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We investigate stability of multidimensional planar shock profiles
of a general hyperbolic relaxation system whose equilibrium model
is a system, under the necessary assumption of spectral stability
and a standard set of structural conditions that are known to
hold for many physical systems. Our main result, generalizing the
work of Kwon and Zumbrun in the scalar relaxation case, is to
establish the bounds on the Green’s function for the linearized
equation and obtain nonlinear L2 asymptotic behavior/sharp decay
rate of perturbed weak shock profiles. To establish Green’s function
bounds, we use the semigroup approach in the low-frequency
regime, and use the energy method for the high-frequency bounds,
separately. For the system equilibrium case, the analysis of the
linearized equation is complicated due to glancing phenomena. We
treat this difficulty similarly as in the inviscid and viscous systems,
under the constant multiplicity condition.
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1. Introduction

In this paper, we study stability and the large-time behavior of multidimensional planar shocks of
hyperbolic relaxation systems of general form

(
u
v

)
t
+

d∑
j=1

(
f j(u, v)

g j(u, v)

)
x j

=
(

0
τ−1q(u, v)

)
, (1.1)

where u, f j ∈ Rn , v, g j,q ∈ Rr , with the condition
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Reσ
(
qv
(
u, v∗(u)

))
< 0, (1.2)

along a smooth equilibrium manifold v = v∗(u) defined by

E := {
(u, v) ∈ Rn+r

∣∣ q(u, v) = 0
}
, (1.3)

and τ > 0 is a (typically small) parameter determining relaxation time. The first n equations and
the second r equations represent a conservation law for u and relaxation rate equations for v , respec-
tively.

The relaxation phenomenon arises in many physical situations. It is present in nonequilibrium
gas dynamics, river flows, traffic flows, viscoelasticity with vanishing memory, phase transitions with
small transition time, and kinetic theory of gases. Originally, the word “relaxation” was used to de-
scribe certain thermodynamic nonequilibrium phenomena in gas dynamics. When an equilibrated
physical system is perturbed, for example, by a sudden change in temperature or pressure, the sys-
tem tends to re-equilibrate for the new conditions in the adjustment of the rotational and vibrational
energy. In our general system (1.1), the condition (1.2) implies that during this re-equilibrium process
a perturbed solution eventually relaxes to the equilibrium state. Besides these physical models, some
hyperbolic relaxation systems have been studied in a numerics point of view. The Jin–Xin model was
proposed in [17] as a numerical scheme approximating discontinuous solutions of the corresponding
equilibrium system.

An interesting phenomenon in the study of hyperbolic relaxation systems is the existence of
smooth traveling wave solutions satisfying

(u, v)(x, t) = (ū, v̄)(x1 − at),

lim
z→±∞(ū, v̄)(z) = (u±, v±), (1.4)

where the end states (u±, v±), necessarily satisfy v∗(u±) = v± , and u± is a shock solution of the
corresponding equilibrium system:

ut +
d∑

j=1

df j,∗(u)ux j = 0. (1.5)

Here and after we denote

df j,∗(u) := ∂u
(

f j(u, v∗(u)
))= f j

u
(
u, v∗(u)

)− f j
v
(
u, v∗(u)

)
q−1

v

(
u, v∗(u)

)
qu
(
u, v∗(u)

)
. (1.6)

By the classical Chapman–Enskog expansion, the equilibrium system for the conservation laws variable
u can be further approximated, at a formal level, to its first order with respect to the relaxation time
parameter τ as follows:

ut +
d∑

k=1

df k,∗uxk = τ

d∑
j,k=1

(
B∗

jkux j

)
xk

, (1.7)

where B∗
jk = − f k

v q−1
v (g j

u − g j
vq−1

v qu + q−1
v qu( f j

u − f j
v q−1

v qu)) is called the Chapman–Enskog viscos-
ity. For hyperbolic–parabolic systems, the existence and stability of smooth traveling wave solutions
have been studied by many authors. In light of the formal approximation, it is natural to ask if we
can obtain similar results for hyperbolic relaxation systems. The existence of such traveling solu-
tions is known for small amplitude profiles in several different contexts, see for example, [22,31,23,7].
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However, profiles of large amplitude may develop “subshocks” or jump discontinuities. We restrict
here to the smooth and small-amplitude case.

In the study of hyperbolic relaxation systems, the stability of the solution (ū, v̄) of (1.1)–(1.4) has
been investigated with respect to several different notions of stability. For example, one is the stability
as the relaxation time τ → 0, the so-called “zero relaxation limit” problem, see [4,5] and references
therein. Another one which we are concerned with in the present work is the time-asymptotic sta-
bility in the sense that a perturbed solution nearby the shock wave solution remains close in an
appropriate norm as t → ∞. For this purpose, we set, without loss of generality, τ = 1, and we study
the time-asymptotic stability.

The stability of traveling waves for a general 2 × 2 quasilinear relaxation system in one spatial
dimension was initially studied by T.-P. Liu in his seminal work [22]. In his paper, nonlinear stabil-
ity was established, under the main stability condition, the so-called “subcharacteristic” condition.
This is a crucial condition implying that the system is dissipative. His result implies that the formal
Chapman–Enskog approximation has a justifiable interpretation in terms of the large-time behavior of
the solutions. Another fundamental example is the Jin–Xin model introduced as a numerical scheme
approximating discontinuous solutions of the corresponding equilibrium system by S. Jin and Z. Xin.
In [17] the stability for this 2 × 2 system in one spatial dimension with the linear transport term was
obtained by showing L1 contraction property. These two models served as a guideline to the funda-
mental ideas in the study of general relaxation systems. Later, Mascia and Zumbrun [23] showed the
nonlinear stability for general N × N relaxation systems in one spatial dimension, under the neces-
sary assumption of spectral stability, which was verified using singular perturbation argument in [28].
They applied the pointwise semigroup approach introduced by Zumbrun and Howard [36] to the re-
laxation problems. Establishing the Green function bounds together with shock tracking method, they
proved nonlinear stability with sharp decay rate.

Loosely following [23], the stability of multidimensional planar shocks of the general relaxation
system whose equilibrium model is scalar (i.e. n = 1) was studied in [20]. Under the necessary as-
sumption of spectral stability together with dissipative structural assumption, nonlinear L2 asymptotic
behavior with sharp decay rate of perturbed weak shock was obtained. There are several nonlinear
stability results for specific multidimensional scalar relaxation models. Nonlinear stability of the 3 × 3
Jin–Xin model in two spatial dimensions and two-dimensional shallow river model were obtained in
[15] and [16], respectively. They both rely on the structure of specific models and give only stability
without decay rates or the asymptotic behavior, whereas the result in [20] applies to general equa-
tions, yielding sharp decay rates. On the other hand, it relies on the assumption of spectral stability,
which needs to be verified. However, to our knowledge, no stability result on the multidimensional
general relaxation system whose equilibrium model is a system is obtained. System equilibrium cases
include many important physical examples, such as gas dynamics in thermo-nonequilibrium as in [32],
moment closure and discrete kinetic models obtained from Boltzman equation, and so on. For the sys-
tem case, the linearized estimates are much more complicated due to glancing phenomena; see [6]
for the related Kreiss–Majda theory in the inviscid case, and see also [33,34] for the viscous case.
A significant difference from the scalar case considered in [20] is that there are more than one slow
modes in the system case, in which complicated glancing modes and super-slow modes are present.
Our proof is carried out by verifying that we can express these modes in the framework of [34], in
which the author considers the similar case of multidimensional planar viscous shock profiles.

In the present paper, generalizing the results of [20] in the scalar relaxation case to the system
equilibrium relaxation case, we prove stability with the asymptotic behavior and the decay rates of
small-amplitude multidimensional planar shocks of (1.1), under the following assumptions. For nota-
tional convenience, we rewrite (1.1) as

Ut +
d∑

j=1

A j(U )Ux j = τ−1 Q (U ), (1.8)

where A j(U ) = (df j(u, v),dg j(u, v))t and Q (U ) = (0,q(u, v))t .
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Assumptions 1.1.

(H0) f j, g j,q ∈ Cm , m � [d/2] + 3.
(H1) (i) σ(

∑
j ξ j A j(U±)) real, semi-simple for all ξ ∈ Rd , and (ii) σ(A1(U±)) different from a, the

speed of traveling waves.
(H2) (Non-strictly hyperbolic with constant multiplicity) The eigenvalues of the reduced system∑

j ξ j f j,∗
u (u±) are real, of constant multiplicity with respect to ξ ∈ Rd \{0} and different from a.

(H3) (Dissipative condition)

Reσ

(
−i

d∑
j=1

iξ j
(
df j,dg j)t

(u±, v±) + (0,dq)t(u±, v±)

)
� −θ |ξ |2/(1 + |ξ |2)

for all ξ ∈ Rd , θ > 0.
(H4) The set of traveling wave solutions of (1.1) forms a smooth manifold (ūδ, v̄δ), δ ∈ U ∈ R1.

In the present work, we restrict our attention to the standard case of a classical, Lax-type shock
(U−, U+, s). (H3) is guaranteed by our dissipative structural assumptions (A1) and (A2) below. (H2) is
a generalized condition of the strictly hyperbolic condition (H2)’ that requires all eigenvalues are real
and simple for all ξ ∈ Rd \ {0}.

Let us present here some technical definitions for our further assumptions on the non-strict hyper-
bolicity on the reduced system. The eigenvalues of

∑
j ξ j df j,∗(u±), denoted by a±

r (ξ), 1 � r � n, are

necessarily real, positive homogeneous degree one, and by (H2), locally analytic on ξ ∈ Rd \ {0}. Let

P±(τ , ξ) := iτ + i
∑

j

ξ j df j,∗(u±) (1.9)

denote the frozen-coefficient symbols associated with the first-order conservation law at the equilib-
rium end states u = u± . Then, det P±(τ , ξ) has n locally analytic, positive homogeneous degree one
roots

τ = −a±
r (ξ), r = 1, . . . ,n, (1.10)

describing dispersion relations for the frozen-coefficient equation.
The relations, with a notation ξ̃ = (ξ2, . . . , ξd),

iξ1 = μr(ξ̃ , τ ), r = 1, . . . ,n, (1.11)

describe roots of det R±(τ , ξ) = 0, where

R±(τ , ξ) := iξ1 +
(

iτ +
∑
j �=1

iξ j df j,∗
)(

df 1,∗)−1
± . (1.12)

Evidently, graphs (1.10) and (1.11) describe the same sets, since det P± = det R± det df 1,∗
± and

det df 1,∗
± �= 0; the roots iτ describe characteristic rates of temporal decay, whereas μ = iξ1 describe

characteristic rates of spatial decay in the x1 direction.

Definition 1.2. We define the glancing sets G(P±) as the set of all (ξ̃ , τ ) such that, for some real ξ1
and 1 � r � n, τ = −a±

r (ξ1, ξ̃ ) and (∂a±
r /∂ξ1)(ξ1, ξ̃ ) = 0: that is the projection onto (ξ̃ , τ ) of the set

of real roots (ξ, τ ) of det P± = 0 at which (1.10) is not analytically invertible as a function (1.11). The
roots (ξ, τ ) are called glancing points.
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Here is an additional assumption on the glancing set.

Assumption 1.3.

(H5) Each glancing set G(P±) is the union of (possibly intersecting) finitely many smooth curves
τ = η±

q (ξ̃ ) on which the root ξ1 of τ + a±
r (·, ξ̃ ) = 0 has constant multiplicity sq � 2, defined

as the order of the first nonvanishing partial derivative ∂ sar/∂ξ s
1 with respect to ξ1, i.e., the

associate inverse function ξ
q
1 (ξ̃ , τ ) has constant degree of singularity sq .

(H5) is a technical condition introduced in [33] in the context of the hyperbolic–parabolic system.
Here we assume this condition on the reduced system (1.9). It is automatic in dimensions d = 1,2
and in any dimension for rotationally invariant problems. In one dimension, the glancing set is empty.
In the two-dimensional case, the homogeneity of ar and its derivatives implies that the ray through
(ξ̃ , λ) is the graph of τ (ξ̃ ) and that (H5) holds there. By the implicit function theorem, (H5) holds also
in the case all branch singularities are of square root type, degree sq = 2 with ηq defined implicitly by
the requirement ∂aq/∂ξ1 = 0. In particular, it holds in the case that all eigenvalues are either linear or
else strictly convex/concave in ξ1 for ξ̃ �= 0. Thus, it holds always for the equations of gas dynamics
in all dimensions.

Now let us state our necessary assumption of spectral stability. Let D(λ, ξ̃ ) as in Definition 2.6, Sec-
tion 2, denote the Evans function associated with Fourier transformed operator L ξ̃ of the linearized

operator about the wave Ū . Introduced by Evans in the context of nerve impulse equations [8], the
Evans function serves as a characteristic function for the operator L ξ̃ . We study the point spectrum of

L ξ̃ via the Evans function D(λ, ξ̃ ), an analytic function measuring the angle of the nontrivial intersec-
tion between the stable manifold at +∞ and the unstable manifold at −∞. For further discussion of
the Evans function, see [1,11,28] and references therein. We assume

Assumption 1.4 (Strong spectral stability conditions).

(D1) D(λ, ξ̃ ) �= 0, ξ̃ ∈ Rd−1, Reλ � 0, (λ, ξ̃ ) �= (0,0), and additionally,
(D2) |D(λ, ξ̃ )| � c|(λ, ξ̃ )|, c > 0 for Reλ � 0 and |(λ, ξ̃ )| sufficiently small.

This spectral stability condition has been successfully verified in the viscous case, analytically and
numerically. Especially, it is analytically verified for small amplitudes by [28] for one-dimensional
case, and by [9,10] for both one- and multidimensional cases. It can also be verified numerically for
large amplitudes as in [3,12–14]. For one-dimensional general relaxation system, it is verified using
Evans function techniques (singular perturbation argument) as in [28]. This verification problem can
be also considered using energy estimates as in [16,15] for specific models and as in [26] for small
amplitude shocks in the general model, or a combination of asymptotic ODE methods and numerical
methods as in [12].

During the course of our analysis, we will often find it convenient to work with the Evans function
in polar coordinates, and for reference we re-state Assumption 1.4 in this context. Let Dλ0,ξ̃0

(ρ) :=
D(ρλ0,ρξ̃0) for (λ0, ξ̃0) ∈ Sd+ := {(λ, ξ̃ ) ∈ C × Rd−1: Reλ � 0} and ρ > 0. This Evans function in polar
coordinates will be discussed in more detail later in Section 2. With this definition, (D1)–(D2) can
simply be re-stated as Dλ0,ξ̃0

(ρ) vanishes precisely to first order at ρ = 0 and has no other zeroes

in Sd+ × {ρ > 0}. One can check that (D1)–(D2) is equivalent to the condition that the shock profile
(1.4) is a transversal connection of the traveling wave ODE and it satisfies the uniform Lopatinski
condition. In the analysis of low-frequency bounds in Section 2, we will make use of the bounds
in (D2) for λ ∈ Λξ̃ := {Reλ � −θ0|ξ̃ |2 for some θ0 > 0}. This slightly more general condition can be

obtained from (D2) together with the analytic extendability of Dλ0,ξ̃0
(ρ) as described in Lemma 2.7.

For relaxation shock problems, we encounter more singular high-frequency behavior associated
with the hyperbolic nature of the equations. In the viscous case, the linearized operator about the
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wave is sectorial, generating an analytic semigroup, and high-frequency contributions are essentially
negligible, whereas in the relaxation case, the linearized operator generates a C0 semigroup, and
there is substantial high-frequency contribution which complicates the analysis for small time. This
difficulty is overcome by “high-frequency energy estimate” obtained by carrying out Kawashima-type
estimates. This idea was initially suggested in [34] in the context of hyperbolic–parabolic systems,
and also carried out in the context of scalar relaxation system in [20]. In the viscous case, the short-
time well-posedness theory is standard, whereas we encounter more singular short-time behavior
in the relaxation systems. In order to overcome this, we establish the “damping estimate”, based on
Kawashima-type energy estimate under the following structural assumptions.

(A1) (Symmetric dissipative condition) (1.8) is simultaneously symmetrizable in the sense of
Friedrichs. That is, there exists A0 such that (i) A0 is symmetric, positive definite, (ii) A0 A j

are symmetric for 1 � j � d, and (iii) A0dU Q is symmetric, negative semi-definite.
(A2) (Genuine-coupling condition) No eigenvector of i

∑d
j=1 ξ j A j(U±) lies in the kernel of dU Q (U±).

Note that a combination of assumptions (A1) and (A2) implies (A3) below. It is called the skew-sym-
metrizer theorem essentially due to [29]. See [18,25,34,35] for more about general skew-symmetrizers
in the several different contexts. Moreover, conditions (A1)–(A2) also imply (H3), see [18,29,32].

(A3) (Compensation matrix) There exists a differential matrix operator K (∂x) satisfying

K̂ (∂x) f (ξ) = i K̄ (ξ) f̂ (ξ), (1.13)

where K̄ (ξ) is a skew-symmetric operator which is smooth and homogeneous degree one in ξ

satisfying

Reσ

(
|ξ |2 A0dU Q − K̄ (ξ)

d∑
j=1

ξ j A j

)
±

� −θ |ξ |2 for all ξ in Rd. (1.14)

Remark 1.5. 1. This is the standard set of structural assumptions proposed by W.-A. Yong in [30], as
adapted to the shock problem by Mascia and Zumbrun [23] in the one spatial dimension case.

2. As described in [23,25], (A1)–(A2) are satisfied for a wide variety of relaxation systems: the
extended thermodynamic models in the moment closure hierarchies of Levermore [21]; the discrete
velocity kinetic models of Platkowski and Illner [27]; the BGK models of Bouchut [2]; the numerical
scheme of Jin and Xin [17].

3. There is a more restrictive notion of symmetrizability by a nonlinear change of variables in
terms of a convex entropy function. This is guaranteed by the existence of a convex entropy func-
tion to (1.1). This nonlinear version of symmetrizability implies the symmetrizability in the sense of
Friedrichs. For further discussion of the existence of such an entropy function for (1.1), and its relation
to symmetrization, see [19].

Finally, to simplify later discussion for the low-frequency bounds in Lemma 2.12, we assume (with-
out loss of generality):

(S1) Nonzero eigenvalues of dU Q A−1
1 are distinct.

(S2) Eigenvalues of (i df ξ̃0,∗ + iτ0 In)(df 1,∗)−1 with nonzero real part are semi-simple and locally an-
alytic.

Before we state our main result, we introduce our notations. Ū (x1 − at) is a traveling wave solution
of (1.1), and Ũ (x, t) is a solution of (1.1) with the initial data Ũ0(x). For s � 0, Hs(Rd) := { f ∈ L2(Rd) |
(1+|ξ |s) f̂ (ξ) ∈ L2(Rd)} denotes the sth-order Sobolev space in the L2 sense, equipped with the norm
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| · |Hs . Let s0 := max{[d/2] + 2,4} where d � 2 is a space dimension. Now we state the main theorem
of this paper:

Theorem 1.6. Let Ū (x1 − at) be a relaxation shock profile (1.4) of (1.1) with its amplitude |U+ − U−| < δS

sufficiently small. Under assumptions (H0)–(H5), (A1)–(A2), (D1)–(D2), for s � s0 , we obtain the asymptotic
L1 ∩ Hs → Hs stability with decay rate

∣∣Ũ (·, t) − Ū
∣∣

Hs � C(1 + t)−
d−1

4 |Ũ0 − Ū |L1∩Hs (1.15)

provided that the initial perturbation |Ũ0 − Ū | is sufficiently small in L1 ∩ Hs.

Remark 1.7. It is also possible to establish L p stability, p � 2 as follows. First we can obtain L∞

stability with decay rate of (1 + t)− d−1
2 under a further regularity assumption, s � [d/2] + 5. This can

be proven in a similar way as L2 stability by using the Sobolev inequality, | · |L∞ � c| · |Hs , and the
high-frequency estimate as in Lemma 3.2, see [20] for more details. Then the interpolation yields

an L p estimate with decay rate of (1 + t)
−(d−1)

2 (1− 1
p ) for p � 2. Note also that L∞ stability without

any further assumption on regularity is possible to obtain, but with a less optimal decay rate. We
can obtain L∞ stability with the same decay rate as that of L2, simply using the Sobolev inequality,
| · |L∞ � c| · |Hs , together with the estimate (1.15). Then, again by interpolation, L p stability with the
same decay rate as that of L2 is obtained.

Outline of the paper. In Section 2, we establish L p bounds on the Green’s function associated with the
linearized equations about the shock wave. First we construct the resolvent kernel and its bound in
Laplace–Fourier frequency domain, and obtain L p Green’s function bounds via inverse Laplace–Fourier
transform. Section 3 is devoted to establishing the damping estimate and the high-frequency estimate
via Kawashima-type energy estimates. In Section 4, we prove Theorem 1.6. In Appendix A, we carry
out the detailed computation of block-diagonalization.

2. Green function bounds

In this section, we construct the resolvent kernel for the linearized equation about the wave, and
establish its bounds, under the necessary assumption of spectral stability. Using these, we obtain the
low-frequency contribution of Green function and its derivatives via inverse Laplace–Fourier trans-
form.

2.1. Spectral resolution formula

Let Ū (x1 − at) = (ū, v̄)t(x1 − at) be a traveling wave solution of (1.1) satisfying (1.4). Letting a = 0,
without loss of generality, Ū (x1) is a stationary shock wave solution. Linearizing (1.1) about Ū (x1), we
obtain

Ut +
d∑

j=1

(
Ā j U

)
x j

− dU Q̄ U = (0n, Ir)N0(U ) +
d∑

j=1

N j(U )x j , (2.1)

where dU Q̄ = dU Q (Ū (x1)), Ā j = (df j,dg j)t(Ū (x1)), and N j(U ) = O(|U |2) for 0 � j � n. We consider
the linear initial value problem associated with (2.1):

Ut = LU := −
∑

j

(
Ā j U

)
x j

+ dU Q̄ U , U (0) = U0. (2.2)
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Taking the Fourier transform in the transverse directions x̃ := (x2, . . . , xd), we reduce to a family of
partial differential equations (PDE)

Ût = Lξ̃ Û := −(
Ā1U

)′ − i
d∑

j=2

ξ j Ā j Û + dU Q̄ Û , Û (0) = Û0

in (x1, t) indexed by frequency ξ̃ ∈ Rd−1, where Û = Û (x1, ξ̃ , t) denotes the Fourier transform of
U = U (x, t) in x̃ and “ ′ ” denotes d/dx1. Taking the Laplace transform in t , we obtain the resolvent
equation:

(λ − Lξ̃ )
ˆ̂U = Û0, (2.3)

where ˆ̂U (x1, ξ̃ , λ) denotes the Laplace–Fourier transform of U = U (x, t).

Definition 2.1. (a) The Green function G(x, t; y) associated with the linearized equations (2.2) is de-
fined by

(i) (∂t − L)G = 0 in the distributional sense for all t > 0, and
(ii) G(x, t; y) ⇀ δ(x − y) as t → 0.

(b) The resolvent kernel Gλ,ξ̃ (x1, y1) associated with the resolvent equation (2.3) is defined as a
distributional solution of

(λ − Lξ̃ )Gλ,ξ̃ (x1, y1) = δ(x1 − y1).

Formally, one can write

G(x, t; y) := eLtδ(x − y),

and

Gλ,ξ̃ (x1, y1) := (λ − Lξ̃ )
−1δ(x1 − y1).

In the following proposition, we observe that L generates a C 0 semigroup, and we obtain the
spectral resolution formula. This inverse Laplace–Fourier transform will be used to convert the re-
solvent kernel G ξ̃ ,λ(x1, y1) in the low-frequency regime to obtain the low-frequency contribution for
G(x, t; y).

Proposition 2.2. Under assumptions (H0)–(H4), (A1)–(A2), L generates a C 0 semigroup |eLt | � Ceη0t on
L2 with domain D(L) := {U : U , LU ∈ L2}, satisfying the generalized spectral resolution formula, for some
η > η0 ,

G(x, t; y) = 1

(2π i)d
P.V.

η+i∞∫
η−i∞

∫
Rd−1

eiξ̃ ·(x̃− ỹ)+λt Gλ,ξ̃ (x1, y1)dξ̃ dλ. (2.4)

For the proof, we refer to [20] for the multidimensional scalar relaxation system. See also [23,34]
for one-dimensional relaxation system and real-viscosity hyperbolic–parabolic system, respectively.



2234 B. Kwon / J. Differential Equations 251 (2011) 2226–2261
2.2. The Evans function

Consider the homogeneous eigenvalue ordinary differential equation (ODE):

(Lξ̃ − λ)W =
(

dU Q − i
d∑

j=2

ξ j A j − λ

)
W − (A1W )′ = 0, (2.5)

and its limiting constant-coefficient equation at x1 = ±∞:

(Lξ̃ ,± − λ)W =
(

dU Q ± −
d∑

j=2

iξ j A j,± − λ

)
W − (A1,±W )′ = 0. (2.6)

By the change of variable V := A1,±W , we have

V ′ =
(

dU Q ± −
d∑

j=2

iξ j A j,± − λ

)
(A1,±)−1 V

=: A±V . (2.7)

Definition 2.3. The domain of consistent splitting Λ is defined as the connected component of (λ, ξ̃ ) ∈
C × Rd−1 containing ξ̃ = 0 and λ going to real +∞, for which the coefficients

(
dU Q ± −

d∑
j=2

iξ j A j,± − λ

)
(A1,±)−1 (2.8)

in (2.7) have p eigenvalues of negative real part and (N − p) eigenvalues of positive real part, with
no pure imaginary eigenvalues.

Lemma 2.4. Under assumptions (H0)–(H1), (H3), there holds

Λ ⊂ {
(λ, ξ̃ ): Re λ > −θ |ξ̃ |2/(1 + |ξ̃ |2) for some θ > 0

}
. (2.9)

In particular, for |(λ, ξ̃ )| � r > 0, arbitrary, Λ ⊂ {λ: Reλ � −η}×Rd−1 , where η(r) := θr2 > 0, r sufficiently
small.

Proof. Noting that eigenvalues μ(λ, ξ̃ ) of coefficient (2.8) relate to solutions of the dispersion-relation

λ(ξ) ∈ σ

(
dU Q ± −

d∑
j=1

iξ j A j,±

)

by the relation μ = iξ1, we find by assumption (H3) that the coefficient has no pure imagi-
nary eigenvalues when Reλ > −θ |ξ |2/(1 + |ξ |2) for ξ = (ξ1, ξ̃ ), all ξ1 ∈ R, or equivalently Reλ >

−θ |ξ̃ |2/(1 + |ξ̃ |2). A straightforward homotopy argument taking λ to real plus infinity then gives the
result; see [23,33,34]. �
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Proposition 2.5. Under assumptions (H0)–(H1), (H3), for (λ, ξ̃ ) in the domain of consistent splitting Λ, there
are N := n + r solutions of (2.5)

{
ϕ+

1 (x1;λ, ξ̃ ), . . . ,ϕ+
p (x1;λ, ξ̃ )

}
and

{
ϕ−

p+1(x1;λ, ξ̃ ), . . . ,ϕ−
N (x1;λ, ξ̃ )

}
,

which are locally analytic (in (λ, ξ̃ )) bases for the stable and unstable manifolds as x1 → +∞ and x1 → −∞,
respectively, that is, the (unique) manifolds of solutions decaying exponentially as x1 → ±∞. There are also
solutions of (2.5)

{
ψ−

1 (x1;λ, ξ̃ ), . . . ,ψ−
p (x1;λ, ξ̃ )

}
and

{
ψ+

p+1(x1;λ, ξ̃ ), . . . ,ψ+
N (x1;λ, ξ̃ )

}
which are locally analytic (in (λ, ξ̃ )) bases for stable and unstable manifolds as x1 → −∞ and x1 → +∞,
respectively, that is, manifolds of solutions blowing up exponentially as x1 → ±∞ (not unique).

Proof. This standard result holds for general variable-coefficient systems whose coefficients converge
exponentially as x1 → ±∞ (a consequence of the gap and conjugation lemmas; see [23,24,33,34]). �

Note that Ū ′(x1), a derivative of the traveling wave, is a solution fast decaying both at +∞
and −∞. Hereafter we let, without loss of generality, ϕ+

1 (x1;0,0) = Ū ′(x1) = ϕ−
N (x1;0,0).

Definition 2.6 (Evans function). For (λ, ξ̃ ) in the domain of consistent splitting Λ, we define the Evans
function as

D(λ, ξ̃ ) := det
(
ϕ+

1 , . . . ,ϕ+
p ,ϕ−

p+1, . . . ,ϕ
−
N

)∣∣
x1=0. (2.10)

Evidently, the Evans function is locally analytic in (λ, ξ̃ ) in the domain of consistent splitting, with
zeros of D(·, ξ̃ ) corresponding to eigenvalues of L ξ̃ and it can in fact be extended continuously along
rays through the origin using a polar coordinate. It is obvious that the condition

D(λ, ξ̃ ) �= 0 for ξ̃ ∈ Rd−1, Re λ > 0

is a necessary condition for stability.
Define the Lopatinski determinant �(λ, ξ̃ ) for the equilibrium system by

�(λ, ξ̃ ) := det
(
r−

1 , . . . , r−
n−i− , i

[
f ξ̃ ,∗]+ λ[u], r+

i++1, . . . , r+
n

)
, (2.11)

where

f ξ̃ ,∗(u) :=
d∑

j=2

ξ j f j(u, v∗(u)
)
,
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and r±
j (λ, ξ̃ ) are defined as bases for the unstable/stable, respectively, subspaces of the matrix

(
λI + i df ξ̃ ,∗)(df 1,∗)−1

± .

We have the primary relation between D and � in the limit as frequency goes to zero:

D(λ, ξ̃ ) = γ �(λ, ξ̃ ) + O
(|ξ̃ | + |λ|)2

, (2.12)

where γ is a constant measuring transversality of stable/unstable manifolds in the traveling wave
ODE. For the details of the proof, see Proposition A.1 in [33]. The proof of the relation (2.12) is con-
siderably simpler in the relaxation than in the viscous case. Note also that � is linear on rays, but not
linear. More specifically, it has a conical singularity at (ξ̃ , λ) = (0,0) and is degree one homogeneous,
with a gradient discontinuity at the origin. In light of this, we can blow up the singularity in D , � at
the origin using polar coordinates

(λ, ξ̃ ) = (ρλ0,ρξ̃0),
∣∣(λ0, ξ̃0)

∣∣= 1.

Define

Dλ0,ξ̃0
(ρ) := D(ρλ0,ρξ̃0),

for λ0, ξ̃0 held fixed. Evidently Dλ0,ξ̃0
(ρ) is analytic in all coordinates for Reλ0 > 0, ξ̃0 ∈ Rd−1,ρ > 0.

We can remove the singularity at (λ, ξ̃ ) = (0,0) as follows.

Lemma 2.7. Dλ,ξ̃ (ρ) can be extended analytically onto ξ̃ ∈ Rd−1,Reλ > 0,Reρ > −η, for some η > 0.

Proof. Loosely following [33] for the viscous case, we shall extend the bases {w±
j } described in Propo-

sition 2.5 so that their wedge products are analytic. The difficulty is that the limiting coefficient
equations lose hyperbolicity at ±∞ for ρ = 0. That is, the equation

A1±V ′ − dU Q ±V = 0, (2.13)

has an n-fold center manifold consisting of all constant solutions. Thus we cannot use the spectral
separation argument directly. To overcome this, we will appeal to the gap lemma of [11]. We first
show the existence of extensions w̄±

j for the limiting coefficient equations. It is evident that the
stable/unstable manifolds extend analytically by their spectral separation from other modes. The bi-
furcation of the center manifold near ρ = 0 is crucial. Substituting the Ansatz W = eμx1 V into the
limiting equations, we obtain the characteristic equations,

[
dU Q ± + ρ

(
−i

d∑
j=2

ξ0 j A j,± − λ0 I

)
− μA1,±

]
V = 0. (2.14)

Positing the Taylor expansion,

{
μ = 0 + c1ρ + · · · ,
V = V 0 + ρV 1 + · · · , (2.15)
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and matching terms of order ρ , we obtain

(−i Aξ̃0
− λ0 I − c1 A1)V 0 + dU Q V 1 = 0. (2.16)

Left-multiplying [I,0] on (2.16), we obtain

(
i
(
df ξ̃0,∗)+ λ0 In + c1df 1,∗)r = 0. (2.17)

Substituting c1 = iξ0,1 in (2.17), we have λ0 ∈ σ(i(df ξ0,∗)), pure imaginary. This is a contradiction.
Thus, the stable/unstable spectrum splits to first order, and we obtain the analytic extension by the
standard matrix perturbation theory. Note that the analyticity of individual eigenvalues μ may fail.
The desired result follows by the gap lemma of [11] provided

(i) the coefficients of the limiting equations decay at exponential rate e−α|x1|,α > 0; and
(ii) the spectral gap of the subspaces {w̄+

1 , . . . , w̄+
p } and {w̄−

p+1, . . . , w̄−
N } is greater than −α (equiv-

alently, spectral overlap is less than α).

We have (i) by structure of Ū (·). The gap condition (ii) follows for small ρ provided that such exten-
sion exists, since the gap is zero at ρ = 0. Moreover, the gap lemma implies that w±

j converges to

the corresponding w̄±
j at rate e− α

2 |x1||w̄±
j | as x1 → ±∞, respectively. The proof is similar to that of

positive spectral gap case, see [11,36]. �
Remark 2.8. The function w̄±

j may be chosen within groups of r fast modes bounded away from the

center manifold of coefficient A± , analytic in (ρ, ξ̃0, λ0) for ρ � 0, ξ̃0 ∈ Rd−1,Reλ0, and n slow modes
approaching the center manifold as ρ → 0, analytic in (ρ, ξ̃0, λ0) for ρ > 0, ξ̃0 ∈ Rd−1,Reλ0 > 0 and
continuous at the boundary ρ = 0.

2.3. Construction of the resolvent kernel

We next derive explicit representation formulae for the resolvent kernel Gλ,ξ̃ . We seek a solution
of form

Gλ,ξ̃ (x1, y1) =
{

Φ+(x1;λ, ξ̃ )N+(y1;λ, ξ̃ ), x1 > y1,

Φ−(x1;λ, ξ̃ )N−(y1;λ, ξ̃ ), x1 < y1

where

Φ+(x1;λ, ξ̃ ) = (
ϕ+

1 (x1; ξ̃ , λ), . . . ,ϕ+
p (x1; ξ̃ , λ)

) ∈ RN×p

and

Φ−(x1;λ, ξ̃ ) = (
ϕ−

p+1(x1; ξ̃ , λ), . . . ,ϕ−
N (x1; ξ̃ , λ)

) ∈ RN×(N−p).

From the jump condition of the Green kernel Gλ,ξ̃ , we have

(Φ+(y1;λ, ξ̃ ) Φ−(y1;λ, ξ̃ ) )

(
N+(y1;λ, ξ̃ )

−N−(y ;λ, ξ̃ )

)
= −(

A1)−1
(y1), (2.18)
1
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and inverting (2.18), we express for the resolvent kernel Gλ,ξ̃ :

Gλ,ξ̃ (x1, y1) =
{− (Φ+(x1;λ, ξ̃ ) 0 ) (Φ+ Φ− )−1 (y1;λ, ξ)(A1)−1(y1), x1 > y1,

(0 Φ−(x1;λ, ξ̃ ) ) (Φ+ Φ− )−1 (y1;λ, ξ)(A1)−1(y1), x1 < y1.

Now, consider the dual equation of (2.5)

(
L∗
ξ̃
− λ∗)W̃ = 0, (2.19)

where

L∗
ξ̃

W̃ := (
A1)∗W̃ ′ + (

dU Q ∗ + i A∗
ξ̃

)
W̃ = (

A1)∗W̃ ′ +
(

dU Q ∗ + i
d∑

j=2

ξ j A∗
j

)
W̃ .

Lemma 2.9. For any W , W̃ solutions such that (L ξ̃ − λ)W = 0 and (L∗
ξ̃
− λ∗)W̃ = 0, there holds

〈
W̃ , A1W

〉≡ constant, (2.20)

where 〈·,·〉 denotes the usual complex inner product.

Proof.

〈
W̃ , A1W

〉′ = 〈(
A1)∗W̃ ′, W

〉+ 〈
W̃ ,

(
A1W

)′〉
= 〈(

λ∗ I − dU Q ∗ − i A∗
ξ̃

)
W̃ , W

〉+ 〈
W̃ , (−λI + dU Q − i Aξ̃ )W

〉= 0. �
From (2.20), it follows that if there are p independent solutions ϕ+

1 , . . . , ϕ+
p of (L ξ̃ −λI)W = 0 de-

caying at +∞ and N − p independent solutions ϕ−
p+1, . . . , ϕ

−
N of the same equation decaying at −∞,

then there exist N − p independent solutions ψ̃+
p+1, . . . , ψ̃

+
N of (L∗

ξ̃
− λ∗ I)W̃ = 0 decaying at +∞ and

p independent solutions ψ̃−
1 , . . . , ψ̃−

p of the same equation decaying at −∞. Similarly as with our
definitions for Φ± , we set

Ψ +(x1;λ, ξ̃ ) = (ψ+
p+1(x1;λ, ξ̃ ) · · · ψ+

N (x1;λ, ξ̃ ) ) ∈ RN×(N−p),

Ψ −(x1;λ, ξ̃ ) = (ψ−
1 (x1;λ, ξ̃ ) · · · ψ−

p (x1;λ, ξ̃ ) ) ∈ RN×p,

and

Ψ (x1;λ, ξ̃ ) = (Ψ −(x1;λ, ξ̃ ) Ψ +(x1;λ, ξ̃ ) ) ∈ RN×N ,

where ψ±
j are the exponentially growing solutions at ±∞, respectively, of (L ξ̃ − λI)W = 0 as de-

scribed above. In light of this, we may define dual exponentially decaying and growing solutions ψ̃±
j

and ϕ̃±
j , respectively, via

( Ψ̃ ± Φ̃± )∗ A1 (Ψ ± Φ± ) ≡ I.
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Let us denote

Φ̃ := ( Φ̃− Φ̃+ ) ,

and

Ψ̃ := ( Ψ̃ − Ψ̃ + ) .

Now we express for Gλ,ξ̃ (x1, y1) in terms of dual solutions:

Gλ,ξ̃ (x1, y1) =
{−(Φ+(x1;λ, ξ̃ ),0) M(λ, ξ̃ ) (Ψ̃ −(y1;λ, ξ),0)∗, x1 > y1,

(0,Φ−(x1;λ, ξ̃ )) M(λ, ξ̃ ) (0, Ψ̃ +(y1;λ, ξ))∗, x1 < y1
(2.21)

where

M(λ, ξ̃ ) :=
(−M+(λ, ξ̃ ) 0

0 M−(λ, ξ̃ )

)
= Φ(z;λ, ξ̃ )−1 (A1)−1

(z) Ψ̃ (z;λ, ξ̃ )∗−1. (2.22)

Note that M(λ, ξ̃ ) is independent of z thanks to Lemma 2.9. Using these dual solutions, we have the
following expressions:

Proposition 2.10. On Λ ∩ ρ(L ξ̃ ), there hold

Gλ,ξ̃ (x1, y1) =
∑
k, j

M+
jk(λ, ξ̃ )ϕ+

j (x1;λ, ξ̃ )ψ̃−
k (y1;λ, ξ̃ )∗, (2.23)

for y1 � 0 � x1;

Gλ,ξ̃ (x1, y1) =
∑
k, j

d+
jk(λ, ξ̃ )ϕ−

j (x1;λ, ξ̃ )ψ̃−
k (y1;λ, ξ̃ )∗

−
∑

j

ψ−
j (x1;λ, ξ̃ )ψ̃−

j (y1;λ, ξ̃ )∗, (2.24)

for y1 � x1 � 0; and

Gλ,ξ̃ (x1, y1) =
∑
k, j

d−
jk(λ, ξ̃ )ϕ−

j (x1;λ, ξ̃ )ψ̃−
k (y1;λ, ξ̃ )∗

+
∑

j

ϕ−
j (x1;λ, ξ̃ )ϕ̃−

j (y1;λ, ξ̃ )∗ (2.25)

for x1 � y1 � 0, where

M+ = (−I,0) (Φ+ Φ− )−1 Ψ −

and

d± = (0, I) (Φ+ Φ− )−1 Ψ −.

Symmetric representations hold for y1 � 0.
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Remark 2.11. Representation (2.21) together with uniform exponential decay of Φ± , Ψ̃ ± , Proposi-
tion 2.5, and the fact that d± are bounded when the Evans function D(λ, ξ̃ ) := det(Φ+,Φ−) does not
vanish yields uniform bounds

∣∣Gλ,ξ̃ (x, y)
∣∣� Ce−θ |x−y|,

θ > 0, on the resolvent set ρ(L ξ̃ ), in particular (by assumption (D)) for Reλ � −η, η > 0 on interme-

diate frequencies 1/R � |(λ, ξ̃ )| � R , R > 0 arbitrary. However, we shall not use this in our analysis,
carrying out instead energy-based resolvent estimates for intermediate and high frequencies. We shall
use (2.21) only in the low-frequency regime |(λ, ξ̃ )| 
 1.

2.4. Low-frequency bounds

We now investigate spatial growth/decay in modes ϕ±
j , ψ±

j , ϕ̃±
j , ψ̃±

j for ρ := |(λ, ξ̃ )| small. By the
gap lemma, applied to individual modes, there holds

ϕ±
j = ϕ̄±

j + O
(
e−θ |x1|)∣∣ϕ̄±

j

∣∣,
and similarly for ϕ̃±

j , ψ±
j , ψ̃±

j , where ϕ̄±
j denote the associated solutions of the limiting constant

coefficient equations at x1 = ±∞. In light of this, we will read off decay/growth of ϕ±
j from the

explicitly available solutions ϕ̄±
j , and similarly for ϕ̃±

j ,ψ±
j , ψ̃±

j . Let us define a parabolic surface

Γξ̃ := {
λ ∈ C: Re λ = −θ1

(|Im λ|2 + |ξ̃ |2)},
where θ1 > 0 sufficiently small. Now restrict our attention to the surface in the low-frequency regime,
that is, for ρ > 0 sufficiently small,

(λ, ξ̃ ) ∈ Γξ̃ ∩ Bρ(0,0).

Lemma 2.12. Under assumptions (H0)–(H5), Assumption 1.4, for λ ∈ Γξ̃ and ρ := |(ξ̃ , λ)| and θ , θ1 > 0

sufficiently small, there exists a choice of bases consisting of (n + r) solutions {ϕ±
j }, {ϕ̃±

j }, {ψ±
j }, {ψ̃±

j } to the
eigenvalue equation (2.5) such that, at z = 0, their wedge products,

(φ1 ∧ · · · ∧ φl)(z),

where {
l = p, for φ j = ϕ+

j , ϕ̃−
j ,ψ−

j , ψ̃+
j ,

l = n + r − p, for φ j = ϕ−
j , ϕ̃+

j ,ψ+
j , ψ̃−

j ,

and determinants

det (Φ Ψ )± (z),

and

det ( Φ̃ Ψ̃ )± (z)
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are uniformly bounded above and below, and there hold bounds

ϕ±
j = γ21,ϕ±

j

[
eμ±

j x1 V ±
j + O

(
e−θ |x1|)], x1 ≷ 0, (2.26)

ϕ̃±
j = γ21,ϕ̃±

j

[
e−μ±

j x1 Ṽ ±
j + O

(
e−θ |x1|)], x1 ≷ 0, (2.27)

ψ±
j = γ21,ψ±

j

[
eν±

j x1 V ±
j + O

(
e−θ |x1|)], x1 ≷ 0, (2.28)

and

ψ̃±
j = γ21,ψ̃±

j

[
e−ν±

j x1 Ṽ ±
j + O

(
e−θ |x1|)], x1 ≷ 0, (2.29)

where |V ±
j |, |Ṽ ±

j | are uniformly bounded above and below, and:

(i) The decay/growth rates μ±
j /ν±

j satisfy

∣∣Reμ±
j

∣∣, ∣∣Reν±
j

∣∣∼ 1, (2.30)

for fast modes,

∣∣Reμ±
j

∣∣, ∣∣Reν±
j

∣∣∼ ρ, (2.31)

for intermediate-slow modes, and

∣∣Reμ±
j

∣∣, ∣∣Reν±
j

∣∣∼ ρ2, (2.32)

for super-slow modes; moreover,

∣∣μ±
j

∣∣, ∣∣ν±
j

∣∣= O(ρ), (2.33)

for both intermediate- and super-slow modes.
(ii) The factors γ21,β satisfy

γ21,β ∼ 1, β = ϕ±
j , ϕ̃±

j ,ψ±
j , ψ̃±

j (2.34)

for fast and intermediate-slow modes, and for super-slow modes for which Imλ is bounded distance θ1ε
away from any associated branch singularities η j(ξ̃ ), and

γ21,β ∼ (
ρ + ρ−1(Im λ − η j(ξ̃ )

))−tβ
, (2.35)

for super-slow modes for which Imλ is within θ1ε of an associated branch singularity η j(ξ̃ ) with

(tϕ±
j
, tψ±

j
, tϕ̃±

j
, tψ̃±

j
) :=

⎧⎪⎨
⎪⎩

( r−1
4r , 3r−1

4r , 3r−1
4r , r−1

4r ) for s = 2r,

( r
2(2r+1)

, 3r+1
2(2r+1)

, 3r
2(2r+1)

, r−1
2(2r+1)

) for s = 2r + 1, p > 0,

( r−1
2(2r+1)

, 3r
2(2r+1)

, 3r+1
2(2r+1)

, r
2(2r+1)

) for s = 2r + 1, p < 0;
(2.36)

here s = K ±
j is the order of the associated branch singularity η±

j (ξ̃ ).
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(iii) The left-/right-eigenvectors Ṽ ±
j and V ±

j are of the form

Ṽ ±
j = (

s±
j ,0

)+ O(ρ), (2.37)

and

V ±
j =

(
r±

j

−q−1
v qur±

j

)
+ O(ρ), (2.38)

for intermediate- and super-slow modes, where r j are eigenvectors of f 1,∗
u and s j are defined by the

relation 〈s j, f 1,∗
u rk〉 = δk

j , and

Ṽ ±
j = L±

j + O(ρ), (2.39)

and

V ±
j = R±

j + O(ρ), (2.40)

for fast modes, where L±
j and R±

j are the left- and right-eigenvectors of (2.6) respectively, at zero fre-
quency.

Proof. Appealing to the gap lemma, modulo an exponentially decaying error, we read off the de-
cay/growth of solutions of the variable ODE (2.5) from the solutions for the corresponding limiting
constant equations. Thus, we consider the limiting coefficient eigenvalue equation:

−A1U ′ +
(

−i
d∑

j=2

ξ j A j + dU Q − λI

)
U = 0. (2.41)

Here we drop ± signs for the notational convenience. Parameterizing the curve Γξ̃ in the low-
frequency regime, we introduce

(λ, ξ̃ )(ρ, ξ̃0, τ0) := (
ρτ0i − θ1ρ

2,ρξ̃0
)
,

where (ξ̃0, τ0) ∈ Sd held fixed. Evidently, (λ, ξ̃ ) traces out the portion of the surface Γξ̃ in the small

frequency regime as (ρ, τ0, ξ̃0) ranges in the compact set [0, δ] × Sd . Let ¯̄U (ρ) denote the solutions
of the limiting constant coefficient equations at (λ, ξ̃ ) from which ϕ±

j (ρ), ψ±
j (ρ) are constructed by

the gap lemma. Making as usual the Ansatz

¯̄U± = eμx1 V ,

substituting it into (2.41), we obtain the characteristic equation:

[
dU Q + ρ

(
−i

d∑
j=2

ξ0 j A j − λ0 I

)
− μA1

]
V = 0, (2.42)
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or equivalently, with W = A1 V ,

μW =
(

dU Q A−1
1 + ρ

(
−i

d∑
j=2

ξ0 j A j − λ0 I

)
A−1

1

)
W . (2.43)

This is a matrix perturbation problem with an eigenvalue μ and a parameter ρ near zero. Here we
assume:

(S1) Nonzero eigenvalues of dU Q A−1
1 are distinct.

(S2) Eigenvalues of (i df ξ̃0,∗ + iτ0 In)(df 1,∗)−1 with nonzero real part are semi-simple and locally an-
alytic.

For nonzero eigenvalues μ �= 0 at ρ = 0, they are said to be fast-mode eigenvalues. It is easy to check
that |Reμ| ∼ 1 as ρ → 0, and they are spectrally separated by (S1). On the other hand, the zero
eigenvalues at ρ = 0 are called slow-mode eigenvalues. To investigate the slow modes, we introduce
the curves

(ξ̃ , λ)(ρ, ξ̃0, τ0) := (
ρξ̃0, iρτ0 − θ1ρ

2),
where ξ̃0 ∈ Rd−1 and τ0 ∈ R are restricted to the unit sphere Sd−1. Positing the Puisieux expansion,
we have

{
μ = 0 + c1ρ + · · · ,
V = V 0 + ρV 1 + · · · .

Matching terms of order 0 and ρ , we have

dU Q A−1
1 V 0 = 0

and

(
(−i Aξ̃0

− iτ0 I)A−1
1 − c1 In

)
V 0 + dU Q A−1

1 V 1 = 0. (2.44)

Left-multiplying [I,0] on (2.44), we obtain

((
i df ξ̃0,∗ + iτ0 In

)(
df 1,∗)−1 − α0 In

)
r = 0, (2.45)

with c1 = −α0. Note that α0 and r are an eigenvalue and an eigenvector of the reduced system,
respectively. For eigenvalues α0 of nonzero real part, denoted as intermediate-slow modes, we have
growth or decay at rate O(ρ), and spectral separation by assumption (S2).

For the case that α0 = iξ01 is pure imaginary, denoted as super-slow modes, we need to consider
the next order correction. Let α̃ and Ṽ be the next order correction to α and V 0, respectively. Here
α̃ = iξ01 + O(ρ) and μ = iρξ01 + o(ρ).

For further analysis of super-slow modes, we block-diagonalize (2.42) with substitution μ =
iρξ01 + o(ρ). By the block-diagonalization carried out in Appendix A, we find an analytic invertible
matrix T (ρ; ξ̃0,μ) near ρ = 0, such that
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T −1LT = T −1

(
−μA1 − iρ

d∑
j �=1

ξ0 j A j + dU Q

)
T

=
(−S(μ,ρξ̃0) 0

0 −F (μ,ρξ̃0)

)
+ O

(
ρ3), (2.46)

where

S(μ,ρξ̃0) = μdf 1,∗ + iρ
∑
j �=1

ξ0 j df j∗ + μ2 B∗
11 + ρ2

∑
j,k �=1

ξ0 jξ0k B∗
jk

+ μρ

(
i
∑
k �=1

ξ0k B∗
1k + i

∑
j �=1

ξ0 j B∗
j1

)
, (2.47)

and

F (μ,ρξ̃0) = −qv + μ
(

g1
v + q−1

v qu f 1
v

)+ ρ
∑
j �=1

ξ0 j
(

g j
v + q−1

v qu f j
v
)+ O

(
ρ2).

Note that f j,∗
u , B∗

jk we found here are the same coefficients obtained in the Chapman–Enskog expan-
sion. See Appendix A for the details of this block-diagonalization. To find the slow-mode eigenvalues
μ to the second order in ρ , we consider

(
S(μ,ρξ̃0) + λIn

)
V I = 0.

Substituting

{
μ = 0 + α̃ρ + · · · ,
V I = Ṽ I + · · ·

in (2.48) with α̃ = iξ01 + O(ρ), and matching terms of order ρ , we obtain the next order correction
equations:

[
iρ

d∑
j �=1

ξ0 j df j,∗ + ρ2
d∑

j,k=1

ξ0 jξ0k B∗
jk + μdf 1,∗ + λIn

]
Ṽ I = 0. (2.48)

Substituting λ = iρτ0 −θ1ρ
2 in (2.48), and left-multiplying (df 1,∗)−1, we obtain the modified equation

at the second order:

[(
df 1,∗)−1

(
i
∑
j �=1

ξ0 j df j,∗ + (
iτ0 + ρ

(
B∗

ξ0ξ0
− θ1

))
In

)
− α̃ In

]
Ṽ I = 0, (2.49)

where α̃ = iξ01 + O(ρ). From the dissipative condition (H3), we find that B∗
ξ0ξ0

� θ for some θ > 0,
and that (B∗

ξ0ξ0
− θ1) is positive definite by choosing sufficiently small θ1 > 0 so that θ1 < θ . Then

(2.49) is exactly the same equations arising in the super-slow modes analysis for the viscous system
in [33], and this is regarded as a connection to the inviscid analysis of Kreiss–Majda. Thus, the super-
slow modes in the relaxation system are the same as the ones in the corresponding viscous system.
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We refer readers to [33] for the detailed proof for the viscous case. Combining the fast, intermediate-
slow and the super-slow modes analysis, together with the gap lemma as in [33,35], we obtain (2.26)–
(2.36). In light of the eigenvalue analysis, we can verify that (2.37)–(2.40) are the eigenvectors of (2.8)
by inspection. �

The following remark is a key observation made in [23] (Lemma 5.8, p. 834) to obtain the scatter-
ing coefficients bounds in the following lemma.

Remark 2.13. For transverse Lax shocks, with a suitable choice of basis at ρ = 0, fast-growing modes
ψ±

j are fast-decaying at ∓∞. Equivalently, fast-decaying dual modes ψ̃±
j are fast-growing at ∓∞:

i.e. the only bounded solutions of the adjoint eigenvalue equation are constant solutions. It follows
that all fast-growing solutions ψ±

j at ±∞ can be expressed as linear combinations of fast-decaying

solutions ϕ∓
j at ∓∞, respectively.

Lemma 2.14. Under the same assumptions as in Lemma 2.12, for λ ∈ Γξ̃ and ρ := |(ξ̃ , λ)|, θ , θ1 > 0 suffi-
ciently small, there hold

∣∣M+
jk

∣∣, ∣∣d+
jk

∣∣� {
Cρ−1γ22,β , j = 1,

Cγ22,β , j �= 1
for β = M+

jk,d+
jk, (2.50)

and

∣∣M−
jk

∣∣, ∣∣d−
jk

∣∣� {
Cρ−1γ22,β , j = N,

Cγ22,β , j �= N
for β = M−

jk,d−
jk, (2.51)

where

γ22,M±
jk
γ21,ϕ±

j
γ21,ψ̃±

k
�
(

1 +
∑

j

(
ρ + ∣∣σ+

j

∣∣) 1
2 (1− 1

K+
j

)
)(

1 +
∑

k

(
ρ + ∣∣σ−

k

∣∣)− 1
2 (1− 1

K−
k

)
)

, (2.52)

(γ22,d±
jk
γ21,ϕ±

j
γ21,ψ̃±

k
) � 1 +

∑
j

(
ρ + ∣∣σ±

j

∣∣)(1− 1
K±

j
)

, (2.53)

with γ21,β as defined in (2.34)–(2.35), σ±
j := ρ−1(Imλ−η±

j (ξ̃ )), η j(ξ̃ ) and K ±
j as in Lemma 2.12. Moreover,

with slow dual modes taken identically constant, there hold

∣∣M±
jk

∣∣, ∣∣d±
jk

∣∣� Cγ22 (2.54)

if ψ̃k is a fast mode, and

∣∣M±
jk

∣∣, ∣∣d±
jk

∣∣� Cγ22ρ (2.55)

if ψ̃k is a fast mode, and additionally, ϕ j is a slow mode.

Proof. Since proofs of each cases are similar, we provide the details only for d+
jk here. Recall the

expression for d+ = (d+
jk) in Proposition 2.10. By Cramer’s rule, we express
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d+
jk = det(ϕ+

1 , . . . ,ϕ+
p ,ϕ−

p+1, . . . ,

jth slot︷︸︸︷
ψ−

k , . . . ,ϕ−
N )

det(Φ+,Φ−)
, (2.56)

where ϕ+
1 (x1,0,0) = Ū ′(x1) = ϕ−

N (x1,0,0). By the strong spectral condition (D) as in Assumption 1.4,
(2.56) shows immediately that

∣∣d+
jk

∣∣� Cρ−1.

If j /∈ {1, N}, by linear dependency of {ϕ+
1 ,ϕ−

N }, we have

det
(
ϕ+

1 , . . . ,ϕ+
p ,ϕ−

p+1, . . . ,

jth slot︷︸︸︷
ψ−

k , . . . ,ϕ−
N

)
� Cρ.

In turn, |d+
jk| � C . Furthermore, if ψ−

k is a fast mode, we have |d+
jk| � C for all j. The fact stated in

Remark 2.13 that the fast growth mode ψ−
k is a linear combination of fast decay solutions at +∞, i.e.,

ψ−
k ∈ Span{ϕ+

i | ϕi ∈ F }, together with the linear dependency of fast decaying solutions at +∞ yields
the result. If, additionally, ϕ−

j is a slow mode, we have |d+
jk| � Cρ . This can be verified by calculating

the first derivative of the numerator in (2.56) as follows:

∂ρ det
(
ϕ+

1 , . . . ,ϕ+
p ,ϕ−

p+1, . . . ,

jth slot︷︸︸︷
ψ−

k , . . . ,ϕ−
N

)∣∣
ρ=0

= det
(
∂ρϕ+

1 , . . . ,ϕ−
N

)∣∣
ρ=0 + · · · + det

(
ϕ+

1 , . . . , ∂ρϕ−
N

)∣∣
ρ=0 = 0.

This implies that det(ϕ+
1 , . . . , ϕ+

p ,ϕ−
p+1, . . . ,

jth slot︷︸︸︷
ψ−

k , . . . , ϕ−
N )| � Cρ2, in turn |d+

jk| � Cρ . �
The following lemma gives the refined derivative bounds. This is essentially the same as viscous

case, so we omit the proof here.

Lemma 2.15. Under the same assumptions as in Lemma 2.12, for λ ∈ Γξ̃ , ρ := |(ξ̃ , λ)| and θ , θ1 > 0 suffi-

ciently small, there exists a choice of slow modes {ϕ̃±
j }, {ψ̃±

j } satisfying all properties in Lemma 2.12, and

∣∣(∂/∂ y1)ϕ̃
±
j

∣∣� Cρ
∣∣ϕ̃±

j

∣∣,∣∣(∂/∂ y1)ψ̃
±
j

∣∣� Cρ
∣∣ψ̃±

j

∣∣. (2.57)

2.5. Resolvent kernel bounds

In the following lemma, we establish the resolvent kernel bounds in the low-frequency regime
using the expressions for G ξ̃ ,λ(x1, y1) in Proposition 2.10 together with the decay/growth rates and
the spatial decay bounds in the previous lemmas.
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Lemma 2.16. Under the same assumptions as in Lemma 2.12, for (ξ̃ , λ) ∈ Γξ̃ ∩ Bρ(0,0), ρ > 0 sufficiently
small, there holds

∣∣G ξ̃ ,λ(x1, y1)
∣∣� Cγ2

(
ρ−1e−θ |x1|e−θρ2|y1| + e−θρ2|x1−y1|), (2.58)∣∣G ξ̃ ,λ(x1, y1)(0, I)t

∣∣� Cγ2
(
e−θ |x1|e−θρ2|y1| + ρe−θρ2|x1−y1|), (2.59)

and

∣∣(∂/∂ y1)G ξ̃ ,λ(x1, y1)
∣∣� Cγ2

(
e−θ |x1|e−θρ2|y1| + ρe−θρ2|x1−y1|), (2.60)

where

γ2 :=
{

1, strictly hyperbolic case,

1 +∑
j[ρ−1|Im λ − η±

j (ξ̃ )| + ρ]
1
s j

−1
, (H2) holds.

(2.61)

Here s j � 2 is the multiplicity of branch singularity τ = η±
j (ξ̃ ), as defined in Definition 1.2.

Proof. Let us present explicit formulae for the solutions of the eigenvalue ODE (2.5). By Lemma 2.12,
the left-eigenvectors can be expressed as

W̃ ±,∗
j (y1,ρ) = γ21,β

(
e−μ±

j |y1| Ṽ ±,∗(ρ) + e−c|y1|), (2.62)

and the right-eigenvectors are

W ±
j (x1,ρ) = γ21,β

(
eμ±

j |x1|V ±(ρ) + e−c|x1|) (2.63)

for slow modes, where Ṽ ±,∗(ρ) = (s j,0) + O(ρ), V ±(ρ) = ( r j

−q−1
v qur j

) + O(ρ), and γ21,β , μ±
j , s j , r j

are defined in Lemma 2.12. On the other hand, the left- and right-eigenvectors can be expressed,
respectively as

W̃ ±,∗
j (y1,ρ) = e−μ±

j (ρ)y1 Ṽ ±,∗
j (ρ)

(
I + O

(
e−c|y1|)), (2.64)

and

W ±
j (x1,ρ) = eμ±

j (ρ)x1 V ±
j (ρ)

(
I + O

(
e−c|x1|)) (2.65)

for fast modes. Here, the slow-mode and fast-mode eigenvalues μ j are as described in Lemma 2.12.
Since proofs of each case are similar, we provide details only for the case of y1 � x1 � 0. Recall

the expression for the resolvent kernel;

Gλ,ξ̃ (x1, y1) =
∑
k, j

d+
jkϕ

−
j (x1)ψ̃

−
k (y1)

∗ −
∑

j

ψ−
j (x1)ψ̃

−
j (y1)

∗. (2.66)
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Using the expressions (2.62)–(2.65),

∑
k, j

d+
jkϕ

−
j (x1)ψ̃

−
k (y1)

∗

=
∑
ψ̃k∈S

(
d+

jkγ21,ϕ j γ21,ψ̃k
eμ j |x1|e−μk|y1|

(
c1 0
c2 0

)
+ O(ρ)d+

jkγ21,ϕ j γ21,ψ̃k
eμ j |x1|e−μk|y1|

)

+
∑

ϕ j∈S, ψ̃k∈F

d+
jkγ21,ϕ j γ21,ψ̃k

eμ j |x1|e−μk|y1| + O
(
e−θ |x1−y1|). (2.67)

By right-multiplying (0, I)tr on (2.67), we have

∑
k, j

d+
jkϕ

−
j (x1)ψ̃

−
k (y1)

∗(0, I)tr =
∑
ψ̃k∈S

O(ρ)d+
jkγ21,ϕ j γ21,ψ̃k

eμ j |x1|e−μk|y1|

+
∑

ϕ j∈S, ψ̃k∈F

d+
jkγ21,ϕ j γ21,ψ̃k

eμ j |x1|e−μk|y1|

+ O
(
e−θ |x1−y1|). (2.68)

Using the scattering coefficients bounds (2.50)–(2.55), we obtain

∣∣∣∣∑
k, j

d+
jkϕ

−
j (x1)ψ̃

−
k (y1)

∗(0, I)tr

∣∣∣∣� Cγ2e−θ |x1|e−θρ2|y1| + Cγ2ρe−θρ2|x1−y1|. (2.69)

Similarly, by more careful grouping of the fast and slow modes together with the refined derivative
bounds in Lemma 2.15, for α = 0,1, we obtain

(∂/∂ y1)
α
∑
k, j

d+
jkϕ

−
j (x1)ψ̃

−
k (y1)

∗

= O
(
ρα

) ∑
ϕ j∈S, ψ̃k∈S

d+
jkγ21,ϕ j γ21,ψ̃k

eμ j |x1|e−μk|y1|

+ O
(
ρα

) ∑
ϕ j∈F ,ψ̃k∈S

d+
jkγ21,ϕ j γ21,ψ̃k

eμ j |x1|e−μk|y1|

+ O
(
ρα

) ∑
ϕ j∈S, ψ̃k∈F

d+
jkγ21,ϕ j γ21,ψ̃k

eμ j |x1|e−μk|y1| + O
(
e−θ |x1−y1|).

Using the scattering coefficients bounds (2.50)–(2.55), we obtain

∣∣∣∣(∂/∂ y1)
α
∑
k, j

d+
jkϕ

−
j (x1)ψ̃

−
k (y1)

∗
∣∣∣∣� Cγ2ρ

α−1e−θ |x1|e−θρ2|y1| + Cγ2ρ
αe−θρ2|x1−y1|.

Now consider the second term
∑

j ψ
−
j ψ̃−∗

j in (2.66). Grouping the terms into the slow mode and the
fast mode, we have
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∑
j

ψ−
j ψ̃−∗

j =
∑
ψ j∈S

ψ−
j ψ̃−∗

j +
∑

ψ j∈F
ψ−

j ψ̃−∗
j

=
∑
ψ j∈S

(
γ21,ψ j γ21,ψ̃ j

e−θρ2|x1−y1|
(

c1 0
c2 0

)
+ O(ρ)γ21,ψ j γ21,ψ̃ j

e−θρ2|x1−y1|
)

+ O
(
e−θ |x1−y1|). (2.70)

By right-multiplying (0, I)tr on (2.70), we have

∑
j

ψ−
j ψ̃−∗

j (0, I)tr = O(ρ)γ21,ψ j γ21,ψ̃ j
e−θρ2|x1−y1| + O

(
e−θ |x1−y1|). (2.71)

Similarly, using the refined derivative bounds in Lemma 2.15, for α = 0,1, we have

(∂/∂ y1)
α
∑

j

ψ−
j ψ̃−∗

j = (∂/∂ y1)
α

[ ∑
ψ j∈S

ψ−
j ψ̃−∗

j +
∑

ψ j∈F
ψ−

j ψ̃−∗
j

]

= O
(
ρα

) ∑
ψ j∈S

γ21,ψ j γ21,ψ̃ j
eμ−

j (x1−y1) + O
(
e−θ |x1−y1|). (2.72)

Using the expressions (2.72)–(2.68) together with the bounds on d+
jk , γ21,β as in Lemma 2.14, we have

the bounds: ∣∣∣∣∑
j

ψ−
j ψ̃−∗

j (0, I)tr

∣∣∣∣� Cργ2e−θρ2|x1−y1|, (2.73)

and ∣∣∣∣(∂/∂ y1)
α
∑

j

ψ−
j ψ̃−∗

j

∣∣∣∣� Cραγ2e−θρ2|x1−y1|. (2.74)

Combining (2.69)–(2.74) together with the expression (2.66), we have the desired bounds for y1 �
x1 � 0. The remaining cases can be established similarly. �
2.6. Decomposition of the Green function

For fixed small δ1, r > 0 to be chosen later, define a “low-frequency” part G I and a “high-
frequency” part GII of G , respectively by

G I (x, t; y) := 1

(2π i)d

∫
|ξ̃ |�r

∮
Γ

ξ̃
∩{|λ|<r}

eiξ̃ ·(x̃− ỹ)+λt Gλ,ξ̃ (x1, y1)dλdξ̃ ,

where Γξ̃ := {λ ∈ C: Reλ = −θ1(|Imλ|2 + |ξ̃ |2)}, and

GII(x, t; y) := 1

(2π i)d
P.V.

−θ1+i∞∫
−θ −i∞

∫
χ{|ξ̃ |�δ1 or |Imλ|�r}e

iξ̃ ·(x̃− ỹ)+λt Gλ,ξ̃ (x1, y1)dξ̃ dλ.
1
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Then, by the spectral resolution formula (2.4) together with Cauchy’s theorem, we have a decom-
position formula:

G(x, t; y) = G I (x, t; y) + GII(x, t; y). (2.75)

In the present paper we will not use the high-frequency formula, instead we will employ the
Kawashima-type energy method for the high-frequency estimate in Lemma 3.2.

2.7. Green function bounds

Now we establish bounds on G I , the low-frequency contribution of G using inverse Laplace–Fourier
transform and the resolvent kernel bounds we obtained in Lemma 2.16.

Lemma 2.17. For multi-index α with |α| � 1, there holds

∣∣∣∣
∫

y∈Rd

∂
|α|
y G I (·, t; y) f (y)dy

∣∣∣∣
L p

� Ct− (d−1)
2 (1−1/r)− |α|

2 | f |Lq , (2.76)

∣∣∣∣
∫

y∈Rd

G I (·, t; y)(0n, Ir)
t f (y)dy

∣∣∣∣
L p

� Ct− (d−1)
2 (1−1/r)−1/2| f |Lq , (2.77)

for all t > 0 and f ∈ Lq, where 1/r + 1/q = 1 + 1/p and p � 2.

Proof. Let G̃λ,ξ̃ (x1, y1) be a parabolic extension of χ{(λ,ξ̃ )∈Γ LF
ξ̃

}Gλ,ξ̃ (x1, y1), the low-frequency part of

Gλ,ξ̃ (x1, y1). Here Γξ̃ is defined by the parametrization

λ(ξ̃ ,k) = ik − θ1
(
k2 + |ξ̃ |2), k ∈ R

and Γ LF
ξ̃

:= Γξ̃ ∩ Br(0,0) for r > 0 sufficiently small. Recall that

1

2π i

∮
λ∈Γ

ξ̃

eλt G̃λ,ξ̃ (x1, y1)dλ

is the Fourier transform of the Green’s function G̃(x, t; y). Using the Hausdorff–Young inequality, we
obtain

∣∣G̃(·, t; y)
∣∣

L p(x̃) �
∣∣∣∣ 1

2π i

∮
λ∈Γ

ξ̃

eλt G̃λ,ξ̃ (x1, y1)dλ

∣∣∣∣
Lq(ξ̃ )

, (2.78)

where 1/p + 1/q = 1 and p � 2. Applying the resolvent kernel bounds, the right side of (2.78) can be
estimated as
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∣∣∣∣∣ 1

2π i

+∞∫
−∞

∣∣eλ(ξ̃ ,k)t
∣∣∣∣G̃ ξ̃ ,λ(ξ̃ ,k)(x1, y1)

∣∣|dλ/dk|dk

∣∣∣∣∣
Lq(ξ̃ )

� C

∣∣∣∣∣
+∞∫

−∞
e−θ(k2+|ξ̃ |2)tγ2

(
ρ−1e−θ |x1|e−θρ2|y1| + e−θρ2|x1−y1|)dk

∣∣∣∣∣
Lq(ξ̃ )

=: |A + B|Lq(ξ̃ )

where γ2 is defined as in Lemma 2.16. Let ε := 1
max j s j

(0 < ε < 1 chosen arbitrarily if there are no

singularities), r < 1/2, and s > 1 − ε � 1/2 such that r + s = 1. Noting that ρ ∼ (|k| + |ξ̃ |), we have

ρ−1γ2 �
[(|k| + |ξ̃ |)−1

(
1 +

∑
j

(
ρ−1

∣∣Im λ − η±
j (ξ̃ )

∣∣)ε−1
)]

. (2.79)

By standard parabolic scaling together with (2.79), we obtain the bounds

|A|Lq(ξ̃ ) �
∣∣∣∣∣e−θ |x1|

+∞∫
−∞

(
|ξ̃ |−r |k|−s +

∑
j

|ξ̃ |−r
∣∣k − η±

j

∣∣−s
)

e−θ(k2+|ξ̃ |2)t dk

∣∣∣∣∣
Lq(ξ̃ )

= e−θ |x1|
+∞∫

−∞

(
|k|−s +

∑
j

∣∣k − η±
j

∣∣−s
)

e−θk2t dk

( ∫
ξ̃∈Rd−1

|ξ̃ |−qre−qθ |ξ̃ |2t dξ̃

)1/q

= Ce−θ |x1|t− 1
2 + s

2 t− d−1
2q + r

2 = Ce−θ |x1|t− d−1
2 (1− 1

p )
, (2.80)

and

|B|Lq(ξ̃ ) �
∣∣∣∣∣

+∞∫
−∞

(
1 +

∑
j

|ξ̃ |1−ε
∣∣k − η±

j (ξ̃ )
∣∣ε−1

)
e−θ(k2+|ξ̃ |2)(t+|x1−y1|) dk

∣∣∣∣∣
Lq(ξ̃ )

�
( +∞∫

−∞
e−θ |k|2(t+|x1−y1|) dk

)( ∫
ξ̃∈Rd−1

eqθ |ξ̃ |2(t+|x1−y1|) dξ̃

)1/q

+
( +∞∫

−∞
|k|1−εe−θ |k|2(t+|x1−y1|) dk

)( ∫
ξ̃∈Rd−1

|ξ̃ |q(ε−1)eqθ |ξ̃ |2(t+|x1−y1|)dξ̃

)1/q

= C
(
t + |x1 − y1|

)− d−1
2 (1− 1

p )− 1
2 . (2.81)

Note that the contribution from |(ξ̃ , λ)| > R for sufficiently large R > 0 is bounded by

e−θ(t+|x1−y1|) (2.82)
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for some θ > 0. Combining (2.80)–(2.82) with Green function decomposition (2.75), we obtain

∣∣G I (·, t; y)
∣∣

L p(x) = ∣∣∣∣G I (·, t; y)
∣∣

L p(x̃)

∣∣
L p(x1)

� Ct− d−1
2 (1− 1

p )
. (2.83)

Similar computations for G I (·, t; y)(0, I)t and (∂/∂ y)G I (·, t; y) yield the following bounds:

∣∣(∂/∂ y)G I (·, t; y)
∣∣

L p(x) � Ct− d−1
2 (1− 1

p )− 1
2 , (2.84)

and

∣∣G I (·, t; y)(0, I)tr
∣∣

L p(x) � Ct− d−1
2 (1− 1

p )− 1
2 . (2.85)

By the convolution estimates together with (2.83)–(2.85), we obtain the desired results. �
3. Energy estimates

In this section, we establish the damping estimate and high-frequency estimate. These estimates
both rely on the Kawashima condition (A3), which is implied by a combination of the dissipative
structural assumptions (A1) and (A2).

3.1. Damping estimate

Let U (x, t) := Ũ (x, t) − Ū (x1) be a nonlinear perturbation. For the proof of the damping estimate,
it is favorable to use a quasilinear form for U (x, t):

Ut +
d∑

j=1

(
Ã j Ux j

)− (dU Q̃ U ) = f , (3.1)

where f := O(|Ūx1 ||U | + |U |2), Ã j := A j(Ũ ) and dU Q̃ := dU Q (Ũ ).
Let ε0 > 0 be a sufficiently small number which will be specified in Lemma 3.1, and s � [ d

2 ] + 2.
By the standard Hs local existence theory for a quasilinear symmetric hyperbolic system, there are
T > 0 such that there exists a unique solution of (3.1) satisfying

U ∈ C 0([0, T ]; Hs), (3.2)

and

∣∣U (·, t)
∣∣

Hs < ε0, t ∈ [0, T ] (3.3)

provided that |U0|Hs < ε0/2.

Proposition 3.1 (Damping estimate). Assume (A1), (A2) hold (thus (A3) holds). If |U |Hs (t) � ε0 sufficiently
small for 0 � t � T where s � [ d

2 ] + 2, there holds

|U |2Hs (t) � e−θ̃t |U |2Hs (0) + C

t∫
0

e−θ̃ (t−s)|U |2L2(s)ds (3.4)

for 0 � t � T , and some θ̃ > 0.
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Proof. Let α be a multi-index with |α| = r � 1 and ∂r
x := ∑

|α|=r ∂α
x . Taking a differential operator ∂r

x
on Eq. (3.1), we have

∂r
x Ut +

d∑
j=1

Ã j∂r
x Ux j − dU Q̃ ∂r

x U = −[
∂r

x, Ã j∂ j
]
U + [

∂r
x,dU Q̃

]
U + ∂r

x f , (3.5)

where [A, B]U := A(BU ) − B(AU ) is a commutator operator. By left-multiplying Ã0 on (3.5), we have

Ã0∂r
x Ut +

d∑
j=1

Ã0 Ã j∂r
x Ux j − Ã0dU Q̃ ∂r

x U = − Ã0[∂r
x, Ã j∂ j

]
U + Ã0[∂r

x,dU Q̃
]
U + Ã0∂r

x f . (3.6)

Taking the L2 inner product of Ã0∂r
x U against ∂r

x U , we have the energy estimate:

1

2

d

dt

〈
Ã0∂r

x U , ∂r
x U

〉+ 〈
Ã0dU Q̃ ∂r

x U , ∂r
x U

〉

= 1

2

〈(
∂t Ã0 +

d∑
j=1

∂ j
(

Ã0 Ã j))∂r
x U , ∂r

x U

〉

+
d∑

j=1

〈
Ã0[∂r

x, Ã j∂ j
]
U , ∂r

x U
〉+ 〈

Ã0[∂r
x,dU Q̃

]
U , ∂r

x U
〉+ 〈

Ã0∂r
x f , ∂r

x U
〉

� C(ε0 + δS)|∂xU |2Hr−1 + C |U |2L2 . (3.7)

Here δS := |U+ − U−| is the shock amplitude, and it is assumed to be sufficiently small. For the
last inequality, we invoked Moser’s inequalities and Sobolev inequalities. On the other hand, taking
the L2 inner product of K (∂x)∂

r−1
x U against ∂r−1

x U , we have the auxiliary energy estimate:

1

2

d

dt

〈
K (∂x)∂

r−1
x U , ∂r−1

x U
〉

= 1

2

〈
K (∂x)∂

r−1
x Ut, ∂

r−1
x U

〉+ 1

2

〈
K (∂x)∂

r−1
x U , ∂r−1

x Ut
〉

� c0 Re
〈
iK (ξ)|ξ |r−1Ût, |ξ |r−1Û

〉
� c0 Re

〈
K (ξ)A−(ξ)|ξ |r−1Û , |ξ |r−1Û

〉+ c0 Re
〈
iK (ξ)|ξ |r−1 Ĥ, |ξ |r−1Û

〉
. (3.8)

Here we used Plancherel’s identity and the following Fourier transformed equations

Ût = −
∑

j

iξ j A j
−Û + Ĥ, (3.9)

where

H :=
∑

j

(
A j

− − Ã j)Ux j + (dU Q̃ )U + f . (3.10)
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By the Moser inequality together with the small amplitude assumption, the last term in (3.8) can be
bounded as

∣∣Re
〈
iK (ξ)|ξ |r−1 Ĥ, |ξ |r−1Û

〉∣∣� C
∣∣∂r−1

x H
∣∣

L2

∣∣∂r
x U

∣∣
L2

� C(ε0 + δS)|∂xU |2Hr−1 + C |U |2L2 . (3.11)

By (3.7)–(3.11), for r � 1, there holds

1

2

d

dt

(〈
Ã0∂r

x U , ∂r
x U

〉− 〈
K (∂x)∂

r−1
x U , ∂r−1

x U
〉)

� c0 Re
〈(|ξ |2 A0−dU Q − − K (ξ)A−(ξ)

)|ξ |r−1Û , |ξ |r−1Û
〉

+ C(ε0 + δS)
∣∣∂r

x U
∣∣2

L2 + C(ε0 + δS)

r∑
j=1

∣∣∂r− j
x U

∣∣2
L2 + C |U |2L2

� −c0θ
〈|ξ |r Û , |ξ |r Û

〉+ C(ε0 + δS)
∣∣∂r

x U
∣∣2

L2 + C(ε0 + δS)

r∑
j=1

∣∣∂r− j
x U

∣∣2
L2 + C |U |2L2

� −θ
∣∣∂r

x U
∣∣2

L2 + C(ε0 + δS)
∣∣∂r

x U
∣∣2

L2 + C(ε0 + δS)

r∑
j=1

∣∣∂r− j
x U

∣∣2
L2 + C |U |2L2 , (3.12)

as long as |U |Hs < ε0. The second last inequality is true by (1.14).
We define

E (t) := 〈
Ã0U , U

〉+ s∑
r=1

c−r(〈 Ã0∂r
x U , ∂r

x U
〉− 〈

K (∂x)∂
r−1
x U , ∂r−1

x U
〉)
. (3.13)

It is easy to check that E (t) is equivalent to |U |2Hs (t) for a suitable choice of c > 0. By (3.12) and the
smallness assumptions, ε0 + δS < θ

2C
c−1

c , there is a θ̃1 > 0 such that

1

2

d

dt

(〈
Ã0U , U

〉+ s∑
r=1

c−r(〈 Ã0∂r
x U , ∂r

x U
〉− 〈

K (∂x)∂
r−1
x U , ∂r−1

x U
〉))

� −θ̃1|U |2Hs + C |U |2L2 . (3.14)

Using (3.14) and (3.13), we have the Gronwall-type inequality:

d

dt
E (t) � −θ̃ E (t) + C |U |2L2(t). (3.15)

Therefore, we have the desired result. �
3.2. High-frequency solution operator analysis

We present the high-frequency estimates, which can be proved via a simpler linear version of
Kawashima-type estimate. Since the proof is essentially the same as that of the scalar relaxation case,
we refer the readers to [20] for the proof.
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Lemma 3.2 (High-frequency operator estimate). Let GII be the high-frequency part of Green function associ-
ated with (∂t − L). For any f ∈ H3 , there holds

∣∣∣∣
∫

GII(x, t; y) f (y)dy

∣∣∣∣
L2

� Ce−θt | f |H3 (3.16)

for some θ > 0.

4. Nonlinear stability

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Defining the nonlinear perturbation

U (x, t) := Ũ (x, t) − Ū (x1), (4.1)

and taking Taylor expansion, we obtain the nonlinear perturbation equation

Ut − LU = (0n, Ir)
tr N0(U ) +

d∑
j=1

N j(U )x j , (4.2)

where

N j(U ) = O
(|U |2) for j = 0,1, . . . ,d, (4.3)

as long as |U | remains bounded by some fixed bounded constant. Applying Duhamel’s principle, we
can express

U (x, t) =
∫
Rd

G(x, t; y)U0(y)dy

−
t∫

0

∫
Rd

G I (x, t − s; y)

(
(0n, Ir)

tr N0(U ) +
∑

j

N j(U )x j

)
dy ds

−
t∫

0

∫
Rd

GII(x, t − s; y)

(
(0n, Ir)

tr N0(U ) +
∑

j

N j(U )x j

)
dy ds

= I1 + I2 + I3. (4.4)

Define

ζ(t) := sup
0�s�t

∣∣U (·, s)
∣∣

L2(1 + s)
d−1

4 . (4.5)

Let ε0 > 0 be a sufficiently small number as in Proposition 3.1. By the standard local existence the-
ory for a quasilinear symmetric hyperbolic system, there are T ∗ > 0 such that there exists a unique
solution of (3.1) satisfying
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U ∈ C 0([0, T ∗]; Hs), (4.6)

and

∣∣U (·, t)
∣∣

Hs < ε0, t ∈ [
0, T ∗] (4.7)

provided that |U0|Hs < ε0/2. Thus, ζ(t) is continuous for t ∈ [0, T ∗]. Let ζ0 � ε0/2 be a small number
which will be determined later. We shall establish

Claim. If |U0|Hs < ζ0 , then

ζ(t) � C2
(
ζ0 + ζ(t)2) for t � 0. (4.8)

From this result, it follows by continuous induction that ζ(t) � 2C2ζ0 for t � 0, provided that
ζ0 < 1/4C2. Definition (4.5) then yields the desired result

∣∣U (·, t)
∣∣

L2 � 2C2ζ0(1 + t)−
d−1

4 for t � 0. (4.9)

It is remained to establish the claim above.

Proof of Claim. Combining the low- and high-frequency bounds in Lemmas 2.17 and 3.2, we can
bound

|I1|L2(x) =
∣∣∣∣
∫
Rd

G(x, t; y)U0(y)dy

∣∣∣∣
L2(x)

� Cζ0(1 + t)−
d−1

4 . (4.10)

The above inequality is true by Minkowski’s inequality and the local well-posedness of the linear
problem. Using the low-frequency bounds (2.76)–(2.77) in Lemma 2.17 together with the definition of
ζ(t), we obtain

|I2|L2(x) � C

t∫
0

(1 + t − s)−(d−1)/4(t − s)−1/2|U |2L2(s)ds

� Cζ 2(t)

t∫
0

(1 + t − s)−(d−1)/4(t − s)−1/2(1 + s)−(d−1)/2 ds

� Cζ 2(t)(1 + t)−(d−1)/4. (4.11)

By Lemma 3.2 and Proposition 3.1, we obtain

|I3|L2(x) � Ce−θtζ 2
0 + C(1 + t)−(d−1)/2ζ 2(t) � C(1 + t)−(d−1)/4(ζ 2

0 + ζ 2(t)
)
. (4.12)

Note that the estimate (4.12) is true as long as |U |Hs (t) < ε0 since it depends on the damping estimate
in Proposition 3.1. Thus we will use the continuation argument to prove the Claim above. Define

T := sup
{

t > 0: U ∈ C 0([0, t]; Hs), sup
0�τ�t

|U |Hs (τ ) < ε0

}
.
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This is well defined and T > 0 thanks to (4.6). Combining (4.10)–(4.12), we have

ζ(t) � C2
(
ζ0 + ζ(t)2), 0 � t � T . (4.13)

It follows by continuous induction that

ζ(t) � 2C2ζ0, 0 � t � T , (4.14)

provided that ζ0 < 1
4C2

. Using the damping estimate again together with (4.14), we have

|U |2Hs (T ) � C

(
e−θT ζ 2

0 +
T∫

0

e−θ(T −s)|U |2L2(s)ds

)

� C

(
e−θT + 4C2

2

θ

)
ζ 2

0 <
ε2

0

4
(4.15)

if we choose ζ0 < min{ ε0
2 , 1

4C2
,

ε0

2
√

C(1+4C2
2/θ)

}. Note that the choice of ζ0 is independent of T . This

implies that T = +∞ if ζ0 is chosen as above. This completes the proof of Claim. �
Therefore, the desired L2 stability is established. Moreover, by the global existence of the solution

together with (4.15), we have the estimates (4.14) and (3.4) for t ∈ [0,∞). These estimates give the
Hs estimate for the global solution:

|U |Hs (t) � Cζ0(1 + t)−(d−1)/4 for t ∈ [0,∞). (4.16)

This completes the proof. �
Appendix A. Block-diagonalization

In this section, we block-diagonalize the Fourier–Laplace transformed operator:

L(ρ;λ0, ξ0) := Lξ − λI = dU Q − iρ
d∑

j=1

ξ0 j A j − ρλ0 I, (A.1)

with polar coordinates (λ, ξ) = (ρλ0,ρξ0) for each (λ0, ξ0) ∈ Sd . By standard matrix perturbation
theory, there is an invertible matrix T (ρ) defined in a neighborhood of ρ = 0, such that

T −1(ρ)L(ρ)T (ρ) = diag
(

S(ρ), F (ρ)
)
, (A.2)

for sufficiently small ρ > 0. Here, T (ρ) and T −1(ρ) are analytic at ρ = 0. Let T̃ (ρ; ξ0) and T (ρ; ξ0)

be second-order expansions of T −1(ρ) and T (ρ), respectively. Dropping the subscripts of (λ0, ξ0) for
our notational convenience, we let

T̃ := T̃0 + iρ
d∑

j=1

ξ j T̃1, j + ρ2
d∑

j,k=1

ξ jξk T̃2, jk, (A.3)
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and

T := T0 + iρ
d∑

j=1

ξ j T1, j + ρ2
d∑

j,k=1

ξkξk T2, jk. (A.4)

Then without loss of generality, we can choose

T0 =
(

I 0
−q−1

v qu I

)
, T̃0 =

(
I 0

q−1
v qu I

)
,

and let

T̃1 j =
(

ã j b̃ j

c̃ j d̃ j

)
, T1 j =

(
a j b j
c j d j

)
,

T̃2, jk =
(

ã jk
2 b̃ jk

2

c̃ jk
2 d̃ jk

2

)
, T2, jk =

(
a jk

2 b jk
2

c jk
2 d jk

2

)
.

We expand T̃ (λ − Lξ )T up to the second order in ρ . It is easy to find the zeroth-order term:

−T̃0dU Q T0 =
(

0 0
0 −qv

)
. (A.5)

Collecting all the first-order terms, we have

iξ j(T̃0 A j T0 − T̃1 jdU Q T0 − T̃0dU Q T1 j)

=
(

df j∗ −b̃ jqv + f j
v

−(qua j + qv c j) + q−1
v qudf j∗ + dg j∗ −(qub j + qvd j) − d̃ jqv + q−1

v qu f j
v + g j

v

)
, (A.6)

where df j∗ := f j
u − f j

v q−1
v qu , and similarly, dg j∗ := g j

u − g j
vq−1

v qu . We impose the block-diagonal con-
dition which implies that the non-diagonal blocks in (A.6) are zero blocks. Thus we have

{
b̃ j = f j

v q−1
v ,

qua j + qv c j = q−1
v qudf j∗ + dg j∗.

(A.7)

From the inversion relation, we have

T̃1 j T0 + T̃0T1 j = 0 for j = 1,2, . . . ,d.

This yields the following four sub-matrix equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b̃ j = f j
v q−1

v ⇒ b j = − f j
v q−1

v ,

a j = b̃ jq
−1
v qu − ã j,

q−1
v qua j + c j = −(

c̃ j − d̃ jq
−1
v qu

) ⇒ qua j + qv c j = −(
qv c̃ j − qvd̃ jq

−1
v qu

)
,

q−1q b + d = −d̃ ⇒ q b + q d = −q d̃ .

(A.8)
v u j j j u j v j v j



B. Kwon / J. Differential Equations 251 (2011) 2226–2261 2259
From (A.8), we find that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a j = 0,

b j = − f j
v q−1

v ,

c j = q−1
v

(
q−1

v qudf j∗ + dg j∗), f j
v ck = B∗

jk,

d j = q−1
v qu f j

v q−1
v ,

ã j = f j
v q−1

v q−1
v qu,

b̃ j = f j
v q−1

v ,

c̃ j = −c j = −q−1
v

(
q−1

v qudf j∗ + dg j∗),
d̃ j = 0.

(A.9)

Plugging these in (A.6), we have the following first-order terms:

iξ j(T̃0 A j T0 − T̃1 jdU Q T0 − T̃0dU Q T1 j) =
(

df j∗ 0
0 q−1

v qu f j
v + g j

v

)
. (A.10)

Calculating the second-order terms, we have

T̃1 jdU Q T1k =
(

b̃ j(quak + qv ck) b̃ j(qubk + qvdk)

d̃ j(quak + qv ck) d̃ j(qubk + qvdk)

)
=
(−B∗

jk 0
0 0

)
, (A.11)

where b̃ j(quak + qv ck) = f j
v q−1

v (q−1
v qudf k∗ + dgk∗) = −B∗

jk is the Chapman–Enskog viscous term. On
the other hand, we have

T̃1 j Ak T0 =
(

ã j df k∗ + b̃ j dgk∗ ã j f k
v + b̃ j gk

v

c̃ j df k∗ + d̃ j dgk∗ c̃ j f k
v + d̃ j gk

v

)
=
(−B∗

jk ∗
∗ ∗

)
, (A.12)

and

T̃0 A j T1k =
(

f j
u ak + f j

v ck f j
u bk + f j

v dk

(q−1
v qu f j

u + g j
u)a j + (q−1

v qu f j
v + g j

v)ck (q−1
v qu f j

u + g j
u)bk + (q−1

v qu f j
v + g j

v)dk

)

=
(−B∗

jk ∗
∗ ∗

)
. (A.13)

Combining (A.11)–(A.13), we have

ξ jξk(T̃1 jdU Q T1k − T̃0 A j T1k − T̃1 j Ak T0) = ξ jξk

(
B∗

jk ∗
∗ ∗

)
. (A.14)

Expanding T̃ and T up to the second order, we have the additional resulting second-order terms:

ξ jξk T̃0dU Q T2, jk = ξ jξk

(
0 0

qua jk
2 + qv c jk

2 qub jk
2 + qvd jk

2

)
, (A.15)

and

ξ jξk T̃2, jkdU Q T0 = ξ jξk

(
0 b̃ jk

2 qv

˜ jk

)
. (A.16)
0 d2 qv
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Collecting all the second-order terms (A.14)–(A.16), we can choose T̃2, jk and T2, jk in order to have
no second-order terms in non-diagonal blocks with the left-upper block unchanged. This is possible
since the left-upper blocks in (A.15)–(A.16) are zero blocks. Combining (A.5), (A.10), and (A.15)–(A.16),
we have the second-order block-diagonal matrix as follows:

T −1(ρ)

(
iρ

d∑
j=1

ξ j A j − dU Q

)
T (ρ)

=
(

iρ
∑

j ξ j df j∗ + ρ2 ∑
j,k ξ jξk B∗

jk 0

0 −qv + iρ
∑

j ξ j(g j
v + q−1

v qu f j
v ) + O(|ρ|2)

)
+ O

(|ρ|3). (A.17)
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