 0. Thus g′(t∗) = J ′(t∗u)u = 0. Put v = t∗u. Then J ′(v)v = 0 and so v ∈ N. Define the function h(t) = J (tv)

on [0,∞). We already know that h(1) = maxt∈[0,∞) h(t) and h′(1) = J ′(v)v = 0, that is∫
RN

(|∇v|p(x) + V (x)|v|p(x)
)
dx =

∫
RN

f (x, v)v dx.

When t > 1,

h′(t) = J ′(tv)v =
∫
N

tp(x)−1(|∇v|p(x) + V (x)|v|p(x)
)
dx −

∫
N

f (x, tv)v dx
R R
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� tp+−1
( ∫

RN

(|∇v|p(x) + V (x)|v|p(x)
)
dx −

∫
RN

1

tp+−1
f (x, tv)v dx

)
,

and consequently h′(t) < 0 because from (f5) it follows that
∫

RN
1

tp+−1 f (x, tv)v dx >
∫

RN f (x, v)v dx. Analogously,
when t ∈ (0,1) there holds h′(t) > 0. This shows that the positive number t∗ satisfying g′(t∗) = J ′(t∗u)u = 0 is
unique. The proof of the remainder statements is standard (see e.g. [39]) and is omitted here. �
Definition 3.1. A nontrivial solution u of (1.1) is called a ground state if J (u) = infv∈N J (v).

Lemma 3.7. Let (p1), (V1), (f1)–(f3) and (f5) hold. Let c be the value defined by (3.3). Then c = infu∈N J (u).

Proof. Put c1 = infu∈N J (u). By Lemma 3.6, N separates W 1,p(x)(RN) into two components. It is easy to verify that
every γ ∈ Γ has to cross N. Thus c � c1. Given any u ∈ N, there exists s > 0 such that J (su) < 0. Define γ (t) = tsu

for t ∈ [0,1]. Then γ ∈ Γ and J (u) = maxt∈[0,1] J (γ (t)) � c. This shows c1 � c and hence c = c1. �
Lemma 3.8. Under the assumptions of Lemma 3.7, if v ∈ N and J (v) = infu∈N J (u), then J ′(v) = 0 and so v is a
ground state solution of problem (1.1).

The proof of Lemma 3.8 is similar to the proof of Theorem 4.3 of [39] and is omitted here.

Proof of Theorem 1.2. (1) By Theorem 1.1 and Proposition 3.1, problem (1.1) has a nontrivial solution v such that
0 < J(v) � c. Since v ∈ N, by Lemma 3.7, J (v) � c and hence J (v) = c. So v is a ground state.

(2) Define f̃ + : R
N × R → R by

f̃ +(x, t) =
{

f (x, t) if t � 0,

−f (x,−t) if t < 0,

and consider the problem{−div
(|∇u|p(x)−2∇u

) + V (x)|u|p(x)−2u = f̃ +(x,u) in R
N,

u ∈ W 1,p(x)
(
R

N
)
.

(3.9)

Denote by J̃+(u) the energy functional associated with problem (3.9). Then, applying the above assertion (1) to
problem (3.9), (3.9) has a ground state solution u0. Put v(x) = |u0(x)| for x ∈ R

N . It is easy to see that J̃+(v) =
J̃+(u0) and (J̃+)′(v)v = (J̃+)′(u0)u0 = 0. By Lemma 3.8, v is a ground state solution of (3.9). Since v is nonnegative,
v is also a solution of (1.1). By the strong maximum principle of [22], v is a positive solution of (1.1). Since v is a
ground state solution of (3.9), we have that J (v) = J̃+(v) = inf{J (u): J ′(u)u = 0, u > 0}. Similarly, we can prove
that (1.1) has a negative solution w satisfying required condition. �

The following proposition shows that the ground state solution of (1.1) is the strong limit of the corresponding
(PS)c sequence in the norm topology.

Proposition 3.2. Let (p1), (V1), (f1)–(f3) and (f5) hold. Suppose that {un} is a sequence in W 1,p(x)(RN) such that
un ⇀ u in W 1,p(x)(RN), un(x) → u(x) a.e. x ∈ R

N , J ′(un) → 0 in (W 1,p(x)(RN))∗ and J (un) → c as n → ∞,
where c is as in (3.3). If J (u) = c, then

(1) limR→∞
∫

RN\BR
(|∇un|p(x) + V (x)|un|p(x)) dx = 0 uniformly in n,

(2) un → u in W 1,p(x)(RN).

Proof. (1) Let ε > 0 be given. By Lemma 3.6, there exists Rε > 0 such that for each R � Rε and n sufficiently large,
|J ′

RN\BR
(un)un| � ε. We may assume that Rε is large enough such that |JRN\BR

(u)| � ε for R � Rε . Let R � Rε .
Then
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JBR
(u) = J (u) − JRN\BR

(u) � c − ε.

By Lemma 3.1, un → u in W
1,p(x)

loc (RN) and consequently JBR
(un) → JBR

(u). Thus for n sufficiently large,
JBR

(un) � c − 2ε, JRN\BR
(un) � 3ε and consequently

3ε � JRN\BR
(un)

� 1

p+

∫
RN\BR

(|∇un|p(x) + V (x)|un|p(x)
)
dx − 1

β

∫
RN\BR

f (x,un)un dx

=
(

1

p+
− 1

β

) ∫
RN\BR

(|∇un|p(x) + V (x)|un|p(x)
)
dx + 1

β
J ′

RN\BR
(un)un

�
(

1

p+
− 1

β

) ∫
RN\BR

(|∇un|p(x) + V (x)|un|p(x)
)
dx − ε,

which implies that∫
RN\BR

(|∇un|p(x) + V (x)|un|p(x)
)
dx �

(
1

p+
− 1

β

)−1

4ε.

Assertion (1) is proved.
(2) Define ρΩ(u) = ∫

Ω
(|∇u|p(x) + V (x)|u|p(x)) dx and write ρRN = ρ. Since {‖un‖} is bounded, we may assume

that ρ(un) → d . Since un → u in W
1,p(x)

loc (RN), we may assume that ∇un(x) → ∇u(x) a.e. x ∈ R
N . Given any

ε > 0, by assertion (1), there exists Rε > 0 such that ρRN\BR
(un) � ε for R � Rε . Then for n sufficiently large,

ρBR
(un) � d − 2ε. Noting that ρBR

(un) → ρBR
(u) because un → u in W

1,p(x)

loc (RN), we have that ρBR
(u) � d − 2ε

for all R � Rε , furthermore ρ(u) � d − 2ε and so ρ(u) � d. It follows from un ⇀ u in W 1,p(x)(RN) that ρ(u) �
limn→∞ ρ(un) = d . Thus ρ(u) = d = limn→∞ ρ(un). Noting that

|∇un − ∇u|p(x) + V (x)|un − u|p(x) � 2p+(|∇un|p(x) + V (x)|un|p(x) + |∇u|p(x) + V (x)|u|p(x)
)
,

by the Vitali convergence theorem, we can obtain that∫
RN

((|∇un − ∇u|)p(x) + V (x)
(|un − u|)p(x))

dx → 0 as n → ∞,

which implies that un → u in W 1,p(x)(RN). �
4. Solutions of problem (1.2)

In this section we consider problem (1.2) and prove Theorem 1.3.
Let the assumptions of Theorem 1.3 hold. Denote p∗(x) = p(x) + θ(x), f∗(x, t) = f (x, t)|t |−τ(x) and F∗(x, t) =∫ t

0 f∗(x, s) ds. Define for u ∈ W 1,p∗(x)(RN),

J∗(u) =
∫

RN

1

p∗(x)

(|∇u|p∗(x) + a(x)V (x)|u|p∗(x)
)
dx −

∫
RN

b(x)F∗(x,u) dx,

Γ∗ = {
γ ∈ C0([0,1],W 1,p∗(x)

(
R

N
))

: γ (0) = 0 and J∗
(
γ (1)

)
< 0

}
,

c∗ = inf
γ∈Γ∗

max
t∈[0,1]

J∗
(
γ (t)

)
,

N∗ = {
u ∈ W 1,p∗(x)

(
R

N
) \ {0}: J ′∗(u)u = 0

}
,

and for u ∈ W 1,p(x)(RN),
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J∞(u) =
∫

RN

1

p(x)

(|∇u|p(x) + a+V (x)|u|p(x)
)
dx −

∫
RN

b−F(x,u)dx,

Γ∞ = {
γ ∈ C0([0,1],W 1,p(x)

(
R

N
))

: γ (0) = 0 and J∞
(
γ (1)

)
< 0

}
,

c∞ = inf
γ∈Γ∞

max
t∈[0,1]

J∞
(
γ (t)

)
,

N∞ = {
u ∈ W 1,p(x)

(
R

N
) \ {0}: J ′∞(u)u = 0

}
.

Denote by ‖u‖∗ the norm of u in W 1,p∗(x)(RN).

Lemma 4.1. Under the assumptions of Theorem 1.3, the following conditions are satisfied.

(p∗)1 The function p∗ : R
N → R is Lipschitz continuous and

1 < (p∗)− � (p∗)+ < N.

(f∗)1 f∗ ∈ C0(RN × R,R) and∣∣f∗(x, t)
∣∣ � C

(|t |p∗(x)−1 + |t |q∗(x)−1), ∀x ∈ R
N, t ∈ R,

where C is a positive constant, q∗(x) = q(x) + θ(x), q∗ ∈ C0(RN,R) and p∗ � q∗ � (p∗)∗.
(f∗)2 β − τ+ > (p∗)+ and

0 < (β − τ+)F∗(x, t) � tf∗(x, t), ∀x ∈ R
N, t 	= 0.

(f∗)3 f∗(x, t) = o(|t |(p∗)+−1) as t → 0, uniformly in x.
(f∗)5 For each x ∈ R

N , f∗(x,t)

|t |(p∗)+−1 is an increasing function of t on R \ {0}.

Proof. (p∗)1 follows immediately from (p1) and (θ). (f∗)3 is just (f3)∗. (f3)∗ implies the continuity of f∗(x, t)

at t = 0. Put q∗(x) = q(x) + θ(x). From (f1) and (f3)∗ it follows that when |t | � 1, |f∗(x, t)| � C2|t |(p∗)+−1 �
C2|t |p∗(x)−1, and when |t | > 1, |f∗(x, t)| � |f (x, t)| � C3|t |q(x)−1 � C3|t |q∗(x)−1. Obviously p∗ � q∗. From q � p∗
we can obtain q∗ � (p∗)∗. Thus (f∗)1 holds. Noting that

f∗(x, t)

|t |(p∗)+−1
= f (x, t)|t |−τ(x)|t |β−(p∗)+

|t |β−1
= f (x, t)

|t |β−1
· |t |β−(p∗)+−τ(x),

from (θ, τ ) and (f5)∗ it follows that (f∗)5 holds. It only remains to prove (f∗)2. By (θ, τ ), (p + θ)+ < β − τ+. By (f2),
the definition of F∗ and the integration by parts, we have that, for x ∈ R

N and t 	= 0,

0 < F∗(x, t) =
t∫

0

f∗(x, s) ds =
t∫

0

f (x, s)|s|−τ(x) ds

= (
F(x, s)|s|−τ(x)

)∣∣t
0 + τ(x)

t∫
0

F(x, s)|s|−τ(x)−2s ds

� 1

β
f (x, t)t |t |−τ(x) + τ(x)

β

t∫
0

f (x, s)|s|−τ(x) ds

= 1

β
f∗(x, t)t + τ(x)

β
F∗(x, t),

and consequently

0 <
(
β − τ(x)

)
F∗(x, t) � tf∗(x, t).

Thus (f∗)2 holds. The proof is complete. �
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Now let us to prove assertion (1) of Theorem 1.3. Noting that all the lemmata and propositions obtained in Section 3
hold without the periodicity assumptions, by Lemma 4.1, we know that J∗ satisfies Mountain Pass Geometry and
there exists a bounded sequence {un} ⊂ W 1,p∗(x)(RN) such that J∗(un) → c∗ > 0 and J ′∗(un) → 0. We may assume

that un ⇀ u0 in W 1,p∗(x)(RN) and un(x) → u0(x) a.e. x ∈ R
N . By Lemma 3.1, un → u0 in W

1,p∗(x)

loc (RN) and
J ′∗(un) ⇀ J ′∗(u0) = 0. Thus u0 is a solution of (1.2).

If u0 	= 0, then u0 is a nontrivial solution of (1.2) and by Proposition 3.1 and Lemmas 3.6 and 3.7, J∗(u0) = c∗ =
inf{J∗(v): v ∈ N∗}. Thus u0 is a ground state solution of (1.2). In this case assertion (1) of Theorem 1.3 already holds.
In addition, by Proposition 3.2, un → u0 in W 1,p∗(x)(RN).

Below let us consider the case that u0 = 0. For this case we first give the following lemma.

Lemma 4.2. Under the above assumptions, if u0 = 0, then

(1) J ′∞(un)un → 0 and J∞(un) → c∗ as n → ∞,
(2) c∗ � c∞.

Proof. (1) By Lemma 3.1, un → 0 in W
1,p∗(x)

loc (RN). For any R � R∗ we have

J ′∞(un)un − J ′∗(un)un =
∫

RN\BR

((
a+ − a(x)

)
V (x)|un|p(x) + (

b(x) − b
)
f (x,un)un

)
dx

+ (J∞)′BR
(un)un − (J∗)′BR

(un)un.

From assumptions (a) and (b), the boundedness of {‖un‖∗} and un → 0 in W
1,p∗(x)

loc (RN), we can obtain that
J ′∞(un)un − J ′∗(un)un → 0 and consequently J ′∞(un)un → 0 because J ′∗(un)un → 0. Using similar arguments we
can prove that J∞(un) − J∗(un) → 0 and consequently J∞(un) → c∗.

(2) Since J ′∞(un)un → 0, we have∫
RN

(|∇un|p(x) + a+V (x)|un|p(x)
)
dx =

∫
RN

b−f (x,un)un dx + o(1). (4.1)

From J∞(un) → c∗ > 0 it follows that {‖un‖} has a positive bound from below and consequently there exists δ > 0
such that∫

RN

b−f (x,un)un dx � δ for n large enough. (4.2)

For each un there exists a unique positive number tn such that tnun ∈ N∞, which implies that J ′∞(tnun)un = 0, that is∫
RN

t
p(x)−1
n

(|∇un|p(x) + a+V (x)|un|p(x)
)
dx =

∫
RN

b−f (x, tnun)un dx. (4.3)

By the mean value theorem for integrals, for each n there exists a number p̄n ∈ [p−,p+] such that∫
RN

t
p(x)−1
n

(|∇un|p(x) + a+V (x)|un|p(x)
)
dx = t

p̄n−1
n

∫
RN

(|∇un|p(x) + a+V (x)|un|p(x)
)
dx,

and so∫
RN

(|∇un|p(x) + a+V (x)|un|p(x)
)
dx =

∫
RN

b−f (x, tnun)un

t
p̄n−1
n

dx. (4.4)

(4.4) and (4.1) imply that∫
N

b−f (x, tnun)un

t
p̄n−1
n

dx =
∫
N

b−f (x,un)un dx + o(1). (4.5)
R R
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When tn � 1, noting that

b−f (x, tnun)un

t
p̄n−1
n

� b−f (x, tnun)un

t
p+−1
n

= b−f (x, tnun)un

t
β−1
n

t
β−p+
n

and using assumption (f5)∗ we have that

b−f (x, tnun)un

t
p̄n−1
n

� t
β−p+
n b−f (x,un)un,

and consequently(
t
β−p+
n − 1

) ∫
RN

b−f (x,un)un dx � o(1). (4.6)

Analogously we can obtain that, when tn < 1,(
1 − t

β−p+
n

) ∫
RN

b−f (x,un)un dx � o(1). (4.7)

From (4.6), (4.7) and (4.2) it follows that tn → 1. Because the mapping J ′∞ is bounded, the functional J∞ is
uniformly continuous on every bounded set and so

J∞(tnun) − J∞(un) → 0 as n → ∞.

Thus we have that

c∗ = J∗(un) + o(1) = J∞(un) + o(1)

= J∞(tnun) + o(1) � c∞ + o(1)

and hence c∗ � c∞. The lemma is proved. �
Now let us continue with the proof of Theorem 1.3. Let u0 = 0. Then by Lemma 4.2, there holds

c∗ � c∞. (4.8)

Applying Theorem 1.2 to J∞, we know that J∞ has a nontrivial critical point w ∈ W 1,p(x)(RN) such that
J∞(w) = c∞. By Proposition 2.5, w(x) → 0 and |∇w(x)| → 0 as |x| → ∞. Define for each k = 1,2, . . . ,

wk(x) = w(x − kTNeN), ∀x ∈ R
N.

Then for each k, J ′∞(wk) = 0 and J∞(wk) = c∞. Take k0 big enough such that |wk0(x)| < 1 and |∇wk0(x)| < 1
for |x| � R∗. Applying Lemma 3.6 to N∗, there exists a unique positive number t∗ such that t∗wk0 ∈ N∗, that is
J ′∗(t∗wk0)wk0 = 0. Noting that

J ′∗(wk0)wk0 =
∫

RN\BR∗

(|∇wk0 |p(x) + a(x)V (x)|wk0 |p(x) − b(x)f (x,wk0)wk0

)
dx

+
∫

BR∗

(|∇wk0 |p∗(x) + a(x)V (x)|wk0 |p∗(x) − b(x)f (x,wk0)|wk0 |−τ(x)wk0

)
dx

�
∫

RN

(|∇wk0 |p(x) + a+V (x)|wk0 |p(x) − b−f (x,wk0)wk0

)
dx

= J ′∞(wk0)wk0 = 0,

we know that t∗ � 1. We claim that, in the case when u0 = 0, there holds t∗ = 1. Indeed, if t∗ < 1, then, noting that
when |x| � R∗, |t∗wk (x)| < 1 and |∇(t∗wk )(x)| < 1, and when |t | � 1, F∗(x, t) � F(x, t), we have that
0 0
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c∗ � J∗(t∗wk0)

=
∫

RN\BR∗

1

p(x)

(∣∣∇(t∗wk0)
∣∣p(x) + a(x)V (x)|t∗wk0 |p(x)

)
dx −

∫
RN\BR∗

b(x)F (x, t∗wk0) dx

+
∫

BR∗

(
1

p∗(x)

(∣∣∇(t∗wk0)
∣∣p∗(x) + a(x)V (x)|t∗wk0 |p∗(x)

) − b(x)F∗(x, t∗wk0)

)
dx

� J∞(t∗wk0) < J∞(wk0) = c∞,

which contradicts with (4.8). Hence t∗ = 1, which implies wk0 ∈ N∗. In this case,

c∗ � J∗(wk0) � J∞(wk0) = c∞.

From this and (4.8) it follows that c∗ = c∞ and J∗(wk0) = c∗. By Lemma 3.8, J ′∗(wk0) = 0 and wk0 is a ground state
solution of (1.2). Assertion (1) of Theorem 1.3 is proved.

The proof of (2) of Theorem 1.3 is similar to the proof of (2) of Theorem 1.2 and hence is omitted here.
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