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1. Introduction

1.1. Aim and scope

We are interested in the construction of the pushout (whose definition will be recalled in Sec-
tion 2) in the category of affine group schemes over a given ring as described hereafter. It is known
that in the category of abstract groups the pushout of two groups over a third one always exists
but it is not finite even when the three groups are all finite (unless one takes very particular cases).
However for group schemes over a Dedekind ring R something new happens when we consider some
special important cases: so let G , G1 and G2 be R-affine group schemes and consider the diagram

G
ϕ1 ϕ2

G1 G2

(1)

where ϕi : G → Gi (i = 1,2) are R-group scheme morphisms. We first prove the following

Theorem 1.1. (Cf. Theorem 3.2.) Assume R is a complete discrete valuation ring and G, G1 , G2 are finite and
flat over R. Then if ϕ1 is a model map (i.e. generically an isomorphism) the pushout of (1) in the category
of affine R-group schemes exists. Moreover it is finite and flat and its generic fibre is isomorphic to G2,K , the
generic fibre of G2 .

This immediately implies that when G , G1 and G2 are all models of a same K -group scheme G K
(K being the fraction field of R) then the pushout of (1) exists and is still a model of G K thus proving
the existence of a lower bound for models of finite group schemes. This was already known in the
commutative case (cf. [9], Proposition 2.2.2). The same will be true for the quasi-finite case under the
assumption that G2,K admits a finite and flat R-model:

Theorem 1.2. (Cf. Theorem 3.5.) Assume R is a complete discrete valuation ring and G, G1 , G2 are quasi-finite
and flat over R. If ϕ1 is a model map and G2,K admits a finite and flat model then the pushout of (1) in the
category of affine R-group schemes exists. Moreover it is quasi-finite and flat and its generic fibre is isomorphic
to G2,K .

Using the fact that G2,K always admits, when it is étale, a finite and flat model up to a finite
extension of scalars we finally prove the following

Corollary 1.3. (Cf. Corollary 3.9.) Assume R is a complete discrete valuation ring and G, G1 , G2 are quasi-finite
and flat over R. Then if ϕ1 is a model map and G2,K is étale then the pushout of (1) in the category of affine
R-group schemes exists. Again it is quasi-finite and flat and its generic fibre is isomorphic to G2,K .

All the proofs rest on the computation of the pushout in the category of R-Hopf algebras. With
the same techniques we briefly study in Section 3.3 the existence of cokernels in the category of
affine R-group schemes where R is any Dedekind ring. This will lead to a new and short proof of the
following:

Corollary 1.4. (Cf. Corollary 3.13.) Let R be a Dedekind ring, G and H two finite and flat R-group schemes
with H a closed and normal R-subgroup scheme of G. Then the quotient G/H exists in the category of R-affine
group schemes.

This holds over any base scheme and is in fact a consequence of a much bigger theorem (cf. [4],
Théorème 7.1).
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1.2. Notations and conventions

Every ring A will be supposed to be associative and unitary, i.e. provided with a unity element
denoted by 1A , or simply 1 if no confusion can arise. However, unless stated otherwise, a ring will
not be supposed to be commutative. Every Dedekind ring, instead, will always be supposed to be
commutative. For an R-algebra A the morphisms u A : R → A and mA : A ⊗R A → A will always denote
the unity and the multiplication morphisms (respectively). If moreover A has an R-coalgebra structure
then �A : A → A ⊗R A, εA : A → R will denote the comultiplication and the counity respectively.
Furthermore if A has an R-Hopf algebra structure then S A : A → A will denote the coinverse. All
the coalgebra structures will be supposed to be coassociative. Morphisms of R-algebras (resp. R-
coalgebras, R-Hopf algebras) are R-module morphisms preserving R-algebra (resp. R-coalgebra, R-
Hopf algebra) structure. We denote by R-Hopf the category of associative and coassociative R-Hopf
algebras while R-Hopf f f will denote the category of associative and coassociative R-Hopf algebras
which are finite and flat as R-modules. When R → T is a morphism of commutative algebras, M is
an R-module, X is an R-scheme, f : M → N is an R-module morphism and ϕ : X → Y a morphism of
R-schemes then we denote by MT , XT , f T : MT → NT and ϕT : XT → Y T respectively the T -module
M ⊗R T , the T -scheme X ×Spec(R) Spec(T ), the T -module morphism induced by f and the T -morphism
of schemes induced by ϕ . When R is a Dedekind ring and K its field of fractions then an R-morphism
of schemes ϕ : X → Y is called a model map if generically it is an isomorphism, i.e. ϕK : XK → Y K is
an isomorphism.

2. Pushout of Hopf algebras

In this section we first study the pushout of algebras over a commutative ring R then we discuss
the existence of the pushout in the category of R-Hopf f f when R is a complete discrete valuation
ring. Let us first recall that in a category C the pushout (see for instance [8], III, §3) of a diagram

A
f g

B C

(2)

(where clearly A, B, C are objects of C and f , g morphisms in the same category) is an object of
C that we denote B �A C provided with two morphisms u : B → B �A C , v : C → B �A C such that
u f = vg and satisfying the following universal property: for any object P of C and any two morphisms
u′ : B → P , v ′ : C → P in C such that u′ f = v ′ g then there exists a unique morphism p : B �A C → P
making the following diagram commute:

B

u

u′

A

f

g

B �A C
p

P .

C

v

v ′

When A is an initial object (provided it exists) of C then B �A C is the coproduct2 of B and C in C .
When C is the category of commutative R-algebras then the pushout is given by the tensor product

2 The coproduct can be defined, however, without assuming the existence of an initial object.
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B ⊗A C . This is not true anymore if C is the category of R-algebras (cf. Example 2.9 or create easier
examples). However we can always find a pushout even when C is the category of R-algebras and it
will be denoted by B ∗A C . Before introducing, however, the pushout for non(necessarily)-commutative
R-algebras we recall the behavior of the tensor product over R . We put ourselves in the following
situation:

Notation 2.1. By R we will denote a commutative ring while A, B and C will be R-algebras and f :
A → B , g : A → C two R-algebra morphisms. We also denote by ρB : B → B ⊗R C and ρC : C → B ⊗R C
the morphisms sending respectively b �→ b ⊗ 1C and c �→ 1B ⊗ c.

Proposition 2.2. Let D be any R-algebra and u : B → D, v : C → D two R-algebra morphisms such that
u ◦ uB = v ◦ uC and such that u(b)v(c) = v(c)u(b) for all b ∈ B, c ∈ C. Then there exists a unique R-algebra
morphism t : B ⊗R C → D making the following diagram commute:

B

ρB

u

R

uB

uC

B ⊗R C
t

D

C

ρC

v

Proof. Cf. for instance [3], I, §3, Proposition 3.2. �
Unfortunately B ⊗A C behaves badly in general and one can observe that even A ⊗A A 
 A, as an

R-algebra, is not a natural quotient of A ⊗R A. So, instead, let us consider the following construction:

Definition 2.3. We denote by B �A C , and we call it the star product of B and C over R , the quotient
of B ⊗R C by the two-sided ideal generated by A, i.e. the ideal of B ⊗R C generated by the set
{ρB f (a) − ρC g(a)}a∈A .

It is an easy consequence the following universal property of the star product:

Proposition 2.4. Let D be any R-algebra and u : B → D, v : C → D two R-algebra morphisms such that u f =
vg and such that u(b)v(c) = v(c)u(b) for all b ∈ B, c ∈ C. Then there exists a unique R-algebra morphism
t : B �A C → D making the following diagram commute:

B

u

A

f

g

B �A C
t

D

C

v

Proof. It is sufficient to take the R-algebra morphism B ⊗R C → D and observe that it passes to the
quotient. �
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The star product will only be used in Example 2.8 and Section 3.3, so finally let us recall the
construction of the pushout of R-algebras: we follow essentially [2] 1.7 and 5.1 with very few modi-
fications in the exposition in order to obtain an easier to handle description. We describe A, B and C
giving their presentation as R-algebras thus getting R〈X0; S0〉, R〈X1; S1〉 and R〈X2; S2〉 respectively,
where Xi is a generating set with relations Si (i = 0,1,2). We recall that R〈X; S〉 is to be intended
as the R-algebra whose elements are all R-linear combinations of words on the set X quotiented by
the two-sided ideal generated by the relations in S . Observe that for y, z ∈ X we are not assuming
zy = yz; if it is the case the information will appear in S . However for any x ∈ X and any r ∈ R
we do assume xr = rx. For example the commutative R-algebra R[x, y]/ f (x, y) can be presented as
R〈x, y; f (x, y) = 0, xy = yx〉. First we observe that the coproduct of B and C (i.e. the pushout of B and
C over the initial object R) is given by the R-algebra B ∗R C := R〈X1 ∪ X2; S1 ∪ S2〉 where the union is
of course disjoint. Let us denote by u : B → B ∗R C and v : C → B ∗R C the canonical inclusions. Then
the pushout of B and C over A is given by the R-algebra

B ∗A C := R〈X1 ∪ X2; S1 ∪ S2 ∪ S3〉 (3)

where S3 consists on the relations given by u f (x) = vg(x) for every x ∈ X0. Now we relate the
pushout just described to the tensor product:

Lemma 2.5. Assume that B = R〈X1; S1〉 and C = R〈X2; S2〉. Then B ⊗R C can be presented as R〈X1 ∪ X2;
S1 ∪ S2, {zy = yz}z∈X1,y∈X2 〉 thus becoming a quotient of R〈X1 ∪ X2; S1 ∪ S2〉 = B ∗R C .

Proof. Let D be an R-algebra provided with R-algebra morphisms m : B → D and n : C → D such
that m ◦ uB = n ◦ uC , and assume moreover that m(b)n(c) = n(c)m(b) for all b ∈ B, c ∈ C . Let us denote
by u : B → B ∗R C and v : C → B ∗R C the canonical morphisms and by λ : B ∗R C → D the universal
morphism making the following diagram commute:

B

u

m

R

uB

uC

B ∗R C
λ

D

C

v

n

By assumption λu(z)λv(y) = λv(y)λu(z) so u(z)v(y) − v(y)u(z) ∈ ker(λ) hence λ factors through
R〈X1 ∪ X2; S1 ∪ S2, {zy = yz}z∈X1,y∈X2 〉 providing it with the universal property stated in Proposi-
tion 2.2 and this is enough to conclude. �

Let q : R → T be an R-commutative algebra. When f = f (x1, . . . , xn) ∈ R[x1, . . . , xn] we denote by
q∗( f ) the polynomial in T [x1, . . . , xn] whose coefficients are the image in T by q of the coefficients
of f , i.e. the image of f through the morphism q∗ : R[x1, . . . , xn] → T [x1, . . . , xn] = R[x1, . . . , xn]⊗R T .
Now take R〈X, S〉: by an abuse of notation we denote by q∗(S) the set of relations {q∗(si) = 0} on the
set X . In Lemma 2.6 we observe that the pushout is stable under base change.

Lemma 2.6. Let q : R → T be an R-commutative algebra and R〈X; S〉 any R-algebra, then

1. R〈X; S〉 ⊗R T 
 T 〈X;q∗(S)〉,
2. (B ∗A C) ⊗R T 
 (B ⊗R T ) ∗(A⊗R T ) (C ⊗R T ).
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Proof. As a commutative R-algebra, T is isomorphic to R[{yi}]/({ fr}) where {yi} is a set of generators
and { fr} a set of polynomials in the variables {yi} with coefficients in R . So by Lemma 2.5 R〈X; S〉⊗R
T is isomorphic to R〈X ∪ {yi}; S ∪ { fr = 0} ∪ {yi y j = y j yi} ∪ {xyi = yi x}x∈X 〉 which is isomorphic to
R〈X ∪{yi};q∗(S)∪{ fr = 0}∪{yi y j = y j yi}∪{xyi = yi x}x∈X 〉 and the latter is isomorphic to T 〈X;q∗(S)〉
since T commutes with X and this proves 1. Let us describe A, B and C as R〈X0; S0〉, R〈X1; S1〉
and R〈X2; S2〉 respectively. As a consequence of point 1 we have A ⊗R T 
 T 〈X0;q∗(S0)〉, B ⊗R T 

T 〈X1;q∗(S1)〉, C ⊗R T 
 T 〈X2;q∗(S2)〉 and (B ∗A C) ⊗R T 
 T 〈X1 ∪ X2;q∗(S1 ∪ S2 ∪ S3)〉 where S3 is
as described in (3). But (B ⊗R T ) ∗(A⊗R T ) (C ⊗R T ) is also isomorphic to the latter which enables us
to conclude. �
Notation 2.7. When R is a Dedekind ring and M an R-module, let us denote by q : M � F (M) the
unique quotient (cf. [5], Lemme (2.8.1.1)) of M which is R-flat and such the induced map qK : MK →
F (M)K is an isomorphism.

Let us analyze a few examples whose importance will be clear in the following sections:

Example 2.8. Let f : A → B and g : A → R be morphisms of R-algebras then the canonical morphism
ϕ : B ∗A R → B �A R is an isomorphism. Indeed we observe that B ∗R R = B and that the canonical
morphisms u : B → B ∗R R and v : R → B ∗R R are nothing else but IdB and the unit morphism
uB respectively, then for any b ∈ B and any r ∈ R we have u(b)v(r) = v(r)u(b). Hence denoting by
u′ : B → B ∗A R and v ′ : R → B ∗A R the canonical morphisms we also have u′(b)v ′(r) = v ′(r)u′(b) as
u′ = λu and v ′ = λv where λ : B ∗R R → B ∗A R is the universal morphism. Then ϕ can be inverted
according to Proposition 2.4. Observe that B ∗A R is finite as an R-module if B is finite (it is indeed a
quotient of B).

Example 2.9. Let R be a discrete valuation ring with uniformising element π . Let us fix a positive
integer p and let us set A := R[x]/xp , B := R[y]/yp and C := R[z]/zp (thus commutative R-algebras).
Consider the morphisms f : A → B, x �→ πn y and g : A → C, x �→ πmz where m > n > 0 are integers.
Then B ∗A C = R〈y, z; yp = zp = 0,πmz = πn y〉. Observe that, as an R-module, B ∗A C is not flat
as πn(πm−nz − y) = 0 thus πm−nz − y is an R-torsion element. However if we add the relation
πm−nz = y then we eliminate torsion from B ∗A C and what we obtain is (cf. Notation 2.7) F (B ∗A C) =
R〈y, z; yp = zp = 0,πm−n z = y〉 = R[z]/zp thus finitely generated and flat and, in this particular case,
it is isomorphic to F (B ⊗A C).

The following well-known result will be used several times in this paper:

Theorem 2.10. Let R be a complete discrete valuation ring with fraction field K and residue field k. Let M be a
torsion-free R-module of finite rank r (i.e. r := dimK (M ⊗R K ) < +∞). Then M 
R-mod K ⊕r−s ⊕ R⊕s , where
s = dimk(M ⊗R k).

Proof. This is [6], Chapter 16, Corollary 2, �
Theorem 2.10 is not true when R is not complete (cf. [6], Theorem 19) and this is why we will

often need to restrict to complete discrete valuation rings. The following lemma is crucial in this
paper:

Lemma 2.11. Let R be a complete discrete valuation ring and assume that f : A → B and g : A → C are
R-algebra morphisms where furthermore gK : AK → C K is an isomorphism. Then if A, B and C are finitely
generated and flat as R-modules then the same holds for F (B ∗A C). Moreover the canonical R-algebra mor-
phism B → F (B ∗A C) induces an isomorphism B K → F (B ∗A C)K .

Proof. Let π be an uniformising element of R and let K and k be the fraction and residue fields
respectively. As usual let us present by R〈X0; S0〉, R〈X1; S1〉 and R〈X2; S2〉 respectively the R-
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algebras A, B and C where for X0, X1, X2 we take respectively bases of A, B , C as R-modules
minus the identity elements so that the cardinality x0, x1, x2 of those sets is the rank of A, B and
C (respectively) minus one; of course x0 = x2. Now B ∗A C = R〈X1 ∪ X2; S1 ∪ S2 ∪ S3〉 where S3

is as described in (3). In particular S3 is a set made of x0 R-linear relations relating the x2 el-
ements of X2 and the x1 elements of X1. As in Example 2.9 the information of being R-torsion
(if any) is contained in the set S3, so if we want to cut out R-torsion we need to add an-
other set of x0 relations S4 obtained as follows: for each relation (s = 0) ∈ S3 add the relation
(t = 0) to S4 where s = π vt and t has at least one coefficient equal to an invertible element of
R . Thus F (B ∗A C) = R〈X1 ∪ X2; S1 ∪ S2 ∪ S3 ∪ S4〉. But since relations in S3 are automatically sat-
isfied if we add S4 then F (B ∗A C) = R〈X1 ∪ X2; S1 ∪ S2 ∪ S4〉. Now Lemma 2.6, point 1, implies
that F (B ∗A C) ⊗R k = k〈X1 ∪ X2;q∗(S1 ∪ S2 ∪ S4)〉 where q : R � k is the canonical surjection so
F (B ∗A C) ⊗R k is the quotient of k〈X1 ∪ X2;q∗(S1 ∪ S2)〉 by the two-sided ideal generated by the
relations q∗(S4). But in k〈X1 ∪ X2;q∗(S1 ∪ S2)〉 the elements of the set X1 ∪ X2 are x1 + x2 k-linearly
independent vectors then if we add the x0 = x2 k-linear relations q∗(S4) what remains is a set of at
least x1 = rk(B) − 1 k-linearly independent elements which become rk(B) if we add 1B . Combining
this with Theorem 2.10 we obtain that F (B ∗A C) is a finitely generated R-free module, as required,
as dimk(F (B ∗A C)) ⊗R k = dimK (F (B ∗A C)) ⊗R K . The last assertion follows easily from Lemma 2.6,
point 2. �
Remark 2.12. The construction in Lemma 2.11 does not depend on A. That means that if we take A′ ,
f ′ : A′ → B and g′ : A′ → C satisfying similar assumptions then F (B ∗A C) 
 F (B ∗A′ C). Indeed, again
by [5], Lemme 2.8.1.1, we observe that F (B ∗A C) is isomorphic to the unique quotient of B ∗R C which
is R-flat and whose tensor over K gives B K ; but the same property is satisfied by F (B ∗A′ C) hence
we conclude by unicity.

Proposition 2.13. Let R be any commutative ring. Then the pushout in the category of R-bialgebras exists.

Proof. We follow3 [7], Chapitre 5, §5.1, Proposition. Consider the diagram

B

R
u A

uB

uC

A
f

g

C

(4)

where we assume that A, B and C are R-bialgebras and the arrows are R-Hopf algebra morphisms.
Let D := B ∗A C be the pushout of the diagram in the category of R-algebras and let mD and uD be
respectively the multiplication and the unit morphism. Then we need to provide D with a comulti-
plication �D and a counit εD such that (D,mD , uD ,�D , εD) is an R-bialgebra. We describe how to
construct �D , the costruction of εD being easier. The rest will be standard verification over compli-
cated diagrams. The existence of �D is explained in the following diagram, taking into account the
universal property of D:

3 In [7], however, Lemaire uses different notations.
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B

u

�B
B ⊗R B

u⊗u

A

f

g

�A

D
�D

A ⊗R A

f ⊗ f

g⊗g

D ⊗R D

C

v

�C
C ⊗R C

v⊗v

�

Remark 2.14. Notation being as in Proposition 2.13 one observes that we can define an R-module
morphism S D : D → D , candidate to be a coinverse, as follows: first construct the opposite algebras
Aop , Bop , Cop , Dop , the opposite morphisms f op , gop , uop , vop and the morphisms of R-algebras S ′

A ,
S ′

B , S ′
C , induced by the R-algebra anti-morphisms S A , S B , SC . Then the existence of S ′

D follows from
the following diagram

B

u

S ′
B

Bop

uop

A

f

g

S ′
A

D
S ′

D

Aop

f op

gop

Dop

C

v

S ′
C

Cop
vop

exploiting the universal property of D then S D is the anti-morphism induced by S ′
D . However S D

may fail to be a coinverse for D as mD ◦ (S D ⊗ idD) ◦ mD may not be equal to uD ◦ εD (same for
mD ◦ (idD ⊗ S D) ◦ mD ).

In order to have an explicit description for S D , constructed in Remark 2.14, set, as usual, A =
R〈X0; S0〉, A = R〈X1; S2〉 and C = R〈X2; S2〉 so D = R〈X1 ∪ X2; S1 ∪ S2 ∪ S3〉 where S3 is as described
in (3); it is sufficient to set S D(x1) := S B(x1) for any x1 ∈ X1, S D(x2) := SC (x2) for any x2 ∈ X2 for
any x1 ∈ X1, S D(x1x2) := S D(x2)S D(x1) and S D(x2x1) := S D(x1)S D(x2). It is well defined and is by
construction an anti-isomorphism for the R-algebra D . A similar construction gives an explicit de-
scription of �D , taking into account that �D is a morphism of R-algebras and not an anti-morphism.

Corollary 2.15. Let R be a complete discrete valuation ring and assume that f : A → B and g : A → C are
R-algebra morphisms where furthermore gK : AK → C K is an isomorphism. Then F (B ∗A C) has a natural
structure of R-Hopf algebra. If moreover A, B and C are finitely generated and flat as R-modules then F (B ∗A C)

is the pushout of B and C over A in R-Hopf f f .

Proof. By [5], (2.8.3) and of course Proposition 2.13 we obtain that F (B ∗A C) has a natural structure
of R-bialgebra. We need to prove the existence of a coinverse S F (B∗A C) that gives F (B ∗A C) a natural
structure of R-Hopf algebra. So let us take for D := B ∗A C the R-module morphism S D defined in
Remark 2.14. This morphism induces (by [5], Lemme 2.8.3) an R-module morphism S F (D) : F (D) →
F (D) which is the required coinverse: indeed

mF (D) ◦ (S F (D) ⊗ idF (D)) ◦ mF (D) − uD ◦ �D (5)
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is the zero map 0D and this is clear since F (D) ⊂ B K and (5) tensored over K gives rise to the
equality

mB K ◦ (S B K ⊗ idB K ) ◦ mB K = uB K ◦ �B K

which holds as B K is a K -Hopf algebra. The same is true for mF (D) ◦ (idF (D) ⊗ S F (D)) ◦ mF (D) .
Finally F (B ∗A C) is finitely generated and flat as an R-module when A, B and C are: this is
Lemma 2.11. �
Remark 2.16. Notation being as in Proposition 2.13, we observe that B ∗A C is cocommutative if A, B ,
C are. The same conclusion holds, then, for F (B ∗A C) in Corollary 2.15. Moreover observe that if A,
B , C are commutative then F (B ∗A C) is commutative too since it is contained in B K . So in particular
in this case F (B ∗A C) 
 F (B ⊗A C), as it happened in Example 2.9.

3. Pushout of group schemes

In this section R is any complete discrete valuation ring with fraction and residue fields respec-
tively denoted by K and k.

3.1. The finite case

Let M = Spec(B) and N = Spec(C) be finite and flat R-group schemes, i.e. B and C are free over
R and finitely generated as R-modules. Let us assume that there is a K -group scheme morphism
ψ : MK → NK . An upper bound for M and N is a finite and flat R-group scheme U , provided with a
model map U → M and an R-group scheme morphism ϕ : U → N which generically coincides with
ψ : MK → NK . A lower bound for M and N is a finite and flat R-group scheme L, provided with a
model map N → L and an R-group scheme morphism δ : M → L which generically coincides with
ψ : MK → NK . The construction of an upper bound is easy: it is sufficient to set U as the schematic
closure of MK in M × N through the canonical closed immersion MK ↪→ MK × NK (and this holds
when the base is any Dedekind scheme). Now consider the following commutative diagram

M

U

m

n

N

(6)

where U = Spec(A) is any upper bound. We are now going to study the existence of a pushout M �U N
in the category of finite and flat R-group schemes. We prove the following

Lemma 3.1. The pushout of (6) in the category of finite and flat R-group schemes exists. Moreover M �U N is
a lower bound for M and N.

Proof. Notation being as in the beginning of this section, we have the following diagram of commu-
tative R-Hopf algebras:

A

B C
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which, dualizing, gives rise to the following diagram of cocommutative (but possibly non-commuta-
tive) R-Hopf algebras:

A∨
f g

B∨ C∨.

Let us consider the cocommutative R-Hopf algebra F (B∨ ∗A∨ C∨) constructed in Corollary 2.15. Now
we take the spectrum of its dual P := Spec(F (B∨ ∗A∨ C∨)∨). First of all we observe that F (B∨ ∗A∨ C∨)∨
is commutative as F (B∨ ∗A∨ C∨) is cocommutative so that taking its spectrum does make sense. It
remains to prove that the commutative diagram

M

U

m

n

P

N

is in fact a pushout in the category of finite and flat R-group schemes. But this follows from the fact
that F (B∨ ∗A∨ C∨) is a pushout in R-Hopf f f . That M �U N := P is a lower bound for M and N is also
clear by construction. �
Theorem 3.2. The pushout of (6) in the category of affine R-group schemes exists.

Proof. Consider the commutative diagram

M

u

U

m

n

P Q

N

v

where P is the pushout of (6) in the category of finite and flat R-group schemes constructed in
Lemma 3.1 and Q = Spec(D) is any affine R-group scheme. We are going to show that P is also the
pushout of (6) in the category of affine R-group schemes. Let us factor u through M ′ := Spec(B ′) via
the morphisms u′ : M → M ′ and i : M ′ → Q where i is a closed immersion and u′ is a schematically
dominant morphism (i.e. the induced morphism B ′ → B is injective) so that M ′ is a finite and flat
R-group scheme since M is. Likewise we factor v through the finite and flat R-group scheme N ′ :=
Spec(C ′) via the schematically dominant morphism v ′ : N → N ′ and the closed immersion j : N ′ → Q .
Now consider the finite R-group scheme (it needs not be flat a priori) M ′ ×Q N ′ and the natural
closed immersions i′ : M ′ ×Q N ′ ↪→ M ′ and j′ : M ′ ×Q N ′ ↪→ N ′ . So let us denote by r : U → M ′ ×Q N ′
the universal morphism, then we have the following commutative diagram
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M
u′

M ′

i

U

m

n

r
M ′ ×Q N ′

i′

j′

Q

N
v ′ N ′

j

and in particular we have the following commutative diagram of R-algebras

A B ′

B ′ ⊗D C ′

where B ′ → B ′ ⊗D C ′ is surjective but also injective since B ′ ↪→ A is (recall that m : U → M is a model
map). Hence i′ is an isomorphism so there exists a universal morphism P → N ′ by Lemma 3.1 and
we conclude. �
Remark 3.3. If U ′ is any other upper bound for M and N then there is a canonical isomorphism
M �U N 
 M �U ′ N: this is a consequence of Remark 2.12. However this does not mean that the lower
bound for M and N is unique, which is clearly not true in general.

3.2. The quasi-finite case

Let M = Spec(B) and N = Spec(C) be quasi-finite (by this we will always mean affine and of finite
type over R , with finite special and generic fibers) and flat R-group schemes. It is known (see [1],
§7.3, p. 179) that any quasi-finite R-group scheme H has a finite part H f , that is an open and closed
subscheme of H which consists of the special fibre Hk and of all points of the generic fibre which
specialize to the special fibre. It is thus flat over R if H is.

Remark 3.4. If H = Spec(A) is a quasi-finite and flat R-group scheme then its finite part coincides with
Spec(A∨∨) where A∨∨ is the double dual of A: this follows from the fact that A 
R-mod K ⊕t ⊕ R⊕s (cf.
Theorem 2.10) so A∨ 
R-mod R⊕s is an R-Hopf algebra and not just an R-algebra. Hence the canonical
surjection A � A∨∨ gives the desired closed immersion H f ↪→ H of group schemes. However this
fact will not be necessary in the remainder of this paper.

Let us assume that there is a K -group scheme morphism ψ : MK → NK . We define upper and
lower bounds exactly as in the finite case. One can easily construct an upper bound U for M and N
simply proceeding as in Section 3.1. So U will be in general a quasi-finite and flat R-group scheme.
For the lower bound it will be a little bit more complicated. So consider again the commutative
diagram (6) where U = Spec(A) is any upper bound. We are going to study the existence of a pushout
M �U N in the category of affine R-group schemes. We prove the following

Theorem 3.5. Assume that NK admits a finite and flat model over R. Then the pushout of (6) in the category
of affine R-group schemes exists. Moreover M �U N is a lower bound for M and N.

Proof. Let N ′ denote a finite and flat R-model for NK , i.e. a finite and flat R-group scheme whose
generic fibre is isomorphic to NK . Consider the finite part M f and N f of, respectively, M and N .
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Compose the closed immersion M f ,K → MK with ψK : MK → NK thus obtaining a morphism M f ,K →
NK . By Theorem 3.2 we construct a lower bound L1 for M f and N ′ , which is finite and flat over R ,
generically isomorphic to NK , then it is already a lower bound for M and N ′ . Considering the closed
immersion N f ,K → NK we also construct a lower bound L2 for N f and N ′ , which is finite and flat
over R , generically isomorphic to NK , then it is already a lower bound for N and N ′ . So a lower bound
L for L1 and L2 (which are generically isomorphic) exists by Theorem 3.2 and is also a lower bound
for M and N . We still need to compute the pushout of M and N over U : let us set U f := Spec(A f ),
M f := Spec(B f ), N f := Spec(C f ) and L := Spec(D). Consider the natural R-bialgebra morphism (cf.
Proposition 2.13) B∨

f ∗A∨
f

C∨
f → D∨ and factor it as follows

B∨
f ∗A∨

f
C∨

f E D∨

where E is a cocommutative R-bialgebra which is flat and finitely generated as an R-module because
D∨ is. Consider the morphism S B∨

f ∗A∨
f

C∨
f

: B∨
f ∗A∨

f
C∨

f → B∨
f ∗A∨

f
C∨

f constructed in Remark 2.14; the

commutative diagram

B∨
f ∗A∨

f
C∨

f

S B∨
f ∗A∨

f
C∨

f

E D∨

S D∨

B∨
f ∗A∨

f
C∨

f E D∨

induces an anti-morphism of R-algebras

S E : E → E

which gives E a natural structure of R-Hopf algebra: indeed mE ◦ (idE ⊗ S E ) ◦ mE = uE ◦ εE and
mE ◦ (S E ⊗ idE ) ◦ mE = uE ◦ εE since the same equalities hold for D∨ . It is now sufficient to take
the union of Spec(E∨) and NK 
 LK in order to construct a quasi-finite and flat R-group scheme P
which is certainly a pushout in the category of quasi-finite and flat R-group schemes. Arguing as in
the proof of Theorem 3.2 we can deduce that P is also a pushout in the category of affine R-group
schemes. �
Remark 3.6. As in Remark 3.3 one observes that if U ′ is any other upper bound for M and N then
there is a canonical isomorphism M �U N 
 M �U ′ N: indeed E , as constructed in the proof, is the
only quotient of B∨

f ∗R C∨
f , R-flat which over K gives B∨

f K
∗K C∨

f K
→ D∨

K and this does not depend
on A f . The same will hold for Corollary 3.7 and will be used in Corollary 3.9.

Corollary 3.7. When NK is étale then after possibly a finite extension of scalars the pushout of (6) in the
category of affine R-group schemes exists. Again M �U N is a lower bound for M and N.

Proof. Clear since after possibly a finite extension K ′ of K the K -group scheme NK becomes constant
then it certainly admits a finite, constant (so flat) model over R ′ , the integral closure of R in K ′ . �

Let K ′ be a finite extension of K and R ′ the integral closure of R in K ′ then R ′ is a complete
discrete valuation ring. Assume that W is a torsion-free R module of finite rank n then we have the
following

Lemma 3.8. If W ⊗R R ′ is finitely generated as an R ′-module then W is finitely generated as an R-module
too (thus free).
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Proof. By Theorem 2.10 W 
R-mod K ⊕n−s ⊕ R⊕s , where s = dimk(Wk), hence W ⊗R R ′ 
R ′-mod
K ′⊕n−s ⊕ R ′⊕s so if W ⊗R R ′ is finitely generated as an R ′-module then n− s = 0 and we conclude. �

This will be used in the following

Corollary 3.9. When R is complete and NK is étale then the pushout of (6) in the category of affine R-group
schemes exists. Again M �U N is a lower bound for M and N.

Proof. Again U f = Spec(A f ), M f = Spec(B f ), N f = Spec(C f ) will denote the finite part of U , M and
N respectively. Let us consider the duals A∨

f = A∨∨ , B∨
f = B∨∨ and C∨

f = C∨∨ and the commutative
diagram

A∨
f K

A∨
f

B∨
f K

C∨
f K

B∨
f C∨

f

B∨
f K

∗A∨
f K

C∨
f K

B∨
f ∗A∨

f
C∨

f

E

C∨

(7)

where E comes from the factorization of the universal morphism B∨
f K

∗A∨
f K

C∨
f K

→ C∨ . Arguing as

in Theorem 3.5 we provide it with a natural structure of K -Hopf algebra. Using again [5], Lemme
(2.8.1.1) we construct the unique quotient

B∨
f ∗A∨

f
C∨

f � E ′

which is R-flat and which generically gives

B∨
f K

∗A∨
f K

C∨
f K

� E.

Thus E ′ has naturally a structure of a cocommutative R-Hopf algebra: indeed it inherits from
B∨

f ∗A∨
f

C∨
f a cocommutative R-coalgebra structure and by means of [5], (2.8.3) an anti-morphism

of R-algebras S ′
E : E ′ → E ′ which is a coinverse since tensoring it over K we obtain S E : E → E which

is a coinverse for E . If we prove that E ′ is finitely generated as an R-module then Spec(E ′∨) glued to
N is the desired pushout. So now it remains to prove that E ′ is finitely generated as an R-module: let
K → K ′ be a finite field extension such that NK ′ admits a finite and flat model over R ′ , the integral
closure of R in K ′ . Then by Corollary 3.7 and Remark 3.6 E ′ ⊗R R ′ is R-finite and flat. Lemma 3.8
implies that E ′ is R-finite and flat too. �
Remark 3.10. It is less elegant but still true that Corollary 3.9 holds for all those NK that admits a
finite and flat R-model after possibly a finite extension of scalars and étale ones are just a particular
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case. Observe furthermore that, following the proof, in the situation of both Theorem 3.5 and Corol-
lary 3.7 one can find a finite and flat lower bound for M and N . This can be false in the situation of
Corollary 3.9.

3.3. Cokernels and quotients

In a category C with zero object 0C (that is an object which is both initial and final), we can
define the cokernel of a morphism f : A → B (see for instance [8], III, §3) which turns out to be
the pushout 0C �A B of the obvious diagram. As explained in the introduction in this section we are
going to describe, in Proposition 3.12, a new and easy proof for a well-known result. First we need a
lemma:

Lemma 3.11. Let R be a Dedekind ring or a field, A, B and C R-Hopf algebras provided with R-Hopf algebra
morphisms f : A → B and g : A → C. Then the star product B �A C defined in Definition 2.3 has a natural
structure of R-Hopf algebra.

Proof. First we prove the existence of the comultiplication �B�A C : it is sufficient to consider the
following diagram

B

u

�B
B ⊗R B

u⊗u

A

f

g

�A

B �A C
�B�A C

A ⊗R A

f ⊗ f

g⊗g

(B �A C) ⊗R (B �A C)

C

v

�C
C ⊗R C

v⊗v

where the existence of �B�A C is ensured by Proposition 2.4. The existence of εB�A C is easier and an
argument similar to the one used in Remark 2.14 ensures the existence of an anti-morphism S B�A C :
B �A C → B �A C which is compatible with S B⊗R C , i.e. if λ : B ⊗R C � B �A C denotes the canonical
projection then λ ◦ S B⊗R C = S B�A C ◦ λ. From this we deduce that S B�A C is the desired coinverse for
B �A C . �
Proposition 3.12. Let R be a Dedekind ring or a field, G and H two finite and flat R-group schemes and
f : H → G a morphism of R-group schemes. Then the cokernel of f exists in the category of R-affine group
schemes.

Proof. The zero object in the category of R-affine group schemes is Spec(R). Let us set H = Spec(A)

and G = Spec(B). Then we first compute the pushout in the category of R-Hopf algebras of the dia-
gram

A∨

B∨ R.

(8)

In Example 2.8 we have observed that W := B∨ ∗A∨ R 
 B∨ �A∨ R canonically. That W has a natural
structure of R-Hopf algebra follows from Lemma 3.11. If R is a Dedekind ring and W is not flat
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then we consider F (W ) (cf. Notation 2.7) which is flat and finitely generated and inherits the R-Hopf
algebra structure. Since the case of a field is similar let us just consider the case of a Dedekind ring R:
we are now going to prove that Spec(F (W )∨) is the desired pushout. So let M be any affine R-group
scheme, v : G → M an R-group scheme morphism and u : Spec(R) → M the natural inclusion (the
unity map). Let us assume we have a commutative diagram

Spec(R)

u

H

f

M

G

v

(9)

Observe that we can assume M to be finite and flat, for if it is not we can factor v through a finite
and flat (since G is) R-group scheme that makes a diagram similar to (9) commmute. When M is
finite and flat it is easy to construct a universal morphism Spec(F (W )∨) → M since F (W ) is easily
seen to be the pushout of diagram (8) in R-Hopf f f . �
Corollary 3.13. Let R be a Dedekind ring, G and H two finite and flat R-group schemes with H a closed and
normal R-subgroup scheme of G. Then the quotient G/H exists in the category of R-affine group schemes.

Proof. This follows directly from Proposition 3.12 where we take for f : H → G the given closed
immersion. �
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