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Abstract

For a functor from the category of finite sets to abelian groups, Robinson constructed a bicomplex in [A. Robinson, Gamma
homology, Lie representations and E∞ multiplications, Invent. Math. 152 (2) (2003) 331–348] which computes the stable derived
invariants of the functor as defined by Dold–Puppe in [A. Dold, D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen.,
Ann. Inst. Fourier (Grenoble) 11 (1961) 201–312]. We identify a subcomplex of Robinson’s bicomplex which is analogous to a
normalization and also computes these invariants. We show that this new bicomplex arises from a natural filtration of the functor
obtained by taking left Kan approximations on subcategories of bounded cardinality.

c© 2007 Elsevier B.V. All rights reserved.

MSC: 55U15; 55U99; 18G35

For a Γ -module F , the Taylor tower of F is a sequence of functors

P1 F ← P2 F ← · · · ← Pn F ← Pn+1 F ← · · ·

having formal properties analogous to those of the Taylor series of a real-valued function. The reduced component
(the direct summand that vanishes on the basepoint), D1 F , of P1 F is often referred to as the linearization of F . The
purpose of this paper is to compare two filtrations of the linearization of F that arise in two different contexts. The
first filtration is the rank filtration of the title. The second filtration is the byproduct of a bicomplex constructed by
Alan Robinson [13] for classifying E∞-structures on ring spectra.

More specifically, the terms in the rank filtration play a role similar to that of Lagrange polynomial approximations
of real-valued functions. The Lagrange polynomial approximations to F are a sequence of left Kan extensions

L1 F → L2 F → · · · → Ln F → · · ·
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defined over certain subcategories of Γ . Applying D1 to this sequence produces what we call the rank filtration of
D1 F ,

D1L1 F → D1L2 F → · · · → D1Ln F → · · · .

For a functor F , Robinson’s complex, Ξ (F), is a bicomplex of R-modules whose homology agrees with that of
D1 F when D1 F is evaluated at [1] = {0, 1}. It is straightforward to extend Robinson’s construction to a bicomplex
of functors (which we also call Ξ (F)) that agrees with D1 F on all objects of Γ . As a bicomplex, Ξ (F) admits a
filtration by rows which is similar to, but not the same as, the rank filtration of D1 F . At the same time, certain details
of the construction of Ξ (F) suggest that one can reduce Ξ (F) to a smaller bicomplex, Ξ̃ (F), built out of pieces of

F called the cross effects. In this paper we define the reduced Robinson complex Ξ̃ (F), prove that it is equivalent to
Ξ (F) and show that the standard filtration of Ξ̃ (F) by rows is equivalent to the rank filtration of D1 F . As part of this
process, we also determine the filtration of Robinson’s complex Ξ (F) that is equivalent to the rank filtration of D1 F .
In a subsequent paper, we will show how the reduced bicomplex Ξ̃ (F) can be used to produce similar bicomplex
models for all terms in the Taylor tower of F .

Using Ξ≤n(F) and Ξ̃≤n(F) to denote the nth terms in the filtrations of Ξ (F) and Ξ̃ (F), the main result is

Theorem 5.1. For any Γ -module F and n ≥ 1, there is a natural transformation φ : Ξ̃ (F)→ Ξ (F) that induces a
natural transformation of filtrations

Ξ̃≤1(F) → · · · → Ξ̃≤n(F) → Ξ̃≤n+1(F) → · · ·

↓ ↓ ↓

Ξ≤1(F) → · · · → Ξ≤n(F) → Ξ≤n+1(F) → · · ·

that is a quasi-isomorphism of functors Ξ̃≤n(F)
'
−→Ξ≤n(F) at each stage of the filtration.

As a corollary to this, we have

Corollary 5.2. (1) For a Γ -module F, the natural transformation φ : Ξ̃ (F)→ Ξ (F) is a quasi-isomorphism.
(2) The filtrations {D1Ln F} and {Ξ̃≤n(F)} are equivalent.

The paper is organized as follows. In Section 1 we review properties of the cross effects of functors and some
key examples. The cross effects are essential components in the construction of the Taylor tower and the reduced
Robinson complex Ξ̃ (F). They also arise in a natural fashion in the cofibers of the rank filtration, and can be used
in the context of Pirashvili’s Dold–Kan correspondence [10,11] to simplify calculations of the homology of Ξ (F)[1].
Section 2 is used to define the rank filtration of F and establish its basic properties. We calculate the terms in the rank
filtration of the functors R̃[Hom([k],−)] that take a basepointed set X to the reduced R-module generated by the set
of basepoint-preserving maps from [k] = {0, 1, 2 . . . , k} to X , and use these calculations to reformulate the definition
of Ln F . In addition, we identify the layers in the rank filtration, proving that

cofiber(Ln−1 F → Ln F) ' R̃[Inj([n],−)]⊗Σn crn F[1],

where crn F is the nth cross effect of F and Inj denotes the collection of injective set maps. In Section 3, we review
the construction of Robinson’s complex Ξ (F) and its relation to D1 F . We also begin comparing filtrations in earnest.
We determine the filtration of Ξ (F) that is equivalent to the rank filtration of D1 F . In Section 4, we define Ξ̃ (F),
and establish that it is a bicomplex. We also review tools developed by Pirashvili [10,11] and Betley and Słomińska
[4] for calculating the homology of Ξ (F)[1] and use these results to show that Ξ (F)[1] and Ξ̃ (F)[1] are quasi-
isomorphic for a certain class of functors. We prove that the row filtration of Ξ̃ (F) agrees with the rank filtration of
D1 F in Section 5. The key to proving this is to use the results of Section 2 to show that cofiber(Ln−1 F → Ln F)

belongs to the class of functors for which Ξ (−)[1] and Ξ̃ (−)[1] are shown to be quasi-isomorphic in Section 4. As a
consequence, we also establish that Ξ (F) and Ξ̃ (F) are equivalent in all cases.

Conventions and notation
For n ≥ 0, [n] denotes the finite basepointed set {0, 1, 2, . . . , n} where 0 is the basepoint of [n]. We will use

〈n〉 to denote the set without basepoint, 〈n〉 = {1, 2, . . . , n}. The category Γ is the category of finite based sets and
basepoint-preserving set maps. Throughout this paper we tend to use the equivalent full subcategory of Γ generated
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by the objects [n]. For a fixed commutative ring R with unit, a left (respectively, right) Γ -module is a covariant
(respectively, contravariant) functor from Γ to the category of R-modules. We will also be working with functors
to chain complexes of R-modules. By a quasi-isomorphism of such functors we mean a natural transformation that
is a quasi-isomorphism when evaluated at any object. We say that the functors F and G are equivalent if there is a
sequence of quasi-isomorphisms between them. These quasi-isomorphisms need not go in the same direction. For
example, an equivalence between F and G could consist of two quasi-isomorphisms to a third functor H :

F → H ← G.

We will use the symbol ' to denote both equivalences and quasi-isomorphisms.

1. Taylor towers and cross effects for Γ -modules

To any Γ -module, one can associate a sequence of functors, called the Taylor tower, whose members have
properties analogous to those of Taylor polynomial approximations to real-valued functions. Taylor towers were
originally developed for functors of spaces by Tom Goodwillie (see [6]). One way to understand the Taylor tower
of a Γ -module is via cross effect functors. We use this section to review the definition of cross effects, their basic
properties and some key examples. The cross effect functors are used in subsequent sections to analyze cofibers in
the rank filtration, simplify certain homology calculations, and modify Robinson’s complex to produce the reduced
Robinson complex. For more details about cross effects see Section 1 of [7].

Definition 1.1. Let F be a Γ -module or chain complex (bounded below) of Γ -modules and n ≥ 1. The nth cross
effect of F is the functor crn F : Γ×n

→ R −Mod defined inductively for objects M1, . . . , Mn by natural direct sum
decompositions

cr1 F(M1)⊕ F[0] ∼= F(M1),

cr2 F(M1, M2)⊕ cr1 F(M1)⊕ cr1 F(M2) ∼= cr1 F(M1 ∨ M2),

and in general,

crn F(M1, . . . , Mn)⊕ crn−1 F(M1, M3, . . . , Mn)⊕ crn−1 F(M2, M3, . . . , Mn)

is isomorphic to

crn−1 F(M1 ∨ M2, M3, . . . , Mn).

Remark 1.2. (1) For a Γ -module F , the cross effect functors satisfy the following properties:
(a) For any n ≥ 0,

F[n] ∼= F[0] ⊕
⊕

{s1,s2,...,st }⊆[n]

crt F([1], . . . , [1]).

(b) Cross effects are reduced functors in each variable. That is, for any 1 ≤ i ≤ k and any objects X1, . . . , Xk
with X i ∼= [0], crk F(X1, . . . , X i , . . . , Xk) ∼= 0.

(c) For any objects X1, . . . , Xk and σ ∈ Σk , the symmetric group on k letters, there is a natural isomorphism
crk F(X1, . . . , Xk) ∼= crk F(Xσ(1), Xσ(2), . . . , Xσ(k)).

(2) There are many equivalent definitions of cross effects for Γ -modules.
(a) For a Γ -module F and objects X1, . . . , Xn , crn F(X1, . . . , Xn) is quasi-isomorphic to the total complex

of the following n-complex of objects. Let P(〈n〉) denote the power set of 〈n〉 = {1, 2, . . . , n}. Let
Cn(X1, . . . , Xn) be the n-cubical diagram in Γ with Cn(X1, . . . , Xn)(U ) =

∨
u∈U Xu for U ∈ P(〈n〉) and

Cn(X1, . . . , Xn)(∅) = [0], with maps the natural inclusions. Then

crn F(X1, . . . , Xn) ' Tot(F(Cn(X1, . . . , Xn))).

For details (in a slightly different formulation) see Remark 1.5 of [7].
(b) The nth cross effect crn F(X1, . . . , Xn) is also quasi-isomorphic to

cofiber(hocolimU⊆〈n〉,U 6=〈n〉F(Cn(X1, . . . , Xn)(U ))→ F(X1 ∨ · · · ∨ Xn)),

where cofiber denotes the homotopy cofiber, i.e., in this context, the mapping cone.



738 M. Intermont et al. / Journal of Pure and Applied Algebra 212 (2008) 735–752

(c) When crn F is evaluated at the same object X in all of its variables, we use crn F(X) to denote crn F(X, . . . , X).
In this case, the cross effects can be determined by the surjections ri : [n] → [n − 1], 1 ≤ i ≤ n, with

ri ( j) =

 j if j < i
0 if j = i
j − 1 if j > i.

These induce natural maps ri : ∨n X → ∨n−1 X and we have

crn F(X) ∼=

n⋂
i=1

ker F(ri ).

Example 1.3. Let Hom([n], [m]) denote the set of morphisms in Γ from [n] to [m] and Inj([n], [m]) denote the
injective morphisms. For a based set [n],

R̃[n] := R[n]/R[0],

the reduced free R-module generated by [n]. For calculations in later sections of this work, we need to know the cross
effects of the functors R̃[Hom([n],−)] and R̃[Inj([n],−)]. (To make R̃[Inj([n],−)] a functor, we set noninjective
compositions equal to 0 and R̃[∅] = 0.) To determine the cross effects of R̃[Hom([n],−)], note that for any n,

R[Hom([n],−)] ∼= ⊗
n R[Hom([1],−)] ∼= ⊗

n(R[0] ⊕ R̃[Hom([1],−)]).

Then, for example,

R[Hom([n], X1 ∨ X2)] ∼=

n⊗
i=1

(R[0] ⊕ R̃[Hom([1], X1)] ⊕ R̃[Hom([1], X2)])

∼= R[0] ⊕ R̃[Hom([n], X1)] ⊕ R̃[Hom([n], X2)] ⊕⊕
σ∈surj(〈n〉,〈2〉)

R̃[Hom(σ−1
{1}+, X1)] ⊗ R̃[Hom(σ−1

{2}+, X2)],

where surj(〈n〉, 〈2〉) is the set of surjections from 〈n〉 to 〈2〉 and for a set U , U+ = U ∪ [0]. From this it follows that

cr2 R̃[Hom([n],−)](X1, X2)

is isomorphic to⊕
σ∈surj(〈n〉,〈2〉)

R̃[Hom(σ−1
{1}+, X1)] ⊗ R̃[Hom(σ−1

{2}+, X2)].

To describe the higher order cross effects, let surj(〈n〉, 〈m〉) denote the set of surjections from 〈n〉 to 〈m〉. Working
inductively, one can deduce that

crm R̃[Hom([n],−)](X1, . . . , Xm)

is isomorphic to⊕
σ∈surj(〈n〉,〈m〉)

R̃[Hom(σ−1
{1}+, X1)] ⊗ · · · ⊗ R̃[Hom(σ−1

{m}+, Xm)].

It follows from this that crm R̃[Hom([n],−)] ∼= 0 for m > n. If we restrict our attention to injective morphisms, then
similar reasoning leads to the conclusion that

crm R̃[Inj([n],−)](X1, . . . , Xm)

is isomorphic to⊕
σ∈surj(〈n〉,〈m〉)

R̃[Inj(σ−1
{1}+, X1)] ⊗ · · · ⊗ R̃[Inj(σ−1

{m}+, Xm)].
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Note that crm R̃[Inj([n],−)] is also 0 for m > n. Because we have now restricted to injective maps, the cross effects
will also vanish when evaluated on small sets. For example,

crm R̃[Inj([n],−)]([1], . . . , [1]) ∼=

{
R̃[Σn] if m = n
0 otherwise.

The following fact about cross effects of Γ -modules shows how we can reduce the size of the sets on which we
evaluate the cross effects by composing the functor with an appropriate coproduct. We use this result in Section 5 to
reduce establishing equivalences of certain constructions to proving that they agree when evaluated at [1].

Proposition 1.4. Let F be a Γ -module and n ≥ 1. Let
∨

n be the functor that takes a finite based set X to the n-fold
coproduct

∨
n X. Then for any k ≥ 1 and l1, . . . , lk ≥ 0, crk F([nl1], . . . , [nlk]) ∼= crk(F ◦

∨
n)([l1], . . . , [lk]).

Proof. This can be proved by induction on k. The key is to compare the isomorphisms:

crk F([nl1], . . . , [nlk] ∨ [nlk+1])

is isomorphic to

crk F([nl1], . . . , [nlk])⊕ crk F([nl1], . . . , [nlk+1])⊕ crk+1 F([nl1], . . . , [nlk], [nlk+1])

and

crk

(
F ◦

∨
n

)
([l1], . . . , [lk] ∨ [lk+1])

is isomorphic to

crk

(
F ◦

∨
n

)
([l1], . . . , [lk])⊕ crk

(
F ◦

∨
n

)
([l1], . . . , [lk+1])⊕ crk+1

(
F ◦

∨
n

)
([l1], . . . , [lk], [lk+1]).

Assuming that crk F([nl1], . . . , [nlk]) ∼= crk(F◦
∨

n)([l1], . . . , [lk]) gives the isomorphism crk+1 F([nl1], . . . , [nlk+1])
∼= crk+1(F ◦

∨
n)([l1], . . . , [lk+1]).

Cross effects are used to measure the degree of a functor.

Definition 1.5. A Γ -module F is degree n provided that crn+1 F ∼= 0. If F is a chain complex of Γ -modules, then F
is degree n if and only if crn+1 F is quasi-isomorphic to 0.

Example 1.6. By Example 1.3, both R̃[Hom([n],−)] and R̃[Inj([n],−)] are degree n functors.

For more examples of cross effects and functors of various degrees, see [7, Section 1].
The existence of a Taylor tower for a Γ -module is established in [12], and more generally in [7]. In [7], the terms

in the Taylor tower are constructed by using cotriples associated to the cross effect functors.

Theorem 1.7 ([12, Section 3], [7, Section 2]). For a Γ -module F there is a sequence of functors P0 F = F[0], P1 F,

. . . , Pn F, . . . and a commuting diagram of natural transformations

F

pn+1 ↙

ypn ↘ pn−1

· · · → Pn+1 F
qn+1
−→ Pn F

qn
−→ Pn−1 F → · · · → P1 F → P0 F = F(0)

in which Pn F is degree n for each n, and Pn F is universal up to quasi-isomorphism among degree n functors with
natural transformations from F.

Remark 1.8. The nth layer in the Taylor tower,

Dn F := fiber(Pn F
qn F
−→ Pn−1 F)
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is a homogeneous degree n functor in the sense that it is degree n and Pn−1 Dn F ∼= 0. As such, it is much better
understood and generally easier to determine than Pn F . Here, fiber denotes the homotopy fiber, i.e., the mapping cone
shifted down one degree homologically.

2. The rank filtration of a functor

The terms in the Taylor tower of a functor play a role similar to that of the Taylor polynomial approximations to
a real-valued function. A real-valued function can also be approximated by a Lagrange polynomial, i.e., a degree n
polynomial that agrees with the original function at n + 1 points. We use this section to describe an analog of the
Lagrange construction for Γ -modules, and establish several properties of this construction.

To describe a Lagrange polynomial approximation to a Γ -module F over n “points”, we use the full subcategory,
Γ≤n , of Γ generated by objects X of cardinality less than or equal to n + 1. Equivalently, we regard Γ≤n as the full
subcategory of Γ determined by the objects [0], [1], . . . , [n]. For a right Γ -module F and left Γ -module G, one can
define their tensor product over a subcategory, Λ, of Γ as the coend of the bifunctor F ⊗ G : Λop

× Λ→ R −mod,
i.e., as the coequalizer of

⊕
[n]

f
→[m]

F[n] ⊗ G[m]
f ∗⊗id
−→
−→
id⊗ f∗

⊕
[k]

F[k] ⊗ G[k],

where the sum on the left is over all morphisms f in Λ. We use F ⊗Λ G to denote this tensor product.
We define Lagrangian approximations to functors as follows.

Definition 2.1. Let F be a Γ -module and n ≥ 0. By Ln F we mean the homotopy left Kan extension of F over Γ≤n .
That is,

Ln F(−) := R̃[Hom(∗,−)]⊗̂Γ≤n F(∗),

where ⊗̂ denotes the derived tensor. More specifically, Ln F(−) is the simplicial R-module that in simplicial degree k
is ⊕

0≤t0,...,tk≤n

R̃[Hom([t0], [t1])] ⊗ · · · ⊗ R̃[Hom([tk−1], [tk])] ⊗ R̃[Hom([tk],−)] ⊗ F(t0)

with face and degeneracy maps defined as follows:

di (α1, . . . , αk;β; x) =

(α2, . . . , αk;β; F(α1)(x)) if i = 0
(α1, . . . , αi+1 ◦ αi , . . . , αk;β; x) if 1 ≤ i ≤ k − 1
(α1, α2, . . . ;β ◦ αk; x) if i = k

s j (α1, . . . , αk;β; x) = (α1, . . . , α j , id[t j ], α j+1, . . . , αk;β; x).

We will also use Ln F to denote the (unnormalized) chain complex associated to this simplicial object.

The inclusion of categories Γ≤n ↪→ Γ≤n+1 induces a natural transformation of functors Ln F → Ln+1 F , and more
generally, we have a sequence of functors

L0 F → L1 F → · · · → Ln−1 F → Ln F → Ln+1 F → · · · .

We let L∞F denote the colimit of this sequence, i.e.,

L∞F = colimn Ln F.

The functors Ln F satisfy the following properties.

Remark 2.2. (1) There is an augmentation Ln F(X)
ε
−→ F(X) that takes (β; x) to F(β)(x). When X = [k] for

k ≤ n, this augmented simplicial object is contractible. In particular, a contracting homotopy is given by
fm(α1, . . . , αm;β; x) = (α1, . . . , αm, β; id; x). Thus, Ln F[k] ' F[k] for k ≤ n.

(2) The augmentations of (1) induce an equivalence of functors L∞F
'
−→ F in the colimit.
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(3) The functor Ln F is a degree n functor. To see this, note that in each simplicial degree, the n + 1st cross effect of
Ln F vanishes by Example 1.3. Since cross effects are defined levelwise for simplicial objects, the claim follows.

The functor Ln F can be defined for any functor F : C → D (where C is an arbitrary pointed category with finite
coproducts andD is an abelian category). However, in this general setting, one cannot guarantee that Ln F is degree n.
Instead Ln F is characterized by the fact that, roughly, it is determined by its values on n objects, and we call a functor
with this property a rank n functor. (See [9].) Hence, we call the sequence

L0 F → L1 F → · · · → Ln−1 F → Ln F → Ln+1 F → · · · .

the rank filtration of F . In the present setting, any degree n Γ -module is also determined by its values on n objects as
follows.

Proposition 2.3. Let F be a degree n Γ -module. Then for m > n the natural map

hocolim
U ⊆ 〈m〉, U 6= 〈m〉

F[|U |] −→ F[m]

is a quasi-isomorphism.

Proof. Recall from Remark 1.2.2(b) that

crm F[1] ' cofiber
(

hocolim
U ⊆ 〈m〉, U 6= 〈m〉

F(Cm([1], . . . , [1])(U ))→ F[m]

)
.

Since F is degree n, this cofiber is acyclic, and as a consequence, the map

hocolim
U ⊆ 〈m〉, U 6= 〈m〉

F(Cm([1], . . . , [1])(U ))→ F[m]

is a quasi-isomorphism. But, by definition, F(Cm([1], . . . , [1])(U )) = F(∨u∈U [1]) = F[|U |] and the result follows.

Corollary 2.4. If µ : F → G is a natural transformation of degree n Γ -modules (or chain complexes of Γ -modules)
that induces a quasi-isomorphism µ[k] : F[k] → G[k] for all k ≤ n, then µX : F(X) → G(X) is a quasi-
isomorphism for all objects X of Γ .

Proof. Let m > n. By Proposition 2.3, the fact that F and G are degree n implies that

hocolim
V⊆〈m〉
V 6=〈m〉

F[|V |]
'
−→ F[m]

and

hocolim
V⊆〈m〉
V 6=〈m〉

G[|V |]
'
−→G[m].

The result for m = n + 1 then follows from the facts that µ induces quasi-isomorphisms

F[|V |] → G[|V |]

for all V ⊆ 〈n + 1〉, V 6= 〈n + 1〉, and the fact that homotopy colimits preserve these. The general result follows
inductively by a similar argument.

We wish to identify the cofibers of the rank filtration.

Definition 2.5. For a Γ -module F , we let Rn F = cofiber(Ln−1 F → Ln F).

Proposition 2.6. Let Cn F(−) = R̃[Inj([n],−)]⊗Σn crn F[1]. There is a natural transformation ηn F : Rn F → Cn F
that is an equivalence of functors.
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Proof. By Example 1.3 we know that R̃[Inj([n],−)] and hence Cn F are degree n functors. As the cofiber of
degree n and degree n − 1 functors, Rn F is also degree n. By Corollary 2.4, it suffices to show that the natural
transformation from Rn F to Cn F induces quasi-isomorphisms on the objects [1], . . . , [n]. We begin by defining this
natural transformation ηn .

Since R̃[Inj([n],−)] is a free Σn-module, there is an equivalence

(R̃[Inj([n],−)] ⊗ crn F[1])hΣn

'
−→ R̃[Inj([n],−)]⊗Σn crn F[1],

where hΣn denotes the homotopy orbits with respect to the Σn-action. Recall that (R̃[Inj([n],−)] ⊗ crn F[1])hΣn is
the simplicial object that in degree p is R̃[Inj([n],−)] ⊗ Σ p

n ⊗ crn F[1]. We define η̃n F : Ln F → (R̃[Inj([n],−)] ⊗

crn F[1])hΣn to be the simplicial map that in simplicial degree p assigns

(α1, . . . , αp;β; x) 7→

{
(α1, . . . , αp;β; cn(x)) if α1, . . . , αn, β are all isomorphisms of [n]
0 otherwise.

Here, cn : F[n] → crn F[1] is the natural projection onto the direct summand. Note that η̃n F induces a map on the
cofiber Rn F as the diagram

Ln−1 F
in
−→ Ln F

↘

yη̃n F

Cn F

commutes (where the diagonal arrow represents the trivial map). The transformation ηn F is the composition

Rn F
η̃n F
−→(R̃[Inj([n],−)] ⊗ crn F[1])hΣn

'
−→ R̃[Inj([n],−)]⊗Σn crn F[1].

We claim that ηn F induces a quasi-isomorphism ηn : Rn F[k] → Cn F[k] for k ≤ n. For k < n, this is the case
because

Rn F[k] = cofiber(Ln−1 F[k] → Ln F[k])

' cofiber(F[k] → F[k])

' 0,

and R̃[Inj([n], [k])] ∼= 0. To see that we have a quasi-isomorphism for k = n, we consider the nth cross effects of the
functors. We have

crn Rn F[1] = cofiber(crn Ln−1 F[1] → crn Ln F[1])

' cofiber(0→ crn Ln F[1])

' crn F[1],

where the first quasi-isomorphism follows from the fact that Ln−1 F is degree n − 1. The second quasi-isomorphism
follows from the facts that Ln F and F agree on objects [m] for m ≤ n, and in particular that crn F[1] is determined
as a direct summand of F[n]. Moreover, by Example 1.3,

crnCn F[1] ∼= crn R̃[Inj([n],−)][1]⊗Σn crn F[1]
∼= Σn ⊗Σn crn F[1]
∼= crn F[1].

Since Rn F and Cn F also agree at [1], [2], . . . , [n−1], it follows by using Remark 1.2.2(b) that they agree at [n]. That
Rn F and Cn F agree everywhere now follows from Corollary 2.4.

We use the previous results to determine Ln R̃[Hom([k],−)] and rewrite the definition of Ln F .

Definition 2.7. For n ≥ 0 and any based finite sets X and Y , Hom≤n(X, Y ) is the set of all basepoint-preserving maps
α : X → Y such that |im(α)| ≤ n + 1.
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Lemma 2.8. For any n, k ≥ 0, there is a quasi-isomorphism

Ln R̃[Hom([k],−)] ' R̃[Hom≤n([k],−)].

Proof. We show this by first computing the homotopy groups of Ln R̃[Hom([k],−)]. In degree 0, we have

π0Ln R̃[Hom([k],−)] ∼=
⊕

0≤t≤n

R̃[Hom([t],−)] ⊗ R̃[Hom([k], [t])]/im(d0 − d1).

For any m, the augmentation

ε : Ln R̃[Hom([k],−)]0[m] −→ R̃[Hom≤n([k], [m])] ⊆ R̃[Hom([k], [m])]

that takes α ⊗ β to α ◦ β is well-defined on π0Ln R̃[Hom([k],−)][m]. To prove that it is an isomorphism from
π0Ln R̃[Hom([k],−)][m] to R̃[Hom≤n([k], [m])], we take advantage of the fact that any based set map γ : [t] → [m]
(for any t) can be written uniquely as a composition γ = γ2 ◦ γ1 where γ1 : [t] → [|im(γ )| − 1] is a surjection and
γ2 : [|im(γ )| − 1] → [m] is an order-preserving inclusion. We use this to define f : R̃[Hom≤n([k], [m])] →
π0Ln R̃[Hom([k],−)][m] to be the homomorphism that takes γ ∈ Hom([k], [m]) to γ2 ⊗ γ1. We claim that in
π0Ln R̃[Hom([k],−)][m],

α ⊗ β ' (α ◦ β)2 ⊗ (α ◦ β)1 (2.9)

for any α ∈ R̃[Hom([t], [m])] and β ∈ R̃[Hom([k], [t])]. From this claim it follows that f and ε are inverses of one
another and, as a consequence,

π0Ln R̃[Hom([k],−)][m] ∼= R̃[Hom≤n([k], [m])].

To show that (2.9) is true, for α : [t] → [m] and β : [k] → [t], we define τ : [|im β| − 1] → [|im(α ◦ β)1| − 1]
by τ(x) = (α ◦ β)1(y) where y is any element of β−1

1 (x). (That τ is well-defined follows from the facts that β1 and
(α ◦ β)1 are surjections and that (α ◦ β)1 comes from the composition of α with β.) Clearly, τ ◦ β1 = (α ◦ β)1.
Moreover, (α ◦ β)2 ◦ τ = α ◦ β2 since

(α ◦ β)2(τ (x)) = (α ◦ β)2((α ◦ β)1(y))

= α ◦ β2 ◦ β1(y)

= α ◦ β2(x)

for y ∈ β−1
1 (x). Using the fact that the image of d0 − d1 is generated by elements of the form

σ ⊗ ρ ◦ γ − σ ◦ ρ ⊗ γ,

we have

α ⊗ β = α ⊗ β2 ◦ β1

' α ◦ β2 ⊗ β1

= (α ◦ β)2 ◦ τ ⊗ β1

' (α ◦ β)2 ⊗ τ ◦ β1

= (α ◦ β)2 ⊗ (α ◦ β)1.

This completes our calculation of the lowest homotopy group.

To show that all other homotopy groups of Ln R̃[Hom([k],−)] are 0, we proceed by induction on n. For n = 1,
the augmented simplicial object L1 R̃[Hom([k],−)]

ε
−→ R̃[Hom≤1([k],−)] is contractible. To see this, observe that in

simplicial degree m, the only nontrivial summand of L1 R̃[Hom([k],−)]m is the one in which t0 = t1 = · · · = tm = 1.
A contraction is obtained by setting f−1 = f : R̃[Hom≤1([k],−)] → L1 R̃[Hom([k],−)]0 and fn = s1 for n ≥ 0.
Hence, the homotopy of L1 R̃[Hom([k],−)] is concentrated in degree 0.

For n > 1, suppose that F is any Γ -module for which the homotopy of L1 F is concentrated in degree 0. Consider

Rn F . By Proposition 2.6 this cofiber is equivalent to the functor R̃[InjΓ ([n],−)]⊗Σn crn F[1] which, as a chain
complex or simplicial object, is concentrated in degree 0. It follows that the homotopy of Rn F is concentrated in
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degree 0. By induction, using the cofiber sequence Ln−1 F → Ln F → Rn F , we see that the homotopy of Ln F must
also be concentrated in degree 0.

As a result, we see that a quasi-isomorphism from Ln R̃[Hom([k],−)] to R̃[Hom≤n([k],−)] is obtained by using
ε in degree 0 and the zero homomorphism elsewhere.

Proposition 2.10. For any Γ -module F, Ln F(−) ' R̃[Hom≤n(∗,−)]⊗Γ F(∗).

Proof. By definition, we know that

Ln F(−) = R̃[Hom(?,−)]⊗̂Γ≤n F(?).

However, F(?) ' R̃[Hom(∗, ?)]⊗Γ F(∗). It then follows by Lemma 2.8 and associativity of tensors that

Ln F(−) = R̃[Hom(?,−)]⊗̂Γ≤n F(?)

∼= R̃[Hom(?,−)]⊗̂Γ≤n R̃[Hom(∗, ?)]⊗Γ F(∗)

= Ln R̃[Hom(∗,−)]⊗Γ F(∗)

' R̃[Hom≤n(∗,−)]⊗Γ F(∗).

3. Robinson’s complex

The first layer in the Taylor tower of a functor appears in various guises in the literature. For functors of abelian
categories, it is equivalent to the stabilization of a functor, in the sense of Dold and Puppe [5,8]. For a Γ -module F ,
the homology of D1 F[1] is equivalent to the stable homotopy of F , as originally defined for Γ -sets by Segal [14],
Bousfield and Friedlander [3], and further developed for Γ -modules by Pirashvili and Richter [10–12].

Pirashvili and Richter recast the concept of stable homotopy in the language of homological algebra. Using the
tensor product of Γ -modules as described in the beginning of Section 2, Pirashvili [10,11] and Richter [12] proved
that

H∗(D1 F[1]) ∼= π st
∗ (F) ∼= TorΓ∗ (R̃∗, F), (3.1)

where π st
∗ denotes stable homotopy and R̃∗ is the dual of the functor R̃[−] defined in Example 1.3. That is,

R̃∗[X ] = HomR(R̃[X ], R).
Of greatest interest to us in the present paper is the relationship between D1 F[1] and the bicomplex Ξ (F)

constructed by A. Robinson. We review the construction of Ξ (F) in the following pages, but first state some of
Robinson’s results.

Theorem 3.2 ([13, 3.5–3.7]). For a Γ -module F,

H∗(Ξ (F)) ∼= TorΓ∗ (R̃∗, F) ∼= H∗(D1 F[1]).

Moreover, Ξ (R̃[HomΓ (−, ∗)]) is a projective resolution of R̃∗ as a right Γ -module and Ξ (F) ∼= Ξ (R̃[HomΓ (−, ∗)])

⊗Γ F.

Robinson’s complex is a bicomplex of R-modules whose (n − 1)st row is constructed by using the functor F and
the modules Lie∗n associated to the free Lie algebra on n generators. These modules are defined as follows.

Remark 3.3. LetLn be the free Lie algebra over R on the set of generators {x1, . . . , xn}. The module Lien is generated
linearly by those monomials in Ln that contain each of the generators exactly once. The nth symmetric group Σn acts
on Ln by permuting the n generators. In Ξ (F), this symmetric group action is twisted by the sign character sgn, so
that for σ ∈ Σn and a monomial f (x1, . . . , xn) ∈ Ln ,

σ f (x1, x2, . . . , xn) = sgn(σ ) f (xσ(1), xσ(2), . . . , xσ(n)).

We use Lie∗n to denote the dual of Lien , i.e., Lie∗n = HomR(Lien, R). Both Lie∗n and Lien are free R-modules of
rank (n − 1)! and a basis for Lien is given by the left-regulated brackets

σ [x1, [x2, [x3, . . . , [xn−1, xn] · · · ]]] for σ ∈ Σn−1.
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To define the differentials in Ξ (F) we need the following maps. For more details, see Section 1 of [13].

Definition 3.4. The set of surjections in Γ is generated by the symmetric groups and the collection of surjections
{ci j : [n] → [n − 1]} defined for 0 ≤ i < j ≤ n by

ci j (t) =

t if t < j,
i if t = j,
t − 1 if t > j.

The ci j s induce maps from Σ p
n to Σ p

n−1 as follows.

Definition 3.5. Let [σ1|σ2| · · · |σp] ∈ Σ p
n and 0 ≤ i < j ≤ n. Then ci j [σ1|σ2| · · · |σp] = [α1|α2| · · · |αp] where α1 is

the unique isomorphism that makes the diagram commute:

[n]
σ1
−→ [n]yc

σ
−1
1 (i j)

yci j

[n − 1]
α1
−→ [n − 1]

and, in a similar fashion, α2, . . . , αp are the unique isomorphisms making the diagram below commute:

[n]
σp
−→ [n]

σp−1
−→ . . .

σ2
−→ [n]

σ1
−→ [n]yc

(σ1 ...σp )−1{i j}

yc
(σ1 ...σp−1)−1{i j}

yc
σ
−1
1 {i j}

yci j

[n − 1]
αp
−→ [n − 1]

αp−1
−→ . . .

α2
−→ [n − 1]

α1
−→ [n − 1].

For each 0 ≤ i < j ≤ n, we also have maps on Lien−1 and Lie∗n .

Definition 3.6. For 0 ≤ i < j ≤ n, the map γ ∗i j : Lien−1 → Lien is determined as follows. Let f (x1, . . . , xn−1) be a
monomial in Lien−1. Then

(γ ∗i j f )(x1, . . . , xn) =

{
(−1) j+1

[x j , f (x1, . . . , x̂ j , . . . , xn)] if i = 0,

(−1) j+1 f (x1, x2, . . . , xi−1, [xi , x j ], xi+1, . . . , x̂ j , . . . , xn), if i > 0.

The maps γi j : Lie∗n → Lie∗n−1, 0 ≤ i < j ≤ n, are the duals of the maps γ ∗i j .

This completes the list of ingredients needed to define the bicomplex Ξ .

Definition 3.7 ([13]). Let F be a Γ -module. Then Ξ (F) is the bicomplex of R-modules that in bidegree {p, q} is

Ξ (F)p,q = Lie∗q+1 ⊗ R[Σ p
q+1] ⊗ F[q + 1],

where tensors are taken over R. The horizontal differential ∂ ′ : Ξ (F)p,q → Ξ (F)p−1,q is given by

∂ ′(z ⊗ [σ1|σ2| · · · |σp] ⊗ y) = zσ1 ⊗ [σ2| · · · |σp] ⊗ y +
p−1∑
i=1

(−1)i (z ⊗ [σ1|σ2| · · · |σiσi+1| · · · |σp] ⊗ y)

+ (−1)p(z ⊗ [σ1|σ2| · · · |σp−1] ⊗ σp y).

Note that this makes the (n−1)st row of Ξ (F) equal to the two-sided bar construction B(Lie∗n,Σn, F[n]). The vertical
differential ∂ ′′ : Ξ (F)p,q → Ξ (F)p,q−1 is given by

∂ ′′(z ⊗ [σ1|σ2| · · · |σp] ⊗ y) = (−1)p
∑

0≤i< j≤q+1

γi j z ⊗ ci j [σ1|σ2| · · · |σp] ⊗ c(σ1···σp)−1{i, j}y.

For more details, and in particular, to see why Ξ (F) is a bicomplex, the reader is referred to [13, Section 2].



746 M. Intermont et al. / Journal of Pure and Applied Algebra 212 (2008) 735–752

We consider Ξ (F), as defined above, as a functor Ξ (F) (abusing notation) evaluated at the object [1]. When
evaluated on a finite based set X ,

Ξ (F)p,q(X) = Lie∗q+1 ⊗ R[Σ p
q+1] ⊗ F(∨q+1 X).

The differentials of Ξ (F)(X) are defined as they are for Ξ (F)[1] – in place of the surjections ci j : [n] → [n− 1], we
use the natural surjections ∨n X → ∨n−1 X that they induce. We show Ξ (F) is equivalent to D1 F as a functor.

Proposition 3.8. For a Γ -module F, Ξ (F) is a degree 1 functor. Moreover, Ξ (F) ' D1 F.

Proof. It suffices to prove this in the case that F is a projective generator, i.e., when

F = R̃[Hom([n],−)] (3.9)

for any based set [n]. To show that Ξ (F) is degree 1, we must show that cr2Ξ (F) is acyclic. However, since Ξ
preserves direct sums of functors, this means showing that Ξ (cr2 F) is acyclic. But, when F is of the form (3.9),
its second cross effect is a direct sum of functors of the form R̃[Hom(U1,−)] ⊗ R̃[Hom(U2,−)], as we saw in
Example 1.3. By Proposition 3.4 of [13], applying Ξ to such functors produces an acyclic complex. Hence, Ξ (F) is
degree one.

To see that Ξ (F) ' D1 F , note that Theorem 3.2 tells us that Ξ (F)[1] ' D1 F[1]. The functor F is isomorphic to a
direct sum F[0]⊕F̃(−) where F̃[0] ∼= 0. By Lemma 3.3 of [13], Ξ (F[0]) is acyclic. Hence, Ξ (F)[0] ∼= Ξ (F̃)[0] ∼= 0.
Since Ξ (F)[0] ∼= 0, Ξ (F) is a homogeneous degree 1 functor, as is D1 F . From the classification of homogeneous
degree n functors of [8, Section 5], we know that both functors are completely determined by their values at [1]. As a
result, they must be equivalent.

Corollary 3.10. As functors, Ξ (R̃[Hom(∗,−)])⊗Γ F(∗) ' Ξ (F)(−) ' D1 F(−).

Proof. To treat Ξ (R̃[Hom(∗,−)])⊗Γ F(∗) as a functor evaluated at the object X we evaluate Ξ (R̃[Hom(∗,−)]) as
a covariant functor at X . That is,

Ξ (R̃[Hom(∗,−)])⊗Γ F(∗)(X) = Ξ (R̃[Hom(∗,−)])(X)⊗Γ F(∗).

Since R̃[Hom(∗,∨q+1 X)]⊗Γ F(∗) ∼= F(∨q+1 X), it follows that in bidegree (p, q),

Ξ (R̃[Hom(∗,−)])⊗Γ F(∗)(X)p,q ∼= Ξ (F)(X)p,q .

With this, we can proceed as in the proof of Proposition 3.8 to show that Ξ (R̃[Hom(∗,−)])⊗Γ F(∗) is degree 1 and
use Theorem 3.2 to conclude that the functors agree everywhere.

Applying D1 to the rank filtration of F produces the rank filtration of D1 F ,

D1L1 F → D1L2 F → · · · → D1Ln F → D1Ln+1 F → · · · → D1L∞F (3.11)

that converges to D1 F by Remark 2.2. Filtering Robinson’s complex by rows produces a filtration of Ξ (F), and hence
D1 F , that strongly resembles, but is not quasi-isomorphic to the rank filtration of D1 F . Our last step in this section is
to describe the filtration of Ξ (F) that is quasi-isomorphic to (3.11). We filter Ξ (F) by filtering Hom(−, ∗) by image
size and using the fact from Theorem 3.2 that Ξ (F) ' Ξ (R̃[Hom(−, ∗)])⊗Γ F(∗).

Definition 3.12. For n ≥ 1, we set Ξ≤n(F)(−) := Ξ (R̃[Hom≤n(∗,−)])⊗Γ F(∗). Clearly, there is a natural
inclusion Ξ≤n(F) ↪→ Ξ≤n+1(F) and, hence, a filtration

Ξ≤1(F)→ · · · → Ξ≤n(F)→ Ξ≤n+1(F)→ · · · .

Using the results of Section 2, we readily show that this filtration of Ξ (F) is equivalent to (3.11).

Proposition 3.13. For any Γ -module F and any n ≥ 1, D1Ln F ' Ξ≤n(F).
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Proof. By Proposition 3.8, Proposition 2.10, and Corollary 3.10,

D1Ln F ' Ξ (Ln F)

' Ξ (R̃[Hom≤n(∗,−)]⊗Γ F(∗))

∼= Ξ (R̃[Hom(−, ?)])⊗Γ (R̃[Hom≤n(∗,−)]⊗Γ F(∗))

' Ξ (R̃[Hom≤n(∗, ?)])⊗Γ F(∗)

= Ξ≤n(F).

4. The reduced Robinson complex

We use this section to identify a subcomplex of Robinson’s complex that we refer to as the reduced Robinson
complex. We obtain this subcomplex by using certain cross effects of the functor F . Our interest in the reduced
complex is motivated by two factors. Primarily, we wish to use Robinson’s complex to create a bicomplex that captures
the rank filtration of the functor D1 F in a nice fashion. As we will see in Section 5, restricting to the reduced complex
produces a bicomplex whose filtration by rows is quasi-isomorphic to the rank filtration of D1 F .

The second motivational factor is the fact that cross effects can often be used to simplify homology calculations
in the setting of Γ -modules. This becomes apparent in Section 5 and Proposition 4.10 where calculations involving
the homology of the reduced Robinson complex are relatively straightforward, but calculations with the unreduced
complex are carried out by calling upon deeper results of Pirashvili and of Betley and Słomińska. Pirashvili’s work
reduces Tor calculations for Γ -modules to Tor calculations in a smaller category, while Betley and Słomińska take
advantage of this to calculate Tor groups for a particular class of functors. We begin this section by reviewing
Pirashvili’s result, before summarizing some of Betley and Słomińska’s calculations. We finish by describing the
reduced Robinson complex and showing that it agrees with the unreduced complex on a particular class of functors.

Pirashvili compared the category of Γ -modules to the category of Ω -modules. Here Ω is the category whose
objects are finite sets (without basepoint) and whose morphisms are surjective set maps. We use 〈m〉 to represent the
set {1, 2, . . . , m} with m elements. A left (respectively, right) Ω -module is a covariant (respectively, contravariant)
functor from Ω to R-modules. One can transform a Γ -module into an Ω -module via the functor cr , defined for a
Γ -module F by

cr F〈n〉 = crn F[1]. (4.1)

That cr F is a functor from Ω to R-modules is a consequence of the following lemma, a version of which appears
in [10].

Lemma 4.2 ([10, 2.1]). If α : [n] → [m] is a surjection, then for a Γ -module F and object X, the image of crn F(X)

under the induced map F(α) : F(∨n X)→ F(∨m X) is contained in crm F(X).

Proof. Recall from Remark 1.2(c) that

crn F ∼=
n⋂

i=1

ker F(ri ).

Using this version of the cross effect, it is enough to show that for any r j : [m] → [m − 1], 1 ≤ j ≤ m, there is an i ,
1 ≤ i ≤ n, such that F(α)(ker F(ri )) ⊆ ker(F(r j )). This can be done by noting that for any such α and j , there is an
i , 1 ≤ i ≤ n, and a surjection β : [n − 1] → [m − 1] such that r j ◦ α = β ◦ ri .

One can define Tor for Ω -modules as one does for Γ -modules. With this we can state Pirashvili’s Dold–Kan
correspondence.

Theorem 4.3 ([10, 3.1, 3.2], [11, pp. 159–160]). The functor cr induces an equivalence of categories between the
category of left (resp., right) Γ -modules and the category of left (resp., right) Ω -modules. For a right Γ -module F
and left Γ -module G,

TorΓ∗ (F, G) ∼= TorΩ∗ (cr F, crG).
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Betley and Słomińska determined TorΩ∗ (M, N ) in the case where M and N are the following type of functors.

Definition 4.4. An Ω -module F is atomic if F〈n〉 is 0 at all but one value of n.

Betley and Słomińska’s calculations are in terms of the homology of suspensions of partition complexes. Let P(n)

be the set of partitions of 〈n〉. The setP(n) is a poset (and hence a category) where the ordering is given by refinements
of partitions. This category has both initial and final objects, the partitions ({1, 2, . . . , n}) and ({1}, {2}, . . . , {n}),
respectively. LetK(n) be the full subcategory ofP(n) obtained by removing the final and initial objects. The geometric
realization of the nerve of K(n) is the partition complex Kn . The partition complexes play a fundamental role in the
calculus of homotopy functors. In particular, their suspensions characterize the derivatives of the identity functor of
spaces [2]. As a space, Kn ' ∨(n−1)! Sn−2, and possesses a Σn-action inherited from the action on the set 〈n〉. For this
proof, we are interested in the homology of S1

∧ Kn as Σn-representations. Arone and Kankaanrinta [1, 2.3] prove
that

Dn := Hn−1(S1
∧ Kn) ∼= Lie∗n (4.5)

as Σn-modules. Betley and Słomińska prove the following.

Theorem 4.6 ([4, 2.7]). Let M and N be R-modules. Let M∗(1) be the atomic contravariant functor that is equal to
M at 〈1〉 and 0 elsewhere and, similarly, let N (n) be the atomic covariant functor that is N at 〈n〉 and 0 elsewhere.
Then

TorΩi (M∗(1), N (n)) ∼= Hi+1−n(Σn, Dn ⊗ HomR(M, N )).

They obtain more general results for any pair of atomic functors (where the contravariant functor is not necessarily
concentrated at the object 〈1〉), but we only need the above for the current work. In particular, we use the corollary
below.

Corollary 4.7. If F is a Γ -module such that cr F is an atomic functor whose only non-zero value occurs at the object
〈n〉, then

H∗(Ξ (F))[1] ∼= H∗+1−n(Σn, Dn ⊗ cr F〈n〉).

Proof. By Theorems 3.2 and 4.3, we know that

H∗(Ξ (F))[1] ∼= TorΓ∗ (R̃∗[−], F) ∼= TorΩ∗ (cr R̃∗[−], cr F).

But cr R̃∗[−] is an atomic functor with cr R̃∗[−]〈1〉 ∼= R. The result now follows from Theorem 4.6.

The subcomplex, Ξ̃ (F), of Ξ (F) that we are interested in using is obtained by replacing F(∨n X) with crn F(X).
That reducing to these cross effects produces a bicomplex is a consequence of Lemma 4.2 and the fact that only
surjections of Γ are used in the construction of Ξ (F).

Definition 4.8. Let F be a Γ -module. The reduced Robinson complex of F is the bicomplex of functors Ξ̃ (F) that
for an object X , in bidegree (p, q), is given by

Ξ̃ (F)p,q(X) = Lie∗q+1 ⊗ R[Σ p
q+1] ⊗ crq+1 F(X).

The differential ∂̃ ′ : Ξ̃p,q(F) → Ξ̃p−1,q(F) (respectively ∂̃ ′′ : Ξ̃p,q(F) → Ξ̃p,q−1(F)) is the restriction of ∂ ′

(respectively ∂ ′′) to the direct summand Lie∗q+1⊗ R[Σ p
q+1]⊗ crq+1 F(X) of Ξ (F)p,q(X). Lemma 4.2 guarantees that

these restrictions are differentials since ∂ ′ and ∂ ′′ are differentials in Ξ (F)(X). That Ξ̃ (F) is a bicomplex follows
from the fact that Ξ (F) is.

Lemma 4.2 and the fact that the maps ci j used to define ∂ ′′ are surjections also imply that for each p and q, and
object X , the natural inclusion maps

φp,q : Lie∗q+1 ⊗ R[Σ p
q+1] ⊗ crq+1 F(X)→ Lie∗q+1 ⊗ R[Σ p

q+1] ⊗ F(∨q+1 X)

form a bicomplex homomorphism.
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Proposition 4.9. There is a natural transformation of bicomplexes of functors φ(F) : Ξ̃ (F)→ Ξ (F) that in bidegree
(p, q) is given by the map φp,q(F) : Ξ̃ (F)p,q → Ξ (F)p,q induced by the inclusion crq+1 F(−) ↪→ F(∨q+1−).

We show in the next section that φ(F) is a quasi-isomorphism. Since the homology of Ξ (F)[1] is TorΓ∗ (R̃[−], F)

and Ξ̃ (F) is obtained from Ξ (F) via cross effects, one may initially suspect that the fact that φ(F) is a quasi-
isomorphism is simply a restatement of Pirashvili’s Dold–Kan correspondence. However, when restricted to Ω , the
Γ -modules in Ξ̃ (F) are not the result of applying cr to the Γ -modules of Ξ (F). In particular, applying cr to Ξ (F)

yields a bicomplex that when evaluated at 〈n〉 in bidegree (p, q) is

Lie∗q+1 ⊗ R[Σ p
q+1] ⊗ crn(F ◦ ∨q+1)[1]

whereas evaluating Ξ̃ (F) at [n] in bidegree (p, q) yields

Lie∗q+1 ⊗ R[Σ p
q+1] ⊗ crq+1 F[n].

In general, crn(F ◦ ∨q+1)[1] is not the same as crq+1 F[n]. We will see in the next section that the fact that φ(F) is
a quasi-isomorphism is a consequence, though indirectly, of the Dold–Kan correspondence. We conclude this section
by showing how this is done in the case when cr F is atomic.

Proposition 4.10. Let F be a Γ -module for which cr F is an atomic functor whose only nontrivial value occurs at
〈n〉. Then φ(F)[1] : Ξ̃ (F)[1] → Ξ (F)[1] is a quasi-isomorphism.

Proof. By Remark 1.2.1(a), the fact that cr F is atomic with its nontrivial value at 〈n〉 means that F is completely
determined by its value at [n]. As a result, Ln−1 F ' 0, Ln F ' F , and so Rn F ' F . By Proposition 2.6 it follows
that F is naturally equivalent to a functor of the form R̃[Inj([n],−)]⊗Σn A where A is the Σn-module crn F[1]. Since
both Ξ and Ξ̃ can be defined levelwise on simplicial functors, and the functor F can be resolved simplicially using
functors of the form R̃[Inj([n],−)]⊗Σn Y where Y is a free Σn-module, we can reduce the proof to showing that
φ(F)[1] is a quasi-isomorphism when F = R̃[Inj([n],−)].

The bicomplex Ξ̃ (R̃[Inj([n],−)])[1] has a single nontrivial row whose term of bidegree (p, n − 1) is

Lie∗n ⊗ R[Σ p
n ] ⊗ crn R̃[Inj([n],−)][1].

The pth homology group in this row is

TorΣn
p (Lie∗n, crn R̃[Inj([n],−)][1]).

By Example 1.3 we know that crn R̃[Inj([n],−)][1] ∼= R[Σn] and so

TorΣn
p (Lie∗n, crn R̃[Inj([n],−)][1]) ∼= TorΣn

p (Lie∗n, R[Σn])

∼=

{
Lie∗n if p = 0
0 otherwise.

It follows that

H?Ξ̃ (R̃[Inj([n],−)])[1] ∼=

{
Lie∗n if ? = n − 1
0 otherwise.

In comparison, we know from (4.5) and Corollary 4.7 that

H?Ξ (R̃[Inj([n],−)])[1] ∼= H?+n−1(Σn, Lie∗n ⊗ R[Σn])

∼=

{
Lie∗n if n = ?− 1
0 otherwise.

Hence Ξ (R̃[Inj([n],−)])[1] and Ξ̃ (R̃[Inj([n],−)])[1] have the same homology. To conclude that φ induces a
quasi-isomorphism between them it suffices to note that φ is an isomorphism on the first nontrivial rows of the two
complexes and that the homology of each of the higher rows is concentrated in degree 0. To see the latter note that for
k > n,

Ξ̃p,k−1 R̃[Inj([n],−)][1] ∼= 0
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and

Hp(Ξ−,k−1 R̃[Inj([n],−)][1]) ∼= TorΣk
p (Lie∗k , R̃[Inj([n], [k])]).

However, as a left Σk-module, R̃[Inj([n], [k])] ∼= R[Σk]⊗Σk−n×Σn R[Σn]. By Shapiro’s lemma, it follows that

TorΣk
p (Lie∗k , R̃[Inj([n], [k])]) ∼= TorΣk−n×Σn

p (Lie∗k , R[Σn]).

Moreover, R[Σn] ∼= R[(Σk−n × Σn)]⊗Σk−n R[Σ1] as left Σk−n × Σn-modules. Another application of Shapiro’s
lemma yields

TorΣk−n×Σn
p (Lie∗k , R[Σn]) ∼= TorΣk−n

p (Lie∗k , R[Σ1]).

Since Lie∗k is the regular representation of Σk−1 for Σk−n ⊆ Σk , it follows that for p > 0

TorΣk−n
p (Lie∗k , R[Σ1]) ∼= 0.

Hence φ(F)[1] is a quasi-isomorphism when F = R̃[Inj([n],−)] and the result follows.

5. Filtrations

As we mentioned at the end of Section 3, the obvious filtration of the Robinson complex by rows is not equivalent
to the rank filtration (3.11) of D1 F . We use this section to show that the filtration of the reduced Robinson complex
by rows is equivalent to the rank filtration of D1 F by proving that it is equivalent to the filtration of Definition 3.12.
As a consequence, we also deduce that the natural transformation φ of Proposition 4.9 is a quasi-isomorphism.

We use Ξ̃≤n(F) to denote the nth stage of the filtration by rows of Ξ̃ (F), i.e., the bicomplex with

Ξ̃≤n(F)p,q =

{
Ξ̃ (F)p,q if 0 ≤ q ≤ n − 1
0 otherwise.

Theorem 5.1. For any Γ -module F and n ≥ 1, the natural transformation φ : Ξ̃ (F) → Ξ (F) induces a natural
transformation of filtrations

Ξ̃≤1(F) → · · · → Ξ̃≤n(F) → Ξ̃≤n+1(F) → · · ·

↓ ↓ ↓

Ξ≤1(F) → · · · → Ξ≤n(F) → Ξ≤n+1(F) → · · ·

that is a quasi-isomorphism of functors Ξ̃≤n(F)
'
−→Ξ≤n(F) at each stage of the filtration.

We use the remainder of the section to prove Theorem 5.1. Before we do so, we note the following immediate
consequences of this theorem.

Corollary 5.2. (1) For a Γ -module F, the natural transformation of Proposition 4.9, φ : Ξ̃ (F) → Ξ (F), is a
quasi-isomorphism.

(2) The filtrations {D1Ln F} and {Ξ̃≤n(F)} are equivalent.

Theorem 5.1 is proved by induction on the terms in the filtrations of Ξ (F) and Ξ̃ (F), via the following lemma.

Lemma 5.3. Let n > 1 and F be a Γ -module. Let Ξ n(F) = cofiber(Ξ≤n−1(F)→ Ξ≤n(F)) and Ξ̃ n(F) = cofiber
(Ξ̃≤n−1(F) → Ξ̃≤n(F)). The inclusion φ : Ξ̃ (F) → Ξ (F) induces a quasi-isomorphism on the cofibers of the
filtrations when evaluated at [1]:

φ : Ξ̃ n(F)[1]
'
−→Ξ n(F)[1].
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Proof of Theorem 5.1. It is enough to prove the result when the functors are evaluated at [1] since to obtain the result
for the functor F evaluated at [m], we replace F by the functor F ◦

∨
m and evaluate at [1]. More precisely, for any

Γ -module F and m ≥ 0, Ξ (F)[m] ∼= Ξ (F ◦
∨

m)[1] by definition and Ξ̃ (F)[m] ∼= Ξ̃ (F ◦
∨

m)[1] by Proposition 1.4.
Finally, Ξ≤k(F)[m] ∼= Ξ≤k(F ◦

∨
m)[1] and Ξ̃≤k(F)[m] ∼= Ξ̃≤k(F ◦

∨
m)[1] for any terms in the filtrations of Ξ

and Ξ̃ , and the reduction to [1] is complete.

For induction, we first consider Ξ̃≤1(F)[1] and Ξ≤1(F)[1]. The bicomplex Ξ̃≤1(F)[1] consists of a single
nontrivial row whose mth term is Lie∗1⊗ R[Σm

1 ]⊗cr1 F[1]. Since Lie∗1
∼= R, the homology of this row is concentrated

in degree 0, where it is isomorphic to cr1 F[1].
To determine the homology of Ξ≤1(F)[1], we note that Propositions 3.13, 2.10, and Corollary 3.10 imply that

Ξ≤1(F) ' D1L1 F ' Ξ (L1 F). (5.4)

But, L1 F is degree 1 and so cr L1 F is an atomic functor with cr L1 F〈1〉 ∼= cr1 F[1]. Hence, by Corollary 4.7 and
(5.4), Ξ≤1(F)[1] is quasi-isomorphic to cr1 F[1] and the result holds for n = 1.

To finish the proof, note that for n > 1, we have a commutative diagram

Ξ̃≤n−1(F)[1] → Ξ̃≤n(F)[1] → Ξ̃ n(F)[1]
↓ ↓ ↓

Ξ≤n−1(F)[1] → Ξ≤n(F)[1] → Ξ n(F)[1]

in which the rightmost arrow is a quasi-isomorphism by Lemma 5.3 and the two rows are quasi-exact. The result
follows by induction.

Proof of Lemma 5.3. The kth row of Ξ≤n(F)[1] has terms of the form Lie∗k+1 ⊗ R[Σ p
k+1] ⊗ R̃[Hom≤n(∗, [k + 1])]

⊗Γ F(∗). It follows that the first n nontrivial rows of Ξ≤n(F) agree with those of Ξ (F). Hence the map φ : Ξ̃ (F)

→ Ξ (F) extends to a map φ : Ξ̃≤n(F) → Ξ≤n(F) which is the same inclusion on the first n rows as φ and 0
elsewhere. It follows that we have a commutative square

Ξ̃≤n−1(F) ↪→ Ξ≤n−1(F)

↓ ↓

Ξ̃≤n(F) ↪→ Ξ≤n(F),

and, as a result, φ induces a map of the cofibers.
To show the map of cofibers is a quasi-isomorphism, we begin by considering the corresponding cofiber in the rank

filtration, Rn F := cofiber(Ln−1 F → Ln F). Recall from Proposition 2.6 that Rn F has the form

Rn F ' Cn F := R̃[Inj([n],−)]⊗Σn crn F[1].

By Example 1.3,

crkCn F[1] ∼= crk(R̃[Inj([n],−)][1]⊗Σn crn F[1])
∼= crk R̃[Inj([n],−)][1]⊗Σn crn F[1]

∼=

{
R[Σn]⊗Σn crn F[1] if k = n
0 if k 6= n.

∼=

{
crn F[1] if k = n,

0 if k 6= n.
(5.5)

Thus, crCn F is an atomic functor. By Proposition 4.10, it follows that φ induces a quasi-isomorphism Ξ̃ (Cn F)[1]
' Ξ (Cn F)[1]. The result then follows provided we show that Ξ n(F)[1] ' Ξ (Cn F)[1] and Ξ̃ n(F)[1] ' Ξ̃ (Cn F)[1].

But, by Propositions 3.13 and 2.6 and the fact that D1 is exact we know that

Ξ n(F) = cofiber(Ξ≤n−1(F)→ Ξ≤n(F))

' cofiber(D1Ln−1 F → D1Ln F)

' D1 Rn F

' Ξ (Cn F).

Hence Ξ n(F) ' Ξ (Cn F).
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On the other hand, Ξ̃ n(F)[1] has a single homologically nontrivial row whose term of bidegree (p, n − 1) is

Lie∗n ⊗ Σ p
n ⊗ crn F[1].

By (5.5), Ξ̃ (Cn F) also has a single homologically nontrivial row that is isomorphic to that of Ξ̃ n(F). Thus,
Ξ̃ n(F) ' Ξ̃ (Cn F) and the result follows.
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