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Volatile fatty acids (VFAs), comprising mainly of acetic acid and lesser quantities of propionic

and butyric acids, are generated when zoomass or phytomass is acted upon by acidogenic and

acetogenic microorganisms. VFAs can be utilized by methanogens under anaerobic conditions

to generate flammable methane–carbon dioxide mixtures known as ‘biogas’. Acting on the

premise that this manner of VFA utilization for generating relatively clean energy can be easily

accomplished in a controlled fashion in conventional biogas plants as well as higher-rate anaer-

obic digesters, we have carried out studies aimed to generate VFAs from the pernicious weed

ipomoea (Ipomoea carnea). The VFA extraction was accomplished by a simple yet effective

technology, appropriate for use even by laypersons. For this acid-phase reactors were set, to

which measured quantities of ipomoea leaves were charged along with water inoculated with

cow dung. The reactors were stirred intermittently. It was found that VFA production started

within hours of the mixing of the reactants and peaked by the 10th or 11th day in all the reactors,

effecting a conversion of over 10% of the biomass into VFAs. The reactor performance had

good reproducibility and the process appeared easily controllable, frugal and robust.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Ipomoea (Ipomoea carnea, also called I. fistulosa) is among the

most dominant and harmful of the weeds that have infested the
world’s tropical and sub-tropical regions [1,2]. It is an ever-
green, flowering, shrub with height ranging from 1.1 to 3 m
and stem diameter between 1.5 and 6 cm. It was initially used

to make fences but has become very widespread owing to its
hardiness, high reproductive success, and very fast rate of
growth [3,4]. Its rampant colonization of landmasses and

shallow wetlands has proved disastrous in terms of loss of bio-
diversity, loss of nutrients, and other forms of ecodegradation
[5–7].

The weed is so hardy and resilient that it is able to success-
fully resist all attempts to control it by chemical weedicides or
biological agents [8]. Finding a means by which ipomoea can

be gainfully utilized appears to be the only way by which it
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can become profitable to regularly harvest the weed, thereby
keeping it under some control. Toward this objective efforts
have been made to utilize ipomoea as a source of paper pulp

[9], biosorbents [2], chemicals [10–12], drugs [13–15], and latex
[16]. However, none of these efforts have been economically
viable or have shown any potential for large-scale utilization.

About 70% of the biomass contained in ipomoea is due to
its leaves and flowers. In the past attempts have been made to
utilize these parts of ipomoea as a possible feedstock for

generating flammable biogas in anaerobic digesters; for exam-
ple [17] admixed ipomoea with distillery waste-water to make
feedstock for anaerobic digestion. Ipomoea does yield biogas
upon anaerobic fermentation [18,19] but no anaerobic digester

can be sustainably operated if fed with ipomoea (or any other
weed) even in chopped or crushed form because of the follow-
ing reasons:

(a) Ipomoea cannot be fed to the conventional fixed-dome
and floating-dome biogas digesters, of the type which

are extensively used in most of the third world countries
[20–22] to generate biogas from animal dung-water
slurry. This is because the weed does not flow out of

the digester exit along with water, as the animal dung-
water slurry does, but, instead, accumulates in the diges-
ter to eventually clog it. Even when fed as partial feed
supplement along with animal dung slurry, the weed

eventually clogs the digesters [23–25].
(b) Shredding or mincing of the weed prior to charging does

not help either; it makes feeding easy but also leads to

equally quick formation of scum which badly clogs
the digesters. As a result the digesters become non-
functional a few weeks after start-up [25]. In a like man-

ner ipomoea also clogs the continuously stirred tank
reactors (CSTR) used in most developed countries for
anaerobically digesting piggery and dairy wastes.

But, we reason, if volatile fatty acids (VFAs) can be
extracted from ipomoea leaves in the form of aqueous slurry,
by acid-phase digestion of the weed, such a slurry can be used

as feed for any and all types of anaerobic digesters, low-rate as
well as high-rate [26]. In this manner it appears possible to gen-
erate clean energy in the form of flammable biogas from about

70% of the biomass contained in ipomoea without jeopardiz-
ing any anaerobic digester. The present work has resulted from
the pursuit of this strategy. The acid-phase digestion was
Table 1 A typical set of results-pertaining to series B. Figures in p

Day of reactor

operation

VFA content in control reactors,

mg/L

VFA content in

mg/L

X Y

1.0% 2.5% 5.0% 1.0%

5th 31.4 94.3 188.6 1953.8

6th 31.4 94.3 204.3 2050.0

7th 47.2 110 188.6 2403.6

8th 31.4 94.3 188.6 2736.8

9th 31.2 125.7 220.3 3053.7

10th 62.9 110 220.3 3583.4

11th 47.2 110 251.5 3347.6

12th 59.04 110 188.6 3136.5

13th 62.9 92.3 157.2 2767.5
accomplished in simple, intermittently stirred, tank reactors.
The microorganisms required for this purpose were obtained
from cow manure, commonly called cow dung, which is rich

in the cellulolytic, acidogenic, and acetogenic bacteria, besides
enzymes, that are capable of biodegrading phytomass. As
rumens are capable of digesting lignocellulosic biomass, their

excrement is rich in microorganisms that accomplish the
digestion.
Material and methods

All chemicals were analytical regent grade unless otherwise
specified. Alkali-resistant glassware and deionized, double-

distilled, water were used for all analytical work.
Healthy, adult, plants of ipomoea were collected from loca-

tions in and near the Pondicherry University campus. Their

leaves were plucked and were liberally washed with water
and wiped. Dry weight of the leaves was determined by taking
three separate randomly picked samples, weighting them (fresh
weight), and then oven drying them at 105 �C to a constant

weight. Fresh cow dung, used as inoculum, was obtained from
a nearby dairy. Its dry weight was also determined at 105 �C.
All the calculations of the VFA yield have been done by taking

the dry weight of ipomoea as the basis.
The reactors for VFA extraction consisted of 15 L plastic

containers provided with a tap at the bottom to drain off the

contents at the end of each experiment. A set of six such reac-
tors were employed, charged as follows:

R1A : Ipomoea 1.5 kg + 12 L water containing 1% cow dung

R2A : As above but without ipomoea

R3A : Ipomoea 1.5 kg + 12 L water containing 2.5% cow dung

R4A : As above but without ipomoea

R5A : Ipomoea 1.5 kg + 12 L water containing 5% cow dung

R6A : As above but without ipomoea
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The reactor contents were mixed manually with a fiber–
glass rod once every 8 h and the reactor tops were covered with
nylon mesh to keep off insects while at the same time ensuring
sufficient supply of air to the reactants so that anaerobic con-

ditions do not set in.
Twenty-four hours from the start of each reactor, the con-

tents were stirred and coarse solids were allowed to settle for

10 min. Four 25 mL samples were then drawn from different
resent cow dung inoculum (wt%).

oea-fed reactors, VFA generated from ipomoea,

mg/L

(Y � X)

5.0% 1.0% 2.5% 5.0%

3551.9 1922.4 2294.6 3576.4

3583.4 2012.9 2577.5 3379.1

3803.4 2356.4 2813.3 3614.8

4023.5 2705.4 3206.2 3834.9

4829.8 3022.5 3834.7 4589.3

4997.9 3300.4 3882 4777.6

5155.1 3347.6 3772 4903.6

4335.8 3077.5 3764.5 4147.2

3636.3 2704.6 3013.5 3479.1
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Fig. 1 Pattern of VFA production from ipomoea in the three

sets (A, B, C) of reactors inoculated with 1% ( ), 2.5% ( ), and

5% ( ) cow dung.

Complex organic matter
(carbohydrates, proteins, fats)

present in ipomoea

Soluble organic molecules
(sugars, amino acids, fatty acids)

Hydrolysis

Fatty Acids 

Acidogenesis

Acetic acid

Acetogenesis

(C1 – C5)(C1 – C5)

Fig. 2 Steps associated with the production of VFAs from

ipomoea.
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points in the reactor, and pooled. The volume thus displaced
was compensated with an equal volume of water. In subse-

quent days also, samples were drawn in this manner.
The pooled sample was centrifuged and filtered to remove a

few particulates that were present before it was transferred to a
500 mL distillation flask. To it 100 mL of water and 5 mL

H2SO4 were mixed. After introducing bubblers in the form
of the 4–5 pieces of broken glass, the contents were distilled
at the rate of about 5 mL per minute. The first 15 mL of distil-

late was discarded and 150 mL of subsequent distillate was
used to estimate VFA concentration by titration with standard
NaOH using phenolphthalein indicator. This was in accor-

dance with the distillation-cum-titration procedure described
among standard methods [27]. Based on a large number of
tests done prior to the analysis of the samples, in which known

quantities of acetic acid were distilled and their recoveries
quantified, concentration-recovery curves had been obtained
for different ranges of acetic acid concentrations. These
calibration curves were then used to make the sample VFA
assay as accurate as possible. The distillation-cum-titration
procedure was preferred by us over the other option [27],

which provides for separation by column chromatography
and assay by acid–base titration, because the former is quicker,
and has adequate accuracy and precision.

After the first round of experiments (series A) was over, the

reactors were cleaned and the entire experiment was repeated
using a fresh harvest of ipomoea and freshly acquired cow
dung (series B). It was done yet again once more (series C).

This way reproducibility was tested vis a vis VFA extraction
carried out with different harvests of ipomoea, different
sources of cow dung inoculum, and at different times.

Results and discussion

VFA yield

Tremendous compaction was seen to occur once ipomoea

leaves were put under aqueous slurry. Apparently the
entrained air which provides the bulk to the leaves is released
as the leaves soften under water, leading to agglomeration.
Within a few hours the bulk was reduced by several times of
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its original volume. The VFA concentration in ipomoea-fed
reactors was always 20-times or more than in the control reac-
tors, indicating that VFA production from ipomoea had com-

menced as soon as the reactors were started. A typical set of
results is presented in Table 1. The VFA production, caused
by the enzymes and the bacteria present in the cow dung,

can be attributed to the first three steps that are known to
be associated in the anaerobic digestion of organic substances
[28–30] (Fig. 2):

1. The exoenzymes (hydrolase) present in cow dung crack
large protein macromolecules, fats, and carbohydrate
polymers into water soluble monomers (amino acids,

long-chain fatty acids, and sugars).
2. The monomers are then converted into short-chain

(C1–C5) fatty acids-principally lactic, propionic, buty-

ric, and valeric acid.
3. The homoacetogenic microorganisms consume these

acids to generate acetic acid, carbon dioxide, and

hydrogen. Hence the main product, 90% or more, of
acetogenesis is acetic acid while minor quantities of
propionic acid and traces of higher acids, which had

escaped degradation, are also present [31,30].

As may be seen from Table 1, VFA concentrations gener-
ated in control reactors have been deducted from VFA concen-

trations that developed in the ipomoea-fed reactors to obtain
VFA generated by the weed alone. From this information
VFA generation per kilogram of dried ipomoea has been cal-

culated for all the reactors (Table 2). It may be seen that the
relative error in triplicate determinations is mostly less than
10% and is above 15% in only three instances – the 5th and

6th day performances of 2.5% cow dung-inoculated reactors
and the 5th day performance of the 5% cow dung-inoculated
reactors. During the 10th and 11th day of reactor operation,

when VFA levels attained their highest, the relative error
was below 5% in five of the six sets. Considering the heteroge-
neity and natural variability of the reactor feed, and consider-
ing the fact that the reactors were operated at different periods

of time at ambient temperatures which ranged between 27 �C
and 35 �C, the reproducibility in the reactor performance as
well as the robustness of the process can be considered as very

good.
During the first four days of reactor operation, the VFA

yield was low but it approached or crossed 50 g/kg ipomoea

by the 5th day. By 13th day the VFA production had passed
the peak in all the reactors. Hence the results have been
reported for the 5th to 13th day of reactor operation in all cases.
The pattern of VFA production in this period in all the three

series of experiments is shown in Fig. 1. The VFA yield is seen
to peak by the 10th or the 11th day and then declines. In most
of the reactors the VFA production followed the order of the

cow dung inoculation: 5% > 2.5% > 1% but the difference in
peak VFA generation was always less than 20% between suc-
cessive inoculum concentrations.

All-in-all, VFA yields of the order of 112 ± 12 g per kg of
ipomoea were achievable within 10–11 days of reactor opera-
tion, representing conversion of over 10% of ipomoea into

energy precursors. These precursors can be converted into
methane within 24 h or lesser in high-rate anaerobic digesters
[26].
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Potentially favorable process operation and process economics

The economics of any process essentially depends on the over-
all hydraulic retention time (HRT) of the process because
HRT controls the reactor size which in turn controls the pro-

cess economics [21]. Of course operational costs are also
important but only if they depend on high inputs of energy
or cause substantial wastage of materials.

Whereas the continuously stirred tank reactors (CSTRs)

which have been tried in the past to process phytomass like
ipomoea have an HRT of 15–20 days, and need continuous
input of energy for stirring the water-ipomoea slurry, the over-

all HRT of the presently reported process is under 12 days.
Moreover the 10-day acid-phase part requires only occasional
stirring hence energy inputs are much lesser.

The VFA-laden slurry is very easy to separate from the
parent weed because the latter settles out very quickly. Hence
the supernatant of the VFA reactors can be easily transferred

to any existing anaerobic digester or to the one specifically
set for handling ipomoea-based VFAs. The process has the
basic features suitable for scaling up as sequential batch reac-
tors or continuously operated units. It can be said that the

process as reported by us is simple, frugal, reproducible,
and robust.

Attempts to convert the spent ipomoea into an organic fer-

tilizer by vermicomposting are presently under way so that
total disposal of ipomoea can be made possible.

Conclusions

Volatile fatty acids (VFAs) were obtained from the amphibi-
ous weed ipomoea (I. carnea) in simple to install and easy to

operate reactors. The weed was acted upon by the cellulolytic
and acidogenic microorganisms present in cow dung with
which the reactors were inoculated.

VFA production started within hours of the mixing of the

reactants and peaked by the 10th or 11th day in all the reactors,
effecting a conversion of over 10% of the biomass into VFAs.
As the VFAs are directly utilizable as feed in any and all types

of anaerobic digesters to obtain energy in the form of methane,
the present work opens up the possibility of large-scale utiliza-
tion of ipomoea as an energy source.

Conflict of interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.
Acknowledgements

TA and SAA thank the University Grants Commission
(UGC), New Delhi, for support under a Major Research
Project. MRK and SMT thank UGC and CSIR, New Delhi,
for Moulana Azad National Fellowship and Senior Research

Associateship, respectively.
References

[1] Bhuyan M, Mahanta JJ, Bhattacharyya PR. Biocontrol

potential of tortoise beetle (Aspidomorpha miliaris)

(Coleoptera: Chrysomelidae) on Ipomoea carnea in Assam,

India. Biocontrol Sci Technol 2008;18(9):941–7.

[2] Sharma A, Bachheti RK. A review on Ipomoea carnea. Int J

Pharma Bio Sci 2013;4(4):363–77.

[3] Chari KB, Abbasi SA. A study on the fish fauna of oussudu – a

rare freshwater lake of south India. Int J Environ Stud

2005;62:137–45.

[4] Konwer D, Kataki R, Saikai M. Production of solid fuel from

Ipomoea carnea wood. Energy Sources, Part A: Recovery,

Utilization Environ Eff 2007;29(9):817–22.

[5] Chari KB, Sharma Richa, Abbasi SA. Comprehensive

environmental impact assessment of water resources projects,

vol. 1. New Delhi: Discovery Publishing House; 2005, xvi+580

pages.

[6] Hueza IM, Guerra JL, Haraguchi M, Naoki A, Gorniak SL.

The role of alkaloids in Ipomoea carnea toxicosis: a study in rats.

Exp Toxicol Pathol 2005;57(1):53–8.

[7] Meira M, da Silva EP, David JM, David JP. Review of the genus

Ipomoea: traditional uses, chemistry and biological activities.

Braz J Pharmacog 2012;22:682–713.

[8] Nandkumar P. Studies on the chemical constituents and the

pulp and papermaking characteristics of Ipomoea Carnea Jacq.

Orient J Chem 2011;27(1):149–54.

[9] Khatiwora E, Adsula VB, Kulkarni M, Deshpande NR,

Kashalkar RV. Isolation and characterization of substituted

dibutyl phthalate from Ipomoea carnea stem. Der Pharma Chem

2013;5(5):5–10.

[10] Ganaie SU, Abbasi T, Anuradha J, Abbbasi SA. Biomimetic

synthesis of silver nanoparticles using the amphibious weed

ipomoea and their application in pollution control. J King Saud

Univ Sci 2014;26(3):222–9.

[11] Anuradha J, Abbasi T, Abbasi SA. Gainful utilization of the

highly intransigent weed ipomoea in the synthesis of gold

nanoparticles. J King Saud Univ Sci 2014. http://dx.doi.org/

10.1016/j.jksus.2014.04.001.

[12] Anuradha J, Abbasi T, Abbasi SA. Use of plants in biomimetic

synthesis of gold nanoparticles. J Nano Res; accepted for

publication.

[13] Bishayee A, Sarkar A, Chatterjee M. The hepatoprotective

activity of carrot (Daucus carota L) against carbon tetrachloride

intoxication in mouse liver. J Ethnopharmacol 1995;47:69–74.

[14] Gupta RK, Chaudhary S, Singh RK. Antihepatotoxic influence

of aqueous extract of Ipomoea carnea against carbon

tetrachloride induced acute liver toxicity in experimental

rodents. Asian J Pharm Clin Res 2012;5(4):262–5.

[15] Rout SK, Kar DM. Sedative, anxiolytic and anticonvulsant

effects of different extracts from the leaves of Ipomoea carnea in

experimental animals. Int J Drug Dev Res 2013;5(2):232–43.

[16] Patel AK, Singh VK, Yadav RP, Moir AG, Jagannadham MV.

ICChI, aglycosylated chitinase from the latex of Ipomoea carnea.

Phytochemistry 2009;70:1210–6.

[17] Deshmukh HV. Economic feasibility and pollution abetment

study of biogas production process utilizing admixture of

Ipomoea carnea and Distillery Waste. J Environ Res Dev

2012;7(2):633–42.

[18] Abbasi SA, Nipaney PC, Schaumberg GD. Bioenergy potential

of 8 common aquatic weeds. Biol Waste 1990;34(4):359–66.

[19] Ganesh P, Sanjeevi R, Gajalakshmi S, Ramasamy EV, Abbasi

SA. Recovery of methane-rich gas from solid-feed anaerobic

digestion of ipomoea (Ipomoea carnea). Bioresour Technol

2008;99(4):812–8.

[20] Abbasi T, Abbasi SA. Production of clean energy by anaerobic

digestion of phytomass – new prospects for a global warming

http://refhub.elsevier.com/S2090-1232(14)00074-5/h0005
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0005
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0005
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0005
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0010
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0010
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0015
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0015
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0015
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0020
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0020
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0020
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0025
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0025
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0025
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0025
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0030
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0030
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0030
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0035
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0035
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0035
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0040
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0040
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0040
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0045
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0045
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0045
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0045
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0050
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0050
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0050
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0050
http://dx.doi.org/10.1016/j.jksus.2014.04.001
http://dx.doi.org/10.1016/j.jksus.2014.04.001
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0065
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0065
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0065
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0070
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0070
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0070
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0070
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0075
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0075
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0075
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0080
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0080
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0080
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0085
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0085
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0085
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0085
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0090
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0090
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0095
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0095
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0095
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0095
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0100
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0100


78 M. Rafiq Kumar et al.
amelioration technology. Renew Sustain Energy Rev 2010;

14:1653–9.

[21] Abbasi T, Tauseef SM, Abbasi SA. Anaerobic digestion for

global warming control and energy generation: an overview.

Renew Sustain Energy Rev 2012;16:3228–42.

[22] Tauseef SM, Premalatha M, Abbasi T, Abbasi SA. Methane

capture from livestock manure. J Environ Manage 2013;

117:187–207.

[23] Abbasi SA, Nipaney PC. Generation of biogas from Salvinia

molesta (Mitchell) on a commercial biogas digester. Environ

Technol Lett 1984;5(2):75–80.

[24] Abbasi SA, Nipaney PC. Infestation by aquatic weeds of the

fern genus Salvinia: its status and control. Environ Conserv

1986;13(3):235–41.

[25] Abbasi SA, Nipaney PC, Ramasamy EV. Studies on multiphase

anaerobic-digestion of salvinia. Indian J Technol 1992;

30(10):483–90.
[26] Abbasi T, Tauseef SM, Abbasi SA. Energy recovery from

wastewaters with high-rate anaerobic digesters. Renew Sustain

Energy Rev 2013;19:704–41.

[27] APHA (American Public Health Association). Standard

Methods for the Examination of Water and Wastewater,

APHA, Washington, DC, 2012.

[28] Khanal SK. Anaerobic biotechnology for bioenergy production:

principles and applications. Wiley-Blackwell; 2008.

[29] Rosenzweig A, Ragsdale SW, editors. Methods in methane

metabolism, part a: methanogenesis. Academic Press; 2011.

[30] Abbasi SA, Nipaney PC, Panholzer MB. Biogas production

from the aquatic weed pistia (Pistia Stratiotes). Bioresour

Technol 1991;37(3):211–4.

[31] Abbasi T, Premalatha M, Abbasi SA. Masdar city: a zero

carbon zero waste myth. Curr Sci 2012;102, 12.

http://refhub.elsevier.com/S2090-1232(14)00074-5/h0100
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0100
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0105
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0105
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0105
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0110
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0110
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0110
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0115
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0115
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0115
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0120
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0120
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0120
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0125
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0125
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0125
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0130
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0130
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0130
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0140
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0140
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0145
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0145
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0150
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0150
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0150
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0155
http://refhub.elsevier.com/S2090-1232(14)00074-5/h0155

	Control of amphibious weed ipomoea  (Ipomoea carnea) by utilizing it for the extraction of volatile fatty acids as energy precursors
	Introduction
	Material and methods
	Results and discussion
	VFA yield
	Potentially favorable process operation and process economics

	Conclusions
	Conflict of interest
	Compliance with Ethics Requirements
	Acknowledgements
	References


