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Abstract

Wavelet OFDM is one of the medium access techniques adopted by the IEEE P1901 working group for
broadband power line communications (PLC). This paper reviews important aspects of baseband physical
layer for broadband PLC, such as the scheme of modulation to obtain the transmitter and the characteristics
of the recommended prototype filters. It further proposes a viable receiver system compatible with the
transmitter and that provides perfect reconstruction characteristics in ideal environments. Furthermore, a
procedure to perform the per-subcarrier frequency domain equalization, essential to deal with the power line
channel effects at the receiver side, is also addressed. In order to greatly simplify the equalizer design, an
efficient fast algorithm with reduced computational complexity is presented. Finally, this study is completed
with several computer simulations, considering in-home PLC scenarios, to demonstrate the benefits of the
proposed transceiver system.
& 2016 The Authors. Published by Elsevier Ltd. on behalf of The Franklin Institute. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Discrete multitone (DMT) modulation, orthogonal frequency division multiplexing (OFDM),
and filter bank multicarrier (FBMC) are channel partitioning methods that divide a transmission
channel to form a set of parallel and ideally independent subchannels. DMT and OFDM are
playing an important role in broadband digital wired and wireless communications [1,2] because
they are easy to implement, achieve very high bandwidth efficiency, and lead to simple
frequency domain equalizers to counteract multipath distortion. However, FBMC offers greater
spectral separation in the information transmitted over each subcarrier, thus reducing the adjacent
subchannel interference, showing higher robustness in noisy environments, and allowing for
higher data throughput since the use of redundant data as the cyclic prefix (CP) can be avoided.
A tutorial review of FBMC techniques and comparisons with DFT-based transceivers in various
applications can be found in [3–6].

FBMC is not only a promising candidate for 5th generation (5G) systems [3,4], but also a
medium access technique already recommended for high-speed communications via electric
power lines [7,8]. Communication networks will play a crucial role in the development of smart
grid which aim to not only making electricity delivery more reliable, economical and sustainable,
but also the convergence of information and communication technologies with power system
engineering. For the above reasons, this field is subject of many research efforts to propose
innovative solutions and new applications (see, e.g., [9,10]).

The standard proposed by the IEEE P1901 working group has promoted windowed OFDM
and FBMC (Wavelet OFDM) as medium access techniques for power line communications
(PLC) [11]. Originally, filter bank system in a synthesis-analysis configuration was denoted
transmultiplexer (TMUX) [12,13], although the terminology adopted in [11] to denote the
TMUX has been Wavelet OFDM. However, the above denomination is a misnomer [14]
because, as we will show later, the recommended Wavelet OFDM is based on cosine modulated
(CM) filter banks, and there exists another class of multicarrier systems that are based on true
wavelets (e.g., [15]).

The contribution of this paper is threefold. First, the understanding on the Wavelet OFDM for
baseband high-speed communications over power line networks is extended. Some key features,
as the kind of FBMC proposed as transmitter, or the waveforms recommended as prototype
filters to obtain the transmitting filters, are clarified. Also as novel contribution, a set of
expressions to obtain the coefficients of these prototype filters given in [11] is presented. Second,
efficient structures for both transmitter and receiver, based on polyphase filters [16], are also
proposed. The coefficients of the polyphase filters are obtained from the prototype filter, and each
pair of filters can be implemented using a direct or a transpose form, or lattice structures, singly
or in pairs. The computational complexities of the proposed fast algorithms of implementation,
for each different structure of polyphase filters, are also derived. Third, we finally propose and
investigate the performance of an easy frequency-domain equalizer system, which can help to
correct the distortion of the power line channel.

The rest of this paper is organized as follows. In Section 2, we address the modulation scheme
of the transmitter and we present several expressions to obtain the prototype filters from which
the transmitting and the receiving subchannels filters are constructed. Section 3 presents our
proposal of receiver and the way of implementing it. Section 4 describes a simple frequency-
domain channel equalizer to compensate for the transmission channel effects. Section 5 provides
the performance evaluation of the Wavelet OFDM transceiver in a PLC scenario, and finally,
concluding remarks are given in Section 6.
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Notation. Bold-typed letters indicate vectors (lower case) and matrices (upper case). Notation
AT represents the transpose of A. Matrix I denotes the identity matrix, and J denotes the counter-
identity matrix:

J¼

0 ⋯ 0 1

0 ⋯ 1 0

⋮ ⋮ ⋮
1 ⋯ 0 0

0
BBB@

1
CCCA:

Γ is an M�M diagonal matrix with elements Γ½ �k;k ¼ �1ð Þk , for 0rkr M�1ð Þ. The delay
chain t zð Þ is the column vector

t zð Þ ¼ 1 z�1 ⋯ z� M�1ð Þ� �T
:

2. Modulated filter bank multicarrier system recommended for PLC

Modulated FBMC systems are designed applying a trigonometric or exponential modulation
to one or two prototype filters (see, e.g., [17,18] and the references therein). In this way, the
design of the prototype filter is a key point in order to get an FBMC with either perfect or nearly
perfect reconstruction (PR or NPR) property. In this section, we describe the filter bank
multicarrier transmitter and the prototype filters that are proposed as medium access technique in
the baseband Wavelet OFDM physical layer [11].
2.1. Transmitter

The standard considers three different number of subchannels: M¼512, 1024, 2048, and the
following prototype filter lengths: N ¼ 2 mM, with m¼2 or m¼3. On the other hand, the
corresponding frame may be transmitted either baseband or by modulation to a bandpass carrier
[11]. We focus for the rest of this work on M¼512 subchannels and baseband, mandatory for in-
home and access applications.
In this case, the equation to obtain the time-domain waveform signal for the frame body is

stated as follows [11, p. 1194]:

1
16

X3
k ¼ 0

XNused �1

c ¼ 0
Kon

p nþ 512k½ � � cos π

512
� nþ 512kð Þ þ 512þ 1

2

� �
cþ 1

2

� �
þ θk

� �2
4

3
5;

ð1Þ
where an overlap factor of 4 is assumed (m¼2), 0rno512, KonD 0;…; 511f g is the set of
active subchannels defined by the tone mask [11], Nused denotes the number of used carriers (512
in this case), p½n� is the prototype filter, and θk is a phase vector for peak power reduction. The
values of θk for M¼512 are defined in [11, Tables 14–10], and they equal 0 or π. When the total
number of used carriers exceeds 512, the phase vector is constituted by repeating the phase group
from carrier number 1–512.
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It is important to note that Eq. (1) can be rewritten as:

1
16

X511
c ¼ 0
Kon

p n½ � � cos π

512
nþ 512þ 1

2

� �
cþ 1

2

� �
þ θk

� �
; ð2Þ

for 0rnr2047. Notice that in Eq. (2) the scale factor 1
16 matches with

ffiffiffi
2
M

q
, and that the phase

vector θk only affects the sign of the time-domain waveform, since it equals 0 or π. Accordingly,
the impulse-response coefficients of the M-channel transmitting filters are given by

f k n½ � ¼
ffiffiffiffiffi
2
M

r
� p n½ � � cos k þ 1

2

� �
π

M
nþM þ 1

2

� �� �
� cos θkð Þ; ð3Þ

where kAKon. This expression, excluding the term cos θkð Þ, is nothing but the synthesis filters of
an extended lapped transform (ELT) introduced by Malvar [19].

2.2. Prototype filters

Different prototype filters are proposed in the standard for the cases of M¼512, 1024 and 2048
subchannels, and for overlapping factors m equals 2 or 3. For the case of m¼2, the prototype filter
coefficients p½n� can be obtained from a “mother filter” h½n�, given in [11, p. 1205], as follows:

� M¼512 subchannels:

p n½ � ¼ 1
2 h½4nþ 1� þ h½4nþ 2�	 


0rno2M:

� M¼1024 subchannels:

p n½ � ¼ 1
2 h½2n� þ h½2nþ 1�	 


0rno2M:

� M¼2048 subchannels:

p½n� ¼ h½n� 0rno2M:

� For M ¼ 512; 1024; 2048 subchannels:

p½n� ¼ p½4M�1�n� 2Mrno4M:
It can be seen that the resulting prototype filter presents an even symmetry p½N�1�n� ¼ p½n�ð Þ.
Unfortunately, the standard does not provide expressions that allow designers to quickly obtain
the corresponding coefficients. In this sense, we have noticed that this prototype filter belongs to
a family of windows proposed by Malvar [19] which fulfills the perfect reconstruction (PR)
property in the context of filter bank. Specifically, let us consider the following angles:

ϑi0 ¼ � π

2
þ μiþM=2; ϑi1 ¼ � π

2
þ μM=2�1� i;

where

μi ¼
0:7
2M

� �
2iþ 1ð Þ þ 0:3

� �
2iþ 1ð Þπ
8M

;

for 0r ir ðM�1Þ. The prototype filter coefficients in [11, p. 1205], for M¼512 and m¼2, can
be easily obtained as follows:

p n½ � ¼ cos ϑn0ð Þ � cos ϑn1ð Þ;
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p M�1�n½ � ¼ sin ϑn0ð Þ � cos ϑn1ð Þ;
p M þ n½ � ¼ cos ϑn0ð Þ � sin ϑn1ð Þ;
p 2M�1�n½ � ¼ � sin ϑn0ð Þ � sin ϑn1ð Þ;

for 0rnr M=2�1
� �

.

3. Proposed transceiver implementation

An additional appealing feature of ELT is that very fast algorithms, which depend on the
prototype filter length N ¼ 2 mM, can be used to efficiently perform it. The goal of this section is
to connect the theory of efficient ELT implementation with Wavelet OFDM, showing different
building blocks to carry out the PLC transceiver.

3.1. Transmitting bank implementation with polyphase filters

The aim of this subsection is to present an implementation of the wavelet transceiver using
polyphase filters at the transmitting filter bank. To this goal, let us formulate Eq. (3) in the z-domain
using matrices. Let P zð Þ ¼ PN�1

n ¼ 0 p n½ � � z�n be the ðN�1Þth-order prototype filter transfer function,
which can be expressed by means of the 2M type-I polyphase decomposition [16]:

P zð Þ ¼
X2M�1

ℓ ¼ 0

z�ℓGℓ z2M
� �

;

where Gℓ z2M
� �

is the z-transform of gℓ n½ � ¼ p 2nM þ ℓ½ �, ℓ¼ 0;…; 2M�1ð Þ. From the above
equation, the transmitting filters Fk zð Þ can be expressed in the following way:

Fk zð Þ ¼
XN�1

n ¼ 0

f k½n�z�n

¼
X2M�1

ℓ ¼ 0

cðfℓ;k � cos θk � z�ℓ � Gℓ �z2M
� �

; ð4Þ

where

cðfℓ;k ¼
ffiffiffiffiffi
2
M

r
� cos k þ 1

2

� �
π

M
� ℓþM þ 1

2

� �� �
; ð5Þ

for 0rkr M�1ð Þ. The above relation is the result of the periodicity of the cosine function which
satisfies [20]:

cðfℓþ2mM;k ¼ �1ð Þmcðfℓ;k:
The transmitting filters of Eq. (4) are written in a matrix form as:

fT zð Þ ¼ F0 zð Þ F1 zð Þ ⋯ FM�1 zð Þ� �
¼ tT zð Þ � g0 z2M

� �
z�Mg1 z2M

� �h i
� ĈTx;

where

ĈTx

h i
ℓ;k

¼ cðfℓ;k � cos θk ;
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and g0 and g1 are M�M diagonal matrices with elements

g0 zð Þ� �
k;k

¼Gk �zð Þ;
g1 zð Þ� �

k;k
¼GkþM �zð Þ:

Let us partition ĈTx as

ĈTx ¼
B0

B1

" #
�Θ;

Θ is anM�M diagonal matrix with elements Θ½ �k;k ¼ cos θkð Þ; B0 and B1 are alsoM�Mmatrices,
being the elements of the first one given by

B0½ �ℓ;k ¼ cð4eℓ;k � cos λk0ð Þ þ sð4eℓ;k � sin λk0ð Þ;
with

C4e½ �ℓ;k ¼ cð4eℓ;k ¼
ffiffiffiffiffi
2
M

r
cos k þ 1

2

� �
π

M
� ℓþ 1

2

� �� �
;

S4e½ �ℓ;k ¼ sð4eℓ;k ¼
ffiffiffiffiffi
2
M

r
sin k þ 1

2

� �
π

M
� ℓþ 1

2

� �� �
;

ΛC0½ �k;k ¼ cos λk0ð Þ ¼ cos k þ 1
2

� �
π

2

� �
;

ΛS0½ �k;k ¼ sin λk0ð Þ ¼ sin k þ 1
2

� �
π

2

� �
:

Notice thatC4e and S4e are, respectively, the type-IV even discrete cosine transform (DCT4e) and the
type-IV even discrete sine transform (DST4e) matrices [21,22].

Regarding the second matrix B1, each of its elements can be expressed as

B1½ �ℓ;k ¼ cð4eℓ;k � cos λk1ð Þ þ sð4eℓ;k � sin λk1ð Þ;
where

ΛC1½ �k;k ¼ cos λk1ð Þ ¼ cos k þ 1
2

� �
3π
2

� �
;

ΛS1½ �k;k ¼ sin λk1ð Þ ¼ sin k þ 1
2

� �
3π
2

� �
:

Thus, matrices B0 and B1 can be written as given below:

B0 ¼C4e � ΛC0�S4e � ΛS0; ð6aÞ

B1 ¼C4e � ΛC1�S4e � ΛS1: ð6bÞ
Important properties are ΛS0 ¼ Γ � ΛC0, ΛC1 ¼ �ΛC0, ΛS1 ¼ Γ � ΛC0, and S4e � Γ¼ J � C4e.
Using the above, we have

B0 ¼ I�Jð Þ � C4e � ΛC0; ð7aÞ

B1 ¼ �I�Jð Þ � C4e � ΛC0: ð7bÞ
Finally, the transmitting filters can be expressed as follows:
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fT zð Þ ¼ tT zð Þ � g0 z2M
� �

z�Mg1 z2M
� �h i

�
I�Jð Þ
�I�Jð Þ

" #
� C4e � ΛC0 �Θ:

3.2. Receiving bank implementation with polyphase filters

The transmitter given by Eq. (3) leads us to propose a receiver based on the scheme of
modulation recommended by Malvar for the analysis bank or direct ELT [19]. In addition, the
phase factors θk of Eq. (3) must be included to guarantee perfect symbol recovery in absence of a
transmission channel and noise. This scheme of cosine modulation is

hk n½ � ¼
ffiffiffiffiffi
2
M

r
� p n½ � � cos k þ 1

2

� �
π

M
� N�1�nþM þ 1

2

� �� �
� cos θkð Þ: ð8Þ

Taking the z transform in Eq. (8), we obtain the system function for the receiving filters Hk zð Þ:

Hk zð Þ ¼
XN�1

n ¼ 0

hk½n�z�n ¼
X2M�1

ℓ ¼ 0

cðhk;ℓ � cos θk � z�ℓ � Gℓ �z2M
� �

; ð9Þ

where

cðhk;ℓ ¼
ffiffiffiffiffi
2
M

r
� cos k þ 1

2

� �
π

M
� N�1�ℓþM þ 1

2

� �� �
:

Using matrices, the transmitting filters can be expressed as

h zð Þ ¼

H0 zð Þ
H1 zð Þ
⋮

HM�1 zð Þ

2
66664

3
77775¼ ĈRx �

g0 z2M
� �

z�Mg1 z2M
� �" #

� t zð Þ;

with

ĈRx

h i
k;ℓ

¼ cðhk;ℓ � cos θk:

Notice that now the fast implementation of the receiving system depends on the value of m. As
we have mentioned, the standard recommends two different overlapping factors: m¼2 and
m¼3. Operating as in the previous subsection, the following result is obtained:

ĈRx ¼Θ � ΛC0 � C4e � α Iþ Jð Þ α I�Jð Þ� �
;

where α¼ 1 for m¼2, and α¼ �1 for m¼3. Therefore, the final expression that characterizes
the proposed receiver is the following:

h zð Þ ¼Θ � ΛC0 � C4e � α Iþ Jð Þ α I�Jð Þ� � � g0 z2M
� �

z�Mg1 z2M
� �" #

t zð Þ: ð10Þ

The implementation of the whole transceiver, including both the transmitting and the receiving
stages, is depicted in Fig. 1. In this figure, the matrix Λcn ¼

ffiffiffi
2

p
�Θ � ΛC0; where

ΛC0½ �k;k ¼ cos λk0ð Þ ¼ cos k þ 1
2

� �
π

2

� �
:
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This leads to Λcn½ �k;k ¼71. To compensate for the constant
ffiffiffi
2

p
, its inverse value is multiplying

both the transmitting and the receiving signals.
3.3. Polyphase filters with lattice structures

In the implementation of Fig. 1, the output signals of the corresponding transmitting polyphase
filters are added. On the receiving side, each pair of polyphase filters are fed with the same input
signal. Note that Wavelet OFDM follows the modulation scheme given in Eq. (3) and, according
to our proposal, the receiver is obtained using Eq. (8). The prototype filter proposed in the
standard has linear-phase, and the same prototype is employed for both the transmitting and the
receiving sides. Moreover, the type-I polyphase components of each filter recommended in [11]
Fig. 1. Block diagram of the wavelet OFDM transceiver implemented with polyphase filters (M¼512). (a) Transmitter.
(b) Receiver.
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satisfy

~GiðzÞ � GiðzÞ þ ~GiþMðzÞ � GiþMðzÞ ¼ 1;

where ~GðzÞ ¼Gn z�1
� �

, which means that the filter bank is paraunitary. This leads to a joint
implementation of pairs of filters, i.e., that each pair of polyphase filters can be implemented at a
time via lattice structures [23].
Let us consider again the case of N ¼ 2 mM for M¼512 and m¼2. Each polyphase filter of

Fig. 2(a) has a length equals 2m�1¼ 3, and the intermediate coefficient is zero. Therefore, the
ith and iþMth polyphase filters can be expressed respectively as

Gið�z2Þ ¼ aþ bz�2; GiþMð�z2Þ ¼ cþ dz�2:

The lattice coefficients of the structure of Fig. 2(b) are obtained as [23]

v2n ¼ �dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

p ; v̂2n ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

p ;

r0n ¼
�ad þ bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

p ; s0n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

p
:

Each normalized lattice structure of Fig. 2(b) has six multipliers. As alternative, two equivalent
denormalized lattices, which require four multipliers, can be obtained [23]. In the first
denormalized structure depicted in Fig. 2(c), the coefficients are calculated as:

v2d ¼
v̂2n
v2n

; r0d ¼ r0n � v2n; s0d ¼ s0n � v2n:

Similarly, the coefficients of the second denormalized structure (Fig. 2(d)) are given by

v2a ¼
v2n
v̂2n

; r0a ¼ r0n � v̂2n; s0a ¼ s0n � v̂2n:
Fig. 2. (a) Pair of polyphase filters. (b) Implementation using normalized lattice structure. (c) Implementation using
denormalized lattice structure requiring four multipliers. (d) Alternative implementation using denormalized lattice
structure also requiring four multipliers.
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3.4. Computational complexity

In this part, we discuss several algorithms of the proposed Wavelet OFDM receiver in terms of
arithmetic complexity. Central to the operation of this system is DCT4e as the basic transform
block at both the receiver and the transmitter sides. This transform has played a key role in
numerous applications, such as audio signals compression, and thus many fast computational
structures can be found (see, e.g., [24–26]). Tables 1 and 2 include the computational cost of
some efficient algorithms, and as it can be seen, the algorithm proposed in [26] provides the
lower flop count and the lower number of multiplications. Notice that exactly the same flop count
is obtained for the DST4e, since it is related to DCT4e by means of sign changes and reversals of
the input and output sequences [26].

Table 3 includes the computational complexity of the receiver of Fig. 3, counted for length-M
blocks, and considering the three different implementations shown in Fig. 2 for each pair of
polyphase filters. To obtain these results, sign changes have not been computed as
multiplications, and DCT4e is implemented with the procedure presented in [26]. Moreover,
MULbest and ADDbest denote, respectively, the number of multiplications and additons necessary
to carry out the algorithm in [26]. The remaining multiplications are contributed by the first
Table 1
Number of multiplications for various efficient implementations of DCT4e for length-M blocks.

Algorithm Multiplications (MUL)

Ref. [24] M
2 log 2M þ 2
� �

Ref. [25] M log 2M þ 2
3M� 2

3 �1ð Þlog 2M

Ref. [26] MULbest ¼ 5M
9 log 2M þ 2

9 �1ð Þlog 2M log 2M þ 10
27M� 10

27 �1ð Þlog 2M

Table 2
Number of additions for various efficient implementations of DCT4e for length-M blocks.

Algorithm Additions (ADD)

Ref. [24] 3M
2 log 2M

Ref. [25] 4M
3 log 2M� 2

9M þ 2
9 �1ð Þlog 2M

Ref. [26] ADDbest ¼ 4M
3 log 2M þ 7

9M þ 2
9 �1ð Þlog 2M

Table 3
Computational complexity of the efficient polyphase receivers of Fig. 3 (M¼512, m¼2 and
N¼2048).

Implementation MPIS APIS

Direct or transpose 7M þ 2 �MULbest 9M þ 2 � ADDbest

Normalized lattices 9M þ 2 �MULbest 9M þ 2 � ADDbest

Denormalized lattices 7M þ 2 �MULbest 9M þ 2 � ADDbest
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constant term (M), the polyphase filtering (4M direct or transpose form, 6M normalized and 4M
denormalized lattices), and the 0-ASCET equalizers (2M). The additions are contributed by the
polyphase filtering (2M), the operations with matrices I and J (4M), their outputs (2M) and the 0-
ASCETs outputs (M). Although the computational complexity is almost the same for the three
systems, the most suitable fast algorithms are based on direct/transpose filters or denormalized
lattices.

4. Frequency domain equalization

One of the main drawbacks of the FBMC systems is the channel equalization process, which is
not as understandable and efficient as for the standardized DFT-based multicarrier modulation
(MCM). In [27], one of the simplest equalizer to correct the channel effects for CM FBMC
systems is proposed. It is referred to as adaptive sine-modulated/cosine-modulated filter bank
equalizer for transmultiplexer (ASCET). From the analysis (receiving) stage of a CM FBMC
system, the ASCET compensates for the channel distortion using an analysis sine modulated
(SM) FBMC system connected in parallel to the former. In addition, a frequency domain
equalizer (FEQ) is included at each receiving cosine and sine modulated filter banks.
The use of ASCET for PLC is proposed in [28], but not for the ELT-based FBMC system

proposed in the Wavelet OFDM physical layer. In this section, we derive an appropriate scheme
that can be used for the transmitter recommended in [11].
Fig. 3. Fast implementation of the Wavelet OFDM receiver including a 0-ASCET with polyphase filters.
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4.1. Proposed SM FBMC and efficient implementation

We proposed as SM FBMC for the ASCET the analysis stage of an ELT-based sine-
modulated filter bank (SMFB), in which the impulse responses of the analysis filters are given by

hðsk n½ � ¼
ffiffiffiffiffi
2
M

r
� p n½ � � sin k þ 1

2

� �
π

M
� N�1�nþM þ 1

2

� �� �
� cos θkð Þ: ð11Þ

To proceed with the matrix formulation for the sine-modulated analysis filter bank with
polyphase filters, we consider the system function Hs

k zð Þ of each filter of Eq. (11):

Hðs
k zð Þ ¼

XN�1

n ¼ 0

hðsk ½n�z�n ¼
X2M�1

ℓ ¼ 0

sðhk;ℓ � cos θk � z�ℓ � Gℓ �z2M
� �

; ð12Þ

for 0rkr ðM�1Þ, and

sðhk;ℓ ¼
ffiffiffiffiffi
2
M

r
� sin k þ 1

2

� �
π

M
� N�1�ℓþM þ 1

2

� �� �
:

Operating as previously, a compact expression for the analysis SMFB is derived:

hðs zð Þ ¼Θ � ΛC0 � S4e � α J�Ið Þ α Jþ Ið Þ� � � g0 z2M
� �

z�Mg1 z2M
� �" #

t zð Þ: ð13Þ

4.2. FEQ coefficients

Once the SMFB is defined, we focus now on the equalizer block E(z), which is included at
each output of both the CMFB and the SMFB receiving system. Following the minimum mean
square error (MMSE) criterion and under additive white Gaussian noise (AWGN), the kth
subchannel equalizer block is defined as follows:

Ek Ωð Þ ¼ Hn
chðΩÞ

HchðΩÞ
 2 þ 1

SNR

; ð14Þ

where HchðΩÞ is the channel frequency response and SNR is the signal-to-noise ratio.

4.2.1. 0–ASCET
The complex function EkðΩÞ can be expressed as

EkðΩÞ

Ω ¼ 2kþ1ð Þ 2π4M

¼ ck� j � sk;

for 0rkoM, where ck and sk are the real and the imaginary parts of Ek, respectively. In the zero-
order ASCET (0-ASCET), the transmission channel effects are compensated for by multiplying
each output of the CM and SM receiving filter bank by the constant numbers ck and sk,
respectively.

Fig. 3 depicts the efficient implementation of the whole receiver system, including the 0-
ASCET stages, with polyphase filters. The ASCET is composed by the CM analysis filters given
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in Eq. (8), and by the SM analysis filters described by Eq. (11). Notice that there are some
common terms in these expressions that can be grouped in order to implement them
simultaneously and, therefore, to reduce the number of operations.
4.2.2. 1-ASCET
As it is claimed in [27] that the 0-ASCET is adequate for channels with no fast variations

within the subchannel bandwidth. Unfortunately, this is not the case of the PLC channel and,
therefore, it is necessary to design other kinds of equalizers that improve the system performance.
These equalizers are called L-order (L-) ASCET. Fig. 4 depicts the block diagram of the 1-
ASCET.
Following the development presented in [29], a 3-tap FIR filter can be defined as:

EkðzÞ ¼ e0kzþ e1k þ e2kz
�1; ð15Þ

which corresponds to a non-causal form, though in practice, a causal implementation is
employed for each equalizing structure. In order to obtain the values of each FIR filter of
Eq. (15), some frequency points are selected at each k subchannel. Following the steps of [28–
30], the frequency points ω¼ 0; π2 ; π, for even subbands, and ω¼ �π, � π

2 ; 0, for odd subbands,
are chosen. As a result, we get the following equations.

� Even subbands

Ek ejω
� �¼

e0k þ e1k þ e2k ¼ η0k ; ω¼ 0;

je0k þ e1k� je2k ¼ η1k; ω¼ π

2
;

�e0k þ e1k�e2k ¼ η2k; ω¼ π:

8>><
>>: ð16Þ
Fig. 4. Block diagram of each per-subcarrier equalizing structure of the 1-ASCET.
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� Odd subbands

Ek ejω
� �¼

�e0k þ e1k�e2k ¼ η0k ; ω¼ �π;

� je0k þ e1k þ je2k ¼ η1k; ω¼ �π

2
;

e0k þ e1k þ e2k ¼ η2k; ω¼ 0:

8>><
>>: ð17Þ

The subscript k denotes the subchannel under consideration, and

ηik ¼
Hn

ch ej
π
4M 2kþið Þ� �

Hch ej
π
4M 2kþið Þ� � 2 þ 1

SNR

; ð18Þ

for i¼ 0; 1; 2. We then obtain the coefficients for the 1-ASCET:

e0k ¼7
1
2

η0k�η2k
2

� j η1k�
η0k þ η2k

2

� �� �
; ð19aÞ

e1k ¼
η0k þ η2k

2
; ð19bÞ

e2k ¼7
1
2

η0k�η2k
2

þ j η1k�
η0k þ η2k

2

� �� �
; ð19cÞ

where the positive signs stand for even subbands and the negative ones for odd subbands. Since
e0k; e1k and e2k are complex numbers, we have:

eik ¼ cik� jsik;

where the real cik and the imaginary sik parts are, respectively, the filter coefficients of each
equalizing structure of the 1-ASCET corresponding to the kth subband of the CM and SM filter
bank, respectively (see Fig. 4).

5. Simulation results

In this section, we investigate the performance of a baseband system through computer
simulations. In our first two experiments, we have considered several statistical in-home PLC
model channels that synthesize different classes with a finite number of multipath components
[31]. Specifically and in order to avoid the performance differences due to the severity of some
channel's frequency response, the experiments consist in averaging the outcome of 100
transmissions through different impulse response realizations representative of Classes 1 (strong
signal attenuation), 5 (medium attenuation) and 9 (little attenuation). The statistically repres-
entative channel frequency responses have been computed using the script available on-line in
[32]. We have employed the release 2.0, that allows for the generation of channels according to
the model parameters given in [31, Table I] for the different classes described in [33]. In the third
experiment, we consider the model designed for broadband indoor power-line channel based on
structural modeling of the power network presented in [34]. The impulse responses have been
obtained using the software package PLC_channel_generator_2, available online in [35].

We have used the concatenated encoder proposed in [11], in which Reed–Solomon encoding
is applied to the input data of the scrambler block, and then convolutional encoding is applied to
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the output of the Reed–Solomon encoder. The coding rate of the encoder is 1/2, with constraint
length 7, and generators 171 and 133 (octal). The third experiment also considers a different
coding rate, 2/3, to evaluate its impact on the system performance. The output of the encoder is
punctured following the recommended pattern [11].
For the simulations, the signal-to-noise ratio (SNR) is obtained from the receiver side, and

several kinds of noise have been added to the receiving signals: Colored background noise
(BGN), periodic impulsive noises synchronous and asynchronous (PINS and PINA), and a
narrowband interference (NBI) with one frequency component located at 200 kHz, this one
0 5 10 15 20 25
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Fig. 5. BER performance comparison in 2-PAM under colored background, impulsive, synchronous and asynchronous
noises.
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Fig. 6. BER performance comparison in 2-PAM under all different PLC noises.
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simulating an interference from commercial AM radio station. All the above types of noise have
been modeled following [36], where a detailed analysis of the indoor broadband power line noise
components is presented.

For each SNR, more than one million binary data were generated and converted into parallel
data to be transmitted over the active 360 subcarriers described in [11]. Before proceeding with
the multicarrier modulation, the data at each subcarrier are mapped by 2-PAM. We assume that
the channel remains unchanged within one symbol, though it changes independently among
different symbols. Furthermore, we have also assumed both perfect synchronization and channel
estimation. As receiver, we have employed the system of Fig. 3, with 0- and 1-ASCET.

The first set of experiments measures the BER performance of the transceiver system in the
presence of BGN, PINS and PINA. Fig. 5 shows the average BER of the transceiver system
considering classes 1, 5 and 9, each run over 100 different channels. The first remark that can be
made on the results is that 1-ASCET always outperforms 0–ASCET. Nevertheless, and as it was
expected, we can notice that the gains in the BER results for good channels (Class 9) are lower than
the ones observed for the simulations of Classes 5 and 1. For instance, considering Class 9 channels,
the 1-ASCET system shows gains of only 0.3 dB for BER¼10�4, whereas for Class 5 is around
1 dB. Finally, the 1-ASCET for Class 1 exhibits BER values below 10�2 for SNR Z11:9 dB,
whereas more than 25 dB are needed to obtain a similar BER value with the 0-ASCET system.

As a second scenario, also NBI is considered in Classes 9 and 1. As can be seen in Fig. 6, the
1-ASCET shows a gain of around 16 dB for a BER value of 10�3 for Class 9. It even yields a
better performance in Class 1: the BER value is below 10�4 for SNR Z19:1 dB. Conversely,
the systems reach error floors around 40 dB for 0–ASCET. In conclusion, the 1-ASCET
outperforms the 0-ASCET scheme, but with different strength depending on the class of
channels. The former really takes advantage over the latter for the most disturbed channels and
under the presence of different types of noise.

In the last experiment, we compare the BER performance of the Wavelet OFDM transceiver in
the presence of noise as described in the second scenario. In this experiment, we assume two
representative LTI channels based on the physical structure of the electrical networks and labeled
as best-case and worst-case (see [35]). For comparison, we consider as coding rates the values of
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Fig. 7. BER performance comparison in 2-PAM under all different PLC noises and different coding rates.



F. Cruz-Roldán et al. / Journal of the Franklin Institute 353 (2016) 1654–16711670
1/2 and 2/3. As seen from Fig. 7, 1-ASCET does not achieve improvement performance
compared to 0-ASCET. Furthermore and as expected, the best-case channel exhibits the best
performance. Finally, increasing the value of the coding rate creates a separation in BER
performance of around 6.5 dB (best-case) and 5 dB (worst-case) for BER¼5 � 10�3.

6. Conclusion

This paper has presented some relevant aspects of the Wavelet OFDM physical layer for the
baseband broadband communications over power line networks. The paper extends the
understanding of the confusing terminology Wavelet OFDM, showing that the proposed scheme
of modulation is a kind of cosine-modulated FBMC based on the extended lapped transform. The
paper has also shown how to obtain the prototype filter coefficients recommended at the
transmitter side. In addition, the focus was on the receiver side proposing an implementation
based on polyphase filters. Further, we have investigated the performance of the frequency-
domain equalizer system by means of computer experiments. Simulation results confirm that the
proposed transceiver can be considered as an alternative approach to deal with low and high
attenuation channels, considering different PLC scenarios.
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