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1. Introduction
1.1. Aim and scope

We are interested in the construction of the pushout (whose definition will be recalled in Sec-
tion 2) in the category of affine group schemes over a given ring as described hereafter. It is known
that in the category of abstract groups the pushout of two groups over a third one always exists
but it is not finite even when the three groups are all finite (unless one takes very particular cases).
However for group schemes over a Dedekind ring R something new happens when we consider some
special important cases: so let G, G; and G, be R-affine group schemes and consider the diagram

RN )

G] GZ
where ¢; : G — G; (i=1, 2) are R-group scheme morphisms. We first prove the following

Theorem 1.1. (Cf. Theorem 3.2.) Assume R is a complete discrete valuation ring and G, G1, G are finite and
flat over R. Then if @1 is a model map (i.e. generically an isomorphism) the pushout of (1) in the category
of affine R-group schemes exists. Moreover it is finite and flat and its generic fibre is isomorphic to G g, the
generic fibre of G».

This immediately implies that when G, G; and G, are all models of a same K-group scheme Gg
(K being the fraction field of R) then the pushout of (1) exists and is still a model of Gg thus proving
the existence of a lower bound for models of finite group schemes. This was already known in the
commutative case (cf. [9], Proposition 2.2.2). The same will be true for the quasi-finite case under the
assumption that G, x admits a finite and flat R-model:

Theorem 1.2. (Cf. Theorem 3.5.) Assume R is a complete discrete valuation ring and G, G1, G, are quasi-finite
and flat over R. If ¢ is a model map and G k admits a finite and flat model then the pushout of (1) in the
category of affine R-group schemes exists. Moreover it is quasi-finite and flat and its generic fibre is isomorphic
to Gy k.

Using the fact that G, x always admits, when it is étale, a finite and flat model up to a finite
extension of scalars we finally prove the following

Corollary 1.3. (Cf. Corollary 3.9.) Assume R is a complete discrete valuation ring and G, G1, G, are quasi-finite
and flat over R. Then if @1 is a model map and G i is étale then the pushout of (1) in the category of affine
R-group schemes exists. Again it is quasi-finite and flat and its generic fibre is isomorphic to G2 k.

All the proofs rest on the computation of the pushout in the category of R-Hopf algebras. With
the same techniques we briefly study in Section 3.3 the existence of cokernels in the category of
affine R-group schemes where R is any Dedekind ring. This will lead to a new and short proof of the
following:

Corollary 1.4. (Cf. Corollary 3.13.) Let R be a Dedekind ring, G and H two finite and flat R-group schemes
with H a closed and normal R-subgroup scheme of G. Then the quotient G/H exists in the category of R-affine
group schemes.

This holds over any base scheme and is in fact a consequence of a much bigger theorem (cf. [4],
Théoréme 7.1).
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1.2. Notations and conventions

Every ring A will be supposed to be associative and unitary, i.e. provided with a unity element
denoted by 14, or simply 1 if no confusion can arise. However, unless stated otherwise, a ring will
not be supposed to be commutative. Every Dedekind ring, instead, will always be supposed to be
commutative. For an R-algebra A the morphisms us: R — A and m4 : AQgr A — A will always denote
the unity and the multiplication morphisms (respectively). If moreover A has an R-coalgebra structure
then Ay :A— A®pg A, €4 : A— R will denote the comultiplication and the counity respectively.
Furthermore if A has an R-Hopf algebra structure then S4 : A — A will denote the coinverse. All
the coalgebra structures will be supposed to be coassociative. Morphisms of R-algebras (resp. R-
coalgebras, R-Hopf algebras) are R-module morphisms preserving R-algebra (resp. R-coalgebra, R-
Hopf algebra) structure. We denote by R-Hopf the category of associative and coassociative R-Hopf
algebras while R-Hopf sy will denote the category of associative and coassociative R-Hopf algebras
which are finite and flat as R-modules. When R — T is a morphism of commutative algebras, M is
an R-module, X is an R-scheme, f : M — N is an R-module morphism and ¢ : X — Y a morphism of
R-schemes then we denote by My, Xr, fr: Mt — Nt and ¢r : X7 — Y7 respectively the T-module
M®gT, the T-scheme X Xgspec(r) Spec(T), the T-module morphism induced by f and the T-morphism
of schemes induced by ¢. When R is a Dedekind ring and K its field of fractions then an R-morphism
of schemes ¢ : X — Y is called a model map if generically it is an isomorphism, i.e. ¢x : Xk — Yk is
an isomorphism.

2. Pushout of Hopf algebras
In this section we first study the pushout of algebras over a commutative ring R then we discuss

the existence of the pushout in the category of R-Hopf;r when R is a complete discrete valuation
ring. Let us first recall that in a category C the pushout (see for instance [8], III, §3) of a diagram

A
/ X @)
B C

(where clearly A, B, C are objects of C and f, g morphisms in the same category) is an object of
C that we denote B Li4 C provided with two morphisms u:B — Bl C, v:C — B ug C such that
uf = vg and satisfying the following universal property: for any object P of C and any two morphisms
u':B— P, v :C— P in C such that u’ f = v'g then there exists a unique morphism p:Bus C — P
making the following diagram commute:

/\
\/V,

When A is an initial object (provided it exists) of C then B Ly C is the coproduct® of B and C in C.
When C is the category of commutative R-algebras then the pushout is given by the tensor product

2 The coproduct can be defined, however, without assuming the existence of an initial object.
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B ®4 C. This is not true anymore if C is the category of R-algebras (cf. Example 2.9 or create easier
examples). However we can always find a pushout even when C is the category of R-algebras and it
will be denoted by B x4 C. Before introducing, however, the pushout for non(necessarily)-commutative
R-algebras we recall the behavior of the tensor product over R. We put ourselves in the following
situation:

Notation 2.1. By R we will denote a commutative ring while A, B and C will be R-algebras and f :
A — B, g: A— C two R-algebra morphisms. We also denote by pg: B— B®rC and pc : C - By C
the morphisms sending respectively b b ® 1¢ and c—~ 15 ® .

Proposition 2.2. Let D be any R-algebra and u : B — D, v : C — D two R-algebra morphisms such that
uoupg =vouc and such that u(b)v(c) = v(c)u(b) for all b € B, c € C. Then there exists a unique R-algebra
morphismt : B®g C — D making the following diagram commute:

/

/ BRrC —=D
N

Proof. Cf. for instance [3], I, §3, Proposition 3.2. O

X

Unfortunately B ® 4 C behaves badly in general and one can observe that even A ®4 A >~ A, as an
R-algebra, is not a natural quotient of A ®g A. So, instead, let us consider the following construction:

Definition 2.3. We denote by B x4 C, and we call it the star product of B and C over R, the quotient
of B ®p C by the two-sided ideal generated by A, i.e. the ideal of B ®g C generated by the set

{0 f(a) — pcg(@)}aca-
It is an easy consequence the following universal property of the star product:

Proposition 2.4. Let D be any R-algebraand u : B— D, v : C — D two R-algebra morphisms such that uf =
vg and such that u(b)v(c) = v(c)u(b) for all b € B, c € C. Then there exists a unique R-algebra morphism
t: B x4 C — D making the following diagram commute:

/

% C > D
Proof. It is sufficient to take the R-algebra morphism B ®g C — D and observe that it passes to the
quotient. O

\
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The star product will only be used in Example 2.8 and Section 3.3, so finally let us recall the
construction of the pushout of R-algebras: we follow essentially [2] 1.7 and 5.1 with very few modi-
fications in the exposition in order to obtain an easier to handle description. We describe A, B and C
giving their presentation as R-algebras thus getting R(Xp; So), R(X1;S1) and R(X2; S2) respectively,
where X; is a generating set with relations S; (i =0, 1,2). We recall that R(X; S) is to be intended
as the R-algebra whose elements are all R-linear combinations of words on the set X quotiented by
the two-sided ideal generated by the relations in S. Observe that for y,z € X we are not assuming
zy = yz; if it is the case the information will appear in S. However for any x € X and any r € R
we do assume xr = rx. For example the commutative R-algebra R[x, y]/f(x, y) can be presented as
R{x,y; f(x,y) =0, xy = yx). First we observe that the coproduct of B and C (i.e. the pushout of B and
C over the initial object R) is given by the R-algebra B g C := R{X7 U X2; S1US>) where the union is
of course disjoint. Let us denote by u: B — B g C and v : C — B xg C the canonical inclusions. Then
the pushout of B and C over A is given by the R-algebra

Bxa C:=R(X1UX>5;S1US,US3) 3)

where S3 consists on the relations given by uf(x) = vg(x) for every x € Xo. Now we relate the
pushout just described to the tensor product:

Lemma 2.5. Assume that B = R(X1; S1) and C = R(X>2; S2). Then B ®g C can be presented as R(X1 U X3;
S1US2,{zy = yZ}zex,,yex,) thus becoming a quotient of R(X1 U X3; 51U S2) = B xg C.

Proof. Let D be an R-algebra provided with R-algebra morphisms m: B — D and n: C — D such
that moug =nouc, and assume moreover that m(b)n(c) =n(c)m(b) for all b € B, c € C. Let us denote
by u:B— Bx*g C and v :C — B *g C the canonical morphisms and by A : B xg C — D the universal
morphism making the following diagram commute:

7

rRC——=D
By assumption Au(z)Av(y) = Av(y)Au(z) so u(z)v(y) — v(y)u(z) € ker(r) hence A factors through

R{X1U X3; 51U 82, {2y = yZ}zex,,yex,) providing it with the universal property stated in Proposi-
tion 2.2 and this is enough to conclude. O

X

Let g: R — T be an R-commutative algebra. When f = f(x1,...,X) € R[x1, ..., X;] we denote by
q«(f) the polynomial in T[xq,...,X;] whose coefficients are the image in T by g of the coefficients
of f, i.e. the image of f through the morphism q, : R[x1,...,Xs] = T[X1,...,Xp] = R[X1,...,xn] Qr T.
Now take R(X, S): by an abuse of notation we denote by q.(S) the set of relations {g.(s;) = 0} on the
set X. In Lemma 2.6 we observe that the pushout is stable under base change.

Lemma 2.6. Let q : R — T be an R-commutative algebra and R(X; S) any R-algebra, then

1 R(X;S) ®r T = T(X; q:(S)),
2. BxaC)@r T~ (BORT) #agxT) (C®r T).
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Proof. As a commutative R-algebra, T is isomorphic to R[{y;}]/({fr}) where {y;} is a set of generators
and {f;} a set of polynomials in the variables {y;} with coefficients in R. So by Lemma 2.5 R(X; S) ®&
T is isomorphic to R(X U {y;}; SU{fy =0} U{y;y;j =y;yi} U{Xyi = yiX}xex) which is isomorphic to
R{XU{yi}; g« (S)U{fr = 0}U{yiyj = ¥;yi}U{xy; = yix}xex) and the latter is isomorphic to T(X; q.(S))
since T commutes with X and this proves 1. Let us describe A, B and C as R{Xo; So), R(X1; S1)
and R(X3y; S,) respectively. As a consequence of point 1 we have A Qg T >~ T(Xo; q«(So)), BQRr T =~
T(X1;9x(51)), C®r T = T(X2;q+«(S2)) and (B4 C) ®r T = T (X1 U X2;q«(51 U S2 U S3)) where S3 is
as described in (3). But (B ®r T) *(agT) (C ®r T) is also isomorphic to the latter which enables us
to conclude. O

Notation 2.7. When R is a Dedekind ring and M an R-module, let us denote by q: M — F(M) the
unique quotient (cf. [5], Lemme (2.8.1.1)) of M which is R-flat and such the induced map qg : Mx —
F(M)g is an isomorphism.

Let us analyze a few examples whose importance will be clear in the following sections:

Example 2.8. Let f: A— B and g: A — R be morphisms of R-algebras then the canonical morphism
@ :Bxsg R— Bx*a R is an isomorphism. Indeed we observe that B «g R = B and that the canonical
morphisms u: B — B*g R and v : R — B %z R are nothing else but Idg and the unit morphism
up respectively, then for any b € B and any r € R we have u(b)v(r) = v(r)u(b). Hence denoting by
U :B— B#*a R and v/ : R — B x4 R the canonical morphisms we also have u’(b)v'(r) = v'(r)u’(b) as
u' =xu and v/ =Av where A : B #g R — B %4 R is the universal morphism. Then ¢ can be inverted
according to Proposition 2.4. Observe that B *4 R is finite as an R-module if B is finite (it is indeed a
quotient of B).

Example 2.9. Let R be a discrete valuation ring with uniformising element 7. Let us fix a positive
integer p and let us set A := R[x]/xP, B:=R[y]/yP and C := R[z]/zP (thus commutative R-algebras).
Consider the morphisms f: A — B,x+— 7"y and g: A — C,x— ™z where m > n > 0 are integers.
Then B x4 C = R(y,z; y? =2z =0,7™z = n"y). Observe that, as an R-module, B x4 C is not flat
as 7"(r™ "z — y) =0 thus 7™ "z — y is an R-torsion element. However if we add the relation
™"z =y then we eliminate torsion from B4 C and what we obtain is (cf. Notation 2.7) F(Bx4C) =
R(y,z; yP =2zP =0,7™ "z =y) = R[z]/ZP thus finitely generated and flat and, in this particular case,
it is isomorphic to F(B ®4 C).

The following well-known result will be used several times in this paper:

Theorem 2.10. Let R be a complete discrete valuation ring with fraction field K and residue field k. Let M be a
torsion-free R-module of finite rank r (i.e. r := dimg (M ®g K) < +00). Then M ~g_moq K& =5 @ R®*, where
s =dim(M ®g k).

Proof. This is [6], Chapter 16, Corollary 2, O

Theorem 2.10 is not true when R is not complete (cf. [6], Theorem 19) and this is why we will
often need to restrict to complete discrete valuation rings. The following lemma is crucial in this
paper:

Lemma 2.11. Let R be a complete discrete valuation ring and assume that f : A— Band g: A — C are
R-algebra morphisms where furthermore gi : Ax — Cy is an isomorphism. Then if A, B and C are finitely
generated and flat as R-modules then the same holds for F (B x4 C). Moreover the canonical R-algebra mor-
phism B — F(B %4 C) induces an isomorphism Bg — F(B %4 C)k.

Proof. Let m be an uniformising element of R and let K and k be the fraction and residue fields
respectively. As usual let us present by R(Xo;So), R(X1;S1) and R(Xz;Sy) respectively the R-
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algebras A, B and C where for Xp, X1, X2 we take respectively bases of A, B, C as R-modules
minus the identity elements so that the cardinality xo, X1, x> of those sets is the rank of A, B and
C (respectively) minus one; of course xg = x. Now B x4 C = R(X1 U X3; S1 U S, U S3) where S3
is as described in (3). In particular S3 is a set made of xg R-linear relations relating the x, el-
ements of X, and the x; elements of Xi. As in Example 2.9 the information of being R-torsion
(if any) is contained in the set S3, so if we want to cut out R-torsion we need to add an-
other set of xg relations S4 obtained as follows: for each relation (s = 0) € S3 add the relation
(t =0) to S4 where s ="t and t has at least one coefficient equal to an invertible element of
R. Thus F(B x4 C) = R(X7 U X3; S1 U S, U S3 U Sy4). But since relations in S3 are automatically sat-
isfied if we add S4 then F(B %4 C) = R(X7 U X2;S1 U S2 U S4). Now Lemma 2.6, point 1, implies
that F(B %4 C) ®g k = k(X1 U X2;q+«(S1 U S2 U S4)) where q: R — k is the canonical surjection so
F(B x4 C) ®g k is the quotient of k(X; U X2;q+«(S1 U S3)) by the two-sided ideal generated by the
relations q.(S4). But in k(X7 U X2;q+(S1 U S3)) the elements of the set X1 U X, are x1 + xy k-linearly
independent vectors then if we add the xo = x, k-linear relations g.(S4) what remains is a set of at
least x; =rk(B) — 1 k-linearly independent elements which become rk(B) if we add 1g. Combining
this with Theorem 2.10 we obtain that F(B x4 C) is a finitely generated R-free module, as required,
as dim(F(B x4 C)) ®g k = dimg (F(B x4 C)) ®g K. The last assertion follows easily from Lemma 2.6,
point 2. O

Remark 2.12. The construction in Lemma 2.11 does not depend on A. That means that if we take A’,
f':A’— B and g’: A’ — C satisfying similar assumptions then F(B x4 C) >~ F(B x4/ C). Indeed, again
by [5], Lemme 2.8.1.1, we observe that F(B x4 C) is isomorphic to the unique quotient of B xg C which
is R-flat and whose tensor over K gives B; but the same property is satisfied by F(B x4 C) hence
we conclude by unicity.

Proposition 2.13. Let R be any commutative ring. Then the pushout in the category of R-bialgebras exists.

Proof. We follow> [7], Chapitre 5, §5.1, Proposition. Consider the diagram

where we assume that A, B and C are R-bialgebras and the arrows are R-Hopf algebra morphisms.
Let D := B x4 C be the pushout of the diagram in the category of R-algebras and let mp and up be
respectively the multiplication and the unit morphism. Then we need to provide D with a comulti-
plication Ap and a counit €p such that (D, mp, up, Ap, €p) is an R-bialgebra. We describe how to
construct Ap, the costruction of &p being easier. The rest will be standard verification over compli-
cated diagrams. The existence of Ap is explained in the following diagram, taking into account the
universal property of D:

3 In [7], however, Lemaire uses different notations.
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Ap
B B ®r B
/ \ fef u®u
Aa
A— D-_TA®A_ ___-DberD O
Ap
X\ / %\\ VeV
C C®rC
Ac

Remark 2.14. Notation being as in Proposition 2.13 one observes that we can define an R-module
morphism Sp : D — D, candidate to be a coinverse, as follows: first construct the opposite algebras
A% B, C°P, D, the opposite morphisms f°, g, u°, v°P and the morphisms of R-algebras S/,
Sh» S¢, induced by the R-algebra anti-morphisms S4, Sp, Sc. Then the existence of S}, follows from
the following diagram

B e BOP

f u fop uop

/ i \
A— D__>A» D%

T

N
c cop

S¢

exploiting the universal property of D then Sp is the anti-morphism induced by S},. However Sp
may fail to be a coinverse for D as mp o (Sp ® idp) o mp may not be equal to up o ep (same for
mp o (idp ® Sp) omp).

In order to have an explicit description for Sp, constructed in Remark 2.14, set, as usual, A =
R(Xo; So), A=R(X1;S2) and C = R(X3; S3) so D = R(X1U X3; S1US,US3) where S3 is as described
in (3); it is sufficient to set Sp(xy) := Sp(x1) for any x; € X1, Sp(x2) := Sc(xy) for any x; € X, for
any x1 € X1, Sp(x1x2) := Sp(x2)Sp(x1) and Sp(x2x1) := Sp(x1)Sp(x2). It is well defined and is by
construction an anti-isomorphism for the R-algebra D. A similar construction gives an explicit de-
scription of Ap, taking into account that Ap is a morphism of R-algebras and not an anti-morphism.

Corollary 2.15. Let R be a complete discrete valuation ring and assume that f : A— Band g: A — C are
R-algebra morphisms where furthermore gi : Ax — Ck is an isomorphism. Then F(B x4 C) has a natural
structure of R-Hopf algebra. If moreover A, B and C are finitely generated and flat as R-modules then F (B4 C)
is the pushout of B and C over A in R-Hopf .

Proof. By [5], (2.8.3) and of course Proposition 2.13 we obtain that F(B x4 C) has a natural structure
of R-bialgebra. We need to prove the existence of a coinverse Sf(p«,c) that gives F(B %4 C) a natural
structure of R-Hopf algebra. So let us take for D := B %4 C the R-module morphism Sp defined in
Remark 2.14. This morphism induces (by [5], Lemme 2.8.3) an R-module morphism Sr(p): F(D) —
F (D) which is the required coinverse: indeed

mpp) o (SF(py ® idF(py) oMp(py — Up o Ap (5)
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is the zero map Op and this is clear since F(D) C Bk and (5) tensored over K gives rise to the
equality

mp, o (Spy ®idp,) omp, =up, o Ap,

which holds as Bk is a K-Hopf algebra. The same is true for mgp) o (idripy ® SF(p)) © ME(D).
Finally F(B x4 C) is finitely generated and flat as an R-module when A, B and C are: this is
Lemma 2.11. O

Remark 2.16. Notation being as in Proposition 2.13, we observe that B x4 C is cocommutative if A, B,
C are. The same conclusion holds, then, for F(B x4 C) in Corollary 2.15. Moreover observe that if A,
B, C are commutative then F(B x4 C) is commutative too since it is contained in Bg. So in particular
in this case F(B x4 C) >~ F(B ®4 C), as it happened in Example 2.9.

3. Pushout of group schemes

In this section R is any complete discrete valuation ring with fraction and residue fields respec-
tively denoted by K and k.

3.1. The finite case

Let M = Spec(B) and N = Spec(C) be finite and flat R-group schemes, i.e. B and C are free over
R and finitely generated as R-modules. Let us assume that there is a K-group scheme morphism
¥ : Mg — Ng. An upper bound for M and N is a finite and flat R-group scheme U, provided with a
model map U — M and an R-group scheme morphism ¢ : U — N which generically coincides with
¥ : Mg — Ng. A lower bound for M and N is a finite and flat R-group scheme L, provided with a
model map N — L and an R-group scheme morphism § : M — L which generically coincides with
¥ : Mg — Ng. The construction of an upper bound is easy: it is sufficient to set U as the schematic
closure of Mg in M x N through the canonical closed immersion Mg < Mg x Nk (and this holds
when the base is any Dedekind scheme). Now consider the following commutative diagram

u (6)

where U = Spec(A) is any upper bound. We are now going to study the existence of a pushout Muy N
in the category of finite and flat R-group schemes. We prove the following

Lemma 3.1. The pushout of (6) in the category of finite and flat R-group schemes exists. Moreover M Uy N is
a lower bound for M and N.

Proof. Notation being as in the beginning of this section, we have the following diagram of commu-
tative R-Hopf algebras:

A

/N
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which, dualizing, gives rise to the following diagram of cocommutative (but possibly non-commuta-

tive) R-Hopf algebras:
N

BY cVv.

Let us consider the cocommutative R-Hopf algebra F(BY x4v CV) constructed in Corollary 2.15. Now
we take the spectrum of its dual P := Spec(F(BY x4v CV)Y). First of all we observe that F(BY x4v C¥)V
is commutative as F(BY x4v CV) is cocommutative so that taking its spectrum does make sense. It
remains to prove that the commutative diagram

N
~

N

is in fact a pushout in the category of finite and flat R-group schemes. But this follows from the fact
that F(BY x4v CV) is a pushout in R-Hopf ¢. That Muy N := P is a lower bound for M and N is also
clear by construction. O

Theorem 3.2. The pushout of (6) in the category of affine R-group schemes exists.

Proof. Consider the commutative diagram

where P is the pushout of (6) in the category of finite and flat R-group schemes constructed in
Lemma 3.1 and Q = Spec(D) is any affine R-group scheme. We are going to show that P is also the
pushout of (6) in the category of affine R-group schemes. Let us factor u through M’ := Spec(B’) via
the morphisms u': M — M’ and i: M’ — Q where i is a closed immersion and u’ is a schematically
dominant morphism (i.e. the induced morphism B’ — B is injective) so that M’ is a finite and flat
R-group scheme since M is. Likewise we factor v through the finite and flat R-group scheme N’ :=
Spec(C’) via the schematically dominant morphism v’ : N — N’ and the closed immersion j: N’ — Q.
Now consider the finite R-group scheme (it needs not be flat a priori) M’ xo N’ and the natural
closed immersions i’ : M’ xq N’ < M’ and j': M’ xq N' < N’. So let us denote by r: U - M’ xq N’
the universal morphism, then we have the following commutative diagram
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’

u
M M’
TN
r
U— " = M xgN Q
N N’
v/
and in particular we have the following commutative diagram of R-algebras
A<~—PB
BI ®D C/

where B’ — B’ ®p C’ is surjective but also injective since B’ — A is (recall that m: U — M is a model
map). Hence i’ is an isomorphism so there exists a universal morphism P — N’ by Lemma 3.1 and
we conclude. O

Remark 3.3. If U’ is any other upper bound for M and N then there is a canonical isomorphism
M uy N ~ M uys N: this is a consequence of Remark 2.12. However this does not mean that the lower
bound for M and N is unique, which is clearly not true in general.

3.2. The quasi-finite case

Let M = Spec(B) and N = Spec(C) be quasi-finite (by this we will always mean affine and of finite
type over R, with finite special and generic fibers) and flat R-group schemes. It is known (see [1],
§7.3, p. 179) that any quasi-finite R-group scheme H has a finite part Hy, that is an open and closed
subscheme of H which consists of the special fibre Hy; and of all points of the generic fibre which
specialize to the special fibre. It is thus flat over R if H is.

Remark 3.4. If H = Spec(A) is a quasi-finite and flat R-group scheme then its finite part coincides with
Spec(AYY) where AV is the double dual of A: this follows from the fact that A ~g_;00 K® @ R®S (cf.
Theorem 2.10) s0 AY ~g_moq R®® is an R-Hopf algebra and not just an R-algebra. Hence the canonical
surjection A — AV gives the desired closed immersion Hy < H of group schemes. However this
fact will not be necessary in the remainder of this paper.

Let us assume that there is a K-group scheme morphism ¥ : My — Ng. We define upper and
lower bounds exactly as in the finite case. One can easily construct an upper bound U for M and N
simply proceeding as in Section 3.1. So U will be in general a quasi-finite and flat R-group scheme.
For the lower bound it will be a little bit more complicated. So consider again the commutative
diagram (6) where U = Spec(A) is any upper bound. We are going to study the existence of a pushout
M uy N in the category of affine R-group schemes. We prove the following

Theorem 3.5. Assume that N admits a finite and flat model over R. Then the pushout of (6) in the category
of affine R-group schemes exists. Moreover M Uy N is a lower bound for M and N.

Proof. Let N’ denote a finite and flat R-model for N, i.e. a finite and flat R-group scheme whose
generic fibre is isomorphic to Ng. Consider the finite part My and Ny of, respectively, M and N.
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Compose the closed immersion M x — My with g : Mg — Ny thus obtaining a morphism My x —
Ng. By Theorem 3.2 we construct a lower bound L; for My and N’, which is finite and flat over R,
generically isomorphic to N, then it is already a lower bound for M and N’. Considering the closed
immersion Ny x — Nk we also construct a lower bound L, for Ny and N’, which is finite and flat
over R, generically isomorphic to N, then it is already a lower bound for N and N’. So a lower bound
L for L1 and L, (which are generically isomorphic) exists by Theorem 3.2 and is also a lower bound
for M and N. We still need to compute the pushout of M and N over U: let us set Uy := Spec(Ay),
My := Spec(Bf), Ny :=Spec(Cy) and L := Spec(D). Consider the natural R-bialgebra morphism (cf.
Proposition 2.13) BJY *AY C; — DY and factor it as follows

vV > EC s DV

Vv
B *A} Cf

f

where E is a cocommutative R-bialgebra which is flat and finitely generated as an R-module because

DY is. Consider the morphism SB} : B} *ay CF — B; *Ay C; constructed in Remark 2.14; the

*A}C;

commutative diagram

% E( Dv

f

\2
Bf *A;C

S
BJY*A}CF \L Spv

vV > EC s DV

f

\
Bf *A}C

induces an anti-morphism of R-algebras
Se:E—E

which gives E a natural structure of R-Hopf algebra: indeed mg o (idg ® Sg) o mg = ug o &g and
mg o (Sg ® idg) o mg = ug o ¢ since the same equalities hold for DV. It is now sufficient to take
the union of Spec(EY) and Ng =~ Lk in order to construct a quasi-finite and flat R-group scheme P
which is certainly a pushout in the category of quasi-finite and flat R-group schemes. Arguing as in
the proof of Theorem 3.2 we can deduce that P is also a pushout in the category of affine R-group
schemes. O

Remark 3.6. As in Remark 3.3 one observes that if U’ is any other upper bound for M and N then
there is a canonical isomorphism M Uy N >~ M uys N: indeed E, as constructed in the proof, is the
only quotient of B}! *R C}, R-flat which over K gives B}K *K C}K — DV and this does not depend

on Ay. The same will hold for Corollary 3.7 and will be used in Corollary 3.9.

Corollary 3.7. When Ny is étale then after possibly a finite extension of scalars the pushout of (6) in the
category of affine R-group schemes exists. Again M Uy N is a lower bound for M and N.

Proof. Clear since after possibly a finite extension K’ of K the K-group scheme N becomes constant
then it certainly admits a finite, constant (so flat) model over R’, the integral closure of R in K. O

Let K’ be a finite extension of K and R’ the integral closure of R in K’ then R’ is a complete
discrete valuation ring. Assume that W is a torsion-free R module of finite rank n then we have the
following

Lemma 3.8. If W ®g R’ is finitely generated as an R’-module then W is finitely generated as an R-module
too (thus free).
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Proof. By Theorem 2.10 W ~g_mod K®"5 @ R®S, where s = dim(Wy), hence W ®g R’ ~gr/-mod
K'®"=S @ R'®S so if W ®g R’ is finitely generated as an R’-module then n—s =0 and we conclude. O

This will be used in the following

Corollary 3.9. When R is complete and N is étale then the pushout of (6) in the category of affine R-group
schemes exists. Again M Uy N is a lower bound for M and N.

Proof. Again Uy = Spec(Af), My = Spec(Bf), Ny = Spec(Cy) will denote the finite part of U, M and
N respectively. Let us consider the duals A} =AY, B]Vc =BYY and CJY = CYV and the commutative

/\ /\
\/ \/

C\/
where E comes from the factorization of the universal morphism B?K *ay CJYK — CV. Arguing as
K
in Theorem 3.5 we provide it with a natural structure of K-Hopf algebra. Using again [5], Lemme
(2.8.1.1) we construct the unique quotient

Vv Vv /
Bf *A} Cf — E
which is R-flat and which generically gives
\2 \%
By *ay, Crx > E-

Thus E’ has naturally a structure of a cocommutative R-Hopf algebra: indeed it inherits from

B} *ay C)Y a cocommutative R-coalgebra structure and by means of [5], (2.8.3) an anti-morphism

of R-algebras S; : E' — E’ which is a coinverse since tensoring it over K we obtain Sg : E — E which
is a coinverse for E. If we prove that E’ is finitely generated as an R-module then Spec(E"") glued to
N is the desired pushout. So now it remains to prove that E’ is finitely generated as an R-module: let
K — K’ be a finite field extension such that Ng/ admits a finite and flat model over R’, the integral
closure of R in K’. Then by Corollary 3.7 and Remark 3.6 E’ ®g R’ is R-finite and flat. Lemma 3.8
implies that E’ is R-finite and flat too. O

Remark 3.10. It is less elegant but still true that Corollary 3.9 holds for all those Nk that admits a
finite and flat R-model after possibly a finite extension of scalars and étale ones are just a particular
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case. Observe furthermore that, following the proof, in the situation of both Theorem 3.5 and Corol-
lary 3.7 one can find a finite and flat lower bound for M and N. This can be false in the situation of
Corollary 3.9.

3.3. Cokernels and quotients

In a category C with zero object Oc (that is an object which is both initial and final), we can
define the cokernel of a morphism f : A — B (see for instance [8], Ill, §3) which turns out to be
the pushout O¢ Lig B of the obvious diagram. As explained in the introduction in this section we are
going to describe, in Proposition 3.12, a new and easy proof for a well-known result. First we need a
lemma:

Lemma 3.11. Let R be a Dedekind ring or a field, A, B and C R-Hopf algebras provided with R-Hopf algebra
morphisms f : A— B and g : A — C. Then the star product B x4 C defined in Definition 2.3 has a natural
structure of R-Hopf algebra.

Proof. First we prove the existence of the comultiplication Ag,,c: it is sufficient to consider the
following diagram

Ap
B B ®r B
/ \ fef u®u
Agp
A BxpC_ _—A®A o (B*xaC)®r (Bxa ()
ABxpc
X\ / g®g vy
C C®rC
Ac

where the existence of Ap,,c is ensured by Proposition 2.4. The existence of ¢p,,c is easier and an
argument similar to the one used in Remark 2.14 ensures the existence of an anti-morphism Sg,,c :
B x4 C — B %4 C which is compatible with Spg,c, i.e. if A : BQ®r C — B4 C denotes the canonical
projection then A o Spgyc = Spx,c © A. From this we deduce that Sg,,c is the desired coinverse for
Bxa C. O

Proposition 3.12. Let R be a Dedekind ring or a field, G and H two finite and flat R-group schemes and
f + H— G a morphism of R-group schemes. Then the cokernel of f exists in the category of R-affine group
schemes.

Proof. The zero object in the category of R-affine group schemes is Spec(R). Let us set H = Spec(A)
and G = Spec(B). Then we first compute the pushout in the category of R-Hopf algebras of the dia-
gram

AV

N

BY R.

In Example 2.8 we have observed that W := BY x4v R 2~ BY x4v R canonically. That W has a natural
structure of R-Hopf algebra follows from Lemma 3.11. If R is a Dedekind ring and W is not flat
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then we consider F(W) (cf. Notation 2.7) which is flat and finitely generated and inherits the R-Hopf
algebra structure. Since the case of a field is similar let us just consider the case of a Dedekind ring R:
we are now going to prove that Spec(F(W)Y) is the desired pushout. So let M be any affine R-group
scheme, v: G — M an R-group scheme morphism and u : Spec(R) — M the natural inclusion (the
unity map). Let us assume we have a commutative diagram

Spec(R)

N,
e

Observe that we can assume M to be finite and flat, for if it is not we can factor v through a finite
and flat (since G is) R-group scheme that makes a diagram similar to (9) commmute. When M is
finite and flat it is easy to construct a universal morphism Spec(F(W)Y) — M since F(W) is easily
seen to be the pushout of diagram (8) in R-Hopfsr. O

(9)

Corollary 3.13. Let R be a Dedekind ring, G and H two finite and flat R-group schemes with H a closed and
normal R-subgroup scheme of G. Then the quotient G/H exists in the category of R-affine group schemes.

Proof. This follows directly from Proposition 3.12 where we take for f: H — G the given closed
immersion. O
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