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Abstract Neuritic plaques are the key pathological feature of
Alzheimer’s disease, and amyloid b (Ab) peptides are major com-
ponent of these plaques. In this study, we demonstrated the influ-
ence of aluminum (Al) on the Ab peptide degradation by
cathepsin D. Al did not directly affect the cathepsin D activity
using small synthetic substrate. However, when Ab peptides were
used as substrate, the apparent inhibitory effect of Al on cathep-
sin D activity was observed. This inhibitory effect disappeared by
treatment of desferrioxamine. These results indicate that Al has
the potential to interact and disrupt Ab peptide catabolism via
the inhibition of proteolytic degradation.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

There are many reports which show that Al causes inhibition

of various protein functions and enzymes activities [1]. Partic-

ularly, Al seems to be a risk factor for various neurotoxic dis-

eases caused by suppression of protein degradation [2].

Therefore, the influence of Al on protease activity is notable

for the study of its neurotoxicity.

Earlier studies have suggested that Al inhibited calpain-med-

iated proteolysis of human neurofilament [3] and also inhibited

trypsin and a-chymotrypsin proteolytic activity [4]. Kor-

chazhkina et al. [5] recently reported that Al was able to inhibit

plasmin degradation of the Ab peptide (Ab25–35). Their results

indicated that inhibitory effect of Al was caused by a direct

interaction between Al and plasmin. Although many other

Ab degrading enzymes exert their action in extracellular media

at neutral pH, some studies have demonstrated that Ab pep-

tide accumulation may occur within the intracellular matrix
Abbreviations: AD, Alzheimer’s disease; Ab, amyloid b; CD, circular
dichroism; DFO, desferrioxamine; ICP-MS, inductively coupled plas-
ma mass spectrometry; MES, 2-morpholinoethanesulfonic acid; TCA,
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[6–11]. This leads to the consideration that Ab peptide is

deposited and causes a core of neuritic plaques after cell death.

Furthermore, Nakanishi described the pathological roles of

neuronal and microglial cathepsins in brain aging and age-re-

lated diseases [12,13]. Indeed, recent reports indicated that Ab
peptide was taken up predominantly by microglia via class A

scavenger receptors and the class B scavenger receptor type I

[14,15]. Subsequently, the internalized Ab peptides were accu-

mulated and degraded in the lysosomes of microglia [16].

These observations strongly suggest that phagocytosed Ab
peptides are mainly degraded by cathepsin D in lysosomes.

Cathepsin D is a typical aspartic protease in lysosome and

functions primarily to degrade proteins by bulk proteolysis

in the acidic milieu. Although the optimal pH of cathepsin D

is approximately pH 3.5, it is likely that limited proteolysis is

exerted by cathepsins in a less acidic intracellular compartment

such as early and late endosomes [13].

Alternatively, previous studies using neuroblastoma cells

[17] or rat cortical neurons [18] have described Al endocytosis

with subsequent subcellular localization in lysosomes. More-

over, Xie et al. [19] reported that Al localized to the lysosomes

in hippocampal pyramidal neurons in Al-loaded rabbits. We

then considered that Al could exist as a soluble form when it

is taken into the lysosome, which is a weakly acidic matrix.

Therefore, it is possible that Al interacts with various proteins

and internalized substrates within lysosomes.

In the present study, we focused on the effect of Al toward

cathepsin D, a candidate enzyme in Ab peptide degradation

[20,21]. Our main objective was to evaluate whether Al might

affect the proteolysis of proteins, including Ab1–40 and Ab1–42

peptide, by cathepsin D in an acidic matrix. Our overall pur-

pose is to resolve a possible participation of Al in the accumu-

lation of pathological proteins such as Ab peptide and to

propose a novel mechanism of Al-induced neurotoxicity.
2. Materials and methods

2.1. Direct effect of Al on cathepsin D activity
A synthetic peptide substrate used to assay of cathepsin D, (7-Meth-

oxycoumarin-4-yl) acetyl-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys
(Dnp)-D-Arg-NH3, was purchased from Peptide Institute, Inc. (Osaka,
Japan). This synthetic substrate was dissolved in DMSO and diluted to
0.2 mM in 50 mM acetate buffer (pH 4.0). Human liver cathepsin D
(Calbiochem, CA, USA) was dissolved in 0.1 M 2-morpholinoethane-
sulfonic acid (MES) buffer (pH 4.5) at 18 U/ml. Five microliter of
blished by Elsevier B.V. All rights reserved.
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Fig. 1. The direct effects on cathepsin D activity by Al. The final Al
concentrations were 0.1 and 0.2 mM in the reaction mixture. Analysis
was performed to determine the fluorescence at an excitation wave-
length of 328 nm and emission wavelength of 393 nm using a synthetic
peptide substrate. Values are means ± S.D. (n = 4).
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AlCl3 solution (0.1–0.2 mM) was added to an equal volume of cathep-
sin D solution, and was incubated at 37 �C for 20 h. Following this,
5 ll of 0.2 mM synthetic peptide substrate and 35 ll of 50 mM acetate
buffer (pH 4.0) were added to the cathepsin D and Al mixture, fol-
lowed by incubation at 37 �C for 10 min. The reaction was stopped
by rapid cooling on ice followed by the addition of an equal volume
of ice-cold 5% trichloroacetic acid (TCA) solution. After centrifuga-
tion at 10000 · g for 5 min, the fluorescence intensity of the superna-
tant was monitored at excitation and emission frequencies of 328 nm
and 393 nm, respectively.

2.2. Indirect effect of Al on degradation of substrates by cathepsin D
2.2.1. Degradation of acid-denatured hemoglobin. Acid-denatured

hemoglobin, which is a typical substrate of cathepsin D, was prepared
by the method of Schwabe [22]. Cathepsin D activity was determined
by the method of Rosenfeld et al. [23] with minor modification. 20 ll
of various concentrations of AlCl3 solution was added to 0.5 ml of ace-
tate buffer (pH 3.5) containing acid-denatured hemoglobin, and this
was incubated at 37 �C for 30 min. Next, 20 ll of cathepsin D (25 U/
ml) was added to the mixture, followed by incubation at 37 �C for
30 min. The reaction was stopped by the addition of an equal volume
of ice-cold 5% TCA. After centrifugation at 10000 · g for 5 min, the
supernatant samples were measured by the Folin–Lowry method.

2.2.2. Degradation of Ab1–40 and Ab1–42 peptides. When the Ab pep-
tide was used as a substrate for cathepsin D, 0.5 mg/ml of synthetic
Ab1–40 and Ab1–42 peptides (Bachem, Bubendorf, Switzerland) were
incubated at 37 �C for 60 min with various concentration of AlCl3,
FeCl3, and ZnCl2 in 0.1 M MES buffer (pH 4.5). Next, 4.2 ll of
150 U/ml cathepsin D in 0.1 M MES buffer (pH 4.5) was added to
20 ll of the mixture. After further incubation at 37 �C for 20 h, the
reaction was stopped by adding an equal volume of 1,1,1,3,3,3-hexaflu-
oro-2-propanol, which acts as a strong denaturant of Ab peptides by
breaking their steoric structures and inducing the formation of a-heli-
ces [24] containing 0.2% trifluoroacetic acid (TFA). After centrifuga-
tion at 4 �C, 15000 · g for 3 min at 4 �C, a portion of the
supernatant was applied to reverse phase HPLC.

2.2.3. Determination of Ab1–40 and Ab1–42 peptides by HPLC. The
proteolytic degradation of Ab peptides was determined using reverse
phase HPLC as described Hamazaki [20] and McDermott and Gibson
[21] with minor modifications. We used an Inertsil 300 C8 column
(4.6 · 100 mm, 5 lm, GL Science, Tokyo, Japan) for Ab1–40 peptide,
and a ZORBAX 300SB-C18 column (4.6 · 150 mm, 5 lm, Agilent,
USA) for Ab1–42 peptide. To analyze Ab1–40 peptide degradation,
the column temperature was maintained at 30 �C, with an injection
volume of 50 ll. The Ab1–40 peptide was eluted at 26 min with a
40 min-linear gradient from 0% to 60% acetonitrile in 0.1% TFA using
a flow rate of 1 ml/min; this was detected using UV absorbance at
215 nm. In contrast, determination of Ab1–42 peptide degradation
was performed with the column temperature maintained at 40 �C;
the injection volume remained at 50 ll. A mobile phase gradient was
used for Ab1–42 peptide elution; the population of acetonitrile was in-
creased from 20% to 60% over 25 min in 0.1% TFA using a flow rate of
1 ml/min, with UV detection at 220 nm. Under these conditions, Ab1–

42 peptide was eluted in 15 min. All elutions were fractionated and
applied to the protein sequencer to confirm the formation of amyloid
fragments. Sequencing of peptides was performed using Protein
Sequencer (PPSQ-21 A, Shimazu, Japan).

2.3. Effect of DFO on the inhibition of Ab1–40 and Ab1–42 peptide
degradation by Al

After preincubation of Ab peptides with Al, 1 mM desferrioxamine
desferrioxamine (DFO) was added to the mixture. Following this, the
degradation of the peptide was performed by adding cathepsin D and
incubating for 20 h. Degradation of both Ab1–40 and Ab1–42 peptides in
the presence and absence of DFO was observed by the HPLC method
described above.

2.4. Circular dichroism spectroscopy
The circular dichroism (CD) spectrum was measured using a Jasco J-

820 spectropolarimeter (Tokyo, Japan). The mixture containing
0.5 mM Al and 0.5 mg/ml Ab peptide in 0.1 M MES buffer (pH 4.5)
was loaded into a cylindrical cell (0.5 mm path length) for measure-
ments in the UV range of 190–260 nm (scan speed 20 nm/min). The
nitrogen gas flow rate was set at 5 L/min. Repetitive scans were used
to improve the signal-to-noise ratio, and an average of four scans
was performed.

2.5. Analysis of Al bound to various peptides
Ten microliter of 4 mg/ml Ab1–40 peptide, aprotinin (Sigma-Aldrich,

MO, USA), or glucagon (Sigma-Aldrich) was added to 10 ll of
1.0 mM AlCl3 in 0.1 M MES buffer (pH 4.5); the mixture was then
incubated at 37 �C for 60 min. Next, the solution was applied to a
polyvinylidene difluoride (PVDF) membrane cartridge (ProSorb, Ap-
plied Biosystems, USA) for a protein sequence assay apparatus. The
membrane and inside of the tube were washed with 0.5 ml of 0.1 M
MES buffer (pH 4.5) five times to remove excess free Al; Al bound
to peptides on the PVDF membrane was recovered using 0.5 ml of
1 mM DFO aqua solution. Al content was determined by inductively
coupled plasma mass spectrometry (ICP-MS) (Sciex Elan DRC II,
Perkin-Elmer, USA).

2.6. Statistical analysis
All experimental data are shown as means ± S.D. Data were ana-

lyzed using Student’s t-test and analysis of variance (ANOVA) fol-
lowed by Bonferroni correction. In all statistical analyses, the levels
of significant differences were identified by P < 0.05.
3. Results

3.1. Direct effect of Al on cathepsin D activity

We evaluated the direct effect of Al on cathepsin D activity a

using synthetic low molecular weight substrate. When cathep-

sin D was preincubated with Al (0.125–0.5 mM) and then

added to a synthetic low molecular weight substrate, cathepsin

D activity was not significantly affected as compared to the

control value generated without preincubation with Al (Fig. 1).

3.2. Influence of Al-pretreatment to substrates of cathepsin D

First, we examined the indirect influence of Al on cathepsin

D activity using acid-denatured hemoglobin as the substrate.

As shown in Fig. 2, after preincubation with 0.2, 0.5, and

1.0 mM Al for 30 min at 37 �C, the apparent degradation of

acid-denatured hemoglobin was significantly decreased at

8.5 ± 5.3%, 31.0 ± 5.6%, and 72.8 ± 6.8% versus control

(n = 6), respectively.

Subsequently, the effect of pretreatment with Al was exam-

ined using Ab peptides as substrates for degradation by

cathepsin D. Chromatograms of Ab peptide clearly demon-

strated that incubation with cathepsin D led to degradation
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Fig. 2. Indirect effects of Al on degradation of acid-denatured
hemoglobin by cathepsin D. The final Al concentrations were 0.2,
0.5, and 1.0 mM in the reaction mixture. Values are means ± S.D.
(n = 6). Significantly different from control; P < 0.01 (*).
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Fig. 3. Chromatograms of the degradation of Ab1–40 peptide by
cathepsin D. (A) Ab1–40. (B) Ab1–40 digested by cathepsin D. (C)
Pretreated Ab1–40 with 0.5 mM Al following digestion by cathepsin D.
(D) Pretreated Ab1–40 with 0.5 mM Al followed by incubation with
DFO for 30 min and subsequent digestion by cathepsin D. After
incubation, the samples were analyzed on HPLC; all eluent (0–26 ml)
were collected (1 ml/tube) for peptide identification. The new products
of degradation were identified using protein sequencer.
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of Ab1–40 (Fig. 3B) and Ab1–42 peptides (Fig. 4B). The digested

fragments from each Ab peptide were recovered as shown in

Figs. 3B and 4B. Although Ab1–19 and Ab20–34 were confirmed

in the eluent from Ab1–40 peptide, only Ab1–19 was identified

from Ab1–42 peptide under our HPLC conditions in order to

quantify the amount of residual Ab1–40 or Ab1–42 peptide.

However, when the each Ab peptide was pretreated with Al,

Fe, or Zn (at a level about 0.25 mM), the degradation of

Ab1–40 and Ab1–42 peptides by cathepsin D was significantly

inhibited by pretreatment of Al above 0.25 mM (Figs. 3C

and 4C). In addition, the inhibitory effect of Al was more

obvious than that of Fe and Zn (Tables 1 and 2). As shown

in Table 1, when compared to the control, the degradation

of the Ab1–40 peptide by cathepsin D was inhibited by

21.2 ± 17.4%, 45.0 ± 9.7%, and 46.9 ± 15.9% with pretreat-

ment of Al at 0.125, 0.25, and 0.5 mM, respectively. Also,

significant inhibition of the Ab1–42 peptide was observed when

pretreated with Al at 0.25 mM and 0.5 mM (Table 2).

3.3. Influence of DFO on the inhibitory effect of Al for

degradation of Ab peptides by cathepsin D

Degradation of the Ab1–40 peptide (Fig. 3D) and Ab1–42 pep-

tide (Fig. 4D) by cathepsin D was recovered by addition of

1 mM DFO following pre-incubation of Ab with Al. The inhi-

bition ratio induced by pretreatment with 0.5 mM Al was re-

duced from 46.9% to 10.4% for Ab1–40 peptide degradation

using 1 mM DFO treatment, while the inhibitory effect caused

by Al pretreatment on the degradation of Ab1–42 peptide was

almost eliminated by treatment with 1 mM DFO.

3.4. Alteration of the secondary structure of Ab peptides induced

by the pretreatment with Al

To investigate the mechanism of Al inhibitory of cathepsin

D-mediated Ab peptide degradation, we performed a second-

ary structure analysis in solution using CD spectroscopy.

Under the previously stated conditions, conformational

changes were not observed in either the Ab1–40 or Ab1–42 pep-

tides in the presence of 0.5 mM Al after at least 20 h of incu-

bation at 37 �C, pH 4.5 (Fig. 5).

3.5. Binding of Al to Ab1–40 peptide

Furthermore, to investigate the mechanism by which Al

inhibits the degradation of Ab peptide by cathepsin D, we at-
tempted to demonstrate binding Al to the Ab peptide after incu-

bation with Ab peptide under weakly acidic conditions (pH 4.5).

In this experiment, we confirmed that free Al3+ was not precip-

itated by determining the concentration of Al in the filtered solu-

tion obtained from the control sample (with the vehicle

containing 0.5 mM Al). Indeed, the control showed that free

Al3+ was not retained on the membrane after washing with an

acidic buffer (pH 4.5) (Fig. 6). Al bound to the Ab1–40 peptide,

aprotinin, or glucagon on the PVDF membrane was released

using DFO, and the recovered Al amounts were determined.

As shown in Fig. 6, the Al content bound to the Ab1–40 peptide

was more significant than that of aprotinin and glucagon.
4. Discussion

Ab peptides are core constituents of the neuritic (senile) pla-

ques, one of the typical neuropathological changes of Alzhei-

mer’s disease (AD) [25,26]. It has been widely viewed that

AD might arise from an imbalance in the rate of synthesis
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Fig. 4. Chromatograms of the degradation of Ab1–42 peptide by
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Table 1
Inhibitory effect of Al, Fe, and Zn on Ab1–40 peptide degradation by
cathepsin D

Concentration (mM) Inhibition (%)

Al Fe Zn

0.125 21.2 ± 17.4 – –
0.25 45.0 ± 9.7 ** 1.1 ± 1.9 0.2 ± 0.3
0.50 46.9 ± 15.7** 38.9 ± 7.3* 5.8 ± 5.4

Each data represents mean values ± S.D. (n = 3–5). The inhibition (%)
of degradation by Al, Fe, and Zn are calculated by dividing the peak
area of Ab1–40 peptide in the presence of each metal by the corre-
sponding peak areas obtained in the absence of each metal. Significant
differences from control value: (–) indicates not done.
*P < 0.05.
**P < 0.001.

Table 2
Inhibitory effect of Al, Fe, and Zn on Ab1–42 peptide degradation by
cathepsin D

Concentration (mM) Inhibition (%)

Al Fe Zn

0.125 60 – –
0.25 36.7 ± 13.7 *

60 60
0.50 36.7 ± 8.4 **

60 60

Each data represents mean values ± S.D. (n = 3–5). The inhibition (%)
of degradation by Al, Fe, and Zn are calculated by dividing the peak
area of Ab1–42 peptide in the presence of each metal by the corre-
sponding peak areas obtained in the absence of each metal. Significant
differences from control value: (–) indicates not done.
*P < 0.05.
**P < 0.001.
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versus the rate of clearance of Ab peptide. In physiologically

normal metabolism, Ab peptide levels appear to be strictly reg-

ulated, resulting in a low level of Ab peptide and no deposition
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in the brain. Therefore, it is considered that a failure in a pro-

teolytic function causes accumulation of Ab peptide. Several

proteases have been shown to be capable of cleaving Ab pep-

tide. There are number of candidate proteases, including tryp-

sin and a-chymotrypsin [27], insulin degrading enzyme [28–30],

endothelin-converting enzyme [31], carboxypeptidase B [32],

angiotensin-converting enzyme [33], plasmin [34,35], neprilysin

[36] and cathepsin D [20,21]. However, the enzyme definitively

responsible for the physiological degradation of Ab peptide is

thus far unclear.

Because soluble Al3+ is markedly increased in acidic matri-

ces, we examined the influence of Al on the activity of lyso-

somal cathepsin D-mediated proteolysis of Ab peptides.

When a synthetic decapeptide substrate was used, direct inter-

action was not observed between Al and human cathepsin D.

In addition, Falkous et al. [37] did not find significant direct

effects of Al to lysosomal protease when synthetic small pep-

tides were used as substrate. However, degradation of acid-

denatured hemoglobin and Ab peptides by cathepsin D was

significantly inhibited when Al was pretreated with the cathep-

sin D substrates. This apparent inhibition likely indicates that

acid-denatured hemoglobin interacts with Al3+ to form com-

plexes which are not easily degraded by cathepsin D. There-

fore, we further examined the potential of Al to induce

substrate intensively toward decomposition by cathepsin D

using Ab peptides.

We observed the inhibitory effects of Fe and Zn as well as Al

on the Ab peptide degradation by cathepsin D using HPLC

[20,21]. Sample preparation containing 1,1,1,3,3,3-hexaflu-

oro-2-propanol and TFA gave good recovery of Ab peptides

without aggregation. Ab1–40 and Ab1–42 peptides could be

detected quantitatively HPLC under conditions used in this

study. Fe and Zn showed only a slight inhibitory effect on

Ab peptide degradation when compared to Al under same con-

ditions. Although Mantyh et al. [38] and Kawahara et al. [39–

41] demonstrated that Al, Fe, and Zn enhanced the aggrega-

tion of the Ab1–40 peptide, we did not observe aggregation of

the Ab peptides following their incubation with 0.5 mM Al

for 20 h at 37 �C, pH 4.5. Thus, based on the observed interac-

tion between Al and Ab peptides, the inhibitory effect of Al

appears to be specific for acidic conditions.

In order to evaluate the apparent inhibitory effect of Al for

Ab degradation by cathepsin D, we first estimated whether Al

treatment caused a conformational change in the Ab peptides,

resulting in resistance towards cathepsin D. Some researchers

have reported that Al accelerated the conformational changes

of Ab peptide from random to b-sheet form [42–44]. We ob-

served the conformation of Ab1–40 and Ab1–42 peptides in

the presence of Al under acidic conditions and no changes in

secondary structure of Ab were observed, at least within the

20 h of incubation at pH 4.5. However, our reaction conditions

(e.g. pH and incubation time) differ from that done in previous

studies.

Next, we investigated another inhibitory mechanism by

which Al could inhibit Ab peptide degradation by cathepsin

D. From the results shown in Tables 1 and 2, Ab peptide seems

to be tolerant to cathepsin D when bound to Al under soluble

conditions. Addition of DFO prior to cathepsin D degradation

caused a disappearance of the inhibitory effect by Al on Ab
peptides degradation; this suggests that Al exerted its effects

via reversible interaction with the Ab peptide. This result also

indicates that a chelating agent like Clioquinol [45,46] may be
effective for the treatment of Alzheimer’s disease, if Al partic-

ipates in the pathophysiology of the disease. Since these results

strongly indicate that Al associated with Ab as soluble com-

plex at pH 4.5, we attempted to determine if a significant

amount of Al bound to the peptides using a PVDF membrane

technique. In general, the propensity for Al3+ to be bound by

biological ligands such as carboxylate at acidic pH will be

lower than at neutral pH. However, our results clearly

demonstrated that Al bound easily to Ab1–40 peptides at a

physiologically-relevant pH 4.0–5.0 (i.e. that of the lysosomal

fraction in the brain). Recently, Vyas et al. [47] indicated using
27Al nuclear magnetic resonance spectroscopy and amino acid

sequencing of Ab peptides in the presence of Al that Al3+ ions

could interact with Ab1–40 and Ab6–25 peptides. Their data also

showed the possibility that Asp7, His14, and Asp23 have under-

gone steric interference associated with aqueous Al3+ to form a

relatively stable complex. Moreover, they revealed that the Ab
peptide is stably bound by Al at pH 4.0–6.0 via its sites at

Asp7, His14, and Asp23, which undergo steric interference

Al3+ ion-complexation. This observation supports our result

that Al has binding potential to the Ab peptides in acid matrix.

On the other hand, cathepsin D cleaves the Ab peptide at

Phe19-Phe20 and Leu34-Met35 [20,21]. Therefore, it is possible

that the steric interaction between Al and Ab peptides may af-

fect the digestion of Ab peptides by disturbing the cleavage

sites for cathepsin D, even before aggregation of the Ab pep-

tide occurs. As the resultant, it can be considered that Al in-

duces the depositition of Ab peptides via its inhibitory

potential against Ab degradation by cathepsin D.

In a previous report, we showed that the relationship be-

tween Al accumulation and the acceleration of lipid peroxida-

tion in the rat brain [48]. Interestingly, recent studies clearly

suggest that neurotoxicity exerted by senile plaques arises from

the induction of oxidative stress [49–51]. Furthermore, Pratico

et al. [52] reported that Al increased in vivo lipid peroxidation,

as well as Al-accelerated Ab peptide formation and plaque

deposition in amyloid precursor protein transgenic mice.

Therefore, it seems important to establish the relationship be-

tween the acceleration of lipid peroxidation and plaque depo-

sition induced by Al.

In conclusion, Al inhibits the degradation of some substrates

of cathepsin D. Therefore, it is proposed that Al triggers the

intracellular accumulation of proteins and peptides, including

Ab peptide, if cathepsin D participates its degradation

in vivo. Although the mechanisms of AD pathogenesis have

not been fully elucidated, increasing evidence indicates that

the accumulation of Ab peptides might cause the formation

of the neuritic plaques, and the neurotoxicity that results are

due to the generation of radical oxygen species [49–51]. Thus,

the inhibitory potential of Al towards cathepsin D presented

here can be considered a toxic feature of Al, which may be a

risk factor of AD-like pathogenesis through the deposit of neu-

ritic plaque.
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